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a b s t r a c t 

The characterization of red pigments in frescoes wall paintings has been of great interest for researchers 

to better understand raw material procurement dynamics, pigment receipts, stylistic evolution and to 

assess their conservation state. In this study a non-destructive colorimetric approach implementing a 

smartphone-based method was developed in order to be able to distinguish between three pigments 

made from minium, haematite and cinnabar minerals, and also mixed pigments, preparing frescoes mock- 

ups following the roman receipt described by Vitruvius. Portable FT-IR, Raman spectroscopy, portable 

XRF and visible reflectance spectra analyses were carried out as reference methods for smartphone col- 

orimetry results validation. Employing a reference colour sheet to control changing lighting conditions, 

different chemometric approaches have been developed and tested, cross-referencing standard analytical 

results with the data obtained by smartphone. Overall, using only colour parameters from the smart- 

phone, a Linear Discriminant Analysis and a Support Vector Classifier were tested to efficiently classify 

each sample based on the red pigment used, with low prediction errors. This work shows the potential 

of smartphones as cheap, fast and user-friendly analytical devices for the screening of frescoes, and as a 

prior selective step before carrying out further more expensive and specialized analyses. 

© 2022 The Author(s). Published by Elsevier Masson SAS on behalf of Consiglio Nazionale delle Ricerche 

(CNR). 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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bbreviations 

.C.E. Before common era 

.E. Common era 

im. Dimension 

T-IR Fourier-transform infrared 

NN k-Nearest neighbours 

DA Linear Discriminant Analysis 

OD Limit of detection 

OOCV Leave one out cross validation 

CA Principal Component Analysis 

-XRF Portable X-ray Fluorescence 

OI Region Of Interest 

NV Standard Normal Variate 

VC Support Vector Classifier 
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Roman wall paintings and frescoes studies have been carried 

ut to deal with raw material characterization, pigment receipts, 

tylistic evolution and conservation issues. Therefore, stylistic and 

acroscopic studies together with non-destructive or minimally 

ntrusive analytical techniques have been developed to preserve 

hese unique remains [1] . 

From the analytical point of view, portable X-ray fluorescence 

p-XRF) and Raman spectroscopy have been the most used tech- 

iques to identify pigments’ composition in roman frescoes. Some 

orks, like those of Tuñón et al. [2] and Boschetti et al. [3] , in-

estigated Roman Republic painted mosaics using the aforemen- 

ioned devices, and were able to identify different inor ganic pig- 

ents used to obtain pink, blue, and different yellow hues. Romani 

nd collaborators [4] were studying S. Nicola in Carcere (Italy) wall 

ainting, combining XRF, Raman and UV–Vis-SWIR (Ultraviolet- 

isible-Short Wave Infrared) to identify the colour palette used. Fi- 

ally, Roman pigments in the Vesuvian area were analysed using 
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a  
aman spectroscopy and XRF to describe and identify the origin of 

norganic pigments preserved in the Archaeological Park of Pom- 

eii [5] . 

Fourier-transform infrared (FT-IR) spectroscopy is also used 

o assess the presence of organic compounds, such as those 

resent in varnishes and binders. Prieto-Taboada et al. [6] anal- 

sed the blue pigments found in the Pompeian walls of Ariadne’s 

ouse, identifying the raw material used and the environmen- 

al degradation compounds by combining FT-IR, Raman and XRF 

nalyses. 

Finally, the interest in running colorimetric analyses of pig- 

ents is due from the information provided by the reflected 

ight on the painted surface, which mainly depends on the 

hemical specie absorbing the light, expressed either as a re- 

ectance/absorption spectrum or as colour parameters. The three 

oordinates representing the colour observed in given lighting con- 

itions constitute a colour space, being CIE L ∗a ∗b ∗ and CIE L ∗h 

∗C 

∗

idely known. Both of them share the lighting coordinate (L ∗), 

hich represents lightness in a gradient ranging from 0 (darkest) 

o 100 (lightest), and two colour coordinates representing the chro- 

atic characteristics of the colour. For CIE L ∗a ∗b ∗ colour space, a ∗

epresents the change from green to red, and b ∗ the change from 

lue to yellow (both ranging from −120 to + 120) [7] . The colour 

oordinates of CIE L ∗h 

∗C 

∗ represent colour in polar coordinates: h 

∗

hue) represents the angle, and C 

∗ (chromaticity) represents the di- 

ension of the vector [8] . 

Pigments’ colorimetric analyses have already been employed 

o identify different chemical species [9] . For example, Egyp- 

ian green and blue pigments [10] , 16th century pigments 

11] , yellow [12] , and Persian red pigments [13] were analysed 

y colorimetric methods, providing useful information for their 

haracterization. 

During the last decades, the development of colorimetric meth- 

ds based in smartphone technology has become more and more 

ommon [ 14 , 15 ]. Thus, applications in environmental studies [16–

8] and food analysis are widely used [19–21] . However, in the 

eld of Cultural Heritage, just a few works have been published 

roposing a methodological approach based on smartphone de- 

ices [22] . The main advantages of using smartphones as ana- 

ytical devices are their wide availability, their low cost and the 

ser-friendly interfaces. These characteristics end up being very 

seful for a first screening [22] of the sample, to select sub- 

amples or areas of frescoes worth to be studied before using more 

ostly, time consuming and sophisticate analytical tools. Nonethe- 

ess, since they are not originally designed for analytical purposes, 

pecific methodological approaches need to be developed to con- 

rol light influence and environmental conditions. 

Due to the high interest in roman frescoes for the specialists 

n the field, and the difficulty in running analytical tests in origi- 

al artworks, experimental approaches in the literature employing 

ock-up samples are found. Piovesan et al. developed a micros- 

ratigraphic analytical approach to distinguish between the fresco 

nd lime-painting techniques using microscopy and spectroscopy 

nalytical methods [23] . Similarly, the alteration of mercury-based 

ed pigment cinnabar (HgS) was assessed in an experimental ap- 

roach by Neiman and colleagues [24] . To do it, different salt con- 

entrations and light exposure conditions were applied to a wall 

eplica and different analyses including colorimetric ones were car- 

ied out. Also, Regazzoni et al. [25] developed microscopy methods 

or Romanesque style wall paint replicas using microstratigraphic 

tudies. 

In this work, experimental frescoes were characterised with 

on-destructive analytical techniques such as p-XRF, FTIR and Ra- 

an, together with a spectrocolorimeter employed as reference 

ethods for setting up the smartphone application. Finally, the ob- 

ained data were statistically processed and the chemical informa- 
157 
ion cross-referenced with smartphone images to identify and clas- 

ify the studied pigment replicas. 

esearch aim 

This study aims to develop an analytical strategy to determine 

ed colours made of different compounds in roman frescoes based 

n smartphone image analysis and chemometrics. To it, frescoes 

eplicas were built following the original recipes and painted with 

hree different red pigments (haematite, minium and cinnabar). 

 full palette of red hues with pure pigments and mixtures was 

btained and analysed by standard non-destructive spectroscopic 

echniques such as portable X-ray fluorescence, Fourier Transform 

nfrared spectroscopy, Raman spectroscopy and visible reflectance 

pectroscopy. These results were cross-referenced with the image 

arameters obtained by smartphone to evaluate its capability in 

iscriminating between pigments, and to observe the reliability of 

he results obtained compared with more standardized analytical 

pproaches. Furthermore, different statistical classification strate- 

ies were proposed based on image parameters, Linear Discrimi- 

ant Analysis (LDA), Support Vector Classifier (SVC) and k-Nearest 

eighbours (kNN). These are well-established statistical methods 

26] extensively used in the field of chemical analysis [27–29] es- 

ecially due to the their applicability in many different field of 

tudies. Here, the data were processed employing different data 

rocessing approaches to evaluate which one is the most suitable 

n this study and which one better enhances the quality of the ob- 

ained data. 

Overall, this paper develops a completely new strategy to anal- 

se and characterize frescoes red pigments based on smartphone 

olorimetry validated with reference methods. With it, a fast and 

asy method is proposed to obtain valuable chemical information 

hich can be used as a first insight for cultural heritage research, 

onservation and restoration efforts, posing the base to the devel- 

pment of a mobile application for red pigments characterization. 

aterial and methods 

rescoes replicas preparation 

During the roman times, structures and edifications were usu- 

lly made out of bricks, pebble, or sun-dried mud covered with 

ortar (a mixture of sand and lime in different proportions). Usu- 

lly, a layer of lime was applied in the wall surface and its width 

epended on the period, area, or economic capabilities, and it was 

ften mechanically polished to obtain a smooth surface, which 

ould also be used as a base for the painting [30] . 

Wall paintings have been recorded since the palaeolithic, but 

gyptians first developed a technique to apply a preparatory layer 

efore the application of the pigments [31] . However, It was during 

he roman period (II B.C.E. - III C.E. centuries) that a major tech- 

ical apogee took place [31] . Despite the fact that mortar manu- 

acturing processes depend on the time span and location, some 

haracteristics are common to all the studied materials. 

A detailed description of the procedures, materials and pig- 

ents commonly employed amongst builders and artists can be 

ound in the De Architectura Libri X , written by Vitruvius (20 BC.E). 

he writer indicates that mortar was made with 2 parts of river 

and, and one part of dead lime, stating that 6 different layers 

hould be applied: starting from an initial coarse plaster, up un- 

il a fine lime layer. For this last layer, the author recommended to 

nclude 4 layers of sequentially finer and finer marble and mortar 

o stabilize the surface [31] . 

However, in most of the cases, only two or three layers were 

eported by several studies. The first one was a mixture of sand 

nd lime in a 2:1 or 3:1 proportion, and 3 and 5 cm width, while
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Table 1 

Composition of the samples under study. 

Type Sample Composition 

Pure Haematite Pure haematite in different amounts 

Pure Minium Pure minium in different amounts 

Pure Cinnabar Pure cinnabar in different amounts 

Mixture 0.2Fe_0.6Hg 0.2 g haematite + 0.6 g cinnabar 

Mixture 0.6Fe_0.2Hg 0.6 g haematite + 0.2 g cinnabar 

Mixture 0.2Fe_0.6Pb 0.2 g haematite + 0.6 g minium 

Mixture 0.6Fe_0.2Pb 0.6 g haematite + 0.2 g minium 

Mixture 0.2Hg_0.6Pb 0.2 g cinnabar + 0.6 g minium 

Mixture 0.6Hg_0.2Pb 0.6 g cinnabar + 0.2 g minium 

p
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he second one was an outer layer of pure lime with 1–10 mm 

idth [30–32] . 

Regarding the pigment, it was usually applied using different 

ethods, giving place to a range of techniques such as fresco, secco 

nd mezzo fresco . The main difference amongst those was the state 

f the pigment and the degree of humidity of the wall. If the 

ater-suspended pigment was applied in a partially dried wall, the 

echnique would be fresco ; if suspended in a lime-water solution, 

nd applied to a dried wall, the technique would be called secco . 

or these techniques, the binder (substance which allowed the pig- 

ent to stick to the wall) was the CaCO 3 formed from reaction 

f lime (CaO) with atmospheric CO 2 . Nonetheless, some organic 

inders like bee wax, wheat paste and egg were also used [33] . 

Amongst a wide variety of roman frescoes characteristic colours, 

ed was one of the most used ones. As described in the literature 

aematite, a common iron oxide compound (Fe 2 O 3 ), minium (also 

nown as red lead, Pb 3 O 4 ) and cinnabar (the common source for 

lemental mercury) were the most important minerals employed 

y the romans. 

Haematite has been identified by several studies [ 6 , 9 , 31 , 34 ], in-

luding as a solid pigments ready to be used in the Vesuvian area 

efore the eruption [5] . This compound was one of the mentioned 

ed species in the VII chapter of Vitruvius work [35] . Minium 

as less frequently employed than haematite, but it can be also 

ound in red parts of roman frescoes [ 9 , 31 ]. Finally, the use of

innabar in roman painting was identified just in some specific 

ases [ 5 , 24 , 36 , 37 ], probably due to its higher cost. 

These pigments were used either as a pure compound, or ap- 

lied as a mixture with other red species to obtain different colour 

uances. For instance, a combination of iron red (haematite) and 

ead red (minium) was identified in Grau Vell site, the ancient ro- 

an harbour of Sagunto, Spain [32] . 

In this work, frescoes mock-ups were prepared based on the 

ecipe described by Vitruvius and Piovesan et al. [23] . 

First, sand (35.3 ± 0.7% SiO2) and lime (CaO + MgO > 95%; 

gO < 2.5%, CO2 < 3%) were acquired in a specialized retailer, 

nd the sand was sieved ( < 1 mm) in order to separate coarse from

ne sand. Haematite (Ref.: #48,651), minium (Ref.: #42,500) and 

innabar (Ref.: #10,620) pigments were acquired at Kremer pig- 

ent via Agaragar ( https://agaragar.net/ ). 

A ceramic tile was employed as a support (20 × 30 × 0.5 cm, 

ontaining Al, Si and Ca as major elements), being humidified in 

dvance using a wet brush to ease the adhesion of the mortar lay- 

rs. Successively, a first layer was added, consisting of coarse sand 

nd lime in a 3:1 proportion. Water to reach a correct consistency 

as added to the mixture and then it was mechanically flattened. 

his first layer was left to dry. Later, a second layer of mortar con- 

isting in a mixture of fine sand and lime in a 3:1 proportion was

dded and left to dry again until enough CaCO 3 had formed. Lastly, 

 final layer of pure lime suspended in water was applied to the 

urface and left to dry, after which, the pigments suspended in wa- 

er were applied. 

Two different types of samples consisting in pure pigments (ei- 

her haematite, cinnabar or minium) and mixed pigments (dif- 

erent combination and proportions of haematite, cinnabar or 

inium) were prepared. When working with pure pigments, an 

mount ranging from 0.2 to 0.8 g of each pigment was suspended 

n 1 mL of water, to obtain different graduation of colours. For mix- 

ures, six different pigment combinations were prepared in a total 

f 1 mL of water. Table 1 summarizes the different types of sam- 

les and a detailed identification of the colours gradient can be 

een in Supplementary Table 2. 

The prepared pigments were applied on the support in different 

roportions and brush strokes intensities to obtain diverse colour 

ues ( Supplementary Figure 1 ). Regarding the mixtures, five dif- 

erent colour spots were painted. Once applied in the surface, the 
158 
igments were left to dry for 4–5 days and then, finally measured 

y the different analytical techniques. 

aman analysis 

A portable Raman spectrometer (i-Raman® Plus spectrometer 

model: BWS465–785S) by B&W Tek) was employed to directly 

easure the samples using a fibre probe. The laser wavelength 

as 785 nm, with a total laser power of 340 mW (used at 15%), 

ntegration time 10 0 0 ms and 20 scans per measurement. The ob- 

ained spectra were corrected for baseline effects in the software 

BWSpec®) with the baseline removal, setting the correction pa- 

ameter ( λ) at 36. 

T-IR analysis 

Infrared spectra were obtained employing a 4300 Handheld 

TIR from Agilent, with diffuse reflectance accessory in the range 

f 650–40 0 0 cm 

−1 , using a spectral resolution of 4 cm 

−1 . Each

ample was acquired with 50 scans, and a blank measurement be- 

ween each analysis was made using the coarse gold reference cap. 

-XRF analysis 

X-Ray fluorescence analysis was carried out using a S1 Titan 

nalyser from Bruker 500S. Elements above the limit of detection 

LOD) of the instrument were taken into consideration, and quan- 

ified as mass percentage using the GeoChem Trace internal cali- 

ration, in the form of: MgO, Al 2 O 3 , SiO 2 , P 2 O 5 , S, Cl, K 2 O, CaO, Fe,

i, Cu, Zn, As, Rb, Sr, Zr, Hg, Tl, and Pb. 

olorimetric characterization of the replicas 

Colour was captured using a spectrocolorimeter from Konica 

inolta CM-26d, in the region of 400 −740 nm with a resolution 

f 10 nm. The illuminant was D65, the light source was a pulsed 

enon lamp, and data from CIE L ∗a ∗b ∗ and CIE L ∗h 

∗C 

∗ were ex-

racted. Prior to the measurements, the device was calibrated using 

he references white and black provided by the manufacturer. To 

urther ensure that the device was correctly calibrated, the white 

eference was measured to check that a (L ∗, a ∗, b ∗) ≈ (100, 0, 0)

as obtained. Three different measurements of the colour of each 

ainted spot were captured and averaged. 

Regarding the colorimetric smartphone analysis, a Samsung 

alaxy Edge S7 model SM-G93F, with a 12.2 MP camera sensor 

as used. Photos were taken in the native camera app in automatic 

ode, with a distance of 21 cm to the samples, and completely 

arallel to them. Focus was made on one of the parts of the refer- 

nce colour sheet (ColorChecker Classic Mini, from X-Rite Pantone, 

4 colours, 57 × 86 mm, containing both greyscale and chromatic 

olours). The images files in .jpg format were transferred to Matlab 

o carry out the image treatment. 

https://agaragar.net/


R. Sáez-Hernández, K.U. Antela, G. Gallello et al. Journal of Cultural Heritage 58 (2022) 156–166 

t

fl

s

s

t

I

w

e

i  

L

b

w

b

d

w

p

r

h

m

S

f

[

t

[

p

t

o

i

(

l

t

f

i

t

s

t

R

u

d

t

N

V

c

p

t

a

c

b

i

w

t

r

o

R

S

2

c

t

u

e

m

i

l

1

t

t

b

a

c

a

i  

e

c

v

a

s

t

S

f

i

i

p

C

e

i

i

h

p

y

e

t

t

p

t

a  

r  

p

t

P

p  

m

l

C

t

s

t

l

y

I

Colour parameters were obtained using both devices as cap- 

uring devices. While the spectrocolorimeter provided both re- 

ectance spectra and colour parameters in the CIE L ∗a ∗b ∗ colour 

pace, the smartphone only provided RGB colour parameters. The 

ignal obtained with the smartphone was corrected as described in 

he Image treatment process section. 

mage treatment process 

Using Colorlab tool [38] , 3 different regions of interest (ROI) 

ere selected from each sample, and the average value was consid- 

red as representative. RGB (as the smartphone saves information 

n this colour space) values were converted to CIE L ∗a ∗b ∗ and CIE

 

∗h 

∗C 

∗ using the white reference from the colour sheet with the 

uilt-in functions of the Matlab tool. 

To compensate the lighting conditions effect, the colour sheet 

as previously measured using the spectrocolorimeter, and a cali- 

ration was obtained to convert and correct CIE L ∗a ∗b ∗ smartphone 

ata. This conversion was based in a linear regression model, 

hich was applied to the L ∗a ∗b ∗ values obtained by the smart- 

hone. A detailed description of the data treatment procedure was 

eported in Supplementary Figure 2 ). For a detailed description of 

ow to implement this procedure, please check the Supplementary 

aterials’ section “Implementation detailed description”. 

tatistical analysis 

Statistical analysis was carried out by R sofware [39] using 

actoextra [40] , MASS [41] , e1071 [42] , class [41] and FactoMineR 

43] packages for multivariate analysis. Visual representation of 

he data was made using ggplot2 [44] while the package signal 

45] was used in the spectral treatment step. 

Principal Component Analysis (PCA) was employed to study 

XRF and Colorimetric data including all the measured points. By 

his statistical method, a reduction in the number of variables is 

btained while retaining most part of the variability of the orig- 

nal dataset [46] . By this methodology, new variables/dimensions 

called Principal Components) are generated on the basis of the 

inear combinations of original variables. In this work, each one of 

hese new dimensions have been called “Dim. ” and only the first 

ew dimensions are used, since they contain most of the valuable 

nformation from the dataset. 

Spectral treatment of the reflectance spectra in the visible range 

o carry out Principal Component Analysis was done using centred 

pectral data (not scaling variance, to avoid giving more impor- 

ance to background noise) in the range from 530 nm to 740 nm. 

egarding the pXRF data, the elemental composition obtained was 

sed as an input for the PCA model. 

In order to apply and optimize a proper statistical approach to 

istinguish between different pigments, three different classifica- 

ion methodologies have been applied and compared: k-Nearest 

eighbour (kNN), Linear Discriminant Analysis (LDA) and Support 

ector Classifier (SVC) and the results have been validated using 

ross validation. 

These classificatory methods are based on different statistical 

rinciples: LDA works by studying the distribution of each one of 

he categories and creating new linear discriminant functions sep- 

rating them [47] ; kNN classifies new samples on the basis of the 

lass to which its neighbours belong [27] ; and last, SVC creates 

orders, both linear and non-linear (margins), between groups try- 

ng to minimize the error committed [29] . Since these methods 

ork in different ways, they have been compared in order to assess 

heir performances in this case study. In all cases, the dataset was 

andomly split into calibration and test sets to assess the validity 

f each methodology. 
159 
esults and discussion 

pectroscopic characterization 

Characteristic Raman spectra were obtained for haematite at 

88 and 405 cm 

−1 , minium at 392, 549 and 1085 cm 

−1 and 

innabar at 251 and 344 cm 

−1 . These peaks were also identified in 

he mixed samples present in the mock-ups ( Supplementary fig- 

re 3 ). 

Supplementary figure 4 shows the FT-IR reflectance spectra for 

ach one of the pigments and the mortars’ surface. Standard Nor- 

al Variate (SNV) was applied in order to make up for the scatter- 

ng effect between different measurements as recommended in the 

iterature [48] , and a Savitzky-Golay (SG) smoothing filter (order 

, window 15) was used to correct the noise. The results indicate 

hat a reststrahlen band is observed at 1400 cm 

−1 , corresponding to 

he intense absorption band of the CO 3 
2 − at that same wavenum- 

er [49] . Additionally, two intense bands at 1750 and 2500 cm 

−1 

re observed, which might correspond to amplified overtones and 

ombination bands of CaCO 3 [ 50 , 51 ]. More specifically, the band 

round 1750 cm 

−1 is due to the overtone of the out-of-plane bend- 

ng of CO 3 
2 − group [52] , while the band around 2500 cm 

−1 is gen-

rated as a combination of two bands (the one around 698–745 

m 

−1 plus the main one around 1450 cm 

−1 ) [53] . These appear as 

ery subtle signals in transmittance mode [49] , and get amplified 

s a consequence of the utilization of reflectance mode [54] . These 

pectra corresponded to the presence of CaCO 3 and no signal at- 

ributed to the pigments was found. As can be observed in the 

upplementary figure 5, FT-IR results were not able to show dif- 

erences between the studied pigments, and the presence of CaCO 3 

n all the measured samples is due to the carbonation process tak- 

ng place during the manufacturing of the support. 

-XRF analysis 

Supplementary figure 6 shows the pXRF obtained results of 

aO, Fe, Pb and Hg for all the different painted spots (the minor 

lements are summarized in Supplementary Table 1 ). Fe content 

s between 0 and 25% (w/w) in haematite, Pb reached up to a 50% 

n minium, while Hg 60% in one sample. The content of CaO is 

igher or lower depending on the pigment concentration. An ex- 

loratory analysis of the samples using principal components anal- 

sis (shown in Fig. 1 ) shows three main clusters based on the el- 

mental composition: most of the minium samples are located on 

he positive direction of Dim. 1 and Dim .2; haematite samples are in 

he negative direction of Dim .2 and cinnabar ones are found on the 

ositive Dim. 1 direction, corresponding to the right bottom part of 

he plot. PCA loadings show that Fe is correlated to Al, Si, and Cu, 

nd Pb is correlated to Ni, Zr, As and Cl, while Hg is tightly cor-

elated to Sr, Tl, Zn, P and Rb. Regarding S, it is expected to ap-

ear in the cinnabar samples (HgS). However, it is also present in 

he samples painted with minium probably due to the presence of 

bS, in this last pigment. Looking at the different mixtures sam- 

les ( Fig. 1 b) , the results are similar to the previous case being the

ain elements of the most abundant pigment driving the samples 

ocation in the plot. 

olorimetric characterization 

Pigments were characterized using the reflectance spectra in 

he visible range and Supplementary figure 7 shows the obtained 

pectra for both the pure pigments and the mixtures, as well as 

heir first derivatives. It can be observed that minium is reflecting 

ight at a lower wavelength, which implies that it will have more 

ellow component when compared to the other three pigments. 

nterestingly, as seen in the two peaks obtained in the derivatives, 
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Fig. 1. PCA biplot exploratory analysis for the elemental composition of (a) pure pigments. (b) pure and mixtures spots, based on p-XRF. 
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aematite showed two inflection points, a differential property 

rom the other pigments. Assessing the studied mixtures, it can be 

een that the resulting spectra is most similar to the one obtained 

or the pure pigment which represents the major part of such mix- 

ure. For those cases in which haematite is present, its influence 

eems more important, as can be seen in the cases of 0.2Fe_0.6 Pb 

nd 0.2Fe_0.6Hg: even though haematite is in a smaller concen- 

ration in these samples, the resulting spectra is more similar to 

ure haematite rather than to pure minium or cinnabar, respec- 

ively. This fact can be seen in the PCA scores plot ( Fig. 2 ) . 

It can be observed that all the samples containing Fe (either as 

 major or as minor constituent) fall closer to the pure haematite 

luster. On the other hand, Pb and Hg mixtures present more 

pectral differences. Additionally, it can be observed that minium 

s differentiated from the other two pigments based on spec- 

ral differences around 550–570 nm. This is in good accordance 

ith the visual analysis of the reflectance spectra. Some samples 

re dispersed and away from the centre of their corresponding 

lusters. That is the case for samples labelled as “PP10 ”, “PR11 ”, 

PR21 ”, “PR25 ” and “PC18 ”. As can be seen in Supplementary ta- 

le 2 , these samples present a very low pigmentation, thus reflect- 

ng much of the light due to the major white component of the 

olour. 

Regarding the colorimetric analysis of the samples using smart- 

hone, the obtained colour parameters in both CIE L ∗a ∗b ∗ and CIE 

 

∗h 

∗C 

∗ are shown in Fig. 3 . 

The lightness parameter, L ∗, shows that haematite is generally 

ess lightful than the other two pigments, while minium is the one 

ith the most lightness and less dispersion of data. Minium and 

innabar share an important range of L ∗ values. Regarding the a ∗

arameter (which represents how red the sample is), cinnabar is 

he reddest from all three, while haematite is the least red. How- 

ver, all three pigments fall in similar areas comprising similar a ∗

alues. Mixtures of Hg and Pb were exacerbating the red aspect of 

he spot, while samples with 0.6 g of Fe were the least red mix- 

ures. 

For the b ∗ parameter, it was minium which had a higher b ∗

alue (which represents the change from blue to yellow), due to 

he presence of more yellow component. This is a distinguishing 

haracteristic, causing that a sample with minium increases its b ∗

omponent in comparison to the pure pigment. This result is also 

n good accordance with the spectral properties described in Sup- 

lementary figure 7. 

m

160 
Regarding C 

∗ and h 

∗ parameters, it can be seen that C 

∗ behaves 

ery similarly to b ∗, being minium the most colourful pigment of 

ll three. Hue, h 

∗ -which represents the angle from pure red to 

ure yellow-, proved that minium was the pigment which had the 

ighest component of yellow, followed by haematite. 

Overall, the colorimetric analysis proves that minium is the 

ost different pigment, and haematite and cinnabar are similar to 

ne another, although they can be discriminated based on the L ∗

omponent. 

Cross-referencing the data from the p-XRF with CIE L ∗a ∗b ∗ col- 

rimetric parameters from the smartphone through a PCA, col- 

rimetric information and elemental information were correlated 

 Supplementary figure 8 ). Dimensions 2 and 3 were selected be- 

ause Dim. 1 was highly influenced by non-discriminating parame- 

ers S and CaO (around 20% of the explained variance of this com- 

onent was attributed to them). Firstly, it proves that samples with 

igher concentrations of lead in them had higher values of b ∗. 

dditionally, the concentration of CaO was opposite to increased 

alue of a ∗ and correlated to increased L ∗, proving that as more 

igment is visible, less lime surface is left. 

dentification of the pigment based on chemometrics and image 

nalysis 

As can be deduced from the previous results description, these 

hree red pigments have some differential colorimetric charac- 

eristics that might allow to discriminate them on the basis of 

he colour parameters obtained with the smartphone. To it, three 

ifferent classification methodologies have been used: k-nearest 

eighbours (kNN), a Linear Discriminant Analysis (LDA) model, and 

 Support Vector Classifier (SVC). All three techniques have been 

ompared in terms of simplicity and prediction error. 

-Nearest neighbours (kNN) 

Using colorimetric CIE L ∗a ∗b ∗ data obtained with the smart- 

hone, after calibrating it as stated in Image Treatment Process sec- 

ion, a kNN classification procedure was carried out. kNN classifica- 

ion is a supervised classification method which assigns a specific 

ample to a certain group, based on its distance to the k -nearest 

alibration point(s) which have been previously used to build the 

odel. After optimization ( Supplementary figure 9 ), the dataset 
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Fig. 2. (a) Scores plot for the PCA of the spectral data (centred) from 530 to 740 nm obtained with the spectrocolorimeter (Dim. 1 and Dim. 3). (b) contribution of each 

variable (wavelength) to the different dimensions. 
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as divided into a 80:20 ratio (calibration:test) to assess the de- 

ree of applicability of the chemometric technique. 

Regarding the analysis of only pure samples, a calibration set of 

8 samples (80% of the total dataset) was randomly chosen for 100 

imes to build 100 different kNN classification models. Each one of 

hem was applied to classify the test set built with the 15 samples 

hich were not included in the calibration step. A prediction error 

estimated as the number of times for which the predicted assign- 

ent was different from the real one) was computed each time, 

nd an average value of the 100 runs was computed using k = 3 

as can be seen in Supplementary figure 9 (c.1) ). The average error 

f prediction was 14 ± 9%. Hence, ten different models were car- 

ied out as stated above to visualize the mistakes, and the results 

re plotted in Supplementary Table 3 . In this example, 13 times 

inium and haematite were wrongly predicted; 9 times cinnabar 

nd haematite, and only once minium was confused by cinnabar. 

When it comes to the mixtures of different red pigments, the 

odel was built in the same way (splitting the dataset into 80:20 

roportions) and repeating it for 100 times to obtain an averaged 

rror value. In this case, since the total dataset contained 103 sam- 

les, the calibration set consisted of a random selection of 82 sam- 

les, and the test set had 21. As is deduced from Supplementary 

gure 9 (c.2) , a k = 1 was chosen. The error of prediction found

as 12 ± 8%, very similar to the result obtained in the case when 

nly pure samples were considered. Once again, 10 different mod- 

ls were created and evaluated, showing the results in Supplemen- 
i

161 
ary Table 4 . The results here indicate that the inclusion of mix- 

ures in the dataset does not significantly affect the classification, 

btaining a similar error of prediction for the 100 tries. Addition- 

lly, mixture samples were correctly identified with the proposed 

lassifier. 

inear discriminant analysis (LDA) 

LDA is another classifying chemometric technique which looks 

or discriminant functions or vectors, that is, linear combinations 

f the variables which maximize the variance inter-categories at 

he time that it minimizes the variance intra-categories [55] . 

Firstly, the whole dataset was separated into calibration (con- 

isting in the pure pigments), and test (mixtures).With this, the de- 

ree of similarity of each mixture to the pure pigments is assessed. 

he calibration set consists of a (73 × 4) matrix (73 different pure 

igment samples as rows; label, L ∗, a ∗ and b ∗ as columns). Since 

nly three response categories (levels) are added in the calibration 

tep as labels, the response of the model will be to classify the dif- 

erent mixtures either as haematite, minium or cinnabar. Table 2 

hows the confusion matrix obtained for this test: 

The results indicate that 0.2Fe_0. 6 Hg is partially classi- 

ed as haematite and cinnabar. Interestingly, its counterpart 

 0.6Fe_0. 2 Hg) is only classified as haematite. This is indicating, 

s was already seen in the previous plots, that haematite is hav- 

ng a major influence on the final aspect, and hence the mixture 
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Fig. 3. Boxplot showing the colour parameters obtained with the smartphone. Each box comprises the data from the 1st to the 3rd quartile. The median of each data subset 

is represented by a flat line. Samples are represented, from left to right, in the order specified in the legend. 

Table 2 

Confusion matrix for the LDA model created with pure pig- 

ments as calibration and mixtures as test samples. Smartphone 

colorimetric data of CIE L ∗a ∗b ∗ colour space. 

Classified as 

Real Cinnabar Haematite Minium 

0.2Fe_0.6Hg 3 2 0 

0.2Fe_0.6Pb 5 0 0 

0.2Hg_0.6Pb 5 0 0 

0.6Fe_0.2Hg 0 5 0 

0.6Fe_0.2Pb 0 5 0 

0.6Hg_0.2Pb 5 0 0 
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.2Fe_0. 6 Hg is partially read as haematite. Regarding the Fe and Pb 

ixtures, it is interesting that 0.2Fe_0. 6 Pb is classified as cinnabar, 

espite not containing cinnabar in it. A PCA ( Dim. 2 and Dim.3 )

f the CIE L ∗a ∗b ∗ colorimetric data, shown in Fig. 4 , proves that

hese mixtures are half way through the cinnabar and haematite 

lusters, causing the confusion: even though these samples con- 

ain a higher amount of minium (which should increase the b ∗

alue, and thus take them down in the negative Dim.3 direction, 

ainly driven by b ∗), the resulting colour is not that yellowish. On 

he other hand, 0.6Fe_0. 2 Pb is classified as pure haematite. Last, 

innabar and minium mixtures are classified as pure cinnabar in 

oth cases, mainly driven by the darker and redder feature of the 

esulting sample (on Dim.3 and Dim.2 positive directions). 

Next, the LDA model was carried out with all possible sam- 

les, and then the assigned class was computed. The model was 

uilt following a Leave One Out Cross Validation (LOOCV). To it, 

he model was built without a test sample each time, and the pre- 

icted category contrasted with the real one. Results are shown as 
162 
 confusion matrix in Table 3 . The model had an error of predic-

ion of 7.77%. As can be seen, all mixtures were correctly classified 

n all cases, except for the 0.6Fe_0. 2 Hg, which was confused once. 

Regarding the pure samples, cinnabar is correctly classified in 

ll cases, and some confusions arise when classifying haematite 

nd minium: haematite is classified as cinnabar and as minium 

wice for each category. For the case of haematite, samples “PR13 ”

nd “PR14 ” are classified as minium samples due to a high b ∗

omponent in these samples, while “PR4 ” and “PR9 ” are classified 

s cinnabar, since they present a higher a ∗ value, a characteristic 

f cinnabar samples. Regarding the misclassified minium samples, 

PP6 ” is set as cinnabar (as can be seen in Supplementary Table 2 , 

t is a slightly coloured spot, and thus it has a low b ∗ value), while

PP4 ”, “PP5 ” and “PP7 ” are assigned as haematite. 

upport vector classifier (SVC) 

A support vector classifier is a chemometric tool which aims to 

lassify different test samples into a given number of categories, 

epending on the side in which each observation will fall with re- 

pect to a separation plane, called the soft margin . To it, a calibra- 

ion set is fed to build a model, allowing a certain degree of misses 

the reason why the separation is based on a soft margin). This tol- 

rance is often referred to as cost , and it is expressed as C . After,

he test samples are classified as different categories depending on 

he area in which they fall [56] . In this case, since 3 categories are

tudied, a one-vs-one extension was used. In it, 3 different SVC are 

uilt, considering 2 classes in each case. Overall, each test sample 

s classified as the category to which it has been classified most 

requently. Regarding the evaluation of the method, a k-fold cross 

alidation was carried out. This method consists in splitting the 
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Fig. 4. PCA biplot (Dimensions 2 and 3) for the CIE L ∗a ∗b ∗ smartphone data. The contributions of the variables to the principal components is shown. 
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ataset into k different groups with a similar number of observa- 

ions, and using one of the groups as a test set. 

As in the LDA model, two different models were built: first, 

ure samples were used to calibrate, and mixtures were predicted; 

nd second, the whole dataset was used both to calibrate and pre- 

ict. 

Regarding the first model, k = 10 and C = 1 were used. Results 

re shown in Table 4 . In this case, the 0.2Fe_0.6 Hg samples are

ully classified as haematite. Unlike the case for LDA, the SVC does 

ssign the sample 0.2Hg_0.6 Pb to minium, while the LDA classi- 

ed it as cinnabar. 
c

163 
Evaluating the second model ( k = 1, C = 15), in which the 

hole dataset was used, Table 5 summarizes the results. This time, 

nly 7 out of the 103 samples are wrongly classified (6.80% error). 

ery similar results, in terms of misclassifications, are obtained 

hen compared with LDA. 

pectrocolorimeter and smartphone classification performance 

A comparison between the signals obtained with both devices 

an be seen in Supplementary Figure 10 . A linear trend can be 
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Table 3 

Confusion matrix for the LDA model created with pure pigments as calibration and mixtures as test samples. Colorimetric data of CIE L ∗a ∗b ∗ . 

Predicted 

Real 0.2Fe_0.6Hg 0.2Fe_0.6Pb 0.2Hg_0.6Pb 0.6Fe_0.2Hg 0.6Fe_0.2Pb 0.6Hg_0.2Pb cinnabar haematite minium 

0.2Fe_0.6Hg 5 0 0 0 0 0 0 0 0 

0.2Fe_0.6Pb 0 5 0 0 0 0 0 0 0 

0.2Hg_0.6Pb 0 0 5 0 0 0 0 0 0 

0.6Fe_0.2Hg 0 0 0 4 1 0 0 0 0 

0.6Fe_0.2Pb 0 0 0 0 5 0 0 0 0 

0.6Hg_0.2Pb 0 0 0 0 0 5 0 0 0 

cinnabar 0 0 0 0 0 0 23 0 0 

haematite 0 0 0 0 0 0 2 22 2 

minium 0 0 0 0 0 0 1 3 20 

Table 4 

Confusion matrix for the SVC ( k = 10, C = 1) model 

created with pure pigments as calibration and mix- 

tures as test samples. Colorimetric data of CIE L ∗a ∗b ∗ . 

Classified 

Real Cinnabar Haematite Minium 

0.2Fe_0.6Hg 0 5 0 

0.2Fe_0.6Pb 5 0 0 

0.2Hg_0.6Pb 0 0 5 

0.6Fe_0.2Hg 0 5 0 

0.6Fe_0.2Pb 0 5 0 

0.6Hg_0.2Pb 5 0 0 
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Fig. 5. Schematic representation of the proposed setup for the colorimetric identi- 

fication of roman pigments in wall paintings. 
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bserved, proving that the smartphone was registering colour pro- 

ortionally with respect to the reference device. 

LDA and SVC models built employing the smartphone data were 

ompared with those of the portable spectrocolorimeter. Thus, the 

DA model was created similarly with the CIE L ∗a ∗b ∗ data obtained 

ith the spectrocolorimeter, yielding 18.4% error of prediction. Re- 

arding the SVC (in this case, the optimal model was obtained for 

 linear kernel with a C = 25), the algorithm provided 10.7% error 

f prediction. These results indicate that the error of prediction ob- 

ained with the smartphone was lower than the one obtained by 

sing the spectrocolorimeter. 

Although for both smartphone and spectrocolorimeter the data 

ere obtained by extracting the colour of 3 different regions of in- 

erest of each coloured spot, the sampling process employing the 

pectrocolorimeter can be harder than the smartphone for samples 

hich might be a little bit coarse. Since the spectrocolorimeter re- 

uires direct contact with the sample surface, any hollow between 

hem can interfere with the final result. 

Additionally, the contact between the spectrocolorimeter and 

he samples is a more invasive procedure than using the smart- 

hone method. 

In terms of smartphone advantages, the proposed setup is less 

ime consuming, since only a photograph can contain the informa- 

ion about a big area of the sample, while the sampling process 
Table 5 

Confusion matrix for the SVC ( k = 1, C = 15) model created with pure pigm

CIE L ∗a ∗b ∗ . 

Predicted 

Real 0.2Fe_0.6Hg 0.2Fe_0.6Pb 0.2Hg_0.6Pb 0.6Fe_0.2Hg 

0.2Fe_0.6Hg 5 0 0 0 

0.2Fe_0.6Pb 0 5 0 0 

0.2Hg_0.6Pb 0 0 5 0 

0.6Fe_0.2Hg 0 0 0 4 

0.6Fe_0.2Pb 0 0 0 0 

0.6Hg_0.2Pb 0 0 0 0 

cinnabar 0 0 0 0 

haematite 0 0 0 0 

minium 0 0 0 0 

164
ith the reference device needs to be done one spot at a time. 

inally, the proposed smartphone setup is economically more sus- 

ainable than the spectrocolorimeter , especially if employed as a 

rst screening approach before running more expensive, invasive 

nd time-consuming techniques. 

martphone application in roman fresco wall painting 

The proposed setup, schematically represented in Fig. 5 , has 

hown to work efficiently in classifying three different pigments 

and their mixtures) based on CIE L ∗a ∗b ∗ colour parameters. The 

easibility of the method requires a constant distance from the 

amera sensor to the wall, as well as a parallel position of the 

martphone to the surface in order to properly record colour. Addi- 

ionally, since the colour measurement can be altered by the posi- 

ion in the photograph, the reference colour sheet must be close 

o the coloured spot under investigation, avoiding to distort the 

olour measurement. Once captured, a simple image analysis step 

s required, including the data processing in the SVC model in 

rder to identify the pigment. To obtain reliable results, lighting 

onditions should be controlled providing homogeneous illumina- 
ents as calibration and mixtures as test samples. Colorimetric data of 

0.6Fe_0.2Pb 0.6Hg_0.2Pb cinnabar haematite minium 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

1 0 0 0 0 

5 0 0 0 0 

0 5 0 0 0 

0 0 23 0 0 

0 0 1 23 2 

0 0 0 3 21 
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ion in both the painting surface and to the reference sheet. The 

ampling strategy should be developed considering the conserva- 

ion state and the colour intensity of the samples. Also, archae- 

logical information about the context is required to ensure that 

he pigments under investigation are likely to be either haematite, 

inium or cinnabar (or a mixture of those). Otherwise, the classi- 

cation method would classify the sample as the pigment which is 

he most similar amongst the ones included in the calibration step. 

Overall, the proposed smartphone application was especially 

esigned to identify red colour in frescoes and could be easily em- 

loyed as a screening method by non-specialists. Furthermore the 

ethod could be implemented and be tested in other range of 

olours employed in ancient artwork. 

onclusions 

In this work, a new analytical approach using smartphone to 

lassify different compounds used as red pigments in frescoes has 

een successfully developed. Portable X-ray fluorescence, Fourier 

ransform Infrared spectroscopy, Raman spectroscopy and visible 

eflectance spectroscopy were used as reference methods, and the 

btained results were cross-referenced with the smartphone ones, 

howing the reliability of the proposed methodology. Smartphone 

olorimetry and image data processing were used to obtain an easy 

nd fast analytical tool applied to the Cultural Heritage field. To en- 

ure the in-field applicability of the methodology, the colorimetric 

ata obtained with a smartphone device (in the CIE L ∗a ∗b ∗ colour 

pace) was calibrated using a reference colour sheet to compen- 

ate for the lighting conditions variability. Using the colorimetric 

ataset parameters, three different classificatory models were cre- 

ted: kNN, LDA and SVC. LDA and SVC proved to work more effi- 

iently than kNN, returning lower classification errors. Comparing 

DA and SVC, both worked pretty similarly in terms of classifica- 

ion, with 7.70% and 6.80% errors respectively. Furthermore, mix- 

ures of different red pigment samples were successfully classified 

s the respective combination of colours. 

Thus, the application of SVC is recommended, given that its 

omputational cost is very small, and that it has proven to yield 

he lowest errors of prediction under these conditions. Addition- 

lly, this algorithm can be easily applied in free access software 

ike R. 

Since this procedure uses corrected data rather than raw RGB 

arameters directly extracted from the smartphone, the represen- 

ation of colour is not affected by lighting conditions, one of the 

ain drawbacks of using smartphone colorimetry rather than a 

eference device. Also, from the point of view of time, the pro- 

osed setup in is less time consuming, since a single photograph 

ontains colour information for many different spots, while for col- 

rimeter every spot of interest needs to be measured. Furthermore, 

 big advantage of the proposed approach lays on the fact that col- 

rimeters usually have a reduced radius of measurement, which 

epends on the device, (usually 1–2 cm in diameter) and usually 

 direct contact with the sample is needed. Also, in some cases 

here colour is depicted in very narrow lines, or small spots, the 

martphone approach allows to select information of only a few 

ixels, being able to go further in a detailed analysis. 

This work demonstrates the applicability of the digital image 

olorimetry using smartphones, coupled with chemometric tools, 

n the field of Cultural Heritage analysis. For the first time, an an- 

lytical approach for the qualitative identification of red pigments 

n frescoes has been developed using digital smartphone colorime- 

ry. To it, a dataset must be created in order to generate the pre-

ictive models, and then new samples be predicted. In this sense, 

he dataset created in this work is available upon request to the 

uthors, although, creating a dataset and capturing colour parame- 
165 
ers of the samples with the same device that will be used in the 

eld, is suggested. 

With it, a previous scan of the wall paintings can be carried out 

nd quickly assessed employing the easy and low-cost materials 

hat are described in this study. However, as this procedure relays 

n the reflected colour of the surface, it must be considered that 

otential errors might arise from shining (due to some protective 

overing of the fresco) and/or from polluting agents deposited on 

he wall, like could be the case of carbon or dirt incrustations. In 

uch cases, colour should be recorded after the artwork restoration. 

Finally, this paper has demonstrated that historical red pig- 

ents used in frescoes can be identified by smartphone digital im- 

ge colorimetry, and hence constitutes the foundations to develop 

 future application which allows to assign a specific colour with 

he corresponding historical pigment used. To it, further investi- 

ations will be needed so as to study other common colours and 

ues. 
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