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Abstract

The estimation of RxC ecological inference contingency tables from aggre-

gate data is one of the most salient and challenging problems in the field

of quantitative social sciences, with major solutions proposed from both

the ecological regression and the mathematical programming frameworks.

In recent decades, there has been a drive to find solutions stemming from

the former, with the latter being less active. From the mathematical pro-

gramming framework, this paper suggests a new direction for tackling this

problem. For the first time in the literature, a procedure based on linear

programming is proposed to attain estimates of local contingency tables.

Based on this and the homogeneity hypothesis, we suggest two new eco-

logical inference algorithms. These two new algorithms represent an import-

ant step forward in the ecological inference mathematical programming

literature. In addition to generating estimates for local ecological inference

contingency tables and amending the tendency to produce extreme transfer
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probability estimates previously observed in other mathematical program-

ming procedures, these two new algorithms prove to be quite competitive

and more accurate than the current linear programming baseline algorithm.

Their accuracy is assessed using a unique dataset with almost 500 elections,

where the real transfer matrices are known, and their sensitivity to assump-

tions and limitations are gauged through an extensive simulation study. The

new algorithms place the linear programming approach once again in a

prominent position in the ecological inference toolkit. Interested readers

can use these new algorithms easily with the aid of the R package lphom.

Keywords

RxC contingency tables, Mathematical programming, Transfer probabilities,

Split-ticket voting, lphom

1. Introduction
Attempting to estimate vote transfers between elections using exclusively the
aggregate results from voting units is a challenge that dates back to the 1960s
(Vangrevelinghe, 1961; Hawkes, 1969; Irwin and Meeter, 1969). This
problem is actually a specific case of a more general problem that came to
light in the early part of the 20th century (e.g., Ogburn and Goltra, 1919;
Ogburn and Talbot, 1929; Gosnell and Gill, 1935; Gosnell and Schmidt,
1936): how to ascertain voting outcomes for certain subgroups using data
from precincts or counties. In general, the process of deducing individual
behaviour from aggregated data is called ecological inference, which is
exposed to what is known as the ecological fallacy (Robinson, 1950).

Within the ecological inference literature, the problem is usually stated as a
two-way contingency table where the goal is to infer the unknown inner-cell
values from the known margins. That is, to infer how the collectives defined
by the row-options (who are grouped according to some variable, such as
race, religion, age, gender or previous electoral behaviour) split (vote)
among the column-options. This is an ill-posed problem as many sets of sub-
stantively different inner-cell counts are consistent with a given marginal
table, giving rise to concerns over identifiability and indeterminacy (Cho
and Manski, 2008). Using observed data alone, one can identify, at best, a
range for the feasible set of counts.

To estimate the internal cells, the marginal totals of I equivalent tables cor-
responding to the territorial units in which the whole population is divided out
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are used as data. This, however, does not solve the problem, but multiplies it
by a factor of I. Instead of one table, we now have I tables, each with their
own interior cells. In order to overcome this issue, a basic hypothesis of
homogeneity is routinely introduced to learn from the margin cross-unit stat-
istical covariations. Typically, row fractions or transition probabilities of
(subgroups of) contingency tables of the different territorial units are consid-
ered to be, to a certain extent, similar/related (Imai, et al. 2008; Greiner and
Quinn, 2009; Forcina and Pellegrino, 2019). This is traditionally referred to as
a credible assumption responding to the common observation that people
belonging to the same group tend to follow similar behaviour patterns.
Assuming this, however, does not presume anything about which of the
usual mechanisms often argued to explain this phenomenon—endogenous
effects, exogenous (contextual) effects and/or correlated effects (e.g.,
Manski, 2007)—is at play.

Based on this hypothesis, many algorithms for estimating row fractions or
row-conditional (underlying) probabilities, grounded in different philosoph-
ical foundations and/or employing different mathematical approaches, can
be found in the literature. These include, among others, procedures from fra-
meworks as diverse as Bayesian and frequentist statistics, mathematical pro-
gramming or information theory.

Following the seminal papers of Goodman (1953, 1959) and Duncan and
Davis (1953), the one most prolifically used has been the statistic framework,
mainly after King (1997) who masterfully combined Goodman’s regression
and Duncan and Davis’ method of bounds. King increased the credibility of
the promised inferences after (mathematically) translating the homogeneity
assumption in a significantly more flexible way than Goodman. Indeed, since
the publication of King’s book “A solution to the ecological inference
problem”, there has been a resurgence of proposals within the so-called eco-
logical regression approach, many of the earlier ones being designed for
dealing with 2 × 2 tables and later generalised for solving problems of RxC
tables (e.g., King et al., 1999; Rosen et al., 2001). Within this framework,
there are methods that explicitly model the spatial dimension of the data (e.g.,
Haneuse and Wakefield, 2004; Puig and Ginebra, 2015), that combine precinct
aggregated data and exit polls (e.g., Greiner andQuinn, 2010;Klima et al., 2019)
or that even mix both sources of information (Imai and Khanna, 2016). Readers
interested in this approach can consult King et al. (2004) andWakefield (2004),
who offer some overviews, and Klima et al. (2016) and Plescia and De Sio
(2018), who carry out a broad assessment of procedures.

The other major route followed by research studies has been that of math-
ematical programming. In this setting, deterministic bounds are incorporated
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in a natural way via exact and inequality constraints. The proposals within
this framework, which focus almost exclusively on inferring voter transitions,
can be traced back to Irwin and Meeter (1969) and McCarthy and Ryan
(1977), who consider quadratic programming algorithms. Later, Tziafetas
(1986) shows linear approaches to be more efficient and Corominas et al.
(2015) extend the number of possible discrepancy functions. This literature
has been less prolific, with significantly less papers published and many
issues linked to the mathematical programming solutions still to be resolved.

Romero et al. (2020) tackle two of these issues in a recent paper. They
extend linear programming to explicitly deal with new entries and exits in
the election censuses without assuming unrealistic hypotheses and, as a
main contribution, they develop a procedure to measure the uncertainty of
the estimates. They call their algorithm lphom after “Linear Programming
based on HOMogeneity”. In this paper, following the same investigative dir-
ection as Romero et al. (2020), we contribute solutions to two other more
important but as yet unresolved issues within the mathematical programming
framework: the estimation of local transition matrices and the excess of
extreme estimated probabilities.

One of the limitations of current mathematical programming algorithms is
that they only generate estimates for the joint cross-table distribution of the
area under investigation as a whole. They do not provide inferences about
the cross-tabulations for the tables of the different voting units in which the
whole population is split out. Likewise, mathematical programming algo-
rithms have been rightly criticised (e.g., Upton, 1978; Johnston and Hay,
1983; Romero and Pavía, 2021) as tending to produce many extreme prob-
abilities or fractions: zeros and ones. In this research we propose solutions
to both these questions.1

First, we suggest a novel procedure, based on linear programming and
grounded in the homogeneity hypothesis, to estimate the inner-cells values
at the local level. We call this procedure lphom_local. On this, we then
build two new algorithms (which we call tslphom and nslphom) to produce
estimates at both local and global levels. These new algorithms overcome
the problem of extreme values and, as we show later with real data, system-
atically outperform lphom, with tslphom and nslphom producing estimates
significantly more accurate than the ones generated by lphom. Using real
data from almost 500 elections for which the actual cross-table corresponding
to the whole territory is known, we see that tslphom systematically outper-
forms lphom and that, likewise, nslphom consistently outperforms tslphom.
Furthermore, in an independent study (Pavía and Romero, 2022), we also
show that nslphom produces, with less computational cost and in a simpler
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way, estimates at least as accurate as the ones attained by the statistical
approach currently identified as the best in the literature (see Klima et al.
2016 and Plescia and De Sio, 2018). In our view, these results, in addition
to the capacity of the new algorithms to produce local solutions, place the
linear programming approach once again in a prominent position in the eco-
logical inference toolkit.

The fact that the new algorithms also equal the most developed ecological
regression approaches in their capacity for generating local (precinct or
polling station) transition matrices is particularly relevant. It has multiple
implications for historical analysis and for future elections. For example, in
the latter case, local estimates could be used for micro-targeting and for defin-
ing marketing campaign strategies. Based on the analysis of polling station
estimates of voting transfers between two previous elections (for instance,
the last national and regional elections), party committees could decide
where and which voters to target (for instance, during the next local or
national elections) and, by knowing their past behaviour, which arguments
to use to persuade them.

Despite the proven performance of the new proposals with real data, these
assessments still leave some relevant questions unanswered, such as what
happens when we have significant departures from the assumption on
which the algorithms rest and what is the accuracy of estimates at the unit
level. Because in our real datasets both the actual mechanisms generating
the data and the cross-distributions of local units are unknown, we rely on
simulated data to answer these questions. These extra analyses allow for a
better understanding of the limitations of the proposed methods.

The rest of the paper is structured as follows. Section 2 briefly describes
the lphom algorithm. Section 3 states our solution to estimate local contin-
gency tables. The tslphom algorithm is introduced in Section 4, while
Section 5 deals with the nslphom algorithm. Section 6 presents the data
and the results obtained after assessing lphom, tslphom and nslphom solu-
tions with real data. Section 7 presents the outcomes of the simulations.
Section 8 discusses the findings and suggests directions for further research.
Finally, Section 9 summarises and concludes.

2. The Baseline Model: lphom
Without loss of generality, from here on in the paper, we follow the termin-
ology used in Romero et al. (2020) and consider the problem of estimating the
matrix of transfer of votes between two election processes. In the model stated
by Romero and colleagues, which they call lphom, it is assumed that the
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aggregated results of I territorial units in which the electoral space is broken
down are known and that J and K are the number of voting options in the elec-
tions E1 and E2, respectively. In both cases, abstention is considered as a pos-
sible voting option.

The data of the model are, for each of the i = 1, . . . , I voting units, the
votes xij recorded for the j = 1, . . . , J election options available in E1 and
the votes yik (k = 1, . . . , K) harvested by the different competing options in
E2. The basic variates of the model are the J×K unknowns p jk, each one
defined as the proportion of voters in the entire electoral space who, having

chosen option j in E1, have chosen option k in E2. That is, p jk =
∑I
i=1

pijk ω
i
j

is a (weighted) average of the transfer proportions in the voting units,
where pijk is the proportion of voters in unit i who, having chosen option j

in E1, have chosen option k in E2 and ωi
j = xij /

∑I
i′=1

xi′j. According to this def-

inition, the p jk must meet the following constraints:

p jk ≥ 0 for j = 1, . . . , J k = 1, . . . , K (1)

∑K
k=1

p jk = 1 for j = 1, . . . , J (2)

∑J
j=1

∑I

i=1

xij

( )
p jk =

∑I

i=1

yik

( )
for k = 1, . . . , K (3)

The above system has more unknowns than data, being only partially identi-
fied. Hence, to reduce the indeterminacy, narrowing (under mild conditions)
the region of feasible solutions to a point, lphom introduces the hypothesis of
homogeneity/similarity of electoral behaviour in the I units. Specifically, the
homogeneity hypothesis establishes that the unit vote transfer fractions/prob-
abilities, pijk, are similar to the average fractions, p jk, of the entire territory
and that, consequently, the observed values yik must differ little from those
values that would be obtained by applying the average fractions to xij.
Naming eik as these discrepancies (see equation (4)), we have that the eik
should be small.

eik = yik −
∑J
j=1

xijp jk for k = 1, . . . , K i = 1, . . . , I (4)
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The basic lphom algorithm is a linear program by which one obtains the p jk

values that, satisfying the four previous sets of constraints, minimize the sum
of the absolute values of the eik, (5).

minimize
∑
i,k

|eik| (5)

For equations (1), (2) and (3) to be compatible, it is necessary that the sums of
the rows of the matrices IxJ and IxK defined, respectively, as the row vector
matrices [xij]Ii=1 and [yik]Ii=1 match exactly. This forces the analyst to expli-
citly include the changes in the electoral censuses between the two elections,
when they exist. There are no changes when E1 and E2 are simultaneous elec-
tions with the same election censuses (for instance, when each voter casts two
votes, one for a party list and another for a candidate) and they are irrelevant
when the two electoral processes are very close in time. In this latter case, the
entries and exits in the census lists tend to be negligible and could be added,
for instance, to the abstention without impacting in practice on the proportion
estimates.

In general, entries in each unit are the sum of two groups: young people
who join the census because they have reached the minimum age to vote
between the dates of the two elections and new residents (immigrants) who
have the right to vote. On the other hand, exits are made up of two groups:
voters registered in E1 who have died before E2 and people who have emi-
grated out of the unit in the inter-election period.

Depending on the information available for entries and exits, different
constraints have to be added to the basic model. The lphom algorithm pro-
grammed in the R function available in lphom package, available on
CRAN, considers all the possible scenarios. In the less-demanding (and
quite common) information scenario, aggregated entries are treated as a
possible source of votes and denoted as option J in E1, while aggregated
exits are considered as a possible destination of votes and denoted as
option K in E2. In this case, lphom assumes that census exits impact the
first J − 1 options of E1 in a similar (relative uniform) way, therefore,
together with the obvious constraint (7), it adds the additional constraints
defined by (6).

p jK =
∑I

i=1

yiK

( )
/

∑J−1

j=1

∑I

i=1

xij

( )
j = 1, . . . , J − 1 (6)

pJK = 0 (7)
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3. Estimating Voter Transitions at the Local Level
The lphom algorithm estimates the matrix [ p jk] of voting transfer fractions/
probabilities between the options of two elections E1 and E2 of the area
under investigation as a whole. Often, however, the estimation of the matrices
[ pijk] of voting transfer probabilities in the different voting units is also of
interest. To this end, in this section we propose a new procedure which we
call lphom_local. This new procedure is consistent with the hypothesis of
homogeneity of electoral behaviour on which lphom rests.

The data that lphom_local requires are the row-vector matrices [xij]Ii=1 and
[yik]Ii=1, introduced in the previous section, and a global matrix [ pGjk] of trans-
fer probabilities for the whole territory. This matrix could be obtained using,
for instance, lphom. The unknowns of this new model are the [ pijk]
(i = 1, . . . , I) matrices, whose generic ( j, k, i)-element denotes, for each
unit i, the proportion of voters in unit i who, having chosen option j in E1,
choose option k in E2. According to this definition the proportions pijk
must fulfil the following constraints:

pijk ≥ 0 for j = 1, . . . , J k = 1, . . . , K i = 1, . . . ., I (8)

∑K
k=1

pijk = 1 for j = 1, . . . , J i = 1, . . . ., I (9)

∑J
j=1

xijp
i
jk = yik for k = 1, . . . , K i = 1, . . . ., I (10)

As in the lphom model, this system of equations sets up an indeterminate
system (to be precise, I indeterminate systems, one per each unit), which
calls for new constraints to be included in the model in order to solve it. The
homogeneity hypothesis stated in the previous section postulates that the pijk
are similar to the corresponding global pGjk. Thus, under this hypothesis, the esti-

mate of the volume of voters vijk in unit i that pass from voting option j in E1 to

option k in E2 should differ little when it is estimated applying either pijk or p
G
jk.

Thus, the quantities εijk defined by equation (11) should be small.

εijk = xijp
i
jk − xijp

G
jk for j = 1, . . . , J k = 1, . . . , K

i = 1, . . . ., I
(11)

The first step of our lphom_local procedure solves I linear programs, one for each
voting unit i (i = 1, . . . ., I), and estimates the pijk as the values that satisfying the
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sets of constraints (8), (9), (10) and (11) minimize the sum of the absolute values
of

∑
j,k
|εijk|.

minimize Z =
∑
j,k

|εijk| for i = 1, . . . , I (12)

As with lphom, lphom_local must satisfy, regarding entries and exits, the restric-
tions imposed in each unit i by the current scenario. Specifically, if the last
columns J and K of the matrices [xij]Ii=1 and [yik]Ii=1 correspond, respectively,
to entries and exists, lphom_local can include the additional constraints given
by equations (13) and (14).

pijK = yiK /
∑J−1

j=1

xij

( )
for j = 1, . . . , J − 1 i = 1, . . . , I (13)

piJK = 0 for i = 1, . . . , I (14)

Equation (13) constraints translate the hypothesis that, in each unit, exits impact
on a similar relative way to the J − 1 options of election E1, while equation (14)
sets down that the transfer of votes between entries and exits is, obviously, null.

Regardless of whether equations (13) and (14) are or are not added to the
linear program system defined by equations (8)–(12), if pGjk verifies (3), the
above system remains still partially identified, although with a set of feasible
solutions smaller than the one derived from the observed data (equations
(8)–(10)). It is indeterminate in the sense that an infinite set of substantively
different [ piJK] matrices fulfil all the equations of constraints and minimize
(12). We have indeed confirmed that, under these circumstances, different
solutions for the linear programs can be found scoring exactly the same
optimal values in (12). An example of the impact of this is shown in
Section S3 of the Supplementary Material.

In order to overcome the indeterminacy and to narrow down further the set
of feasible solutions, we turn to the hypothesis of homogeneity. For each i, we
suggest selecting, among those matrices minimizing (12) and fulfilling all the
restrictions, the matrix [ pijk] closest to the global matrix [ pGjk]. Specifically,
we propose adding to the above linear program two new equations, (15)
and (16), for each i and to minimize, as a second step, equation (17)
subject to the constraints defined by equations (8)–(12) and (15) and (16)
and, depending on the scenario, also equations (13) and (14).

Z =
∑
j,k

|εijk| for i = 1, . . . , I (15)
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pijk = pGjk + δijk for j = 1, . . . , J k = 1, . . . , K

i = 1, . . . ., I
(16)

minimize
∑
j,k

|δijk| for i = 1, . . . , I (17)

Our proposal, lphom_local, to estimate voting transfer matrices in each unit is
therefore a two-step procedure where, in the first step, the set of potential
solutions is delimited to subsequently, in the second step, choose the
matrix closest to the reference global matrix as the final solution.

Note that when xij = 0 for a given (i, j) -pair, whatever set of proportions
{pijk}

K
k=1 will verify the constraints (11). This is also true for the j -row of the

global proportions, which will be the solutions of the two linear systems.
Once proportions are transformed into votes, this has no effect as they are
multiplied by zero. Nevertheless, we recommend forcing these proportions
to be zero in the final solution.

4. Improving lphom: tslphom

4.1. Introduction

Various authors (e.g., Upton, 1978; Johnston and Hay, 1983; Corominas
et al., 2015; Romero and Pavía, 2021) have pointed out that mathematical
programming procedures have an excessive tendency to include p jk estimates
equal to 1 in its solutions, which obviously forces the remaining row propor-
tions, p jk∗ , for k∗ ≠ k, to take null values. In our opinion, this phenomenon is
a natural consequence of the methodology used, since the optimal solution of
a linear program is always an extreme point of the convex hull of the region of
feasible solutions defined by its constraints. In the lphom model, constraints
(1) and (2) generate many vertices with one or more p jk equal to 1, which
results in a relatively high probability of one of these vertices being in the
optimal solution.

The tslphom algorithm, presented in the next subsection, was initially
viewed by the authors as a way of alleviating the problem that the lphom algo-
rithm has of the excessive number of p jk equal to 1 and also with the expect-
ation that it could even improve lphom by constructing a global solution as an
aggregation of local solutions. The first issue is clearly demonstrated (see sub-
section 6.4) and, as we show later in this paper, we also confirm that tslphom
provides solutions with lower error than lphom.
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4.2 The tslphom Algorithm

The name tslphom, which we propose for the new algorithm, is an acronym
for “Two Steps lphom” and refers to the fact that in the process of estimating
the final global matrix, P = [p jk], of vote transition probabilities, the matrix
P is obtained twice. The tslphom algorithm works as follows:

1. As a first step, given the data [xij]Ii=1 and [yik]
I
i=1, a solution matrix P̂o is

obtained by applying the lphom procedure as stated in section 2.
2. Next, using P̂o as the reference matrix of global transition probabilities,

the lphom_local procedure proposed in section 3 is applied to obtain
estimates of the matrices Vi = [vijk] of vote transition in the I territorial
units.

3. Finally, the V̂i = [v̂ijk] matrices estimated in the previous step are
aggregated to obtain a global vote transition matrix. The tslphom
global estimated matrix of transition fractions/probabilities,
P̂1 = [1 p̂ jk], is calculated from this.

This operative will clearly decrease the number of p jk equal to 1 in the final
solution, since these will only appear in the event that the corresponding pijk in
the I territorial units are all equal to 1.

4.3. A Measure to Quantify the Homogeneity Hypothesis

Given that both lphom and tslphom are based on the hypothesis of homogen-
eity of the electoral behaviour in the I territorial units, it is important to
measure in each specific study the degree of non-compliance of this hypoth-
esis with the achieved solution. According to Romero et al. (2020) this degree
of non-compliance is quantified using the HET heterogeneity index, defined
by equation (18).

HET = 100 · 0.5
∑

ijk |vijk − xijp jk|∑
ij xij

(18)

In equation (18), the vijk are the elements of the vote transition matrices in the I
territorial units and the p jk are the global transition probabilities. Although
lphom obtains estimates of the latter quantities, the vijk values still remain
unknown with this algorithm, so the plug-in principle cannot be applied to
estimate the HET heterogeneity index when lphom is used. In Romero
et al. (2020) an estimate of the heterogeneity index, called HETe, is proposed
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based on the eik residuals of the lphom model, which are clearly outputs of
lphom.

Estimates of vijk, however, are obtained when we work with the tslphom
algorithm. In this case, it is possible to obtain an estimate of the index of het-
erogeneity, which we also call HETe, applying the plug-in principle. HETe in
this case is obtained by replacing in (18) vijk by v̂

i
jk and p jk by 1 p̂ jk. This esti-

mated heterogeneity indexHETewill play an important rolewhen studying the
stopping criteria of the nslphom algorithm that we propose in the next section.

5. Extending tslphom: nslphom

5.1. From two Steps to n Steps: nslphom

The algorithm tslphom reaches its solution after obtaining two sequential esti-
mates of the global probability transition matrix. Hence, it is a logical conse-
quence to consider the idea of extending tslphom by iterating steps two and
three of tslphom up until reaching convergence. The proposal would be to
perform an iteration process of re-estimating the matrix of global transition
probabilities through lphom_local using in each iteration as global matrix,
PG, the last attained transition probability matrix, and to stop the process
when the matrix PG does not vary more than a given threshold in two con-
secutive iterations. The initial reasonableness of this algorithm is reinforced
by the fact that, as mentioned in the previous section and shown in section
6 using real instances where the actual probability transition matrices are
known, the solutions attained by tslphom are, as a rule, more accurate than
those achieved with lphom.

It would be reasonable to consider that after a sufficient number of itera-
tions the results provided by nslphom would tend to stabilize in a point solu-
tion that, in a sense, would be the best possible solution. However, this is not
what really happens as we have verified with hundreds of elections. As we
show in the next subsection, the solutions attained with this tentative algo-
rithm do not converge but tend to oscillate around some reasonable attraction
point. This should not be a surprise given that in essence this problem is only
partially identified. We discover that the process improves the estimates
during the first steps, up to a certain point, after which it has less effect,
even slightly worsening the step-point solutions in some cases.

In this section, we define a new algorithm, which we call nslphom (as
acronym of “N Steps lphom”), where in order to attain a solution we
iterate steps two and three of tslphom for a limited number of times.
Hence, the critical issue to define nslphom lies in determining an optimal

12 Sociological Methods & Research 0(0)



number of iterations or a proper stopping rule. This is the topic of subsection
5.2. In subsection 5.3 we propose two basic versions of nslphom based on
what we learn in subsection 5.2.

5.2. How Many Steps? Defining a Stopping Rule

To show how estimates do not converge as iterations grow, we analyse the
sequence of estimates provided by nslphom as a function of the number of itera-
tions for a particular election. As a case study, we consider the estimation of the
vote transfers between the first and second rounds of the 2017 French presiden-
tial election using as inputs (i) the outcomes recorded in the 107 territorial depart-
ments inwhich the territory of France is divided plus (ii) the results tallied for the
French electors living abroad, grouped in an artificial department. In order to
make the estimation process simpler, entries and exits between both rounds
(which are negligible) have been added to abstainers.

We focus on analysing the behaviour of just one of the p jk: pM,M , which
represents the proportion of voters who, having voted for Macron in the
first round, continue to vote for him in the second round. The evolution
of these proportions will be linked with the evolution of the HETe
statistic.

Figure 1 shows the evolution of the estimates obtained by nslphom for
pM,M as a function of the number of iterations: in the left-panel from iter-
ation 0 to iteration 100 and in the right-panel up to iteration 4000. It
seems reasonable to assume that the true value of pM,M should be very
high (close to one). In fact, the solution obtained by lphom resulted in
pM,M = 1. Figure 1 shows that, even after several thousand iterations,
pM,M does not stabilize in a point and, more importantly, that all the esti-
mated values look reasonable and they show relatively small variations
after the first iterations. They fluctuate between 0.990 and 0.994. Hence,
given that when we build the model nslphom, we rely on the homogeneity
hypothesis, in our opinion, it seems reasonable that for defining a stopping
rule we consider the evolution of the estimated heterogeneity index, HETe,
presented in subsection 4.3.

Indeed, as Romero et al. (2020) already found for lphom, a clear positive
correlation links the heterogeneity index associated with an electoral process
and the error rate of the corresponding attached solution. The issue, therefore,
is to decide how to translate this relationship into an operable rule. From the
computation point of view, this will not pose any particular difficulty as, in
each iteration, together with the new solution, we can also calculate the
HETe statistic. From the judgement point of view, we can exploit the
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pattern observed in Figure 2, which we have observed (with some variations)
in all the elections we have analysed.

Figure 2 shows the evolution of HETe when nslphom is applied to the study
of the 2017 French presidential elections (in the left-panel from iteration 1 to
iteration 100 and in the right-panel up to iteration 4000). In the case of the
example displayed in Figure 2, the HETe index decreases during the first
eight iterations and reaches its global minimum in the twelfth iteration; there-
after, it consistently begins to grow. Indeed, in almost half of the elections
that we have analysed, we have found a pattern for the evolution of HETe
equal to the one observed in Figure 2: the iteration corresponding to the first
local minimum does not match with the iteration corresponding to the global
minimum. In the other half, the first local minimum, which is easily detected
as the first iteration from which the HETe begins to grow, is also the global
minimum (for any number, ns, of steps). Nevertheless, in all the cases, the
first local and global minimums for HETe are found after very few iterations.
As a rule, we have found that the HETe sequence consistently decreases in
the first steps to subsequently (maybe after a period of some relative stabiliza-
tion) start to grow to finally stabilize again.

In light of these results, we envisage two reasonable strategies for the
nslphom algorithm to produce a point solution. On the one hand, a reason-
able stopping criterion for nslphom is to end the process at the first iteration

Figure 1. Evolution of nslphom solution for pM,M as a function of the number of

iterations. In the left panel, the dashed-green and dotted-purple lines identify,

respectively, the iterations in which HETe reaches its first minimum and its global

minimum. In the right panel, the lines identify, respectively, the corresponding

estimates for pM,M.

14 Sociological Methods & Research 0(0)



in which HETe starts to grow and to take as solution the vote transfer matrix
attained in the previous iteration. From here on, we name nslphom with this
criterion ns_first. This is equivalent to the use of the nslphom R function of
the package lphom with the argument min.first=T. On the other hand, an
alternative solution is reached by choosing the matrix that corresponds to
the minimum value obtained for HETe after running nslphom with ns itera-
tions, where ns is a value set in advance. With this second strategy, which
we call ns_number (where number is equal to the value ns set in advance),
the question turns to how to set ns. This specification is equivalent to the use
of the nslphom R function with the arguments min.first= F and iter.max=
ns.

It is obvious that the higher the value set for ns, the greater the probabil-
ity that the minimum HETe obtained corresponds to the minimum possible
value HETe for the election at hand. Taking a larger ns, however, has two
important drawbacks. On the one hand, the computational burden grows
with ns, for any given election. On the other hand, as ns grows sometimes
the point solutions slightly deteriorate, even ending up with smaller HETe.
Hence, as a compromise solution, a reasonable specification for nslphom
with this second version is to run nslphom with a relatively small number
of iterations.

In section 6, we capitalise on having a large number of electoral pro-
cesses in which the real transfer matrices are known to assess the accuracy

Figure 2. Evolution of HETe in nslphom as a function of the number of iterations. In

the left panel, the dashed-green and dotted-purple lines identify, respectively, the

iterations in which HETe reaches its first minimum and its global minimum. In the

right panel, the lines identify, respectively, the corresponding estimates for HETe.
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(and computational costs) of lphom, tslphom and nslphom, with nslphom
parametrized with different specifications: ns_first, ns_10, ns_25, ns_50
and ns_100.

5.3. The nslphom Algorithm

Having determined two reasonable criteria to obtain estimates using
the nslphom algorithm, this subsection describes exactly how nslphom
works. Table 1 details the pseudo codes associated with each one of
the two specifications for the nslphom algorithm introduced in subsection 5.2.

6. Assessing the Accuracy of lphom, tslphom and
nslphom with Real Data

6.1 Introduction

In the previous sections, two new algorithms, tslphom and nslphom, have
been introduced as alternatives to lphom. These two new procedures
reduce the chances of producing matrix solutions with extreme transition
probabilities, a tendency usually observed as a weakness of mathematical
programming procedures. This section aims to assess whether, in addition
to this advantage, these two new procedures also provide more accurate
results, that is, outcomes closer to the actual transition matrices. In the case
of nslphom, we also evaluate what configuration (stopping rule) is more con-
venient in terms of accuracy and computational burden.

The main difficulty of performing these evaluations lies in the fact that
actual transition matrices are, as a rule, unknown. Except in very special cir-
cumstances direct comparisons are impossible. Hence, in the literature, differ-
ent strategies have been carried out to gauge ecological inference solutions.
We can find studies where ecological inference transfer matrices are com-
pared to transfer matrices obtained from polls (mainly exit-polls or panel
surveys) with the focus on analysing the socio-political soundness of the eco-
logical results attained. In other studies, evaluations are accomplished via
simulation exercises when, after setting the actual transfer probabilities,
some outcomes are simulated for the second election conditioned on the
data from the first election. None of these strategies is free from criticism.
On the one hand, polls are exposed to significant sources of bias and generate
estimates with large variances, with large doses of subjectivity pervading rea-
sonableness of socio-political outcomes, mainly where there are no
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substantial differences between the solutions reached using different algo-
rithms. On the other hand, the conditions defining the scenarios of the simu-
lation exercises are sometimes set, even unconsciously, to favour one of the
algorithms.

In certain circumstances, however, such as in mixed-member election
systems in which voters cast two votes simultaneously in the same ballot
and these are recorded and made public, it is possible to know the actual trans-
fer matrices. This is the case for the New Zealand general elections since 2002
and, as a one-off, the 2007 Scottish Parliament election. In these cases, the
electoral authorities publish/published marginal results at polling station
level and split-ticket cross-tables at district level. This offers the unique
opportunity of comparing ecological contingency tables, estimated by
exploiting marginal results at polling level, with true quantities of interest,
available in the observed district cross-tables. To assess the algorithms, we
compare the estimated ecological contingency tables and district split-ticket
tables corresponding to 493 elections: 420 tables come from the 2002,

Table 1. Pseudo Codes with the Proposed Stopping Rules for nslphom Algorithm.

nslphom algorithm 1. Pseudo code with stopping rule at the observed HETe first

minimum.

0. Let X = [xij]Ii=1 and Y = [yik]Ii=1 be the row-vector matrices of votes recorded in,

respectively, E1 and E2 in the I voting units.
1. Estimate P̂o by applying the lphom algorithm to X and Y. Assign PG ← P̂o, t ← 1,

HETe0 ← ∞.

2. Estimate P̂t and HETet by applying the lphom_local procedure to X , Y and PG .

Assign PG ← P̂t , t ← t + 1.

3. If HETet > HETet−1 stop; otherwise go back to 2.

4. Select as solution P̂t−1.

nslphom algorithm 2. Pseudo code with the number of iterations set in advance.

0. Let ns be the maximum number of iterations to be performed and let X = [xij]Ii=1

and Y = [yik]Ii=1 be the row-vector matrices of votes recorded in, respectively,

E1 and E2 in the I voting units.
1. Estimate P̂o by applying the lphom algorithm to X and Assign PG ← P̂o, t ← 1.Y.
2. Estimate P̂t and HETet by applying the lphom_local procedure to X , Y and PG .

Assign PG ← P̂t , t ← t + 1.

3. If t > ns stop; otherwise go back to 2.

4. Select as solution the P̂t∗ whose HETet∗ is minimum for t ≤ t∗ ≤ ns.
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2005, 2008, 2011, 2014 and 2017 New Zealand general elections and 73
tables from the 2007 Scottish Parliament election. We describe the data in
the next subsection and then, in subsection 6.3, introduce the statistics used
to measure the distances between estimated and actual matrices/tables. The
findings are presented in subsection 6.4.

6.2. The Data

New Zealand elects its parliament members using a mixed-member propor-
tional system and Scotland does so by applying an additional member
voting system. Both systems are quite similar. Each voter casts a ballot
with two votes: one for a local candidate, which is used to choose the
person who will be the parliamentary representative for the local area
where the voter lives, and another one for a regional or national party list.
Representatives are elected taking into account both votes. In each local
area (called constituency in Scotland and electorate in New Zealand; here-
after, we call them districts), the candidate who receives most votes is
automatically elected. The remaining seats are allocated applying a pro-
portional rule to party votes. In New Zealand (NZ), these seats are allo-
cated in a national compensatory fashion. To guarantee that, nationwide,
the share of seats a party wins is about the same as its share of votes,
the partisan affiliations of the winners in the electorates are taken into
account. In Scotland (SCO), the 73 constituencies in which electors
are divided are grouped into regions and regional party votes used to
apportion regional seats to parties using a modified D’Hondt rule
(Pavía-Miralles, 2005). The idea is also to make the overall result more
proportional.

A unique characteristic of the NZ electoral system is that across the
country there are a number of seats reserved for the Māori (or people of
Māori descent) who choose to enrol on separate lists of electors. The electoral
boundaries of the seven Māori districts are superimposed over the electoral
boundaries used for regular electorates, covering the whole NZ territory.
Every area of New Zealand simultaneously belongs to both a regular district
and a Māori district. This means that great differences in terms of number of
polling stations and density of voters per polling station exist between regular
and Māori districts. Pooling the six NZ general elections considered in this
study, we can see that Māori districts have a mean of 325 polling stations
per district with an average density of 59 voters per polling station. These
figures are quite different in NZ regular districts. Their corresponding
averages are 60 polling stations per district and 573 voters per polling
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station. This introduces a conspicuous variability that significantly enriches
our analyses, given that assessing the performance of ecological inference
algorithms across different types of contexts adds robustness to the conclu-
sions (Park et al., 2014). Table 2 offers some details about different charac-
teristics of the datasets used to assess the performance of the algorithms,
with significantly more details available in Pavía (2022). As can be seen,
we not only have great variability in terms of the number of polling stations
and voters by district but also in terms of the sizes (number of rows and
columns) of the analysed contingency tables.

The raw cross-distributions of votes at district level (with parties by rows
and candidates by columns) of New Zealand as well as the corresponding
marginal distributions at polling voting level by parties and candidates
were collected, in January 2019, from the official web page of the electoral
commission of New Zealand (www.electionresults.org.nz). In the case of
Scotland, it was not possible to obtain the corresponding raw figures from
the official Scottish electoral commission. Instead, we are grateful to
Carolina Plescia for downloading the files with the raw data from the
Scotland Electoral Office website in 2011.

Before starting the process, the data were checked for internal consist-
ency and pre-processed in order to guarantee a proper correspondence
among the X, Y and P matrices. In the case of NZ the following steps
were taken. First, the rows with all zero values or non-available were elimi-
nated in the parties and candidates’ files. Second, the row corresponding to
the polling unit identified as “Votes Allowed for Party Only”was eliminated
in the parties’ files, given that this voting unit had no equivalent in the can-
didates’ files. Third, two actions were performed in the cross-distribution
files. On the one hand, the column labelled “Party Vote Only” was elimi-
nated, because this corresponds to the row “Votes Allowed for Party
Only” in the party files and these proportions cannot be estimated as they
are not available by voting units (i.e., there is no information about how
many ballots are without a vote for a local candidate in each polling unit).
On the other hand, the cross-distributions were recomputed in order to guar-
antee row-standardized matrices, as this property is lost as a consequence of
eliminating the “Party Vote Only” column. Finally, in addition to these pre-
processing tasks, as is usual practice when dealing with real data (e.g., van
der Ploeg, 2008; Klima et al., 2016; Klein, 2019; Plescia and De Sio, 2018;
Pavía and Aybar, 2020), very small electoral options were grouped. In both
New Zealand and Scottish files, those parties or candidates which individu-
ally did not reach at least a 3% of the district vote were grouped in the option
‘Others’.
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A number of other (almost manual) minor pre-processing tasks were also
performed. The most relevant was the collapsing of the voting units “Voting
places where less than 6 votes were taken” (row 100) and “Ordinary Votes
BEFORE polling day” (row 101) corresponding to the party and candidate
files of the 43rd district of the 2014 NZ election (Rangitikei). They were
added as a consequence of a mismatch between both files. Their respective
aggregations in the parties’ and candidates’ files are 3 and 2 for the 100th
row and 8465 and 8466 for the 101st row.

6.3. Measures of Error

After running each algorithm, we have two pairs of two matrices for each
election: the real and estimated matrices of votes, V = [v jk] and V̂ = [v̂ jk],
and the real and estimated matrices of transition probabilities, P = [ p jk]
and P̂ = [ p̂ jk]. We use these to define two discrepancy statistics, EI and
EPW, equations (19) and (20), which capture the amount of error associated
with the estimates attained with each algorithm. These measures always refer
to the global estimates, the matrices for the whole area of study. Analysis of
the errors at local level is not possible with these datasets as real values are not
available at this level for the elections considered. We study local errors in the
next section, with simulated data.

The error index (EI) statistic, defined in equation (19), quantifies the dif-
ferences between V and V̂. This index, which was proposed by Romero
et al. (2020) and is proportional to the AD statistic suggested by Klima
et al. (2016), accounts for the percentage of votes erroneously allocated,
i.e., the minimum number of votes that should be moved among cells to
reach a perfect fit. Multiplication by 0.5 in (19) is done to avoid counting
every wrongly assigned vote twice. The EI coefficient varies between 0,
when V and V̂ coincide, and 100, when not a single vote has been correctly
allocated. Although different methods score differently in this statistic, Klima
et al. (2016) record, in a broad simulation study where five different algo-
rithms are compared, average values of EI around 14 for the most accurate
algorithm.

EI = 100 · 0.5
∑

jk |v jk − v̂ jk|∑
jk v jk

(19)

The EPW index, defined in equation (20), quantifies the mean of the differ-
ences between the actual p jk values and the estimated p̂ jk values after weight-
ing each difference by the number of votes associated with the transfer
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between options j of E1 and k of E2. Given that the mean value of these dif-
ferences will always be equal to 0, since the sum of each row of both matrices
P and P̂ is always equal to 1, each of the differences is calculated in absolute
value. In the computation of this value each difference is weighted propor-
tionally to the effective number v jk of votes it affects to give more weight
to the errors corresponding to the most relevant proportions.

EPW = 100 ·
∑

jk v jk| p jk − p̂ jk|∑
jk v jk

(20)

In the same way as the EI coefficient, the EPW coefficient varies between 0,
when P and P̂ coincide, and 100, when not a single vote has been correctly
assigned. In our research we have verified that, as expected, the EI and
EPW discrepancy measures are closely correlated.

6.4 Findings

Table 3 summarises the results attained after applying lphom and the two new
algorithms tslphom and nslphom introduced in this paper to the data
described in subsection 6.2. In the case of nslphom we test five different spe-
cifications. The table displays by group of elections mean values of EI (upper
panel) and EPW (middle panel), as well as average computation times (lower
panel). The groups of elections considered are those corresponding to the
2002, 2005, 2008, 2011, 2014 and 2017 New Zealand general elections,
the set of 420 New Zealand elections and the set of 73 elections correspond-
ing to the 2007 Scottish Parliament election.

Figures 3 and 4 show the same information displayed in the two upper-
most panels of Table 3, but graphically. Interested readers can also consult
Tables S1 and S2 of the Supplementary Material as they show the pairwise
differences between the average error measures, grouped by algorithm and
blocks of elections. Observing pairwise differences could help some
readers to more easily appreciate the differences in accuracy between the dif-
ferent algorithms.

Comparing lphom and tslphom we observe that for all groups of elections
tslphom generates, on average, more accurate values than lphom, both from
the point of view of the measure EI (see Figure 3) and of the measure EPW
(see Figure 4). This average superiority of tslphom is also observed at the
individual level. For instance, tslphom produces more accurate results than
lphom in terms of the EI measure in all but one of the 493 elections analysed;
the exception being one in which the lphom solution is slightly more accurate
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Table 3. Summary of the Performance of the Algorithms and its Specifications with

Real Data.

NZ

2002

N= 69

NZ

2005

N= 69

NZ

2008

N= 70

NZ

2011

N= 70

NZ

2014

N= 71

NZ

2017

N= 71

NZ

02-17

N=
420

SCO

2007

N= 73

Averages of EI measures

lphom 16.88 12.29 12.22 12.99 12.95 12.20 13.24 12.92

tslphom 14.80 11.09 10.89 11.50 11.66 10.91 11.80 11.00

ns_first 13.03 9.80 9.28 9.75 10.04 9.20 10.17 8.87

ns_10 12.79 9.68 9.11 9.46 9.69 8.91 9.93 8.86

ns_25 12.77 9.55 8.92 9.37 9.75 8.85 9.86 9.13

ns_50 12.77 9.55 8.84 9.36 9.72 8.85 9.84 9.19

ns_100 12.78 9.55 8.82 9.36 9.72 8.85 9.84 9.21

Averages of EPW measures

lphom 10.82 8.46 8.89 9.13 9.04 8.39 9.12 8.07

tslphom 9.42 7.59 7.90 8.05 8.15 7.46 8.09 6.72

ns_first 8.07 6.35 6.43 6.59 6.82 5.96 6.70 4.89

ns_10 7.90 6.09 6.09 6.26 6.55 5.67 6.42 4.80

ns_25 7.90 6.09 6.09 6.26 6.55 5.67 6.42 5.02

ns_50 7.90 6.09 6.01 6.24 6.51 5.67 6.40 5.06

ns_100 7.91 6.09 6.01 6.24 6.51 5.67 6.40 5.08

Averages of computation burden (in secs)

lphom 5.74 5.73 2.57 5.18 4.19 4.49 4.64 0.16

tslphom 6.73 6.39 3.10 5.82 4.81 5.24 5.34 0.55

ns_first 10.16 9.22 6.95 9.40 8.25 8.97 8.82 2.72

ns_10 12.87 11.43 8.15 11.39 10.03 11.57 10.90 3.98

ns_25 23.20 19.88 16.59 20.72 18.82 22.21 20.23 9.31

ns_50 40.44 33.81 30.66 36.45 33.49 39.96 35.80 18.45

ns_100 75.00 61.66 58.68 67.72 62.79 75.38 66.87 36.71

Source: Compiled by the authors after applying the functions lphom, tslphom and nslphom of the

R package lphom, attached as Supplementary Material to this paper, to the official data from the

New Zealand electoral commission and the Scotland Electoral Office described in subsection

6.2. The estimations labelled as ns_first have been obtained using nslphom with the argument

min.first= T (nslphom algorithm 1 in Table 1) and the estimations labelled as ns_10, ns_25,

ns_50 and ns_100 with the arguments min.first= F and, respectively, iter.max= 10, 25, 50 and

100 (nslphom algorithm 2 in Table 1). The computations have been performed, in the case of

New Zealand, on a desktop computer with a CPU processor Intel® Core™ i7-4930 K (6 cores)

3.40 GHz and 32GB of RAM and, in the case of Scotland, on a laptop with a CPU processor Intel®

Core™ i7-6820HK (4 cores) 2.70 GHz and 64GB of RAM.
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than the tslphom solution (10.61 versus 10.63). Indeed, using the EI measure,
the tslphom solutions are on average 11.5% more accurate than the lphom
solutions. This advantage even grows to 12.0% when we consider the
EPW measure.

In light of the above results, we can conclude without doubt that
tslphom solutions are preferable to lphom estimates. Our global prefer-
ences, however, change as soon as we include in the comparisons the
nslphom algorithm. We observe that nslphom consistently outperforms
tslphom for all the specifications considered (see Table 3 and Figures 3
and 4; and Tables S1 and S2 in the Supplementary Material). In all its ver-
sions, nslphom clearly outperforms lphom and tslphom, generating accur-
ate results.

Focusing now on which of the nslphom analysed specifications is prefer-
able, we find that, although in general there are no great differences between
the different versions of nslphom, it seems that ns_10 (the version in which

Figure 3. Graphical representation of average values of EI error measures grouped

by election and algorithm. Individual solutions have been attained using the functions

lphom, tslphom and nslphom of the R package lphom, available as Supplementary

Material to this paper. The estimations labelled as ns_first have been obtained using

nslphom with the argument min.first=T (this corresponds to nslphom algorithm 1 in

Table 1) and the estimations labelled as ns_10, ns_25, ns_50 and ns_100 with the

arguments min.first= F and, respectively, iter.max= 10, 25, 50 and 100 (these

correspond to different versions of the nslphom algorithm 2 in Table 1).
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the solution is obtained as the one with smaller HETe after 10 iterations) is the
one showing the best balance between accuracy and computational burden.
Solutions ns_first and ns_25 are nevertheless also competitive. It should be
noted that the ns_50 and ns_100 estimates, in addition to being computation-
ally expensive, do not significantly improve the less computationally
demanding specifications and, moreover, they may even be slightly worse
in some cases. We observe this behaviour more clearly in the case of the
Scottish elections.

Comparing the lphom and tslphom estimates with the solutions reached
with ns_10, we observe that the ns_10 estimated matrices are, on average,
26.0% and 16.3% more accurate than the corresponding estimates of
lphom and tslphom when measured using the EI index, and that these
figures even increase to 31.0% and 22.6% when we use the EPW error
measure. In summary, in terms of accuracy, tslphom is better than lphom

Figure 4. Graphical representation of average values of EPW error measures

grouped by election and algorithm. Individual solutions have been attained using the

functions lphom, tslphom and nslphom of the R package lphom, available as

Supplementary Material to this paper. The estimations labelled as ns_first have been

obtained using nslphom with the argument min.first=T (this corresponds to

nslphom algorithm 1 in Table 1) and the estimations labelled as ns_10, ns_25, ns_50

and ns_100 with the arguments min.first= F and, respectively, iter.max= 10, 25, 50

and 100 (these correspond to different versions of the nslphom algorithm 2 in

Table 1).
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and furthermore nslphom systematically improves tslphom. Likewise, focus-
ing on the absolute levels of error and not on the rankings, we also observe
that the new algorithms are quite competitive. Pooling all elections, ns_10
has an average value for EI of 9.77, a level of error that could be catalogued
as quite satisfactory compared to the results obtained by Klima et al. (2016) in
their simulation study.

Regarding the average computation times, which are shown in seconds
in the lower panel of Table 3, we find that, as expected, these increase lin-
early with the number of iterations. The recorded computational times,
however, should be considered small for this kind of study, especially
compared to the computation times required by the methods recommended
in the ecological regression literature. This is probably the most striking
result to note in this regard. The average computation times in the New
Zealand elections are much higher than in the Scottish ones. This is due
to the fact that the former includes the Māori districts, whose electors
are distributed in a significantly higher number of territorial units than
regular districts (see Table 2), with many of them holding a very small
number of voters. In fact, we have verified that if we do not consider
the Māori districts, the average computation times of New Zealand and
Scottish elections are quite similar.

Finally, to end the empirical assessment, we focus on extreme values.
Table 4 presents the number of zeros and ones estimated at district and
voting unit level by the different algorithms. As can be seen, the number of
extreme proportions attained in the district tables by lphom is hugely above
the actual number. Our results for lphom are in line with previous literature
(Upton, 1978; Johnston and Hay, 1983; Romero et al., 2020): the classical
linear programming algorithm has an excessive tendency to produce
extreme values. The new algorithms, on the contrary, significantly reduce
the number of estimated extreme proportions. Although they do not eliminate
this tendency completely, they only estimate zeros and ones when the corre-
sponding fraction is equal or really close to that number. The results also
highlight the enormous reduction in the frequency of extreme values that
the nlsphom specifications record compared to tslphom in voting unit
tables. Indeed, given that we can compute a lower bound for their total
number of zeros using the fact that when xij = 0 or yik = 0 the corresponding
row or column proportion estimates must be zero, we can also conclude that
the number of extreme values estimated by the nslphom algorithm is, rela-
tively, not so frequent. For example, the number of estimates equal to zero
attained by ns_10 are only 59% above the minimum, whereas tslphom
more than triples this minimum.
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7. Assessing Departure from Assumptions by
Simulation
Although the lphom model could be placed, in the same way as other eco-
logical inference methods, within the conceptual framework on partial iden-
tification stated by Manski (see, e.g., Manski 2003, 2007)2, at first glance
our proposals just look like heuristic algorithms: ad-hoc methods that
solve the ecological inference problem by mathematically combining
observed data and a credible hypothesis. The observed data—equations
(1) to (3) and (8) to (10)—delimit the regions of feasible solutions and
our mathematical translations of the homogeneity assumption—equations
(4), (5), (11), (12) and (15) to (17)—narrow these regions to point estimates.
When this happens, when a model yields point estimates, Cho and Manski
(2008, p. 554) consider that the model “should be approached guardedly
with attention to the impact of the assumptions.” In this section we
assess, through simulation, what happens when the data are generated
under several levels of departure from the homogeneity hypothesis. Here,
we also briefly gauge the accuracies of tslphom and nslphom estimating
unit transition matrices.

As there are many issues with potential impact on the quality of an eco-
logical inference estimate (Pavía and Romero, 2022), with many of them
(e.g., the number of units, voters, rows and columns or how electors and
votes are distributed across units) not being directly related to the question
of interest, we have taken some real elections as reference. This is a
common practice in ecological inference simulation analyses (see, e.g.,
Klima et al., 2016, 2019; Barreto et al., 2022) that allows the focus to be
on the objective by keeping the non-relevant issues fixed. By taking as ref-
erence four elections—Bay of Plenty 2005 (50 units, 6 × 5 matrix),
Rangitikei 2011 (101 units, 6 × 5 matrix), Te Tai Tokerau 2014 (299
units, 7 × 4 matrix) and Te Tai Tonga 2017 (705 units, 7 × 5 matrix)—
we study how estimate accuracy depends on how voter transitions deviate
across units from the (expected) global transition matrix. We build simula-
tions by considering (i) four basic deviation schemes (constant, homogen-
eity, heterogeneity and several populations), (ii) the presence/absence of
aggregation bias and (iii) how transfer rates are interpreted (either row frac-
tions or row-conditional (underlying) probabilities). Their combinations
determine a total of 12 different generating processes for unit-level voter/
proportion transitions.

In constant schemes (hereafter identified with the acronym C), the frac-
tions/probabilities (rates) are assumed to be constant across units. This
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corresponds to the maximum level of similarity and serves as a baseline.
Homogeneity (H) transitions are designed as realistic rates. Here, the unit
tables, which are simulated from common Dirichlet distributions, show
levels of deviations (measured with the HET index) similar to the ones
observed in real instances. Heterogeneity (T) transitions mimic scenarios
where unit tables can deviate significantly between them. This is simulated
by insufflating more variance in the Dirichlet distributions which generate
the unit tables. In several populations schemes (S), three quite different dis-
trict tables of rates are simulated for each simulation and one of them is ran-
domly assigned to each unit as (initial) transition matrix. At this point,
simulated unit matrices are either directly used without aggregation bias
(W) or modified, as a function of the corresponding unit row totals, to
induce aggregation bias (A). Finally, the transfer matrices of votes in each
unit are simulated either (i) considering transition rates as underlying prob-
abilities (P) and generating counts from multinomial processes or (ii) directly
applying the rates (N) to the row totals and rounding them. Significantly more
heterogeneity is induced in the P cases. In summary, we assume twelve dif-
ferent generating processes for voting transitions, which we identify with the
acronyms: CWN, CWP, CAN, CAP, HWN, HWP, HAN, HAP, TWN, TWP,
TAN, TAP, SWN, SWP, SAN, SAP. For instance, TWN refers to heteroge-
neous voter transitions without aggregation bias and no probabilistic
approach. Technical details of the simulation design are given in the
Supplementary Material (see Section S2).

For each of the four reference elections and each generating process, we
have simulated thirty complete individual datasets3 and used the margins
from the unit voter transitions tables as input data to estimate unit and district
tables. The estimates have been attained using methods lphom, tslphom,
ns_first, ns_10 and ns_25. To reduce the computational burden, the estimates
using ns_50 and ns_100 were not pursued here in light of the results attained
in Section 6. Table 5 and Table S7 (in the Supplementary Material) show,
respectively, averages of EI and EPW error measures, grouped by generating
process and reference election, attained after comparing simulated and esti-
mated global voter transition matrices. Figures S1 and S2 (in the
Supplementary Material) display the corresponding box-plots of individual
errors. Figure 5 and Figure S3 present the boxplots merging reference
elections.

In terms of impact of the generating processes, the results are as expected.
As a rule, the estimates worsen when we depart further from the homogeneity
hypothesis: they tend to deteriorate with higher heterogeneity and aggrega-
tion bias. Nevertheless, the estimates can be considered reasonable even for
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the worst scenarios. On average, EI (EPW) errors are under 15.5 (10.5) in the
less accurate TAP scenarios. The simulations also show that it is worth
including local data in the inference process when tslphom is used as predic-
tion method: tslphom systematically outperforms lphom. However, we were
unable to replicate with simulations the consistent results we attained with
real data. Contrary to what was obtained with the real data, nslphom
almost never yields the most accurate estimates in the fabricated scenarios.
Clearly, the generating process considered could not capture the wild diver-
sities that reign in the real world. Surprisingly, the presence of aggregation
bias can sometimes improve accuracies, as happens with the generating pro-
cesses based on several populations schemes. This paradoxical result is also
reported in Klima et al. (2019).

The above analyses clearly show that the reliability of the estimates
obtained with our methods tend to decrease with heterogeneity and aggrega-
tion bias. The point is that the (intensity of the) presence of these issues is
unknown in real elections, so the question is whether there is a way to

Figure 5. Box-plots of EI errors grouped by generating process and method, with

120 values in each set. Individual solutions have been attained using the functions

lphom, tslphom and nslphom of the R package lphom, available as Supplementary

Material to this paper. The estimations labelled as ns_first have been obtained using

nslphom with the argument min.first=T (this corresponds to nslphom algorithm 1

in Table 1) and the estimations labelled as ns_10 and ns_25 with the arguments

min.first= F and, respectively, iter.max= 10, and 25 (these correspond to different

versions of the nslphom algorithm 2 in Table 1).
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assess the accuracy of the estimates obtained without knowing the true values.
Fortunately, the answer to this is yes. Given the high correlations (around
0.70) tying HETe and EI statistics, a high value for HETe could be interpreted
as an indicator of inaccurate estimates. Indeed, the simulation-based approach
suggested in Romero et al. (2020) could even be used to quantify it.

To finish the simulation analyses, we switch our focus to the assessment of
the accuracies estimating unit transition matrices. To this end, we use the sta-
tistics EIw and EPWw which, defined as the natural extensions of EI and
EPW, can be seen as weighted averages of EI and EPW unit-errors (see
equations (S1) and (S2) in the Supplementary Material). Figures 6 and S4
to S6 and Tables S8 and S9 (in the Supplementary Material) summarise
EIw and EPWw error measures. In general, a close relationship links
global and unit errors: the greater the global error, the greater the unit
errors. In the case of EI-type errors, the EIw errors tend to be higher than
the EI errors due to the global compensating effects of under- and over-
estimates of counts at the local levels, which are more evident under P

Figure 6. Box-plots of EIw error measures grouped by generating process and

method, with 120 values in each set. Individual solutions have been attained using the

functions tslphom and nslphom of the R package lphom, available as Supplementary

Material to this paper. The estimations labelled as ns_first have been obtained using

nslphom with the argument min.first=T (this corresponds to nslphom algorithm 1

in Table 1) and the estimations labelled as ns_10 and ns_25 with the arguments

min.first= F and, respectively, iter.max= 10, and 25 (these correspond to different

versions of the nslphom algorithm 2 in Table 1).
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processing processes (where rates are contemplated as underlying probabil-
ities). This is an expected result, given the greater heterogeneity that the
Multinomial distribution insufflates at the local level. In the case of
EPW-type errors, however, the above result does not hold. Finally, we also
note that the number of units seems to have an impact on the ratios
between local and global errors, EIw (EPWw) and EI (EPW). These ratios
grow linearly with the log of the number of units.

8. Discussion and Further Research
In the previous sections, two new algorithms, tslphom and nslphom, have
been developed and their global performance assessed with real and simu-
lated data. These new algorithms, in addition to being satisfactorily accurate
(even with relevant departures on the assumptions in which they rest), are
able to provide, within the mathematical optimisation framework, estimates
of local transition tables. To the best of our knowledge, no model under
this framework has been proposed in the literature to do this. As we outline
in the introduction, this represents an important step forward.

At first glance, it is surprising that research to date has not considered extend-
ing ecological inference solutions from the mathematical programming frame-
work by first locally adjusting global estimates. Likely, this gap in the
literature is due to the fact that the logical specification of this problem, which
under a linear programming approach reasonably corresponds to step one of
our lphom_local procedure, states a partially identified linear program.
Although, fortunately, the second step of the lphom_local algorithm seems to
resolve the indeterminacy, in our opinion, pursuing local adjustments could
have been beneficial from a practical perspective, even with indeterminacies.
As the computations with both real and simulated data show, introducing into
the problem all the information available through local constraints is valuable.
This increases the global accuracy of the reached point solution even under inde-
terminacy. We have verified this in the real datasets using different solvers after
specifying some indeterminate algorithms as local adjusters, since once the linear
programming solver and the local adjuster is fixed the family of algorithms stated
in Table 1 provide a unique sequence of estimates for each election.

Specifically, we have assessed two local indeterminate adjusters—one
in which only the first step of lphom_local is run and another in which
the norm L1 considered in equation (17) is replaced by the norm L∞—
and have confirmed the value of the approach even with indeterminacies.
We have observed this by using as linear programming solvers the
linprog function of MATLAB (Zhang, 1995) and the lp function of the
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lpSolve package of R (Berkelaar et al., 2020). Although the solvers pro-
grammed in linprog and lp consistently find different point solutions under
indeterminacy (see Section S3 of the Supplementary Material), both func-
tions (linprog and lp) guide tslphom and nslphom in the examples consid-
ered to more accurate solutions than the ones obtained just applying lphom,
providing, moreover, local estimates. This can be verified for lp with refer-
ence to Tables S10 and S11 of the Supplementary Material. In any case, the
solutions attained using lphom_local as internal local adjuster are always
preferable. In addition to generating unique solutions, they are, for the elec-
tions analysed, more accurate than the solutions attained with the other two
tested local adjusters (see Tables S9 and S10 in the Supplementary
Material).

Although the fact that the solution under indeterminacy is not unique
could be seen as a drawback, the truth is that many of the current most
recommended algorithms for solving the ecological inference problem,
being based on Bayesian approaches, also share this characteristic. It
would be interesting to study the magnitude of the range of solutions
under indeterminacy and to decide whether it could be used as a measure
of uncertainty. Indeed, the fact that nslphom does not converge to a fixed
point should not be perceived as a weakness by necessity: nslphom tends
to quickly stabilize within a range of values (see Figure 1) and this could
be interpreted as it having arrived at its stationary distribution. This behav-
iour, of fluctuating in a stationary distribution, is also common in the
Bayesian solutions of this problem, where the solution of each step of the
chain is not the same, but fluctuates (when it converges) around a stationary
distribution.

The fluctuating behaviour of the nslphom step-solutions led to the reason-
ing in Section 5 in deciding which of all these solutions (which vary little) to
choose. In subsection 5.2, after further consideration of the homogeneity
hypothesis, we have performed some analyses in order to argue reasonable
stopping rules for the nslphom algorithm, to finally link the solution to be
chosen to the observed value of the HETe statistic. Given that the actual con-
tingency tables of the studied elections are known, we have extended our ana-
lyses and investigated whether more accurate solutions could have been
obtained under the current framework. In particular, after running a
hundred iterations of nslphom for the real datasets and computing the
values of the EI and EPW statistics for the whole sequences of estimates,
we have found that there is room for improvement. For instance, if we had
selected in each election the estimate with the smallest EI, we would have
obtained an average value of 8.22 for EI in the 493 elections. This result is
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19.5% smaller than the corresponding average value of 9.83 obtained under
the criterion of the smaller HETe with the specification ns_100. Obviously,
that criterion cannot be used in practice as the actual contingency tables are
unknown.

In the same vein, in an attempt to improve the estimates and partially
inspired by Figure 1, we have tested the idea of including in the nslphom
algorithm a burn-in parameter (i.e., an integer specifying the number of
initial iterations to be discarded before determining the final solution) and
we have achieved mixed results. For example, after estimating all the real
transfer matrices using nslphom with 10 as the burn-in parameter and 25 as
the total number of iterations, we have attained a slight improvement in the
global average accuracy but some worsening for specific groups of elections.
In terms of the EI and EPW statistics, and compared to the solutions attained
employing the specification ns_25, we have obtained global reductions from
9.75 and 6.18 to 9.35 and 5.80 for EI and EPW, respectively. At the same
time, however, the figures for the elections of Scotland worsened, from
9.13 to 9.39 for EI and from 5.02 to 5.25 for EPW. Given that we are still
unclear as to when setting a burn-in could be beneficial, more research is
still needed on this issue. A future line of research could focus on studying
what observed indicators, if any, (such as the number of cells to be estimated
or a measure of the heterogeneity of the margins of the local tables) could
guide us in the process of defining more suitable, election-specific stopping
rules.

Other ideas to improve the nslphom stopping rule that also deserve to be
investigated include analysing and exploiting the properties related to the
time series defined by the sequences {t p̂ jk}

ns
t=1 and/or {HETet}

ns
t=1. For

example, we can borrow from the Bayesian approach and take for each
( j, k)-pair the mean of the sequence {t p̂ jk}

ns
t>t∗ as solution; with t∗ chosen

large enough so as to guarantee that the series of estimates arrives at its sta-
tionary distribution. This strategy presumes the existence of a stationary dis-
tribution and that the algorithm is going to eventually reach it. Although in all
the cases analysed we have observed the estimates quickly stabilizing around
a distribution, we still lack formal proof of convergence. Therefore, this is an
issue that should be addressed in the future. Despite this strategy presenting a
more complex solution with higher computational cost than our proposals, we
still think it deserves further consideration because, as a by-product, it pro-
mises a straightforward way of measuring the estimates’ uncertainty. With
our stopping rules, the uncertainty of the nlsphom estimates could be com-
puted by mimicking the procedure proposed for lphom in Romero et al.
(2020).
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The above questions do not exhaust the possible future lines of research. In
our approach, we reach estimates through an iterative procedure, an issue that
can cast doubt on the optimality of the solutions. Ideally, as one reviewer sug-
gests, one should aspire to have a model capable of estimating the global and
local matrices jointly. In our opinion, the problem here lies in finding a full
linear program specification that includes all equations and unknowns in a
system with just one unique solution. At the moment, we cannot envisage
such a specification, but perhaps other research studies could achieve this. We
would focus the research on how to define the objective function. This issue
could, perhaps, be solved if the two systems of the lphom_local model could
be stacked in only a linear program with the solution reached in just one step.

9. Conclusions
The estimation of RxC ecological inference contingency tables from aggre-
gate results is one of the most salient and challenging problems in the field
of quantitative social sciences. During the past quarter-century, the ecological
regression (statistical) approach has been prolific in proposing procedures to
solve this problem. The advances within the mathematical programming
approach, however, have been less striking. This paper closes the gap
between both approaches by providing new tools within the mathematical
programming framework. In particular, we suggest an algorithm (lphom_lo-
cal) based on linear programming that, grounded in the homogeneity hypoth-
esis, enables estimates to be attained of the joint cross-distributions of each
unit in which the whole population is split out. Two new ecological inference
algorithms, tslphom and nslphom, are built grounded in this.

These two new algorithms represent an important step forward compared to
the mathematical programming algorithms available to date. In addition to gen-
erating estimates of local ecological inference contingency tables, they signifi-
cantly reduce the tendency, previously shown by other mathematical
programming solutions, to produce extreme transfer probabilities. Likewise,
and more importantly, they reveal themselves as satisfactorily accurate and
more accurate than the baseline algorithm, lphom. Using real data from
almost 500 elections, we show that tslphom systematically produces more
accurate outcomes than lphom and that, moreover, nslphom consistently
improves tslphom, this being possible simply by slightly increasing the compu-
tation burden. Furthermore, in an extensive simulation study, which helps to
delineate the limitations of the approaches, we also find that despite the accur-
acy of the estimates tending to decrease with heterogeneity and aggregation
bias, they still look satisfactory even in the worst scenarios considered.
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In short, the new algorithms, being at least as accurate as their best com-
petitors from the statistical framework, improve the current baseline linear
programming procedure in three distinct ways. First, they estimate local tran-
sition tables. Second, they generate (global) transition matrix with fewer
extreme probabilities. Third, they offer a good fit to actual data, better than
the baseline algorithm. In our view, these results show the linear program-
ming approaches to be a competitive option, placing them once again in a
prominent position in the ecological inference toolkit.

Among the different specifications tested for nslphom, we find that a
proper balance between accuracy and computational cost is reached after
applying the second version of the nslphom algorithm introduced in
Table 1 with ten iterations (ns_10). Nevertheless, we also verify that both
the first version of the nslphom algorithm introduced in Table 1 (ns_first)
and the second version of the algorithm with twenty-five iterations (ns_25)
are also valid. The interested reader can use these algorithms employing
the functions, with the same names, of the R package lphom available in
CRAN (cran.r-project.org/web/packages/lphom/index.html).
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Notes

1. It should be noted that these questions are not a current concern in the ecological
regression literature. The first limitation is solved by the most developed ecological
regression (statistical) approaches which, moreover, do not suffer from the second
weakness.

2. Under Manski conceptual framework, the lphom algorithm could be observed as
the method that, without assuming distributional statistical assumptions, solves
the problem of finding the p jk’s that minimize, within the region of feasible solu-
tions, the expected value of the weighted absolute loss function (with weights pro-
portional to the sizes of the units) between observed and expected counts. It should
be noted, however, that to observe our approaches under this framework, we should
acknowledge that the basic unknowns (the p jk’s) are underlying probabilities and
also that we are under a super-population scheme in which the observed election
records represent one of the possible outcomes that could have been observed if
the election were repeated a large number of times under similar conditions.

3. Note that in the case of CWN and CAN generating processes once the reference
election is set there is no variability among datasets.
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