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ABSTRACT

The problem of training with a small set of positive samples is known as few-shot learning (FSL). It
is widely known that traditional deep learning algorithms usually show very good performance when
trained with large datasets. However, in many applications, it is not possible to obtain such a high num-
ber of samples. This paper deals with the application of FSL to the detection of specific and intentional
acoustic events given by different types of sound alarms, such as door bells or fire alarms, using a limited
number of samples. These sounds typically occur in domestic environments where many events corre-
sponding to a wide variety of sound classes take place. Therefore, the detection of such alarms in a practi-
cal scenario can be considered an open-set recognition (OSR) problem. To address the lack of a dedicated
public dataset for audio FSL, researchers usually make modifications on other available datasets. This pa-
per is aimed at providing the audio recognition community with a carefully annotated dataset! for FSL in
an OSR context comprised of 1360 clips from 34 classes divided into pattern sounds and unwanted sounds.
To facilitate and promote research on this area, results with state-of-the-art baseline systems based on
transfer learning are also presented.

© 2022 The Author(s). Published by Elsevier B.V.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

I The automatic classification of audio clips is a research area
that has grown significantly very recently [1-3]. The research in-
terest in these algorithms is motivated by their numerous appli-
cations, such as audio-based surveillance, hearing aids, home as-
sistants or ambient assisted living, among others. In contrast to
most deep learning methods, few-shot learning (FSL) tackles the
problem of learning with few samples per class. FSL approaches
gained focus when trying to address intra-class classification in
the context of face recognition problems [4], including applications
such as access control and identity verification [5-7]. In order to
tackle this problem, loss functions such as ring loss [8] or center
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loss [9] have been proposed, together with different embeddings
from network architectures such as siamese [10,11] and triplet
[12,13]. These loss functions are aimed at solving convergence is-
sues, which also require careful training procedures to appropri-
ately choose the pairs or triplets used. Another practical issue aris-
ing in many real-world intelligent audio applications is open-set
recognition (OSR) [14]. This problem occurs when a system has
to face unfamiliar situations for which it has not been trained. A
system prepared for OSR should be capable of correctly classifying
examples corresponding to classes seen during the training stage
while rejecting examples corresponding to new, previously unseen
classes. OSR has been addressed in the past by applying modifi-
cations to classical machine learning algorithms such as support
vector machines [15,16] or nearest neighbour classification [17]. In
the last years, deep learning solutions for OSR have also started to
emerge, such as OpenMax [18], deep open classifier (DOC) [19] or
competitive overcomplete output layer (COOL) [20].

The problems of FSL and OSR appear frequently in smart acous-
tic applications. For example, a given user may be exposed to sev-
eral alerts or beeps at home, emitted by different domestic ap-
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Fig. 1. Training and test under FSL and OSR conditions. In the training stage (left),
only a few examples (shots) are available for each class, where some classes are
targets to be recognized (KK classes) and others are unwanted classes to be rejected
(KU classes). In the test stage (right) the system receives as input examples from the
target classes and also from unwanted ones, where new classes different from the
ones seen during training (UU classes) are also present.

pliances (e.g. oven, refrigerator). A smart system to differentiate
between both alerts should not classify both sounds into a single
“alarm” class, but should be capable of identifying correctly those
specific pattern sounds. However, only a limited number of exam-
ples recorded by the user may be available for training. In addition,
the system should neglect or discard the variety of possible sounds
appearing in a domestic environment. Therefore, there is a need
to design machine learning systems trained with a small number
of audio examples capable of both identifying the classes of inter-
est (FSL) while rejecting the sounds coming from other unexpected
sources (OSR).

A diagram of the conditions under which training and testing
are performed within a FSL+OSR context is shown in Fig. 1. The
FSL condition is reflected by the small number of examples (shots)
available during the training stage. On the other hand, the OSR
condition is accounted by letting the system learn from examples
corresponding to unwanted (non-target) classes. Since the num-
ber of examples is clearly insufficient, usually some meta-learning
strategy and support data is needed to let the system learn to
discriminate among data and exploit better the information pro-
vided by the available shots. In the test stage, the system is con-
fronted towards examples pertaining either to target classes or
to unwanted ones. Such unwanted examples might belong to the
group of unwanted classes seen during the training stage, but they
may also belong to new unseen classes, which makes the problem
even more challenging. The classification system should be capable
of identifying the target classes and to reject the unwanted ones.
Following the OSR nomenclature (cf. Sec. 3), the involved groups
of classes are denoted as KK, KU and UU in Fig. 1.

The dataset presented in this paper is aimed at facilitating re-
search on FSL for audio event classification. A domestic environ-
ment is considered, where a particular sound must be identified
from a set of pattern sounds, all belonging to a general “audio
alarm” class. The challenge lies in detecting the target pattern by
using only a reduced number of examples. To account for open-
ness conditions, the dataset provides as well a folder of unwanted
sounds containing audio samples from different subclasses which
are not considered to be audio alarms or pattern sounds. An op-
timal FSL+OSR system would be able to correctly identify all the
instances belonging to the different pattern sounds by using only
a few training examples, while rejecting all the examples pertain-
ing to the general unwanted class. A preliminary version of this
dataset has already been used in a previous work [21]. Moreover,
as one of the main motivations of this paper is to facilitate open
research in the field of audio-oriented FSL and OSR, the dataset is
accompanied by two baseline systems based on transfer learning.
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Fig. 2. Example spectrograms from the pattern sounds category.

2. Dataset

The dataset is divided into 34 taxonomic classes. These 34
classes are classified into one of two main sub-categories: pattern
sounds and unwanted. The dataset is completely balanced, as every
class contains exactly the same number of audio examples.

o Pattern sounds category: comprises 24 classes, each one being
a different type of audio alarm (e.g. fire alarms or door bells).
Each pattern sound class has 40 audio clips.

o Unwanted category: it is comprised of a total of 10 differ-
ent classes, each one representing everyday domestic audio
sources: car horn, clapping, cough, door slam, engine, keyboard
tapping, music, pots and pans, steps and water falling. Each of
these unwanted classes has 40 audio clips.

Moreover, a k-fold configuration is provided in order to check
the generalisation of the results. The number of folds (k) for cross-
validation depends on the number of shots used for learning. That
means, when training with 4 shots, the number of folds is k = 10.
For 2 shots, k = 20. Consequently, there are 40 folds for 1 shot. All
the audio sequences have a duration of 4 seconds and have been
recorded using a single audio channel with a sample rate of 16 kHz
and 16 bits per sample. All the audios were obtained in a con-
trolled low-noise scenario. The events were recorded individually
and trimmed to the desired length. The dataset annotations and
configuration files were manually generated by the authors. The
dataset along with other detailed information is publicly available.?
Examples corresponding to the same pattern sound class are ex-
pected to share similar characteristics, while those from unwanted
classes tend to show higher variability, as they come from more
general sound events. For illustrative purposes, the log-Mel spec-
trograms corresponding to examples of the pattern sounds classes
are represented in Fig. 2.

3. Experimental setup
The aim of the experiments is to test the performance of the

baseline system over the proposed dataset considering both OSR
and FSL conditions. The evaluation under open-set conditions is

2 https://zenodo.org/record/3689288.
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Table 1
Number of classes of each configuration and resulting openness.
Pattern
Sounds |KK| |KU| |uu| |Crrl |Cre| o*
10 0 34 34 0
Full set 24 5 5 29 34 0.04
0 10 24 34 0.09
10 0 13 13 0
Trios 3 5 5 8 13 0.13
0 10 3 13 0.39

based on the concept of openness [22]. For this purpose, the pat-
tern sounds and unwanted categories detailed in Sect. 2 are further
subdivided as follows:

e Known Known (KK) classes: are the classes whose audios have
been used for training/validation labeled as positive events to
be recognized. In the context of this work, KK classes would
match the pattern sounds category.

Known Unknown (KU) classes: are the classes whose audios
have been used for training/validation, but labeled as unwanted
categories so that they are not classified as positive events dur-
ing testing. In this work, KU classes would be represented by a
subset of the unwanted classes.

Unknown Unknown (UU) classes: as in the previous case, UU
classes are a subset of the unwanted group. The difference be-
tween KU and UU is that the audios in UU classes are not used
for training/validation; instead, they are only used in the testing
phase. It is expected that audios in UU subset will be classified
as unwanted by the system after the training/validation stage
has been finished.

The openness, O*, can be calculated using the formula [23]:

[ 2 x|Crgl
Or=1—- | —————,
|Crrl + |Crel

where Cry is the set of classes used during training, Crg = KK U KU,
and Cyg corresponds to the set of classes used in testing phase,
Crg = CrrUUU. Openness values are bounded to the range 0 <
0* < 1. When Crg = Crg, it reaches its minimum value (O* = 0),
meaning that, during testing, the algorithm is not required to face
events that belong to classes unseen during training. On the con-
trary, as the difference between |Crg| and |Crg| becomes larger,
with |Crg| > |Crg|, the openness tends to approach to its maximum
value: O* — 1. This means that, during testing, the system needs to
reject events belonging to classes unseen during training.

In a first batch of experiments, all 24 pattern sounds classes
have been used together as KK classes. In a second batch, pattern
sounds have been selected in 8 groups of 3 classes each (8 trios,
as later identified in Section 5), therefore, only 3 classes per run
have been used as KK. The particular classes in each trio have been
selected to cover different everyday situations ranging from very
different sounds as (1,9,17) to more similar ones as (4,5,16). This
second batch reflects a more realistic scenario where the number
of classes in the union of KU and UU subsets (KU U UU) outnum-
bers the classes in the KK group. Besides, the experimental setup
was designed to have several degrees of freedom taking into ac-
count the number of positive audio samples used for training (also
called shots) and different values of openness. Experiments with
one, two and four shots have been carried out. In order to obtain
different values of openness, the ratio given by the number of KU
classes and the number of UU classes has been set to 10/0, 5/5 and
0/10. This results in 0* € {0, 0.04, 0.09} for the first batch of ex-
periments and O* € {0, 0.13,0.39} for the second. Table 1 summa-
rizes the details related to the two types of experiments described

(1)
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Fig. 3. t-SNE mapping from L3-net representation of 24 KK categories.

above. Note that, in all cases, we have a completely balanced clas-
sification problem with |KK| classes, with a reject option.

4. Baseline systems

Due to the lack of reference approaches aimed at simultane-
ously dealing with FSL and OSR, we propose here two simple sys-
tem baselines. The FSL problem is addressed by making use of the
embeddings extracted from different well-known pre-trained net-
works, following a transfer learning approach. The OSR problem is
tackled by including sigmoid-based activations at the output layer
to allow a threshold-based rejection of unwanted classes.

4.1. [3-net

L3-net[24] is a neural network trained with two specific parti-
tions of Audioset[25] from subsets corresponding to environmental
and music videos. The parameters of the embedding were set as
follows: content_type = “music” [24], input_repr = “mel256”, em-
bedding_size = 512 and hop_size = 0.5. The selection of the con-
tent type might be explained by the fact that most alarm sounds
show a harmonic-like spectrum, which may resemble more to mu-
sic sources than to environmental sounds. For the computation of
the L3-net embeddings, each audio clip is divided into 1-second
segments with a hop size of 0.5 seconds. Taking into account the
1 second analysis window used by L3-net, the above parameters
lead to an embedding matrix of size 512 x 7[24]. We summarize
this output by averaging across the temporal dimension, resulting
in a 512 x 1 column-vector representation. For visualization pur-
poses, a t-SNE mapping of such representation for the KK classes
is shown in Fig. 3. Note that it captures faithfully the similarity ex-
isting among examples of the same pattern sound class, leading to
visibly condensed clusters.

4.2. YAMNet

The implementation of this system follows the same procedure
as the one using L3-net embeddings. In this case, the audio pre-
processing is based on log-Mel spectrograms using 64 frequency
bands and a frame size of 0.96 s with 50% overlap. For 4 sec-
ond audio clips, the extracted audio embeddings have a shape of
1024 x 8. As with L3-net, the mean across the temporal axis is
computed to flatten such output. YAMNet has also been trained
using Audioset.

4.3. System classifier

For the classification task, a multi-layer perceptron with two
fully-connected hidden layers with 512 and 128 units respectively
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Table 2
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Baseline system average accuracies (%) and corresponding standard deviations (not shown for ACC,) with 24 KK classes using
L3-net network. Shots indicates the number of training examples per class.

Openness coefficient

Shots 0*=0 0* =0.04 0* =0.09

ACCyi ACCxy ACG,  ACCkx ACCxyy ACCyy ACGy  ACCkk ACCyy ACGCy
1 13.8+129 99.8+1.0 56.8 57.748.4 904454 84.84+9.8 741 60.1£7.8  39.6£13.4 499
2 81.1+5.5 99.4+0.8  90.3 83.2+4.8  90.24+5.1 82.549.6  86.7 83.3+5.6  33.3+11.6 583
4 94.8+2.2 99.6+0.4  97.2 94.3+2.2  88.3457 794495 913 94.8+2.4  26.1£10.1 60.5

was implemented as in [24]. This neural network is fed with either
YAMNet or L3-net embeddings independently. All activation units
are ReLUs. The output layer has 24 or 3 units (each one corre-
sponding to a class of pattern sounds) with sigmoid activation func-
tion. Output targets corresponding to different unwanted sound au-
dio clip subcategories are set to zero vector of the appropriate size.
This indicates the absence of any pattern sounds category. Adam
optimizer [26] was used. The loss function during training was bi-
nary cross-entropy and the evaluation metric was categorical ac-
curacy. At test time, an audio clip is classified as known, or pat-
tern sound, when the corresponding output probability ranks the
highest and above a threshold with value 0.5. In the case where
this threshold is exceeded by more than one class, the system pre-
dicts the class having the highest detection probability. The code
for replicating the results is fully available®.

5. Results

The aim of the experiments is to test the capability of the base-
line systems to correctly classify the examples corresponding to
the set of target pattern sounds (KK classes) while successfully re-
jecting any sound pertaining to an unwanted class, regardless of
whether it belongs to a KU class or a UU class.

Following the criteria of Task 1C of DCASE-2019 [27], the ACCy
measure is used,

0*=0 (without UU): (2a)
ACCy = WACCkk + (1 — w)ACCky,

0*#£0 (with KU and UU) : (2b)
ACCW = WACCKK + (1 — W)ACCKUu,

0*£0 (with only UU): (2¢)

ACG,y = WACCix + (1 — w)ACCyy,

where w is an arbitrary weight that allows to balance the impor-
tance of the accuracy relative to target and unwanted classes. In
the above equations, ACCyy is the multiclass accuracy over test ex-
amples exclusively from target (KK) classes. Correspondingly, ACCxy
and ACCyy denote the same accuracy when considering test data
either from KU or UU classes and considering two output labels
only: pattern and unwanted. Finally, when the openness is such
that there are both KU and UU classes, then the rejection capability
is measured by the ACCyyy, which is the mean of ACCyxy and ACCyy.
In the present work w has been given a fixed value of w=0.5.
Note that the formulas in Eq. (2) take into account accuracies of
all the categories, KK, KU and UU. Therefore, it is a convenient way
of analyzing the trade-off between correct prediction and rejection.

Results are presented following k-fold cross-validation as indi-
cated in Sec. 2 repeated 5 times. All the tables show the mean
accuracy and standard deviation across all runs and folds. Best
performance between the two proposed baseline systems is high-
lighted using bold typeface.

3 https://github.com/Machine-Listeners-Valencia/fsl_osr_dataset_baseline.
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5.1. Large number of target classes

The results obtained by the two baseline systems for the first
batch of experiments are shown in Tables 2 and 3. In this first
batch, the KK set comprises the 24 pattern sound classes. As in-
dicated in Table 1, three values of openness are considered: O* €
{0, 0.04, 0.09}. As expected, the results exhibit the difficulties en-
countered in FSL and OSR conditions. On the one hand, the lack of
a large number of training examples affects considerably the clas-
sification performance, as evidenced, for example, by the low ACCy
values achieved by the L3-net system with only one shot. On the
other hand, as the openness value increases, the accuracy for KK
classes remains similar whereas the accuracy of KU-UU classes de-
creases.

Low values in ACCyy and/or ACCyy indicate that the system is
misclassifying unwanted events as pattern sounds, meaning that
false positives are observed in the KK categories. As expected, the
problems arising from UU classes are more evident under higher
openness conditions. By letting the system learn from a set of
unwanted sounds, the rejection capabilities are considerably in-
creased. This is evidenced by the higher values in ACCyy for O*
0.04 with respect to the ones for O* = 0.09, independently of the
baseline system used. Note, however, that the use of unwanted
sounds for training the classifier may also have an impact in the
accuracy achieved for the target pattern sounds. As shown in both
tables, at O* = 0, the accuracy for the KK classes is worse than for
higher openness. This is because the use of KU classes to train
the system makes the underlying classification boundaries more
restrictive, and the system is more prone to miss target instances.

In general terms, YAMNet shows a greater weighted accuracy
regarding known and unknown situations when O* € {0.04, 0.09}.
Thus, YAMNet could be understood as a more discriminative ex-
tractor when unknown situations are present. However, the most
significant phenomenon can be seen when O* =0 and the num-
ber of shots is equal to 1. A huge improvement in ACCxx is ob-
served with respect to L3-net, leading to a better trade-off in ACCy.
The improvement of this feature extractor is nearly of 25 percent-
age points (see Table 2). The difference between 1 shot and 2
shots with O* = 0 using L3-net is more than 30 percentage points,
while for YAMNet is only of 8 percentage points. Therefore, YAM-
Net seems to be a more robust solution.

5.2. Small number of target classes

Tables 4 and 5 show the results for the second batch of exper-
iments that consider only KK sets comprised of 3 pattern sound
classes, considering 8 different and disjoint trios. As indicated
in Table 1, the three values of openness in this case are: 0* €
{0, 0.13, 0.39}. Again, the general tendency is confirmed, where
a lower number of shots or a higher openness level leads always
to a decrease in performance. However, in this case, it can be ob-
served that the particularities of the target classes can be also an
important factor affecting the overall performance of the system.
For example, with O* = 0.39, very low values for ACCyy are ob-
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Table 3
Baseline system average accuracies (%) and corresponding standard deviations (not shown for ACC,) with 24 KK classes using
YAMNet network. Shots indicates the number of training examples per class.

Openness coefficient

Shots  0*=0 0* =0.04 0* =0.09

ACCyi ACCxy ACG,  ACCk ACCxyy ACCyy ACG,  ACCkx ACCyy ACGy
1 64.4+3.7 95.842.6  80.1 65.6+3.3  91.044.2  89.4+5.7 783 66.9+3.2  47.3+13.1 571
2 78.8+23  97.6+1.9  88.2 79.3+23  91.8+4.2 87.6+6.2 85.6 80.4+2.3  41.7+11.7 611
4 90.8+1.7  99.1+£0.9  94.9 91.0+£1.7  92.842.8 87.4+49 919 92.0+1.6  36.5+8.6 64.3

Table 4
Baseline L3-net system average accuracies (%) and corresponding standard deviations (not shown for ACG,) for the second batch of experiments
using trios (only 3 KK classes).

Openness coefficient

Trio Shots 0*=0 0*=0.13 0*=0.39
ACCxx ACCyy ACC,  ACCy ACCyy ACCyy ACC,  ACCky ACCyy ACG,,
0 1 65.1+£16.1 99.4+1.1 823 85.9+13.4 97.7+4.6 98.4+4.1 91.8 100+0 18.6+8.9 59.3
2 80.2+£15.0 99.6+0.5 89.9 89.2+12.5 99.6+0.5 99.8+0.6 94.4 100+0 17.0+5.9 58.5
(1,9,17) 4 90.1+14.5 99.7+0.4 94.9 97.5+8.1 99.7+0.4 99.9+0.4 98.6 100+0 16.9+3.3 58.5
1 1 68.9+12.9 99.9+0.2 84.4 88.8+13.1 98.3+2.8 96.8+5.6 93.5 100+0 3.94+3.1 52.0
2 84.7+£16.5 99.9+0.3 923 89.0+£14.5 98.7+2.4 97.6+4.7 93.8 100+0 3.6+2.6 51.8
(10, 12, 19) 4 88.0+15.6 99.9+0.4 93.9 96.2+9.6 96.74+3.1 93.8+5.8 96.5 100+0 3.843.5 51.9
2 1 55.5+18.6 99.9+1.0 77.7 78.4+13.4 99.8+0.9 99.7+1.7 89.1 98.6+2.4 14.8+12.1 56.7
2 76.1+14.7 99.9+0.1 88.0 82.6+13.9 99.8+0.5 99.7+0.6 91.2 99.5+1.2 15.7+11.9 57.6
(2, 14, 22) 4 83.14+£20.7  99.9+0.1 915 91.94+12.3 994409  99.0£1.5 95.6 99.94+0.4  11.5+8.2 55.7
3 1 53.0+12.1 99.9+0.4 76.5 72.3+134 96.2+4.2 92.7+8.2 84.3 99.7+0.7 24.9+8.2 62.3
2 64.6+16.1 99.9+0.3 82.2 78.4+13.7 95.7+4.6 91.6+8.7 87.2 99.8+0.5 23.3+6.1 61.6
(3,6, 13) 4 77.4+19.0 99.8+0.9 88.6 90.3+£11.4 92.0+3.2 84.8+6.0 91.1 99.8+0.4 24.5+6.0 62.2
4 1 71.7+£15.2 100+0 85.8 88.5+10.1 99.3+1.3 98.6+2.5 93.9 99.8+0.8 24424 51.1
2 86.8+14.5 100+0 934 93.2+9.2 99.4+1.1 98.8+2.2 96.3 100+0.2 1.7+1.7 50.8
(4, 5, 16) 4 88.1+£18.6 99.9+0.6 94.0 97.0+9.1 99.0+1.2 98.1+2.2 98.0 100+0 1.7+1.2 50.9
5 1 76.5+15.2 99.9+0.2 88.2 87.9+11.8 99.1+1.2 98.5+2.2 935 97.345.1 42.1+20.1 69.7
2 85.1+15.4 99.9+0.1 92.5 93.4+7.7 98.8+1.2 97.84+2.3 96.1 99.1+2.6 39.1+£19.8 69.1
(18, 21, 23) 4 89.3+16.4 100+0.1 94.6 97.2+8.1 98.3+1.2 96.8+2.1 97.7 99.9+0.3 34.3+£20.2 67.1
6 1 87.0+£13.5  99.7+0.5  93.4 96.0+7.8 99.3+£0.8 99.4+0.6 97.6 100+0 30.9+11.6 655
2 87.6+16.0 99.6+0.6 93.6 95.8+9.1 99.4+0.7 99.2+1.0 97.6 100+0 28.24+9.5 64.1
(8, 11, 24) 4 89.9+14.5 99.7+0.5 94.8 96.8+9.2 99.2+0.8 98.9+1.0 98.0 100+0 27.7£8.0 63.9
7 1 66.4+15.7 99.6+0.6 83.0 87.0£11.4 97.6+£2.9 96.8+5.4 923 99.2+1.9 23.74£8.0 61.5
2 82.1+13.7 99.5+0.7 90.8 90.0+9.8 98.6+1.7 98.4+3.0 94.3 99.8+0.6 24.0+6.7 61.9
(7, 15, 20) 4 83.7£15.3 99.5+0.9 91.6 94.4+10.1 98.5+1.5 98.1+2.7 96.5 100+0.2 242453 62.1
Table 5

Baseline YAMNet system average accuracies (%) and corresponding standard deviations (not shown for ACC,) for the second batch of experiments
using trios (only 3 KK classes).

Openness coefficient

Trio Shots 0*=0 0 =0.13 0* =0.39
ACCy ACCxy ACC,  ACCik ACCruy ACCyy ACC,  ACCik ACCyy ACC,y
0 1 83.8£9.4 97333 90.6 87.0+8.7 92345 90.6+56 89.6  94.0+7.1 17.3+13.0 556
2 93.6+4.4 99.4+08 965 942+49 949439 925453 945  97.4+3.1 161+11.0 567
(1,9,17) 4 97.8+30 99.8404 988 977434 965423 941435 97.1  98.6+28 17.0+17.0 57.8
] 1 839457 96.5+3.8 902 882459 91.7+4.1 89.5+57 90.0  96.0+2.4  262+149  61.1
2 92.8+48 99.4+1.1 961 926459 91.6+4.7 87.8+6.8 921 972425 254+166 61.3
(10,12, 19) 4 965427 99.8+03 982  96.4+23 951433 91.2458 957  98.0422 21.6+144 598
, 1 96.9+3.7 99.9+0.1 984  97.7+48 97.7+3.0 959+3.7 97.7 987455 11.0+7.2 548
2 98.4+1.1  100+0 992 992408 97.6+1.7 954432 984  100+0 8.3+7.2 54.2
(2,14,22) 4 98.9+1.1 10040 995 994408 97.1+1.1 944422 982  100+0 49+5.8 52.5
3 1 58.9+7.9 955+34 772  63.1482 89.6+3.7 864+47 763  689+7.3  52+46.1 37.0
2 70.8£7.0 98315 845  73.6+6.1 91.7+34 88.3+45 827  79.0464  7.5+8.2 433
(3,6, 13) 4 85.9+52  99.6+0.6 927 86.8+47 959427 93.1+42 914  94.1+43  8.8+52 515
4 1 711482  97.6+3.0 837 751481 924444 90.0+53 837 821482  124+125 473
2 857461 99.1+1.1 924  88.8+59 92.5+3.6 88.2+59 907 93.8462 10.6+9.0  52.2
(4, 5, 16) 4 921451 99.9+02 96.0  93.4+49 934439 88.6+68 934  97.6+3.3  9.9+6.2 53.8
5 1 98.6+£5.1 99.7+1.0 992  99.7+1.7 99.6+1.9 99.6+1.5 99.6 10040 243+138 622
2 99.6+2.1 10040 99.8  99.9+05 99.9+0.2 99.9+02 999  100+0 2094127 604
(18,21,23) 4 1000 1000 100  100+0 1000 1000 100  100+0 21.3+154 608
6 1 942+7.8 99.6+14 97.0 946461 98.142.6 96.8+3.5 964 964432  14.6+7.1 555
2 98.0+4.2  100+0 99.0 98.1+3.1 98.8+09 97.7+1.9 984 975429 124459 550
(8,11,24) 4 99.4+1.4  100+0 99.7 99.4+1.5 98.8+0.8 97.8+15 99.1  98.7+27 110447 548
; 1 86.1+9.2 98.7+2.3 924 863495 964439 96.7+3.7 914  88.8+9.3 258+13.1 573
2 932445 99.6£0.7 964  93.4+42 980424 983+19 957 946+34 31.8+114 632
(7,15,20) 4 96.0+2.4 99.7+0.6 97.8  96.0+23 993408 99.6+04 97.6 962425 359497  66.1
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tained in Table 4 for trios 1 and 4, considerably worse than for
other trios in the dataset. The internal L3-net representations of
such target classes may probably lead to classification boundaries
that are not discriminatory enough to reject successfully the un-
wanted sounds. Interestingly, the specific internal representations
are also of high importance, as the same trios are not the ones
with lowest performance in YAMNet (see Table 5). In any case, the
differences between the two baseline systems are much more evi-
dent in this second batch of experiments than in the previous one.
While 0* =0 was the case that most favored the L3-net baseline
when |KK| = 24, with trios YAMNet seems to offer better perfor-
mance for the same openness value. The tendency is also reversed
for the highest level of openness (0* = 0.39), as the L3-net embed-
dings show now the best performance for most trios. Finally, note
that the trio-wise results are quite balanced for O* = 0.13, as both
systems are similarly competitive. However, the winning system is
again quite dependent on the actual trio.

6. Conclusions and future work

Few-shot learning (FSL) is a research area with increasing in-
terest in the audio domain. However, the lack of public FSL audio
datasets makes it necessary to manipulate other existing databases
with the aim of adapting them properly to FSL research. More-
over, open-set recognition (OSR) can be an additional problem in
practical FSL scenarios, where the models are likely to be tested
with instances from unseen classes during training. This work pre-
sented a carefully designed audio dataset for FSL and OSR research,
where target sounds are instances of classes corresponding to dif-
ferent audio patterns (fire alarms, doorbells, etc.). The dataset con-
siders a domestic scenario where such audio pattern classes corre-
spond to intentional sounds to be accurately detected in the pres-
ence of other unwanted sounds (coughs, door slams, etc.). Each
class comes with different samples for FSL training, validation and
testing, under different openness conditions. To facilitate the use
of this dataset and promote algorithm development, we also pro-
vide results with a baseline system using transfer learning from
pre-trained state-of-the-art convolutional neural networks. The re-
sults show that important trade-offs exist when both FSL and OSR
conditions are considered, evidencing the need for novel learning
architectures aimed at facing both types of problems. Future up-
dates of this dataset will include more challenging acoustic con-
ditions, such as different levels of noise, reverberation and over-
lapped events.
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