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A B S T R A C T

Diversity and dispersion problems deal with selecting a subset of elements from a given set in such a way
that their diversity is maximized. This study considers a practical location problem recently proposed in
the context of max–min dispersion models. It is called the generalized dispersion problem, and it models
realistic applications by introducing capacity and cost constraints. We propose two effective linear formulations
for this problem, and develop a hybrid metaheuristic algorithm based on the variable neighborhood search
methodology, to solve real instances. Extensive numerical computational experiments are performed to
compare our hybrid metaheuristic with the state-of-art heuristic, and with integer linear programming
formulations (ILP). Results on public benchmark instances show the superiority of our proposal with respect
to the previous algorithms. Our extensive experimentation reveals that ILP models are able to optimally solve
medium-size instances with the Gurobi optimizer, although metaheuristics outperform ILP both in running
time and quality in large-size instances.
Over the last few years, different mathematical expressions have
been proposed to capture the notion of diversity, dispersion, or even
equity. The minimum and the sum of the distances among the selected
1. Introduction

Discrete diversity maximization was introduced by Kuby (1988) in a
seminal paper that originated an important family of optimization prob-
lems in the context of location (Martí, Martínez-Gavara, et al., 2022).
Although optimizing diversity has been a key topic in Mathematics for
many decades, it was mainly devoted to continuous models. However,
in the last thirty years, the study of diversity has been applied to
solve practical location problems in Operations Research and Computer
Science. In this paper we target a realistic diversity problem arising in
facility location called the Generalized Dispersion Problem.

In its simplest form, the problem of maximizing diversity or disper-
sion deals with selecting a subset of elements from a given set in such
a way that the distance among the selected elements is maximized.
Although we may think on the standard distance definition based on
the Euclidean formula, many applications may require non-Euclidean
geometries, such as those induced by affinities relationships expressing
a relative degree of attraction between the elements, as arises in settings
with a behavioral component. Typical examples are architectural space
planning and analysis of social networks (Glover et al., 1998).
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elements (Max–Min and Max-Sum models respectively) are probably
the most well-known models to translate the term diversity into an in-
teger quadratic expression. In discrete location problems, where points
in the plane represent potential locations to set facilities over a given
territory, Max–Min model solutions do not avoid to select points in
the central region of the plane, while Max-Sum model solutions fail
do locate them (Parreño et al., 2021). The Max–Min model is therefore
the model of choice when it comes to solve location problems, since its
solutions are better suited to cover the territory with disperse points.

In this paper we consider the generalized dispersion problem (GDP),
that is based on the Max–Min diversity model, and incorporates capac-
ity and cost constraints. This model was introduced in a theoretical way
by Rosenkrantz et al. (2000), and applied to solve a practical problem
by Martínez-Gavara et al. (2021). In particular, the authors considered
the location of the same-type of facilities, such a shop franchises, where
we want to avoid their proximity. This is also the case of hospitals
or schools, where we are providing a service and we do not want to
be far away from the customers (or patients) and, at the same time,
we want them not to be close to each other. The inclusion of capacity
constraints translates into the number of customers (patients) that each
facility may serve, and the cost constraints appear in a natural way
when modeling a real situation. Our motivation to solve this model,
icle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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comes from a realistic case proposed in Daskin (2011) in the context
of locating branch offices in U.S. In our computation experience in
Section 5, we consider both randomly generated instances and this
realistic case.

In spite of its practical significance, side constraints, such as ca-
pacity and cost, have been largely ignored in the discrete diversity
literature. We have only found the two papers cited above considering
these two types of constraints, while (Martí, Martínez-Gavara, et al.,
2022) found more than 50 papers in unconstrained discrete diversity
(apart for the standard constraint to set the number of elements to
be selected). In this paper we study this -hard problem, which
pose a challenge to optimization methods, and present an empirical
comparison with existing methods.

In the last decades, algorithmic advances as well as hardware and
software improvements have provided an excellent environment to
create and develop solving methods to hard optimization problems.
Modern exact and heuristic techniques are dramatically enhancing
our ability to solve significant practical problems. A large number of
intelligent algorithms based on artificial intelligence (Glover et al.,
2021), social behavior (Li et al., 2021) or bio-inspired learning strate-
gies (Feng et al., 2021; Li et al., 2020; Wang et al., 2019) have been
extensively researched in the past few decades. In this paper, we con-
sider the variable neighborhood search (VNS) metaheuristic (Hansen
& Mladenović, 2005), which has exhibited remarkable performance
in many hard optimization problems due to a systematic change in
the neighborhood exploration. A metaheuristic is a high-level problem-
independent algorithmic framework that provides a set of guidelines
or strategies to develop heuristic optimization algorithms (Sörensen &
Glover, 2013). On the other hand, a heuristic is an algorithm based
on context dependent strategies to solve an optimization problem.
We adapted the VNS methodology to solve the Max–Min dispersion
problem with capacity and cost constraints (namely, the GDP).

Considering that this problem has been already addressed in a
previous paper, we itemize now the main contributions of this work
with respect to previous developments:

(i) We propose an effective formulation for the GDP and adapt
the method in Sayah and Irnich (2017) to solve medium-size
instances to optimality,

(ii) We propose heuristic methods, based on the variable neigh-
borhood metaheuristic, to solve large-size and realistic GDP in-
stances. In particular, we consider different constructive methods,
and three local search operators (swap, add, and drop),

(iii) We study efficient search strategies to overcome the lack of
information given by the ‘‘flat landscape’’ of a Max–Min objective,
where many solutions share the same objective value. Specif-
ically, we propose an extended definition of improving move,
and

(iv) We perform numerical experiments that first disclose the best
strategies for our methods, and then compare it with the previous
proposals by means of statistical tests. We finish our experimen-
tation solving the practical case that triggered our interest in this
problem.

The rest of this paper is organized as follows. We first propose
mathematical models for the diversity problems considered here in
Section 2. Previous work is described in Section 3 to clearly established
the context of the GDP and the associated state-of-the-art methods.
Section 4 provides a detailed description of our metaheuristics for
the generalized dispersion problem, and it constitutes the core of our
contributions. Then, Section 5 describes our experimental study and the
2

paper concludes in Section 6 with the lessons learnt in this study.
2. Mathematical models

We define in this section the elements of this model in terms of
facility location problems (from now on, we will use element or site
indistinctly). Given a set of 𝑛 potential facilities 𝑉 connected by edges
(links) in 𝐸, the problem consists in finding a subset 𝑃 of 𝑉 satisfying
capacity and cost constraints, so that the minimum distance among
the sites in 𝑃 is maximized. Let 𝐵 be the minimum required capacity
level of service) and let 𝐾 be the maximum budget allowed. Then,
or each site 𝑖 ∈ 𝑉 , we define 𝑐𝑖 ≥ 0 and 𝑎𝑖 ≥ 0 as its capacity and

cost, respectively. Let 𝑑𝑖𝑗 ≥ 0 be the distance between sites 𝑖 and 𝑗. The
mathematical programming model for GDP is based on the standard
binary variables 𝑥𝑖 that take the value 1 if site 𝑖 is selected and 0
otherwise. Then, it can be stated as follows:

(GDP) max min
𝑖,𝑗∈𝑉 ,𝑖≠𝑗

𝑑𝑖𝑗𝑥𝑖𝑥𝑗

s.t.
𝑛
∑

𝑖=1
𝑐𝑖𝑥𝑖 ≥ 𝐵

𝑛
∑

𝑖=1
𝑎𝑖𝑥𝑖 ≤ 𝐾

𝑥𝑖 ∈ {0, 1} ∀ 𝑖 ∈ 𝑉 .

(1)

Let 𝑃 = {𝑖 ∈ 𝑉 ∶ 𝑥𝑖 = 1} be the set of selected elements. Note
that, as opposite to the Max–Min dispersion problem, the cardinality of
the subset 𝑃 is not fixed beforehand, and it depends on the capacity
and cost of the selected elements. Let 𝑓 (𝑃 ) be the objective function,
which measures the minimum distance between the pairs of sites in
𝑃 . In mathematical terms: 𝑓 (𝑃 ) = min𝑖,𝑗∈𝑃 ,𝑖≠𝑗 𝑑𝑖𝑗 , and the objective of
GDP is to find the set 𝑃 ∗ maximizing 𝑓 (𝑃 ) for all 𝑃 ⊂ 𝑉 satisfying the
apacity and cost constraints.

The main drawback of this model is the non-linearity of the objec-
ive function, which prevents the use of standard mixed integer pro-
ramming solvers as, for example, Gurobi or CPLEX. However, this
uadratic problem can be reformulated as the following integer linear
rogramming model, as proposed by Kuby (1988) for the 𝑝-dispersion
roblem (see also (Erkut, 1990)), and adapted in Martínez-Gavara et al.
2021) for the GDP:

max 𝑚

s.t.
𝑛
∑

𝑖=1
𝑐𝑖𝑥𝑖 ≥ 𝐵

𝑛
∑

𝑖=1
𝑎𝑖𝑥𝑖 ≤ 𝐾

𝑚 ≤ 𝑑𝑖𝑗 +𝑀(2 − 𝑥𝑖 − 𝑥𝑗 ) ∀ 1 ≤ 𝑖 < 𝑗 ≤ 𝑛

𝑥𝑖 ∈ {0, 1} ∀ 𝑖 ∈ 𝑉 .

(2)

The upper bound 𝑀 in (2) on the distances values guarantees that
𝑚 is the minimum distance among the selected sites. The model in (2)
is equivalent to the model in (1), but it has the advantage that can be
solved using an integer programming solver for small to medium size
instances.

Sayah and Irnich (2017) proposed a compact formulation for the 𝑝-
dispersion problem based on the fact that the optimal objective function
distance is one of the distance values in the input data. Let 𝐷0 < 𝐷1 <
⋯ < 𝐷𝑟𝑚𝑎𝑥 be the different non-zero values in the distance matrix.
Formulation (3) considers the original variables, 𝑥𝑖 and new 𝑟𝑚𝑎𝑥 binary
variables, 𝑧𝑟, that take the value 1 if the set of selected sites has at least
a minimum distance of 𝐷𝑟, and 0 otherwise. Then, we adapt the new
formulation of Sayah and Irnich (2017) for GDP by adding capacity and

cost constraints. We obtain the following integer linear programming
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model:

max 𝐷0 +
𝑟𝑚𝑎𝑥
∑

𝑟=1
(𝐷𝑟 −𝐷𝑟−1)𝑧𝑟

s.t.
𝑛
∑

𝑖=1
𝑐𝑖𝑥𝑖 ≥ 𝐵

𝑛
∑

𝑖=1
𝑎𝑖𝑥𝑖 ≤ 𝐾

𝑧𝑟 ≤ 𝑧𝑟−1 𝑟 = 1,… , 𝑟𝑚𝑎𝑥
𝑥𝑖 + 𝑥𝑗 + 𝑧𝑟 ≤ 2 ∀𝑖, 𝑗 ∈ 𝑉 ∶ 𝑑𝑖𝑗 = 𝐷𝑟−1

𝑥𝑖, 𝑧𝑟 ∈ {0, 1} 𝑖 ∈ 𝑉 , 𝑟 = 1,… , 𝑟𝑚𝑎𝑥.

(3)

Formulations (2) and (3) are both compact since the number of
variables and constraints in both cases do not exceed 𝑛2. Specifically,
model (2) consists of 𝑛 variables and 𝑛(𝑛 − 1)∕2 + 3 constraints, and
model (3) has 𝑛 + 𝑟𝑚𝑎𝑥 variables and 𝑟𝑚𝑎𝑥 + |𝐸(𝐷𝑟𝑚𝑎𝑥 )| + 2 constraints,
where 𝐸(𝐷) = {(𝑖, 𝑗) ∈ 𝐸 ∶ 𝑑𝑖𝑗 < 𝐷}. In Section 5, we perform
an empirical analysis to compare both formulations, and to study the
maximum instance size in order to find the optimal solution.

It is important to note that the model considered in this paper is
built from a Max–Min objective function, which differs from the Max-
Sum objective function also applied to diversity maximization. This has
important implications in the design of both exact and heuristic meth-
ods. In particular, we adapted the (Sayah & Irnich, 2017) formulation
because it also considers the Max–Min objective function, and at the
same time it is a compact formulation, which means that only requires
to be submitted to the solver once. An alternative is the (Sayyady &
Fathi, 2016) formulation, also proposed for the Max–Min objective, but
that requires to solve a sequence of ILPs, which is why we considered
the former. On the other hand, we did not consider in our study the
linearization by He et al. (2012) since it was proposed for Max-Sum
problems.

3. Previous heuristic algorithms

In this section, we review the state-of-the-art algorithms to solve the
GDP. As far as we know, there are two previous papers for this problem.
The first one is due to Rosenkrantz et al. (2000), where the authors
proposed simple heuristics with performance guarantee, and the second
one due to Martínez-Gavara et al. (2021), who applied complex
metaheuristics to obtain high quality solutions. Detailed descriptions
of both methods follow.

Rosenkrantz et al. (2000) proposed a binary search based method
to solve a variant of the GDP called the capacitated dispersion problem
(CDP). This problem involves distance and total storage capacity in
the same way that the GDP, but does not include the storage cost
constraints. In particular, it is a greedy algorithm that performs a
binary search over the non-zero sorted distances, in order to find a
set of sites satisfying the capacity constraint with minimum inter-site
distance as large as possible. Martínez-Gavara et al. (2021) adapted
this algorithm to the GDP, and called it TI_Ad. To do so, the authors
consider the ratio between the storage capacity and cost of each site to
sort a preference list in which sites are included in the solution. TI_Ad
basically selects the elements from this list in decreasing order, and
checks both, capacity and cost constraint, to validate the feasibility of
the selected set of sites. The method stops when the capacity level is
reached.

Martínez-Gavara et al. (2021) applied two metaheuristics to ob-
tain high quality solutions to the GDP: a greedy randomized adaptive
search procedure, GRASP, and a long-term tabu search, TS. Specifi-
cally, GRASP is a multi-start methodology that in each iteration builds
a solution from scratch, and improves it by applying a local search post-
processing to obtain a local-optimum. The GRASP methodology is based
3

on the statistical sampling of the solution space (Feo & Resende, 1995; t
Festa & Resende, 2016). A short description of the main features of the
GRASP algorithm proposed in Martínez-Gavara et al. (2021) follows.

The construction phase starts by creating a candidate list (CL),
which consists of all unassigned sites that can be inserted in the
solution 𝑋 without exceeding the upper budget 𝐾. Then, the next site
to be added to the solution is selected at random from a list of good
candidates, called the restricted candidate list (RCL). To obtain RCL,
the evaluation of each site in CL is guided by a greedy function that
assesses the contribution of each site 𝑖 in CL regarding the objective
function. Martínez-Gavara et al. (2021) proposed the greedy function
̃ to collect in a single expression the three elements of this problem,
distance, cost, and capacity:

̃(𝑖) = 𝛽𝑑
𝑑𝑖

max
𝑗∈𝐶𝐿

𝑑𝑗
+ 𝛽𝑐

𝑐𝑖
max
𝑗∈𝐶𝐿

𝑐𝑗
+ 𝛽𝑘

(max
𝑗∈𝐶𝐿

𝑎𝑗 − 𝑎𝑖)

max
𝑗∈𝐶𝐿

𝑎𝑗
(4)

where 𝑑𝑖 =
∑

𝑗∈𝑋 𝑑𝑖𝑗 , 𝑐𝑖 is the capacity of site 𝑖, and 𝑎𝑖 is its cost. The
weights of these three factors, 𝛽𝑑 , 𝛽𝑐 , and 𝛽𝑘, are all set to 1∕3 according
o the experimentation described by the authors.

Once a feasible solution 𝑋 is constructed, the algorithm explores its
eighborhood to obtain the corresponding local optimum. This neigh-
orhood is based on swap moves. Specifically, let 𝑑∗ be the objective
unction value of solution 𝑋, and let pivotal_list be the set of all
ites in 𝑋 with minimum distance equal to 𝑑∗. Then, at each iteration,
he algorithm evaluates the exchange between a randomly selected site
in the pivotal_list with a site 𝑗 ∈ 𝑉 ⧵ 𝑋, with distance to the

elected sites larger than 𝑑∗. We do not include in this computation
he site 𝑖 that we are removing from the solution. The swap movement
s applied if it is feasible and it improves the current solution. The
ocal search based on this neighborhood performs iterations while the
olution improves.

To complement the GRASP algorithm described above, the au-
hors propose a long-term tabu search for GDP. This is a memory-
ased methodology that explores efficiently the solution space (Glover,
989; Glover & Laguna, 1998). The proposed algorithm, TS, starts
y constructing an initial solution in the same way that the GRASP
onstructive phase, but without applying the randomized feature, thus
btaining a greedy heuristic to construct an initial solution 𝑋. After
hat, the algorithm explores the same neighborhood around the cur-
ent solution as in the improvement method explained above. In this
ethodology, the algorithm always performs a movement even if it
oes not improve the solution. After executing an exchange between a
ite 𝑖 ∈ 𝚙𝚒𝚟𝚘𝚝𝚊𝚕_𝚕𝚒𝚜𝚝 and a site 𝑗 ∈ 𝑉 ⧵𝑋, the tabu structure records as
abu-active the site 𝑖, i.e., the selected site that leaves the solution. The
abu status of a site 𝑖 remains active for a specific number of iteration
ontrolled by a search parameter, and during these iterations, it cannot
e selected for inclusion in the solution. Finally, the long term phase
n TS diversifies the search by exploring unvisited areas of the solution
pace. This is done by avoiding frequently visited sites and favoring
ites which provide high quality objective function values.

The computational experiments performed in Martínez-Gavara et al.
2021) showed that, as expected, the TI_Ad heuristic algorithm
chieves relatively good solutions for small size instances with very
hort running times (less than 1 s), but it cannot compete with GRASP
nd TS in terms of the quality of the solutions. Furthermore, GRASP
merges as the winner with small running times. We will compare
ur heuristic with GRASP and TS in Section 5 to establish its quality
elative to the state-of-the-art methods.

. New heuristic methods

As mentioned in the introduction, we can find nowadays a large
umber of metaheuristic technologies that can be applied to any com-
inatorial optimization problem to solve it efficiently. They range
rom bioinspired methods, such as the well-known genetic algorithms,

o methods based on artificial intelligence, such as tabu search. In
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this paper we consider the Variable Neighborhood Search (VNS), a
metaheuristic based on exploring several neighborhoods during the
solution search to overcome the limitations of local optimality. VNS
was introduced in Mladenović and Hansen (1997) and, since then, this
methodology has continuously evolved resulting in several extensions
and variants. See Hansen et al. (2016) for a thorough analysis.

In this work, we propose a Multi-Start Basic VNS (MS-BVNS) to
deal with the Generalized Dispersion Problem (GDP). BVNS combines
deterministic and random changes of neighborhood structures in order
to find a balance between diversification and intensification. Incor-
porating BVNS in a multi-start scheme allows us to perform several
independent iterations to further improve the diversification ability of
the procedure. Algorithm 1 shows the associated pseudo-code.

Algorithm 1: 𝙼𝚂 − 𝙱𝚅𝙽𝚂(𝑖𝑡max, 𝑘max)

1 𝑋𝑏𝑒𝑠𝑡 ← ∅
2 for 𝑡 ← 1 𝐭𝐨 𝑖𝑡max do
3 𝑋 ← 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡()
4 𝑋 ← 𝐼𝑚𝑝𝑟𝑜𝑣𝑒(𝑋)
5 𝑘 ← 1
6 while 𝑘 ≤ 𝑘max do
7 𝑋′ ← 𝑆ℎ𝑎𝑘𝑒(𝑋, 𝑘)
8 𝑋′′ ← 𝐼𝑚𝑝𝑟𝑜𝑣𝑒(𝑋′)
9 𝑘 ← 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑𝐶ℎ𝑎𝑛𝑔𝑒(𝑋,𝑋′′, 𝑘)
10 end
11 𝑈𝑝𝑑𝑎𝑡𝑒𝐵𝑒𝑠𝑡(𝑋,𝑋𝑏𝑒𝑠𝑡)
12 end
13 return 𝑋𝑏𝑒𝑠𝑡

MS-BVNS algorithm takes as input parameters the number of restarts
𝑖𝑡max and the largest neighborhood to be explored 𝑘max. We assume that
the relevant information about an instance is available in all methods.
Specifically, an instance contains the distances between sites 𝑑𝑖𝑗 (with
𝑖, 𝑗 ∈ 𝑉 ), the capacity {𝑐𝑖} and cost {𝑎𝑖} of each site 𝑖 (with 𝑖 ∈ 𝑉 ), the
maximum storage capacity 𝐵, and the maximum budget 𝐾.

The method first initializes the best solution found, 𝑋𝑏𝑒𝑠𝑡, as an
empty set in step 1 of the algorithm. 𝑋𝑏𝑒𝑠𝑡 will be updated during
the search to contain the best solution found so far. At each iteration,
𝑡, a solution 𝑋 is generated by considering one of the constructive
procedures presented in Section 4.1 (step 3). The solution is locally
improved with any of the local search methods described in Section 4.3
(step 4). Then, starting from the first predefined neighborhood (step
5), our VNS method iterates until it reaches the maximum considered
neighborhood 𝑘max (steps 6–10). For each neighborhood search step,
the incumbent solution is perturbed with the shake method described
in Section 4.4 (step 7), generating a solution 𝑋′ in the neighborhood
under exploration. The shake process is designed to escape from local
optima. The local search method is then responsible for finding a local
optimum 𝑋′′ in the current neighborhood with respect to the perturbed
solution 𝑋′ (step 8). Finally, the neighborhood change method selects
the next neighborhood to be explored (step 9). In particular, if 𝑋′′

outperforms 𝑋 in terms of objective function value, then it is updated
(i.e., 𝑋 ← 𝑋′′), and the search starts again from the first neighborhood
(i.e., 𝑘 ← 1). Otherwise, the search continues in the next neighborhood
(i.e., 𝑘 ← 𝑘 + 1). The algorithm repeats this strategy for 𝑡𝑚𝑎𝑥 iterations,
updating the best solution found so far (step 11). The best solution
found is finally returned in step 13.

4.1. Greedy construction methods

VNS methods typically consider a random approach to construct an
initial feasible solution. However, as it has been recently determined
in the associated literature, an initial solution constructed with a more
4

elaborated procedure usually converges faster (Duarte et al., 2012;
Martí et al., 2021; Sánchez-Oro et al., 2017) . In this paper we propose
two different greedy constructive procedures for the GDP, named C1
and C2, which are able to find high quality solutions in very short
computing times. Both constructive methods follow the same scheme
but varying the greedy function used to select the next site to be
included in the solution. C1 and C2 build a solution by iteratively
adding one site at a time. Initially, the first site 𝑖 ∈ 𝑉 to be included in
the partial solution 𝑋 is chosen at random from 𝑉 . Then, the selection
of the best site is done according to the corresponding greedy function,
breaking ties at random.

In particular, C1 selects the best site according to the greedy func-
tion, 𝑔1, which depends on distance, capacity, and cost. In mathematical
terms, for each site 𝑖 ∈ 𝑉 ⧵𝑋, the greedy function is defined as:

1(𝑖) = 𝑑𝑖
𝑐𝑖
𝑎̂𝑖

(5)

where 𝑑𝑖 ∶= min𝑗∈𝑋 𝑑𝑖𝑗 , 𝑐𝑖 ∶= 𝑐𝑖∕max𝑗∈𝑉 𝑐𝑗 , and 𝑎̂𝑖 ∶= 𝑎𝑖∕max𝑗∈𝑉 𝑎𝑗 . The
rationale behind the greedy function 𝑔1 compared with the previous
greedy function proposed in Martínez-Gavara et al. (2021), is threefold:
the first motivation is the inclusion of the objective value in the defini-
tion of 𝑔1, i.e., the minimum value, 𝑑𝑖, instead of the sum, 𝑑𝑖, although
t comes at the cost of evaluating 𝑑𝑖 for all sites. The second point is
he use of the ratio 𝑐𝑖∕𝑎̂𝑖, which favors the selection of those sites with
arge capacities and low cost values. Finally, the third advantage of our
roposal is the lack of dependency on extra parameters.

We propose an alternative constructive method C2 only based on
istances to evaluate the incremental contribution of including a spe-
ific site. In this procedure, capacity and cost are only considered as
onstraints. More precisely, given a partial solution 𝑋, for each site
∈ 𝑉 ⧵ 𝑋, the greedy function in C2 is defined as 𝑔2(𝑖) = 𝑑𝑖. We will
ompare C1 and C2 in our computational testing reported in Section 5.

.2. Auxiliary constructive method

Note that the GDP is a highly constrained problem due to the
nclusion of a minimum capacity and maximum cost, which results
n a reduced feasible set of solutions. In fact, we have experimentally
ound that the two constructive methods proposed above are not able
o find feasible solutions in some of the hardest instances. In order to
rovide good starting points to the local search algorithm, we consider
n auxiliary constructive method to build a feasible solution when C1
r C2 fail. We denote this method as Caux and it only considers the
apacity and cost, ignoring distances among selected sites. In particular,
aux sorts all the elements in descending order of the ratio between
apacity and cost. This function, denoted as 𝑔𝑎𝑢𝑥, is computed as
ollows:

𝑎𝑢𝑥(𝑖) =
𝑐𝑖
𝑎𝑖

(6)

for all 𝑖 ∈ 𝑉 . Notice that this evaluation and sorting is computed
offline only once. It is worth mentioning that the quality of a solution is
basically determined by the distances among elements. Therefore, we
do not expect to produce high quality solutions with this method but,
as stated before, its main goal is to provide initial feasible solutions.

This approach is not new. In fact, Rosenkrantz et al. (2000) intro-
duced a similar strategy for their heuristic to solve the Capacitated Dis-
persion Problem, in which only the capacity constraint is considered.
Similarly, Martínez-Gavara et al. (2021) described a straightforward
adaptation of their heuristic to the GPD, where the ratio between
capacity and cost is computed. In this paper, we propose a more
elaborated strategy, based on performing multiple iterations over the
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list of ordered sites, starting in each one from a different site until
identify a feasible solution.

Algorithm 2: 𝙲𝚊𝚞𝚡(𝑆)
1 𝑋 ← ∅
2 𝑐𝑜𝑠𝑡, 𝑐𝑎𝑝 ← 0
3 while |𝑆| > 0 do
4 𝑖 ← 𝑓𝑖𝑟𝑠𝑡(𝑆)
5 𝑋 ← {𝑖}
6 𝑐𝑜𝑠𝑡 ← 𝑐𝑜𝑠𝑡 + 𝑎𝑖
7 𝑐𝑎𝑝 ← 𝑐𝑎𝑝 + 𝑐𝑖
8 𝑆 ← 𝑆 ⧵ {𝑖}
9 for 𝑗 ∈ 𝑆 do
10 if (𝑐𝑜𝑠𝑡 + 𝑎𝑗 ≤ 𝐾) then
11 𝑋 ← {𝑗}
12 𝑐𝑜𝑠𝑡 ← 𝑐𝑜𝑠𝑡 + 𝑎𝑗
13 𝑐𝑎𝑝 ← 𝑐𝑎𝑝 + 𝑐𝑗
14 end
15 if (𝑐𝑜𝑠𝑡 ≤ 𝐾) and (𝑐𝑎𝑝 ≥ 𝐵) then
16 return 𝑋
17 end
18 end
19 𝑋 ← ∅
20 𝑐𝑜𝑠𝑡, 𝑐𝑎𝑝 ← 0
21 end
22 return 𝑋

Our method, detailed in Algorithm 2, receives an array of sites 𝑆
s the input. Without loss of generality, we assume that 𝑆 is sorted
n decreasing order according to Eq. (6)). After the initialization of
he solution 𝑋 and the associated cost and capacity (steps 1–2, Caux

scans with a while-loop all the sites in the order given by 𝑔𝑎𝑢𝑥 (steps
3 to 21). Each iteration starts by selecting the element 𝑖 with the
largest ratio (step 4), adding it to the solution under construction
(step 5), and updating the corresponding cost and capacity (step 6–
7). Then, this element 𝑖 is removed from the list of sites 𝑆 for the next
iterations (step 8). Then, a for-loop traverses the remaining elements in
𝑆 (steps 9 to 17), including to the solution those sites that satisfy the
cost constraint (steps 10 to 14), and skipping those ones that produce
unfeasible solutions. When Caux finds a feasible solution (step 15), it
is returned (step 16); otherwise, the algorithm performs a new iteration
and initializes again 𝑋, cost, and cap (step 19–20). Note that, the
element 𝑖 considered in the current iteration is discarded and it is not
longer considered in the construction process. Finally, if the algorithm
is not able to find a feasible solution, an empty solution is returned in
step 22.

4.3. Local search procedure

Local search methods typically perform the intensification stage of
Basic VNS. Their main objective is to find a local optimum with re-
spect to a predefined neighborhood. In general, local search algorithms
implement either a first-improvement or a best-improvement selection
strategy when scanning the neighborhood. Iterations performed in the
former are usually more efficient than those in the best-improvement
one, since the first-improvement strategy only evaluates part of the
neighborhood and directly applies the first move that results in an
improved solution, discarding the examination of the rest of the neigh-
borhood (thus saving the associated computing time). On the other
hand, the improvement obtained in the first-improvement strategy is
typically smaller than the one achieved by the best-improvement strat-
egy, in which the entire neighborhood is explored, resulting generally
in more iterations to obtain the local optimum.

The best improvement strategy is usually more adequate to perform
5

efficient catching and updating mechanisms, which allows the search c
to explore effectively the neighborhood (Hoos & Stützle, 2005). Hansen
and Mladenović (2009) perform an empirical study on the well-known
Traveling Salesman Problem to compare first and best improvement
strategies. The authors conclude that the first improvement approach
is better and faster if initial solutions are constructed at random.
However, if the search starts from a greedy solution (as we do in this
paper), it is recommended to follow the best improvement strategy.
Thus, considering the aforementioned reasons, the local search methods
proposed in this paper are based on the best improvement strategy.

Attending to the solution representation described in this paper, we
propose three different move operators: swap, add, and drop. Given a
solution 𝑋, the first one consists in replacing an element 𝑖 ∈ 𝑋 with an
lement 𝑗 ∈ 𝑉 ⧵ 𝑋, producing a new solution 𝑋′ ← 𝑠𝑤𝑎𝑝(𝑋, 𝑖, 𝑗). The
eighborhood associated to solution 𝑋 is formally defined as follows:

𝑠𝑤𝑎𝑝(𝑋) = {𝑋′ ⊆ 𝑉 ∶ 𝑋′ = 𝑋 ⧵ {𝑖} ∪ {𝑗}, 𝑖 ∈ 𝑋, 𝑗 ∈ 𝑉 ⧵𝑋} (7)

The first local search method proposed in this paper, named as LS1,
cans 𝑁𝑠𝑤𝑎𝑝(𝑋) as described in Algorithm 3. LS1 receives a feasible
olution and then systematically explores 𝑁𝑠𝑤𝑎𝑝 with two for-loops
steps 1 and 2). For the sake of clarity, we denote in this pseudo-code
he objective function as 𝑓 (to be consistent with the definition given
n Section 2). Additionally, we assume that we have specific functions
o obtain the capacity (getCap) and cost (getCost) values of a given
olution, to check its feasibility.

Algorithm 3: LS1(X)
1 for 𝑖 ∈ 𝑉 do
2 for 𝑗 ∈ 𝑉 ⧵𝑋 do
3 𝑋′ ← 𝑠𝑤𝑎𝑝(𝑋, 𝑖, 𝑗)
4 if (𝑓 (𝑋′) > 𝑓 (𝑋)) and (𝑔𝑒𝑡𝐶𝑎𝑝(𝑋′) ≥ 𝐵) and

(𝑔𝑒𝑡𝐶𝑜𝑠𝑡(𝑋′) ≤ 𝐾) then
5 𝑋 ← 𝑋′

6

7 end
8 end
9 return 𝑋

The GDP is a highly constrained optimization problem. Therefore,
LS1 is not expected to perform a large number of steps. This is why
we propose the add and drop moves, performing a nested exploration
of the three neighborhoods, to overcome the difficulties of optimizing
such a constrained problem. Given a solution 𝑋, the add-move consists
n selecting an element 𝑗 ∈ 𝑉 ⧵ 𝑋 and inserting it in 𝑋, producing a
ew solution 𝑋′. For the sake of simplicity, we denote this move as
′ ← 𝑎𝑑𝑑(𝑋, 𝑗). Thus, given the solution 𝑋, its neighborhood 𝑁𝑎𝑑𝑑 (𝑋)

s defined as follows:

𝑎𝑑𝑑 (𝑋) = {𝑋′ ⊆ 𝑉 ∶ 𝑋′ = 𝑋 ∪ {𝑗}, 𝑗 ∈ 𝑉 ⧵𝑋} (8)

The next neighborhood is defined with the drop-move. It consists in
emoving an element 𝑖 ∈ 𝑋, producing a new solution 𝑋′, (i.e., 𝑋′ ←
𝑟𝑜𝑝(𝑋, 𝑖)). Then, the associated neighborhood of solution 𝑋 is:

𝑑𝑟𝑜𝑝(𝑋) = {𝑋′ ⊆ 𝑉 ∶ 𝑋′ = 𝑋 ⧵ {𝑖}, 𝑖 ∈ 𝑋} (9)

Our second local search LS2 iteratively applies these two moves,
dd and drop, to the solution, until both constraints are satisfied. This
an be viewed as a repair mechanism, that applies an oscillation pat-
ern (adding and dropping sites iteratively), which generates solutions
round the feasibility frontier defined by the problem constraints in the
olution space.

The pseudo-code of the local search LS2 is shown in Algorithm 4.
t has the same structure than the one reported above for LS1, but
ncluding steps from 4 to 8. Specifically, the swap move (step 3) might
roduce an infeasible solution if it does not satisfy capacity and/or cost
onstraints (step 4). In particular, if after a swap move, 𝑋′ is unfeasible,
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Fig. 1. Boxplot in the analysis of the parameters 𝜑𝑏 and 𝜑𝑘.

since its capacity is below 𝐵, the ADDS procedure (step 5) performs
as many add moves as possible trying to get a feasible solution. More
precisely, for an unfeasible solution 𝑋′, ADDS scans sites in 𝑉 ⧵ 𝑋′,
discarding those ones that their inclusion would exceed the budget 𝐾 in
the cost constraint, and incorporating the site that produces the largest
improvement in the objective function.

The procedure DROPS (step 7) considers the situation when the
swap move produces a solution that satisfies the capacity constraint.
As in the aforementioned case, it is performed as much drop moves
as possible trying to obtain a better and feasible solution. Specifically,
for a solution 𝑋′, DROPS scans sites in 𝑉 ⧵ 𝑋′, discarding those ones
that their inclusion would violate the capacity constraint, and finally
incorporating the site that produces the largest improvement in the
objective function.

Algorithm 4: LS2(X)
1 for 𝑖 ∈ 𝑉 do
2 for 𝑗 ∈ 𝑉 ⧵𝑋 do
3 𝑋′ ← 𝑠𝑤𝑎𝑝(𝑋, 𝑖, 𝑗)
4 if (𝑔𝑒𝑡𝐶𝑎𝑝(𝑋′) < 𝐵) and (𝑔𝑒𝑡𝐶𝑜𝑠𝑡(𝑋′) ≤ 𝐾) then
5 𝑋′ ← 𝐴𝐷𝐷𝑆(𝑋′)
6 else
7 𝑋′ ← 𝐷𝑅𝑂𝑃𝑆(𝑋′)
8 end
9 if (𝑓 (𝑋′) > 𝑓 (𝑋)) and (𝑔𝑒𝑡𝐶𝑎𝑝(𝑋′) ≥ 𝐵) and

(𝑔𝑒𝑡𝐶𝑜𝑠𝑡(𝑋′) ≤ 𝐾) then
10 𝑋 ← 𝑋′

11

12 end
13 end
14 return 𝑋

The objective of the GDP consists in maximizing a minimum value.
Consequently, there may be many different solutions with the same
objective function value. In other words, the solution space presents a
‘‘flat landscape’’ (Della Croce et al., 2009) where most of the moves that
can be performed to modify a solution, have a null objective function
value, and cannot be classified as improving moves. To overcome this
lack of information to guide a local search, we extend the meaning
of improving move. In particular, when two solutions have the same
objective function, we use an alternative evaluation function to break
ties. Given a solution 𝑋 we define 𝑓𝑎𝑙𝑡(𝑋) as the sum of distances of
elements 𝑖 ∈ 𝑋. In mathematical terms:

𝑓𝑎𝑙𝑡(𝑋) =
∑

𝑑𝑖𝑗 . (10)
6

𝑖,𝑗∈𝑋,𝑖≠𝑗
We show in Algorithm 5 the pseudo-code of the local search method
LS3 based on this alternative evaluation function. It has the same
structure than LS1 and LS2, but including steps from 11 to 15.
Specifically, in step 11 if the feasible solution 𝑋′ in the neighborhood
of 𝑋 has the same objective function value, we evaluate the alternative
objective function (step 12). In case that we find an improvement
according to this new function, the incumbent solution is updated (step
13); otherwise, the local search method performs a new iteration.

Algorithm 5: LS3(X)
1 for 𝑖 ∈ 𝑉 do
2 for 𝑗 ∈ 𝑉 ⧵𝑋 do
3 𝑋′ ← 𝑠𝑤𝑎𝑝(𝑋, 𝑖, 𝑗)
4 if (𝑔𝑒𝑡𝐶𝑎𝑝(𝑋′) < 𝐵) and (𝑔𝑒𝑡𝐶𝑜𝑠𝑡(𝑋′) ≤ 𝐾) then
5 𝑋′ ← 𝐴𝐷𝐷𝑆(𝑋′)
6 else
7 𝑋′ ← 𝐷𝑅𝑂𝑃𝑆(𝑋′)
8 end
9 if (𝑓 (𝑋′) > 𝑓 (𝑋)) and (𝑔𝑒𝑡𝐶𝑎𝑝(𝑋′) ≥ 𝐵) and

(𝑔𝑒𝑡𝐶𝑜𝑠𝑡(𝑋′) ≤ 𝐾) then
10 𝑋 ← 𝑋′

11 else if (𝑓 (𝑋′) = 𝑓 (𝑋)) and (𝑔𝑒𝑡𝐶𝑎𝑝(𝑋′) ≥ 𝐵) and
(𝑔𝑒𝑡𝐶𝑜𝑠𝑡(𝑋′) ≤ 𝐾) then

12 if 𝑓𝑎𝑙𝑡(𝑋′) > 𝑓𝑎𝑙𝑡(𝑋) then
13 𝑋 ← 𝑋′

14 end
15

16 end
17 end
18 return 𝑋

4.4. Shake procedure

The perturbation mechanism in VNS is usually called the Shake
procedure. The goal of this method is to diversify the search by gen-
erating a neighbor solution relatively different to the current one. We
propose a method that modifies the structure of the solution according
to a parameter 𝑘. Its value ranges from 1 to 𝑘𝑚𝑎𝑥, which is an input
parameter of the complete procedure (see Algorithm 1).

According to the moves defined in Section 4.3, the Shake procedure
could be implemented as a sequence of swap moves or, alternatively, as
drop followed by add moves (symmetrically, add and drop moves). Con-
sidering that we are considering here a highly constrained optimization
problem, we have discarded swap moves, since the number of feasible
moves (those that produce a feasible solution) is relatively low, and
thus not adequate for a diversification method.

We propose a shake method based on dropping a percentage 𝑘 of the
elements in the solution. As it is customary in the BVNS methodology,
these elements are selected at random. Then, to recover feasibility, we
add to the partial solution obtained when these elements are removed,
as many elements as necessary with the add moves described above.
Recent works have studied more advanced shake techniques balanc-
ing the diversification and intensification of the search. This strategy
has been referred to as intensified shake (see Duarte et al. (2014)
and Sánchez-Oro et al. (2014) for further details).

5. Computational experiments

In this section we described the numerical experiments carried
out to analyze the performance of the mathematical models and the
metaheuristic procedures presented in the previous sections. In par-
ticular, we consider two mathematical models adapted for GDP and
solved with Gurobi: the linear model introduced by Kuby (2), named
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as Standard Model, and the new model (3), named as Compact
odel; the previous algorithm GRASP described in Section 3; and

inally, our metaheuristic based on a multi-start basic VNS, MS-BVNS.
After introducing the experimental setup, which includes the de-

cription of the instances used in our study, we divide the experimen-
ation into three parts. In the first one, we empirically compare the two
odels presented in Section 2. In the second part, we set the values of

he search parameters of our MS-BVNS algorithm. Finally, in the third
art we perform the comparative study among heuristic algorithms.

.1. Experimental setup

GRASP and MS-BVNS are implemented in Java. The experiments
re conducted on a computer with a 2.8 GHz Intel Core i7 processor
ith 16 GB of RAM. The executable files and the individual results for

uture comparisons are available on: https://grafo.etsii.urjc.es/GDP.
Martínez-Gavara et al. (2021) proposed a benchmark set of 200

nstances for the GDP. The authors generated them from a subset of
0 Max–Min instances, with different features of size and type, selected
rom the MDPLIB (Martí & Duarte, 2010). A GDP instance is obtained
rom each of these instances by adding a capacity 𝑐𝑖 and cost 𝑎𝑖 for
ach element 𝑖. In particular, these values are randomly generated
ith an uniform distribution between 1 and 1000, and 𝑐𝑖∕2 and 2 𝑐𝑖,

respectively. Then, the minimum required capacity 𝐵 is computed as
the total capacity multiplied by a factor 𝜑𝑏 of 0.2 or 0.3, as well as the
maximum budget 𝐾, which is calculated as the sum of all costs values
multiplied by a factor 𝜑𝑘 of 0.5 or 0.6.

Computational experiments in Martínez-Gavara et al. (2021) sug-
gest that their instances are relatively easy to solve. We performed a
preliminary experiment to confirm this point. In particular, we test how
the cost constraints reduce the search space, thus making the search
exploration more complicated. To do that, we compare the optimal
solutions obtained with the mathematical model (2) with and without
the cost constraint. So, we run Gurobi in the benchmark set with a
time limit of 1 h per instance, and the optimal solution values obtained
in both models are the same. Therefore, we confirm that the cost
constraints are not active in the optimal solutions, thus making this
set of instances somehow easy to solve, so they are not suitable to
compare solving methods for this problem as they stand. To make them
more challenging, and adequate for comparison of solving methods,
we recompute the maximum budget 𝐾 as the total cost multiplied
by a factor 𝜑𝑘 of 0.2 and 0.3 instead of 0.5 or 0.6. We repeat the
same empirical analysis than before, and we observe that the optimal
solutions obtained between both models are different, so this proves
that the recomputed 𝐾 values affect the solution.

To complement the study above and disclose the influence of the 𝜑
factors in the solution, we graphically analyze the differences between
the optimal solutions obtained with the mathematical model (2), and
those reached without the cost constraint for GKD-b instances (𝑛 = 50
and 𝑛 = 150). Fig. 1 shows the percentage of the relative difference of
the two solution values computed as:

% 𝑟𝑒𝑙 =
|

|

|

𝑧𝑔 − 𝑧𝑐
|

|

|

𝑧𝑐
⋅ 100, (11)

where 𝑧𝑔 is the optimal solution value obtained with model (2) and
𝑧𝑐 is the optimal one without considering the cost constraint in the
optimization model. The box-plots in Fig. 1 are grouped by the different
capacity and cost factor values: (𝜑𝑏, 𝜑𝑘) = (0.2, 0.2), (0.2, 0.3), (0.3, 0.2),
and (0.3, 0.3). As can be observed, instances with 𝜑𝑏 = 0.3 and 𝜑𝑘 =
0.2 produce large differences between both solutions. In particular,
this combination of factor values generates the most restrictive set of
instances. Furthermore, we can see how the percentage ratio between
the two solutions is always larger than zero, except for (𝜑𝑏, 𝜑𝑘) =
(0.3, 0.3), meaning that in those instances the structure of both solutions
are different. In this last case, the pairwise Wilcoxon statistical test with
7

a 𝑝-value equal to 0.01427 (<0.05) provides evidence to support that,
Table 1
Benchmark set.

Type #inst. Sites (𝑛) Capacity factor (𝜑𝑏) Cost factor (𝜑𝑘)

120 instances solved with Gurobi

GKD-b 80 50,150 0.2, 0.3 0.2, 0.3
SOM 40 50 0.2, 0.3 0.2, 0.3

80 instances in the heuristic comparison and Gurobi

GKD-c 40 500 0.2, 0.3 0.2, 0.3
MDG-b 40 500 0.2, 0.3 0.2, 0.3

40 instances in the heuristic comparison

GKD-d 40 2000 0.2, 0.3 0.2, 0.3

for (𝜑𝑏, 𝜑𝑘) = (0.3, 0.3), both solutions are not likely to be the same. So,
we set 0.2 and 0.3 as appropriate factor values.

Additionally, we have generated a new set of large instances. In
particular, we consider 10 new instances in the Euclidean set (GKD-d)
with 𝑛 = 2000. The capacity and cost values are generated as described
above, thus for each original instance, 4 instances are created. The set of
instances we use is available online in the MDPLIB 2.0 (Martí, Duarte,
et al., 2021), and we detail them in Table 1.

We study the following statistics to evaluate the performance of the
models and algorithms in the computational experiments:

- 𝑚: the average of the minimum distance value in the best solution
found;

- % 𝑑𝑒𝑣: the average percent deviation with respect to the best
solution found in the experiment. This measure shows how far the
heuristic is to the best value. Smaller percent deviations therefore
mean better results. This percentage value is computed as
𝑚𝑎 − 𝑚𝑏𝑒𝑠𝑡

𝑚𝑏𝑒𝑠𝑡
⋅ 100, (12)

where 𝑚𝑎 is the objective function value of the solution with the
heuristic algorithm 𝑎 and 𝑚𝑏𝑒𝑠𝑡 is the best solution found on a
given instance in the experiment;

- #𝑏𝑒𝑠𝑡: the number of best solutions found;
- #𝑜𝑝𝑡: the number of optimal solutions found;
- % 𝑔𝑎𝑝: the average percent deviation of the objective function

value of the heuristic method with respect to the optimal solution.
- 𝑡𝑖𝑚𝑒(𝑠): average total time in seconds to execute the method.

.2. Preliminary experiments

In this section, a series of preliminary experiments were conducted
o determine the values for the critical search parameters, and to
ompare the different designs in our heuristics. From the 240 instances
n our benchmark, we employed 44 representative instances (with size
ess than or equal to 500) in the parameter tuning to prevent the over
raining of the algorithms. We called this subset of instances the training
et, in contrast to the testing set, which contains the entire benchmark.

In the first preliminary experiment, and in order to provide a
aseline for comparison, we add a constructive procedure in which
he solutions are built with the random selection of the elements
sites). We will refer to it as C0. As in the constructive methods C1
nd C2, the auxiliary constructive method (Caux) is applied if it
enerates infeasible solutions. Recall that Caux is only applied if the
onstruction procedure is not able to find at least one feasible solution.
he first experiment is devoted to analyze the effectiveness of this
uxiliary construction procedure. The 44 instances in the training set
ere solved with the constructive methods applied for 100 iterations.
able 2 presents, on average, the percentage of feasible solutions that
ach constructive procedure is able to find. Results show that C1
btains a remarkable 98% of feasible solutions in this set of instances.
n fact, in just one instance the algorithm requires the application of
aux. Constructive procedures C0 and C2 present on the other hand

https://grafo.etsii.urjc.es/GDP
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Table 2
Average percent of feasible solutions in 100 constructions.
𝜑𝑏 𝜑𝑘 C0 C1 C2

0.2 0.2 57% 100% 60%
0.3 100% 100% 100%

0.3 0.2 0% 91% 0%
0.3 57% 100% 50%

Summary 53% 98% 52%

0.00 means less than 0.001.

a moderate performance, since they are on average capable to obtain
around a 50% of feasible solutions. Table 2 reveals that C0 and C2 are
not able to find feasible solutions in the set of instances with factor
values (𝜑𝑏, 𝜑𝑘) = (0.3, 0.2). In this set, Caux has to be applied to obtain
n initial feasible solution. It is clear then that Caux is necessary to
enerate a starting point of the algorithm in those cases where the
onstructive procedure fails to obtain a feasible solution. For the sake
f simplicity, and for now on, we will use C0, C1, and C2 also to refer

the constructive procedure coupled with Caux, whenever there is no
ambiguity among them.

In our second preliminary experiment, we compare our two con-
structive procedures with C0 in the training set of instances. Table 3
summarizes the statistics for each instance set, grouped by the different
capacity and cost factor values (𝜑𝑏, 𝜑𝑘) (11 instances of each type).
Results indicate that on average C2 obtains the best percent deviation
value (10.51%), and it is able to identify 35 (out of 44) best solutions
in the experiment. However, C1 obtains the best solutions in the
experiment for (𝜑𝑏, 𝜑𝑘) = (0.3, 0.2). Note that this combination of factor
values produces the most restrictive instances, i.e., the solution space
is relatively small, thus making them hard to solve. In this case, what
emerges from Table 3 is that a greedy function based on the different
characteristics of each site: distance, capacity, and cost, is probably the
best option to create a constructive method for these hard instances.

Since the previous greedy function (4) and the greedy evaluation of
the C1 procedure (5) depend on three factors (distance, capacity, and
cost), we study the differences between both evaluation functions in
terms of % 𝑑𝑒𝑣 and #𝑏𝑒𝑠𝑡 in the instances of the training set with size
500. The results obtained in this experiment reveal that C1 outperforms
the previous evaluation function with an average percentage deviation
of 5.40% (2.94% in the subset (𝜑𝑏, 𝜑𝑘) = (0.3, 0.2)), in contrast to
47.30% (83.50%) for the previous greedy function. In fact, the pre-
vious constructive method is not able to obtain feasible solutions in
3 instances out of 5 in the class with (𝜑𝑏, 𝜑𝑘) = (0.3, 0.2). We do not
reproduce here the table for this experiment for the sake of simplicity,
but we conclude that our new evaluation C1 based on the product of
the three factors, performs better than the previous one based on their
sum.

We now compare the three constructive methods, C0, C1, and C2,
with the auxiliary constructive procedure, in quality and variability
considering that the role of the construction method in the entire solv-
ing algorithm is to provide not only good solutions, but also scattered in
the search space in a way that they are good initial points for the local
search method. We compute the variability as the number of different
solutions in 100 independent constructions. The quality is defined in
the range [0, 1] by 1 − (% 𝑑𝑒𝑣∕100), where an average value of 1 means
that this method captures the best solutions in the experiment, and an
average value close to 0 indicates low quality solutions. The values
of variability have been normalized to fall between 0 and 1 as well.
Fig. 2 shows the average results in two types of instances; depending
whether (𝜑𝑏, 𝜑𝑘) = (0.3, 0.2) or not. C2 presents the best trade-off
between quality and variability when (𝜑𝑏, 𝜑𝑘) ≠ (0.3, 0.2). However,
in the instance set with a small solution space, C1 attains the largest
quality and variability compared with the other two methods. The
variability shown in Fig. 2-b reveals that both constructive methods, C0
and C2, are not able to find feasible solutions in this class of instances
8

((𝜑𝑏, 𝜑𝑘) ≠ (0.3, 0.2)), so the solution is uniquely determined by the
auxiliary construction, producing poor-quality results. We therefore
cannot conclude at this stage that one method is better than the other,
and perform an additional experiment to evaluate them when coupled
with the improvement phase.

The next experiment is performed to test the ability of the con-
structive procedures C1 and C2 to produce local optima once the local
search has been applied. To do that, the constructive procedures are
coupled with the basic local search based on swaps, LS1. Results in
Table 4 show a similar performance of C1 and C2 as in the previous
experiments. C2 coupled with LS1 is able to reduce the average
of the percent deviation of C1+LS1 in almost 15% in the instance
class (𝜑𝑏, 𝜑𝑘) ≠ (0.3, 0.2), i.e., the percentage deviation is diminished
from 42.02% in Table 3 to 27.75% in Table 4. The results on the
entire training set indicate that C2+LS1 obtains better outcomes than
C1+LS1. In fact, more than 80% of best solutions are due to C2+LS1
with a percent deviation of 8.16%. So, we can conclude that, on
average, C2 is the best method to construct an initial solution.

In the next experiment of this section, we analyze the influence of
the different local search procedures described in Section 4.3. For the
sake of simplicity, we do not reproduce the summary table here. As
expected, results show that C2+LS3 clearly obtains the best outcomes
in the experiment. In particular, C2+LS3 obtains 36 out of 44 best
solutions, in contrast to the 10 and 23 of C2+LS1 and C2+LS2,
respectively. In terms of % 𝑑𝑒𝑣, C2+LS3 also exhibits the best value
compared with those obtained by C2+LS1 and C2+LS2 (0.36% vs
10.69% and 9.04%, respectively). For this reason, the local search used
in the final MS-BVNS algorithm is LS3.

The last experiments are devoted to fine-tune the search param-
eters involved in the MS-BVNS algorithm, 𝑘𝑚𝑎𝑥 and 𝑖𝑡𝑚𝑎𝑥. In a VNS
framework, the diversification of the search process is controlled by
the search parameter 𝑘𝑚𝑎𝑥, which indicates the percentage of selected
elements to be dropped from the solution. For the sake of simplicity, we
do not show the results of these experiments in which we evaluated the
average objective function values (𝑚) for different 𝑘max and 𝑖𝑡max values.
As expected, large values of 𝑘𝑚𝑎𝑥 generate better quality solutions, with
the drawback of larger CPU times. Similarly, the objective function
value improves significantly with a CPU time less than 60 s for 𝑖𝑡max ≤ 5
and it does not for 𝑖𝑡max > 8. We therefore select 𝑘𝑚𝑎𝑥 = 0.5 and 𝑖𝑡max = 8
or their good trade-off between solution quality and running time.

In the final preliminar experiment, we undertake to evaluate the
elative contribution of each element of the algorithm to the final
olution in one iteration of the variable neighborhood algorithm. In
articular, Fig. 3 represents the evaluation of the value of the best
olution found in a given iteration on a 500 element instance when
he different elements of our algorithm are applied. It shows the value
f the current solution obtained with the constructive method C2,
he auxiliary constructive method (Caux), the local search (Local
Search), and the variable neighborhood search (VNS). In this way,
we may observe the evolution of the incumbent solution in the search
process. Additionally, we depict with a square red symbol the infeasible
solutions generated during the search, and with a blue circle symbol
the feasible ones. Fig. 3 shows that the constructive method generates
an infeasible solution. This is to be expected considering the difficulty
to achieve feasibility in this problem due to its two constraints. Then,
the repair method is able to improve the solution value in the process
of making it feasible. The local search on the other hand, presents an
oscillation pattern between feasible and not feasible solutions that turns
out to be very effective on allocating good feasible solutions. In the last
stage of the search, the VNS marginally improves the output solution of
he local search, alternating between feasible and infeasible solutions.
ote that, in some iterations, this oscillation produces solutions with

he same objective function value but it is able to repair the not feasible
nes, thus obtaining good feasible solutions. Although this diagram
nly represents a single instance, we repeat this experiment with other
hallenging instances in our test-bed obtaining a similar profile.
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Table 3
Comparison of the construction procedures in 100 constructions (in the training set).
𝜑𝑏 𝜑𝑘 C0 C1 C2

%𝑑𝑒𝑣 #𝑏𝑒𝑠𝑡 𝑇 𝑖𝑚𝑒 (s) %𝑑𝑒𝑣 #𝑏𝑒𝑠𝑡 𝑇 𝑖𝑚𝑒 (s) %𝑑𝑒𝑣 #𝑏𝑒𝑠𝑡 𝑇 𝑖𝑚𝑒 (s)

0.2 0.2 46.15 0 0.09 45.68 0 1.67 0.00 11 0.74
0.3 47.70 0 0.09 45.74 0 1.66 0.00 11 0.76

0.3 0.2 42.02 2 0.09 0.00 11 3.57 42.02 2 0.78
0.3 57.64 0 0.12 51.24 1 3.42 0.00 11 1.50

Summary 48.38 2 0.10 35.67 12 2.58 10.51 35 0.94

0.00 means less than 0.001.
Table 4
Performance comparison of the construction procedures with LS1 in 100 constructions.
𝜑𝑏 𝜑𝑘 C1+LS1 C2+LS1

%𝑑𝑒𝑣 #𝑏𝑒𝑠𝑡 𝑇 𝑖𝑚𝑒 (s) %𝑑𝑒𝑣 #𝑏𝑒𝑠𝑡 𝑇 𝑖𝑚𝑒 (s)

0.2 0.2 37.30 0 3.51 0.00 11 5.52
0.3 34.03 1 3.65 0.00 11 7.27

0.3 0.2 0.00 11 11.03 27.75 5 8.67
0.3 39.68 2 8.73 4.89 9 10.96

Summary 27.75 14 6.73 8.16 36 8.10

0.00 means less than 0.001.
Fig. 2. Comparison of quality and variability of the constructive methods.
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Fig. 3. Contribution of search methods.
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.3. Mathematical models

This section is devoted to the comparison of the mathematical mod-
ls described in Section 2. Specifically, we consider model (2), named
tandard Model, and our adaptation (3) of the model by Sayah and

rnich to GDP, named Compact Model. In the first experiment, we
ompare both models in the instances with size 50 and 150, on sets
KD-b and SOM. We do not reproduce here the table of this experiment
ecause both formulations are able to optimally solve instances with
ize 𝑛 = 50 in less than 1 s, and the GKD-b instances of size 150 in less
han 30 s. In this case, the results of both models are identical.

In the next experiment, we run each model for a time limit of
600 s on each medium size instance (𝑛 = 500). Results in Table 5
how that the Compact Model is able to optimally solve 32 out of the
0 GKD-c instances (#𝑜𝑝𝑡), and to obtain on average a 87.5% of best
olutions in this set. However, in the case of MDG-b set, the Standard
odel achieves the maximum number of best solutions (40 out of 40).
here exist significant differences between both models with a p- value
5.762 ⋅ 10−6) less than 0.01 in the Wilcoxon signed rank test. Note that
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Table 5
Comparison of the mathematical models (𝑛 = 500).

Instances 𝜑𝑏 𝜑𝑘 Standard model Compact model

%𝑑𝑒𝑣 #𝑏𝑒𝑠𝑡 #𝑜𝑝𝑡 𝑇 𝑖𝑚𝑒 (s) %𝑑𝑒𝑣 #𝑏𝑒𝑠𝑡 #𝑜𝑝𝑡 𝑇 𝑖𝑚𝑒 (s)

GKD-c 0.2 0.2 2.13 1 0 3600 0.00 10 9 1871
0.3 2.34 1 0 3600 0.00 10 10 1171

0.3 0.2 0.00 10 10 151 0.00 10 10 123
0.3 0.12 9 0 3600 2.77 5 3 3390

Summary 1.15 21 10 2738 0.69 35 32 1639

MDG-b 0.2 0.2 0.00 10 0 3600 10.81 0 0 3600
0.3 0.00 10 0 3600 8.00 0 0 3600

0.3 0.2 0.00 10 10 243 0.00 10 10 587
0.3 0.00 10 0 3600 10.92 0 0 3600

Summary 0.00 40 10 2761 7.43 10 10 2847

0.00 means less than 0.001.
both models are able to optimally solve the most restrictive instances,
those with 𝜑𝑏 = 0.3 and 𝜑𝑘 = 0.2. The computing time is on average less
than 200 s per instance in the GKD-c set, and 600 seconds in the case
of MDG-b instances. Gurobi is a powerful mathematical optimization
solver that uses an advanced pioneering branch-and-cut algorithm. In
fact, the developers of this solver have introduced new kinds of cuts
that are very efficient in this type of problems. This could explain that
even with a small number of feasible solutions in these restrictive sets,
Gurobi is able to solve both linear programming models. It must be
noted that this is not necessarily true for heuristics, for which a reduced
search space with a low number of feasible solutions, may create a
difficult problem, for which finding feasible solutions can be a difficult
task.

In conclusion, our empirical analysis states that both models can
optimally solve small size instances (𝑛 ≤ 150) in a very short time
(less than 30 s). Additionally, both models solve medium size instances
(𝑛 = 500) with Gurobi within a reasonable execution time (less than
3600 s), where the Compact Model is able to certify the optimality
of some solutions in this set. Considering the good performance of
the models on small and medium size instances, we run an additional
experiment with large instances (𝑛 = 2000). As expected, none of these
two models is able to solve them within a time limit of 3600 s and they
even encounter difficulties to identify a feasible solution. We therefore
have to resort to metaheuristics to find good solutions in moderate
running times for medium and large size instances.

5.4. Comparative testing

The aim of this section is twofold. On one hand, the comparison of
our MS-BVNS heuristic with the solutions obtained with the Compact
Model with Gurobi for the medium size instances (𝑛 = 500). On the
other hand, we compare our MS-BVNS algorithm with the previous
heuristic approach, GRASP, in medium and large size instances (𝑛 = 500
and 𝑛 = 2000). The last experiment in Section 5.2 shows that the best
configuration for MS-BVNS is 𝑖𝑡max = 8. However, GRASP and the
Compact Model with Gurobi are run with a time limit of 60 s and
3600 s, respectively. Therefore, for a fair of comparison, MS-BVNS is
set up to stop with a similar time limit criterion.

In the first experiment, we test the ability of MS-BVNS to match
the optimal values for those instances where we know them (or the
best upper bound known). We consider our MS-BVNS approach for
different time horizons: 60, 450, and 900 seconds. Fig. 4 shows the
percentage deviation value (𝑦-axis) of the solutions obtained with MS-
BVNS with respect to the optimal values (or bounds) in the different
time limits (𝑥-axis). We can observe that on average (black cross mark),
the % 𝑑𝑒𝑣 decreases from 22% in 60 s to 13% in 900 s. It is clear
that our heuristic has difficulties to match the optimal solution in the
running times considered. However, using MS-BVNS heuristic has the
advantage that it reaches good solutions in short running times.

Note that the linear relaxation of the formulation (where the binary
definition for the 𝑥 variables is replaced with the constraints 0 ≤ 𝑥 ≤
10
Fig. 4. Boxplot in the comparison of MS-BVNS and Compact Model on 3600 s
(𝑛 = 500).

1) can be considered weak, since it provides a solution with many
variables taken a fractional value equal to 0.5. In line with that, we
have empirically found that its associated objective function value is far
from the optimal solution value (with an average percentage deviation
around 150%), and therefore we need to resort to the branch and bound
(implemented in Gurobi in our case) to obtain the optimal value to
assess the merit of the heuristics.

In the last experiment, we consider the 80 medium size instances
(𝑛 = 500) and the 40 large ones (𝑛 = 2000) to evaluate the performance
of our heuristic MS-BVNS in comparison with the previous GRASP
and TS (Martínez-Gavara et al., 2021). In large instances (𝑛 = 2000),
the mathematical model is not able to obtain competitive results or
even find feasible solutions, so that, we do not have optimal values to
compare with. We run the three heuristics for 60 s on each instance and
report the fraction of instances in each set in which they are able to find
feasible solutions. Let 𝜈 be the number of feasible solutions found. We
also report the average deviation with respect to the best solution found
in the experiment. Additionally, we report the number of instances in
which each method finds the best solution.

The results of this experiment clearly show the superiority of our
heuristic that systematically obtains lower deviations and larger num-
ber of best solutions than the previous GRASP and TS methods.
Additionally, results in Table 6 show that GRASP and TS are not able
to obtain feasible solutions in the instance class (𝜑𝑏, 𝜑𝑘) = (0.3, 0.2) in
5 out of 20 instances of size 500, and in all the 10 instances of size
2000 of this class, as shown in the 𝜈 column. On the other hand, TS
is able to obtain high quality solutions for the large size instances with
𝜑𝑏 = 0.2; while quality of GRASP solutions deteriorates as the instances
size increases. Wilcoxon statistical tests are applied to the individual
results, and the 𝑝-values (2.454 ⋅10−14 and 1.863 ⋅10−9) are in both cases
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Table 6
Comparison of heuristic solutions in medium (80 inst.) and large instances (40 inst.) on 60 s.

Instance size 𝜑𝑏 𝜑𝑘 GRASP TS MS-BVNS

𝜈 %𝑑𝑒𝑣 #𝑏𝑒𝑠𝑡 𝜈 %𝑑𝑒𝑣 #𝑏𝑒𝑠𝑡 %𝑑𝑒𝑣 #𝑏𝑒𝑠𝑡

500 0.2 0.2 20 53.08 0 20 46.95 0 0.00 20
0.3 20 51.34 0 20 46.88 0 0.00 20

0.3 0.2 15 46.13 1 15 48.13 1 2.87 18
0.3 20 54.00 0 20 54.25 0 0.00 20

Summary 75 51.14 1 75 49.05 1 0.71 78

2000 0.2 0.2 10 81.22 0 10 2.40 8 6.68 3
0.3 10 81.26 0 10 1.74 8 5.67 2

0.3 0.2 0 – – 0 – 0 0.00 10
0.3 10 79.51 0 10 28.17 0 0.00 10

Summary 30 80.67 0 30 10.77 16 3.09 25

0.00 means less than 0.001.
Fig. 5. Potential locations (black circles) and selected facilities (red circles).

less than the significance level 0.01, which indicates the superiority of
MS-BVNS with respect to the previous heuristics.

To sum it up, the experimentation shows that MS-BVNS provides
the best trade-off between solution quality and computational running
times for medium and large size instances (𝑛 ≥ 500).

5.5. A case study

We consider in this section a real case based on the data set de-
scribed in Daskin (2011) and Snyder and Daskin (2005), which consists
of the capitals of the continental United States plus Washington, DC.,
from which we have to select some of them to provide a given service.
In particular, we adapted it to obtain a realistic example for our facility
location problem.

This is the case of a company that offers a specific service through
their chain of facilities, and it wants to expand its business interna-
tionally by opening new branch offices in some of the 49 US cities
considered, to launch new innovative product lines in this competitive
market. In technical terms, each site 𝑖 has associated the cost 𝑎𝑖 of
opening and operating a facility (branch office), together with its
capacity of service 𝑐𝑖. This data is given in Daskin (2011), where the
capacity of each facility is computed from the customer demands in
each city, and it is proportional to their population. In particular, the
associated capacity 𝑐𝑖 represents the number of customers that can be
attended in the potential facility at city 𝑖. To complete the data, the
company has a maximum budget 𝐾 of $1150000 to open up markets in
US, and it wants to provide service to a minimum of 5000 customers in
all their new subsidiaries. The goal is to select the sites as disperse as
possible all around the country in order to gain visibility for the new
affiliates and open up new market opportunities in the US.

Fig. 5 shows a map of US with the 49 potential sites (black cir-
cles) considered by the company to establish new branch offices. Our
11
MS-BVNS algorithm provides the company with the best strategical
decision to reinforce their international presence, given by opening new
offices in Sacramento (CA), Albany (NY), and Austin (TX) (depicted
with red circles in the figure). As shown in the figure, locating a branch
office in Sacramento (CA) covers the demands of the Western United
States customers. Similarly, the office in Austin (TX) provides service
to Central United States, and the one in Albany (NY) to those in the
eastern part of the country. At the same time, the constraints in the
model assure that the required level of service is provided without
exceeding the budget. In conclusion, solving the model results in a
selection of locations that better represents the company interests in
both reaching a large target audience and satisfying its operational
requirements.

6. Conclusions

In this paper we explore the adaptation of mathematical models
and metaheuristic methodologies to a practical variant of the well-
known maximum diversity problem. In particular, we target the case
in which diversity maximization is subject to two side constraints;
namely cost and capacity. This variant, known as the generalized
dispersion problem (GDP), models many practical situations in location
of facilities both public or private, such as hospitals or franchise chains.

In this paper, we discuss the adaptation of a previously proposed
model for the unconstrained case to the GDP, and the development
of a heuristic algorithm based on the VNS methodology. Our exper-
imentation reveals that both methods are very effective to solve this
problem, each one in a different way. The mathematical model is able
to solve small instances to optimality in short running times; however,
as it is usually the case with mathematical programming models, its
performance significantly deteriorates when it targets large instances.
On the other hand, our VNS obtains good solutions in large instances
within short computational times, outperforming the previous heuristic
proposed for this problem. In this way, our two proposals complement
each other, in line with previous research in similar combinatorial
optimization problems.

The use of intelligent optimization algorithms to solve this NP-hard
problem constitutes a viable way to find the optimal or approxi-
mate solution within a reasonable time. Trajectory-based metaheuris-
tics (Glover, 1989), population-based algorithms (Martí et al., 2021) or
bio-inspired algorithms (Li et al., 2020; Wang et al., 2018, 2009) may
be applied as well to solve this challenging problem. We hope that this
paper triggers the interest of researchers to apply them.
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