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a b s t r a c t

Robotic-Assisted Surgery (RAS) is beginning to unlock its potential. However, despite the latest
advances in RAS, the steep learning curve of RAS devices remains a problem. A common teaching
resource in surgery is the use of videos of previous procedures, which in RAS are almost always
stereoscopic. It is important to be able to add virtual annotations onto these videos so that certain
elements of the surgical process are tracked and highlighted during the teaching session. Including
virtual annotations in stereoscopic videos turns them into Mixed Reality (MR) experiences, in which
tissues, tools and procedures are better observed. However, an MR-based annotation of objects requires
tracking and some kind of depth estimation. For this reason, this paper proposes a real-time hybrid
tracking–matching method for performing virtual annotations on RAS videos. The proposed method
is hybrid because it combines tracking and stereo matching, avoiding the need to calculate the real
depth of the pixels. The method was tested with six different state-of-the-art trackers and assessed
with videos of a sigmoidectomy of a sigma neoplasia, performed with a Da Vinci

®
X surgical system.

Objective assessment metrics are proposed, presented and calculated for the different solutions. The
results show that the method can successfully annotate RAS videos in real-time. Of all the trackers
tested for the presented method, the CSRT (Channel and Spatial Reliability Tracking) tracker seems
to be the most reliable and robust in terms of tracking capabilities. In addition, in the absence of an
absolute ground truth, an assessment with a domain expert using a novel continuous-rating method
with an Oculus Quest 2 Virtual Reality device was performed, showing that the depth perception of
the virtual annotations is good, despite the fact that no absolute depth values are calculated.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Minimally invasive surgery (MIS) represents a milestone in
he field of surgery. This type of surgical procedure is based
n making small incisions in the patient’s body, through which
urgeons introduce different instruments and usually a laparo-
copic camera. By avoiding large incisions, both the recovery
ime and infection risk are minimized. A step forward in MIS is
obotic-Assisted Surgery (RAS). In an RAS procedure, the surgeon
oes not directly handle the surgical tools, but rather controls
obotic arms that are introduced into the patient’s body through
mall incisions. RAS avoids the surgeon having to stand for a
ong time, as well as avoiding human hand tremor, and it offers
urgeons the possibility of making movements that would be

✩ This article was recommended for publication by Anderson Maciel.
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097-8493/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access a

nc-nd/4.0/).
physically impossible if they had to hold the surgical material
with their own hands. In addition, the surgeon acquires an en-
hanced perception of the surgical target, because stereoscopic
cameras are usually employed with operating consoles that have
stereoscopic viewers. Thus, the surgeon’s movements become
even more precise.

Despite the latest advances in the field of RAS, the steep
learning curve of RAS devices still represents an obstacle to their
evolution and deployment. Training in robotic surgery entails two
fundamental aspects: skill and knowledge. Regarding the former,
skill training is usually achieved using simulators [1,2], which
allow the surgeon’s skills to be polished without putting a patient
at risk. Regarding the latter, a widely used resource is to record
RAS procedures and then display them as teaching elements,
allowing RAS trainees (future RAS-certified surgeons) to observe,
from a first-person perspective, how to carry out RAS procedures.
Since these types of surgeries are minimally invasive, and the
patient’s body is not exposed to permit the trainees to observe
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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he procedure live, videos are an extremely important teaching
sset.
A very important factor in RAS is that the surgeon has a

tereoscopic vision of the tissues; i.e., they perceive depth cues,
nlike most non-robotic laparoscopic procedures which are usu-
lly mono. Thus, when using surgical videos for teaching RAS,
hese videos should be viewed by surgeons with a stereoscopic
isplay in their training process, so that RAS trainees can observe
he procedure as if they were performing it from the control
onsole of the surgical robot itself. Otherwise, the teaching value
f the video will be reduced. To this end, special devices such
s Virtual Reality (VR) glasses or Head-Mounted Displays (HMD)
re necessary, but no head tracking is necessary since the system
isplays stereoscopic videos.
On these stereoscopic videos of RAS procedures, it is important

o be able to make virtual annotations in order to highlight
ertain aspects of the surgical process during the teaching session.
lthough these annotations could be fixed, static annotations
ave a reduced teaching value, so tracking-based dynamic anno-
ations are preferable. The problem with these virtual annotations
s that, as the video is stereoscopic, they need to be shown
t the right depth, because if they are shown on the overlay
lane, presence may be reduced due to accommodation problems,
iscomfort and dizziness. Therefore, in order to provide an aug-
ented perception of the surgical process, the annotations should
e spatially consistent with the rest of the elements shown in
he video. This is the problem addressed by the MiRARAS project:
ixed Reality Annotation for Robotic-Assisted Surgery. This project
esearches methods and technologies to properly add virtual an-
otations onto videos of RAS procedures, using the Mixed Reality
MR) paradigm, by which real (tissues and surgical material) and
irtual information (annotation) are properly blended.
In order to perform these virtual annotations, three seemingly

ifferent challenges need to be addressed: (i) the system needs to
alculate the depth of the pixels shown in the stereoscopic video;
ii) the user (teacher) should be able to select any anatomical
tructure, and the system should be able to track it for the desired
mount of time, so that an annotation can be correctly placed,
ighlighting the element of interest; (iii) the proper type of an-
otative element should be chosen and placed. The challenging
ature of this problem is how to combine these three elements –
epth estimation, tracking and annotation – so that meaningful
nnotations can be provided. If depth is not properly calculated,
nd/or the object is not properly tracked, the teaching value of
he annotated video will be very much reduced. This process
an be pre-calculated; i.e., the video can be annotated offline.
otwithstanding, it is much more useful for the teacher to be able
o select an element of interest, choose an annotation and show
t, properly tracked throughout the video, in real-time. Thus, we
ill focus on real-time solutions for this problem.
Annotation is an essential part of the MR paradigm, since MR

pplications allow the contextualization and placement of virtual
nformation. Many previous MR works make use of annotations
3,4]. However, despite its importance, very few works have tried
o focus or theorize on this subject, with the exception of [5], in
hich the authors propose and develop a taxonomy and a data
odel for AR annotation. The use of annotation in the surgical

ield is also not uncommon [6–10]. Some works have proposed
nnotation tools for endoscopic videos [11] without tracking.
thers use tracking [12], or even tracking and object detection
13], but they do not work with stereoscopic videos nor do they
how the annotations in MR.
Visual object tracking and stereo matching are two of the

ost recurrent research areas in computer vision. Despite recent
rogress, object tracking is still challenging due to occlusion,

llumination variation, background clutter and other factors [14].
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Currently, there is no single tracking algorithm that can handle all
the factors in real-time [15]. In addition, an important problem
with object tracking is that, although there are some evaluation
tracking datasets and benchmarks, there is no standard method
to evaluate trackers [14]. For this reason, we will explore the
use of a new quality metric to assess the process, tailored to the
stereoscopic domain.

In recent years, more and more researchers have been trying
to explore Artificial Intelligence (AI) approaches [16–18], in order
to improve tracking success and make them work well under
sustained occlusion. The problem with these trackers is that
separating the domain-specific information from the domain-
independent information is very cumbersome. Thus, if the models
are trained for outdoor tracking, as most models are, they will
perform poorly in endoscopic scenarios. They also need to be
trained with large image datasets, making them hard to adapt to
specific scenarios. For this reason, our solution will not be based
on AI approaches.

The use of tracking in endoscopic videos, MIS and RAS is also
common. However, most of these works specialize in tracking
either the surgeon’s hands [19] or surgical tools [20,21]. Others
are not constrained to these objects [22–24], but are not designed
for stereoscopic videos and/or do not work in real time.

Stereo matching – the process of finding the pixels in a
stereoscopic view that correspond to the same 3D point in the
scene – and depth estimation represent two important topics in
computer-assisted surgery. Although stereo matching and depth
estimation are different problems, solving stereo matching often
leads to depth estimation. Some depth estimation methods have
also been proposed for MIS and RAS. However, the endoscopic
domain is more challenging than outdoor scenes for a number
of reasons: (i) the unfeasibility of providing a ground truth [25];
(ii) tissue deformation [26]; (iii) overexposure [27] and specular
reflections [28]; (iv) small field of view [29,30]; (v) low contrast
and textureless images; (vi) different brightness of the two stereo
images. These problems make most traditional depth-estimation
algorithms fail [31]. There are also depth estimation methods
based on AI. Although some deep learning-based methods are
promising, most of these algorithms assume no tissue deforma-
tion, no tool occlusion, a limited disparity range, or even no
camera movement [32,33]. These solutions are also computation-
ally expensive and/or require previous training for the specific
endoscopic domain, which makes them as yet unsuitable for
generic real-time RAS video annotation, which is the scope of our
research.

Tracking and depth estimation are often treated separately.
The same happens with the annotation problem. In fact, no previ-
ous frameworks for annotating stereoscopic videos – combining
tracking and stereo matching – for MIS or RAS have been reported
in the academic community. Thus, we believe our work is mean-
ingful and novel. As will be explained later, our proposal is to
treat these problems jointly in real-time, avoiding the need to
obtain true depth estimations of the pixels of the RAS videos. As
in [34–37] we will also compare different OpenCV trackers, al-
though with different goals, scenarios, tracking methods and even
evaluation procedures, since no previous works have been found
exploring the use and comparison of these tracking methods for
the stereoscopic RAS domain.

2. Materials and methods

The first and most obvious approach to this RAS-oriented an-
notation problem would be to treat it as two separate problems:
(1) depth estimation – or even stereo-based reconstruction –; and
(2) object tracking. With this approach, depth information would
be obtained first from the stereo pairs of the video. Once depth
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nformation is extracted for every pixel of the video, if an object
an be properly identified and tracked, we could place a virtual
nnotation in the scene, in the correct place at the right depth,
ecause we know how far the pixels of the object are from the
amera. We can also track the object more easily, either in 2D or
n 3D space.

However, both problems are computationally complex. There-
ore, achieving a reliable solution for both of these problems that
orks in real-time is cumbersome. In addition, RAS images – and
IS images in general – are not always neat. These images are
ometimes blurry because of occasional liquid splashes, smoke,
cclusions with the laparoscopic tools and trocars, lack of contrast
nd poor focus. Thus, depth estimation is likely to fail and/or take
oo much time (or too much training data in the case of AI-based
lgorithms) to be obtained. If the desired RAS video annotation
rocedure is to be used by surgeons on average desktop com-
uters, or laptops for teaching purposes, a lightweight reliable
trategy is necessary.
In order to overcome these issues, we propose a different and

impler approach. This approach is based on considering both
roblems at once, since for the aims of this research it is not
ecessary to obtain a complete 3D reconstruction of the tissues,
r even an estimation of the depth of all the pixels in the image.
e also propose inverting the order of the steps, performing the

racking in 2D space first. Having a stereoscopic pair, we can use
racking and stereo matching methods to identify an object as
t moves through time (with a tracking algorithm), but also as
t ‘‘moves’’ (from the camera perspective) through space (with
stereo-matching method); i.e., we can first track the object

s it moves from frame to frame as if the video stream were
ono, and then we can perform localized stereo matching –
nly the region of interest (ROI) to be annotated is matched –
ithin the stereoscopic pair. In general, epipolar lines need to
e calculated, so that stereo matching is performed along them.
owever, it is common to keep the axes of stereoscopic cameras
arallel [38] –since convergent toe-in stereo systems may cause
he user discomfort [39]–. In these parallel setups, epipolar lines
re horizontal, and vertical disparity should be zero. The final
esult of the process is the horizontal disparity of the tracked
bject.
Once we have the correct horizontal disparity of the ROI

hat we want to highlight, this information is enough to place
virtual annotation in this position. From this information we
ould potentially obtain the exact depth of the pixels if we have
he intrinsic parameters of the camera, but this is not necessary.
ll we need to do is to place the annotation in the correct 2D
osition for both images of the stereoscopic pair. The position
ithin the left image will be provided by the tracking algorithm.
he position within the right image will be provided by a stereo
atching procedure (matching, in the right image, the ROI found

n the left image).
This method is fast, simple and can be implemented in web-

ased applications without the need to use GPU-based acceler-
tion which may not be available to all users. The universality
f access to the application is essential to achieve a useful and
ortable teaching tool for surgeons, who would like to have
simple-to-use method that requires no special hardware or

oftware.
Although we could use a single tracking algorithm to track

n object through time, and also through space, trackers are de-
igned to analyze mono images that change over time. Therefore,
eeding a tracker with both left and right images –alternately–
f a stereo pair could be counterproductive. For this reason, we
ropose using a classical tracking algorithm to track the object
through time – only in the left image. Because of the high
patial correlation between the two images of a stereo pair, it is m
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highly likely that the differences between the left and the right
image would be small, so a stereo matching algorithm should be
able to find the ROI in the right image with much more accuracy
compared to using the tracker for the right image after using it for
the left image of the same instant. This hybrid tracking–matching
solution is much less likely to fail if the stereoscopic parallax is
high, where tracking algorithms end up performing poorly if they
are used for stereo matching. Preliminary tests have confirmed
that a hybrid tracking–matching solution is much more stable
than a tracking-only (interleaving left and right images and treat-
ing the video as a mono video for tracking purposes) approach.
Moreover, by using stereo matching it is easier to ensure that the
region found in the right image is the same size as the region in
the left image.

In order to test our MR-oriented annotation method, we first
prepared a Use Case using a video extracted from an RAS simula-
tor. Then, we recorded two videos corresponding to two different
real Use Cases, as will be explained later. Both of them were
extracted from a real surgical procedure: a sigmoidectomy of a
sigma neoplasia using a Da Vinci

®
X surgical robot. This surgical

procedure was performed at the Hospital General de Valencia
(Spain). As previously explained, we are interested in annotating
these stereoscopic RAS videos in order to add suitable annotations
to them and increase their didactic value.

3. Calculation

The proposed hybrid tracking–matching method can be sum-
marized as follows:

Step 1- Load a stereoscopic RAS video.
Step 2- Select the first left frame of the video and allow the

user to mark in it an ROI to track and annotate. The user can also
optionally place a text over the ROI.

Step 3- Choose and initialize a tracker.
Step 4a- For each stereo pair, split the pair into left and right

images.
Step 4b- For each left image, use the tracker to find the ROI.
Step 4c- For each stereo pair, use the tracked ROI of the left

mage to perform a stereo matching of the same region in the
ight image.

Step 4d- For each stereo pair, calculate horizontal and ver-
ical disparity in order to analyze the success of the tracking
rocedure.
Step 4e- For each stereo pair, place the annotation at the

orresponding left and right tracked locations of the ROI.
For the tracking step (step 4b), any tracking algorithm can

e used. As will be explained later, the trackers implemented
n OpenCV (Tracker class [40]) will be used in the assessment
rocess. For the stereo matching algorithm (step 4c), we propose
alculating the normalized correlation (NC) between the ROI from
he left image and the right image, according to Eq. (1).

C (x, y) =

∑
i,j (R (x + i, y + j) · LROI (i, j))√∑
i,j R(x + i, y + j)2 ·

∑
i,j LROI (i, j)2

(1)

here:
R represents the right image, in which the ROI should be

ound/matched.
LROI represents the ROI (extracted from the left image) that we

eed to match in R.
x and y represent the coordinates of R at which the normalized

orrelation is calculated.
i and j represent the coordinates the algorithm uses to iterate

hrough LROI .
The matched region in the right image will be the one that

aximizes the value of NC with respect to the ROI of the left
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mage, and it is presumably the correct location to place the
irtual element in the right image, whereas the correct location
or the left image will be provided by the tracking algorithm
pplied to the stream of left images.

As we are interested in real-time solutions, this process can
e further improved as, in order to perform proper annotation
f objects, it is not always necessary to track the position of the
bject for every single frame of the stereoscopic video. Objects in
AS do not usually move fast. Thus, we can perform the tracking
rocess skipping some frames. The lower the tracking update
ate is, the less smooth the annotation will be. In addition, the
ower the update rate is, the more probable it is that a quick
isplacement of the objects (or the camera) will cause a tracking
ailure. However, if we assume that objects do not move too fast,
e could safely skip several frames of the video, keeping the
nnotation still for the frames we skip. This will likely increase
128
the performance of the method without causing noticeable effects
in the final annotation.

For optimization and practical purposes, other steps can be
added, such as resizing the video or cropping the edges of the
images, since some parts of RAS videos have no practical value.
The final algorithm is shown in Algorithm 1, which is also sum-
marized in Fig. 1.

As can be seen, the algorithm has only one intrinsic parameter:
the annotation frequency, which defines how many frames per
second are used to track the object. There could be additional
parameters related to the tracking algorithm or the stereo match-
ing procedure, but we will not address this question because it is
beyond the scope of this study.

Since it is not possible to obtain an absolute ground truth for
the objective evaluation of the performance of the algorithm, we
collected the following datasets (for each annotated video):

-Tracker confidence for each frame (left image). This should be
provided by the tracking algorithm. It is a number between 0 and
1.

-Stereo matching confidence for each frame (right image). This
is the maximized value of NC . Its range is also from 0 to 1.

-Bounding boxes representing the ROI in both images of the
stereo pair, as the desired object is tracked and matched for each
frame.

From these datasets, we created the following metrics:
-Tracking quality: a heuristic measure to approximate the qual-

ity of the solution, which will be explained later.
-Left-to-right horizontal disparity: this measures the horizon-

tal difference between the right and the left ROIs of the same
stereoscopic pair. This should be small and change smoothly over
time.

-Left-to-right vertical disparity: this measures the vertical dif-
ference between the right and the left ROIs of the same stereo-
scopic pair. In parallel stereo systems this should ideally be zero.

-Left-to-right size disparity: this measures the difference in
square pixels between the size of the right and left ROIs of the
same stereoscopic pair. This should ideally be zero.

-Left temporal positional disparity: this measures the number of
pixels that the ROI of the left image moved in one iteration. This
should be small and change smoothly over time.

-Right temporal positional disparity: this measures the number
of pixels that the ROI of the right image moved in one iteration.
This should also be small and change smoothly over time.

-Left temporal size disparity: this measures the number of
square pixels that the area of the ROI of the left image changed
in one iteration. This should be small or zero.

-Right temporal size disparity: this measures the number of
square pixels that the area of the ROI of the right image changed
in one iteration. This should be small or zero.

-Total left motion: this is the sum of the left temporal positional
disparities over the duration of the video. It is expected that this
quantity will be larger for poor trackers, since poor tracking often
leads to jumps in the positions of the ROI.

-Total right motion: this is the sum of the right temporal
positional disparities over the duration of the video. This should
also be small.

-Total left size change: this is the sum of the left temporal sizes
disparities over the duration of the video. This should ideally be
zero.

-Total right size change: this is the sum of the right temporal
sizes disparities over the duration of the video. This should ideally
be zero.

These measurements were averaged (except from the last four
metrics, which are already aggregated measurements) in order to
obtain summarized numbers for each test. These averaged values

will be used in the results section. However, it is important to
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Fig. 1. Flowchart of the proposed method, showing steps 1 to 4.
ote that, since disparities can be either positive or negative, we
alculated the average (or sum) of the absolute values.
The first metric, tracking quality, is a heuristic measurement in

he 0–6 range that we have developed in order to obtain a single
umber from each frame of the process. It assumes parallel stereo
nd its calculation obeys the following rules:
-Tracking quality value starts at 0 points.
-If vertical disparity is below a certain threshold, 2 points are

dded.
-If the x value of the left-to-right size disparity is below a

certain threshold, 1 point is added.
-If the y value of the left-to-right size disparity is below a

ertain threshold, 1 point is added.
-If left temporal positional disparity is below a certain thresh-

ld, 1 point is added.
-If right temporal positional disparity is below a certain thresh-

ld, 1 point is added.
-The previous sum is multiplied by the tracking confidence.
The higher the tracking quality, the better, as happens with

he values of tracking confidence and matching confidence.

. Experiments and results

A threefold evaluation of the aforementioned method is pro-
osed. First, an objective evaluation – based on the performance
etrics explained earlier – was performed. The thresholds for the
uality metric were setup at 2 pixels for the spatial disparities
nd 5 pixels for the temporal disparities. Next, we measured the
omputational load of the solution. Finally, a validation with a
omain expert was also performed. To this end, a subjective but
ystematic rating procedure, which will be explained later, was
sed.
129
4.1. Experimental set-up

As aforementioned, three videos representing three different
Use Cases were used:

-Use Case #0. In this Use Case, a RAS simulator developed by
our research team was used in order to record a stereoscopic
video and test our method under highly controlled conditions.
The selected ROI will be easy to track with just some occlusions
throughout the video. However, the video will be long enough to
ensure that the method is stable. In this video, the user is trying
to join the two ends of a severed artery. The ends are marked
with a green and a blue dot, respectively. Fig. 2 shows this Use
Case.

-Use Case #1. In this Use Case, the goal is to track the ureter
during sigmoidectomy surgery. In this video, the ureter remains
mostly visible – with fast and occasional occlusions caused by
the Da Vinci

®
tools – and it is not manipulated, so it barely

changes shape. The surgical importance of this annotation is to
highlight the position of the ureter to remind surgeons that this
small anatomical structure should be identified in this type of
procedures in order to avoid unintentional damage to it. Ureteral
injury, although rare in colorectal surgery, leads to severe com-
plications. Thus, it is important to highlight this situation. Fig. 3
shows this Use Case.

-Use Case #2. In this Use Case, the goal is to highlight a
colorectal anastomosis as it is performed during sigmoidectomy
surgery. Anastomoses are common for digestive surgeons. How-
ever, from a computer vision point of view, tracking this process
is really hard, because there are frequent occlusions and tissue
deformations, which create constant changes in the region of

interest. In addition, a circular stapling device suddenly appears
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Fig. 2. First frame and ROI of Use Case #0 – Identifying the ends of a severed
artery.

in the video after piercing the rectum, making the tracking quite
challenging. Fig. 4 shows this Use Case.

The supplementary material contains the original unannotated
videos. The videos from Use Cases #1 and #2 were captured with
the laparoscopic parallel stereo camera of a Da Vinci

®
X surgical

obot. Regarding the length of the annotations, we chose videos
ith durations longer than 30 s, because in preliminary tests with
urgeons we could see that it would not be unusual to highlight
nd annotate moving elements for more than 15–20 s. In all
ases, the testing method was similar. First, the domain expert
a surgeon with expertise in RAS – started the video to choose
region of interest and an annotation text. This ROI is intended

o highlight a particular part of the surgical video, and represents
he input of our annotation procedure. Once the ROI was chosen,
ix versions of the aforementioned hybrid tracking–matching ap-
roach were used and compared. Each version uses a different
racking algorithm. All of them use the same stereo matching
lgorithm explained earlier. The tracking algorithms used in these
xperiments are listed below, and their implementations can be
ound in the OpenCV library [40]:

-CSRT (Channel and Spatial Reliability Tracking) [41,42]
-KCF (Kernelized Correlation Filter) [43]
-Median Flow [44]
-MIL (Multiple Instance Learning) [45]
-MOSSE (Minimum Output Sum of Squared Error) [46]
-GOTURN (Generic Object Tracking Using Regression Networks)

17]
All these trackers were run using the same ROI, their default

arameters in the OpenCV 4.5.3 implementation, the exact same
ideos and the same annotation update frequencies. Figs. 2, 3 and
show the first (left) image of the video and the ROI chosen by

he domain expert for each Use Case.
We tested other trackers, such as TLD (Tracking, learning and

etection) [47] and Boosting [48], but they performed very poorly
or this problem.

.2. Results

As aforementioned, a three-fold evaluation was performed.
he first one is an objective assessment that includes a pseudo
130
ground truth. The goal of this evaluation is to verify the feasibility
of the proposed method in several scenarios and analyze how to
choose trackers for this problem. The second one assesses the
performance in order to verify the real-time capabilities of the
solution. Finally, a subjective evaluation with a domain expert is
presented in order to assess that the method is subjectively valid
for its intended use.

4.2.1. Objective evaluation
First, we tested Use Case #0. We first used a RAS simulator

for a number of reasons: (i) synthetic videos are perfectly aligned
videos with zero vertical disparity; (ii) we can control the situa-
tion of the different objects (tissues, surgical instruments, etc.) so
that we can decide when and how occlusions occur; (iii) unlike
real RAS footage, the images from the simulator can be neat
and clear; (iv) with a simulator we can control the stereoscopic
parallax of the image. This is something that cannot be generally
done with stereoscopic RAS cameras. The first row of Table 1
shows the parameters used to perform this test.

For this synthetic Use Case, only the CSRT method was used,
since the goal is to validate the feasibility of using the proposed
method. As seen in Table 2, the results report a good quality
metric and high confidence values. It also reports small total
motion values and only a slightly high vertical disparity (2.196)
due to sporadic mistakes in the horizontal alignment. This value
drops to 0.476 when no absolute values are used in the averaging
process. This is acceptable, since the images should have zero
vertical disparity. A look at the resulting video also shows that
the tracker works well, following the highlighted element for the
entire duration of the video.

Then, we tested Use Case #1. This Use Case is suitable to
assess if our method is effective in a real case with surgical
value. Table 1 shows the parameters used to perform this test.
Table 3 provides a comparative summary of the performance of
the aforementioned six tracking methods. We have also added a
pseudo ground truth (PGT) solution, which is a solution created
by the domain expert by a manual selection of the ROI over
the video key frames, for both the left and the right images,
keeping the size of the ROI fixed throughout the video. This is not
really a ground truth, because the process is tedious and prone to
errors, especially for the stereo matching, but it is a reasonable
approximation. In this regard, we will process the PGT solution
in a similar way to the rest of methods, i.e., computing the same
metrics, and then we will compare the PGT metrics with the
metrics of the methods. We also compute a metric of similarity
between the PGT solution and the results obtained from the
different versions of the proposed annotation solution. The metric
we compute is Intersection over Union (IoU), as proposed in [49],
which calculates the amount of relative overlapping between
two solutions. IoU is proposed for mono. Thus, we extended this
metric and calculated the IoU for both images of the stereo pair.
The resulting value shown in Table 3 is the average of the two.

As seen in Table 3, the CSRT method outperforms the rest of
trackers and offers a stable solution, which performs similar to
that of the PGT. It provides the highest IoU, the highest quality
metric, the highest tracking and matching confidence and the
lowest total motion, both for the left and right channels. Indeed,
the method is able to successfully track the object throughout
the total length of the video, something that the rest of trackers
are not able to do. KCF loses track when the camera is first
moved quickly, which occurs around 6 s into the video. A similar
situation occurs with Median Flow, although this tracker tries to
recover the tracking, reporting an incorrect ROI for some time.
The situation is not much better for MIL. In this case, the tracker
does not lose track, but reports a ROI that is noticeably misplaced
throughout much of the video. MIL is not able to identify that
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Fig. 3. First frame and ROI of Use Case #1 – Identifying the ureter in a sigmoidectomy.
Fig. 4. First frame and ROI of Use Case #2 – Highlighting a colorectal anastomosis in a sigmoidectomy.
Table 1
Parameters of the three use cases.
Use case Video

duration [s]
Update
interval [s]

Update
frequency
[Hz]

Resolution
[pixels, fps]

Stereo
resolution
[pixels, fps]

ROI upper
left corner
[pixels]

ROI extent
[pixels]

#0 72 0.1 10 1024 × 1024 @ 30 fps 2048 × 2048 @ 30 fps (549, 357) 88 × 106
#1 30 0.1 10 1280 × 720 @ 25 fps 2560 × 720 @ 25 fps (426, 243) 130 × 147
#2 60 0.1 10 1280 × 720 @ 25 fps 2560 × 720 @ 25 fps (410, 190) 175 × 290
Table 2
Performance with the hybrid tracking–matching method using the CSRT tracker. Use Case #0.
Quality
metric
[0–6]

Average abs.
vertical
disparity [px]

Total
motion
(L) [px]

Total
motion
(R) [px]

Average
tracker
confidence (L)

Average
matching
confidence (R)

4.483 2.196 6,402.30 8,762.92 1.000 0.926
the tracking is wrong, and thus the confidence levels remain at
maximum levels throughout the whole video, something that is
misleading and causes the quality metric to be artificially high. A
similar situation occurs with the MOSSE tracker, since the tracker
is not reportedly failing, but the tracked ROI is wrong most of
the time. In fact, the total motion values for this tracker are six
times higher than with the CSRT tracker. GOTURN also performs
poorly, as it loses track around 10 s into the video and tends to
overexpand the ROI. None of the methods, with the exception of
CSRT, obtain IoU values greater than 0.2, which shows that CSRT
performs significantly better for this Use Case.
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Figs. 5 and 6 show the evolution of both the quality metric
and the vertical disparity over time. Red color means the value
is lower than 4 for the quality metric, or greater than 2 for the
absolute value of the vertical disparity. Fig. 7 shows how the
ureter is properly tracked using the CSRT-based solution.

As seen in Fig. 6, a small (around 2 pixels) but systematic ver-
tical disparity appears with the CSRT method. A similar situation
occurs with MIL and MOSSE, whereas the other two methods
offer almost zero average vertical disparity. Taking into account
that only CSRT and – occasionally – MOSSE are able to track the
ureter correctly, it is possible that the video presents a small
vertical distortion. In order to confirm this, we calculated the
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Table 3
Compared performance with the hybrid tracking–matching method. Use Case #1.
Tracking
method

Quality
metric
[0–6]

Average abs.
vertical
disparity [px]

Total
motion
(L) [px]

Total
motion
(R) [px]

Average
tracker
confidence (L)

Average
matching
confidence (R)

IoU with
respect to
PGT

CSRT 5.750 2.003 1,000.01 1,138.82 1.000 0.998 0.688
KCF 1.117 0.383 1,307.68 1,435.57 0.205 0.204 0.176
MedFlow 2.136 0.516 4,707.18 4,866.98 0.383 0.381 0.138
MIL 4.824 2.681 2,351.39 2,592.33 1.000 0.987 0.154
MOSSE 5.497 1.859 5,736.32 5,956.95 0.976 0.967 0.178
GOTURN 3.971 2.144 4,979.49 5,156.63 1.000 0.982 0.096
PGT 5.731 2.040 875.70 940.54 – – 1.000
Fig. 5. Use Case #1 – Quality metric comparison (average ± standard deviation).
Fig. 6. Use Case #1 – Vertical disparity comparison (average ± standard deviation).
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verage vertical disparity (with no absolute values) for the CSRT
racker, and the value remained at 2.003. This means that the
ideo of Use Case #1 likely contains a small vertical distortion
aused by the Da Vinci

®
system. This is also confirmed by the

alue of the average absolute vertical disparity of the PGT, which
s 2.04 and because it also occurs for Use Case #2. This, and the
act that the PGT calculation is not systematic and is prone to
rrors, explains the red zone of the PGT graph in Fig. 6.
Then, we tested Use Case #2. This Use Case entails a challenge

or our tracking–matching method, since there are several occlu-
ions, camera movements and also a lot of tissue deformation.
able 1 shows the parameters used for this Use Case. As can be
een, the same frequency as in Use Case #1 is used, but the video
s twice as long.

As can be seen in Table 4, apparently only the MIL tracker
orks acceptably, as the IoU, the quality metric and the tracking
nd matching confidence values are the highest of all with this

ethod. However, this is again misleading, since the truth is that F

132
he MIL tracker does not accurately follow the selected object.
nstead, it drifts away and the result is offset with respect to
he expected solution. The CSRT method, on the contrary, ac-
nowledges a tracking failure after 15 s. Although it is able to
roperly track the object for the first 15 s, the value of the IoU
nd the quality metric are low, precisely because the tracker is
ble to detect a tracking failure and stops tracking, something
hat MIL does not do. KCF loses track after 8 s. Median Flow
lso loses track quickly, although it tries to recover the tracking,
eporting many incorrect places, which leads to a high total
otion value. A different situation occurs with the MOSSE-based
ethod. This time, the method sometimes tracks the object well,
nd sometimes gets confused and tracks something else, such as
he surgical tools. However, it is also capable of turning back to
he right spot, which creates frequent jumps. These jumps are
eflected in the total motion values, which are the highest of all.
he quality metric and the confidence are high for this method.

inally, GOTURN proves to be even worse than in Use Case #1,
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Table 4
Compared performance with the hybrid tracking–matching method. Use Case #2.
Tracking
method

Quality
metric
[0–6]

Average abs.
vertical
disparity [px]

Total
motion
(L) [px]

Total
motion
(R) [px]

Average
tracker
confidence (L)

Average
tracker
confidence (R)

IoU with
respect to
PGT

CSRT 1.245 1.692 2,618.25 3,564.48 0.256 0.249 0.193
KCF 0.639 0.217 1,434.13 1,510.35 0.132 0.131 0.121
MedFlow 2.153 18.682 8,671.78 23,671.53 0.507 0.478 0.102
MIL 5.364 1.521 3,610.18 4,438.01 1.000 0.993 0.342
MOSSE 4.015 41.216 11,257.04 35,063.37 0.993 0.932 0.216
GOTURN 4.236 166.91 4,117.25 39,809.56 1.000 0.975 0.025
PGT 5.451 1.969 2,176.58 2,888.19 – – 1.000
Table 5
Compared performance using CSRT with different update rates. Use Case #2.
Tracking
method

Quality
metric
[0–6]

Average abs.
vertical
disparity [px]

Total
motion
(L) [px]

Total
motion
(R) [px]

Average
tracker
confidence (L)

Average
tracker
confidence (R)

IoU with
respect to
PGT

CSRT 10 Hz 1.245 1.692 2,618.25 3,564.48 0.256 0.249 0.193
CSRT 2 Hz 4.484 1.833 1,764.04 2,146.71 1.000 0.980 0.558
PGT 5.451 1.969 2,176.58 2,888.19 – – 1.0
Fig. 7. A snapshot of Use Case #1 – Ureter properly tracked in both left and right images.
ince the ROI drifts away from the target area from the beginning,
nd the size of the ROI keeps changing erratically.
Vertical disparity is only kept low for CSRT, KCF and MIL,

lthough in the case of KCF this is because the tracking fails. This
s also the reason why KCF obtains low values for total motion.
ll things considered, it seems that the best methods for this Use
ase are the MOSSE and CSRT trackers, despite their IoU being
round 0.2. The former is able to track the object sometimes, but
umps too much and presents an unacceptable vertical disparity
or a parallel stereoscopic video (the second highest of all six
rackers). The latter is able to properly track the object for a while,
nd obtains the closest results to the PGT in terms of disparity
nd motion. However, once the object is lost, it is never detected
gain. Fig. 8 shows two snapshots of the CSRT tracker tracking the
OI correctly.
After looking at the annotated videos and doing a series of

uick tests, we noticed that by modifying the annotation update
requency the tracking success could change. Thus, we decided
o increase the frequency. Surprisingly, there were very few im-
rovements with this change, because most of the problems occur
hen occlusions happen. Sometimes, capturing more frames only
akes things worse, as occlusions last longer and, thus, tracking
uccess drops. Therefore, we decided instead to raise the anno-
ation update interval. Indeed, with a lower update frequency
he CSRT-based method performed extremely well, being able
o track the object for the 60 s that the video lasted. The rest
f the methods never achieved complete tracking of the object,
either when increasing nor decreasing the annotation frequency.
able 5 shows the difference between using a 10 Hz frequency

update interval of 0.1 s, as in Table 4) and a 2 Hz frequency
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(0.5 s). At 2 Hz, the CSRT tracker is able to track the object for
the whole one-minute sequence, with substantial changes in the
quality metric and in average confidence. Total motion is also
reduced. Vertical disparity is just slightly augmented, because the
longer the successful tracking time, the more likely a sporadic
vertical mismatch will occur, something that is much less likely
when tracking fails. The IoU metric also improves substantially. It
does not reach higher values because the ROI of the PGT is fixed
and the ROI of CSRT is not (in this test). Thus, the overlapping
is smaller than expected. In addition, given the amount of tissue
deformation, it is not easy to determine the correctness of a
possible solution. As we can see, in this case the quality metric
is a more reliable indicator than the IoU.

Figs. 9 and 10 show the evolution of both the quality metric
and vertical disparity over time, including the two tests with the
CSRT-based method (named CSRT10 and CSRT2 respectively).

4.2.2. Computation time
Although tracking quality is important, it is also necessary

to evaluate the computational load of the proposed solutions.
It is known that the selected tracking methods have different
computational costs. However, it is important to measure how
they behave in combination with stereo matching. To do so, we
measured the computation time of the proposed hybrid solu-
tion under different circumstances. We assessed the three Use
Cases and tested the performance of the annotation method
for three different annotation update rates: 10 Hz (update the
annotation 10 times per second), 2 Hz and 1 Hz. Tables 6–8
show the total computation time – and also the break down
depicting the time to compute the tracking and the time to
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Fig. 8. Two snapshots of Use Case #2 — Anastomosis properly tracked in both left and right images.

Fig. 9. Use Case #2 – Quality metric comparison (average ± standard deviation).

Fig. 10. Use Case #2 – Vertical disparity comparison (average ± standard deviation).

134
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Table 6
Computational load (in seconds) for Use Case #0 (72 s).
Tracking method Annotation frequency

1 Hz 2 Hz 10 Hz

Time [s] Time [s] Time [s]

Total Tracking Matching Total Tracking Matching Total Tracking Matching

CSRT 23.586 1.514 3.038 26.151 2.415 4.784 62.866 13.886 30.554
KCF 18.979 0.110 0.298 19.177 0.221 0.724 24.220 0.969 4.681
MedFlow 20.766 0.303 1.766 22.606 0.605 3.434 50.912 3.062 29.676
MIL 24.535 2.898 2.957 30.698 5.791 5.890 80.957 32.881 29.422
MOSSE 20.326 0.027 1.646 20.821 0.048 2.366 43.049 0.330 24.630
GOTURN 23.987 2.448 2.716 29.102 4.961 5.420 69.576 25.182 26.638
Table 7
Computational load (in seconds) for Use Case #1 (30 s).
Tracking method Annotation frequency

1 Hz 2 Hz 10 Hz

Time [s] Time [s] Time [s]

Total Tracking Matching Total Tracking Matching Total Tracking Matching

CSRT 8.210 0.778 1.017 9.980 1.514 2.046 27.882 7.483 13.981
KCF 6.582 0.064 0.068 6.740 0.127 0.133 9.843 0.840 2.454
MedFlow 6.604 0.120 0.069 6.880 0.241 0.136 13.283 1.239 5.501
MIL 8.654 1.286 0.952 11.009 2.598 1.951 34.422 16.294 11.678
MOSSE 6.615 0.014 0.136 6.677 0.026 0.142 19.114 0.381 12.271
GOTURN 8.406 0.935 1.000 10.331 1.082 2.055 30.341 10.876 12.991
Table 8
Computational load (in seconds) for Use Case #2 (60 s).
Tracking method Annotation frequency

1 Hz 2 Hz 10 Hz

Time [s] Time [s] Time [s]

Total Tracking Matching Total Tracking Matching Total Tracking Matching

CSRT 14.024 0.768 0.553 23.614 5.335 5.107 25.321 6.437 6.180
KCF 13.254 0.431 0.197 14.013 0.915 0.416 21.157 5.159 3.697
MedFlow 12.924 0.265 0.046 13.466 0.505 0.249 28.371 2.641 13.011
MIL 17.443 2.451 2.258 22.625 5.159 4.696 70.796 30.774 27.282
MOSSE 13.716 0.176 0.888 14.198 0.371 1.097 40.414 1.815 25.896
GOTURN 16.655 1.913 1.945 20.694 3.772 4.134 57.893 20.946 24.325
perform the stereo matching – for each Use Case and tracking
method. Since each Use Case has a different video length, and
different annotation frequencies were tested, it is important to
take these two factors into account when comparing times. All
the measurements were made with a desktop computer running
an Intel Core i7-12700KF@3.6 Ghz processor with 32 Gb of RAM.

As can be seen, the cost per annotation stays fairly stable –
er Use Case – for each tracking method. The differences found
etween different annotation frequencies are caused by the effect
f the annotation frequency on the tracking success – the less
uccess, the faster the methods are, since stereo matching is
voided if tracking fails –. With respect to the different trackers,
he CSRT, GOTURN and MIL trackers are the most expensive
n terms of computation time. However, the reason is not that
hey need more time but that other trackers lose tracking very
ften, reducing the computation time. This happens recurrently
ith the Median Flow and MOSSE trackers with low annotation

requencies. Thus, this efficiency is not particularly useful. In fact,
ne of the reasons that seems to make MIL and GOTURN the most
xpensive methods is that these trackers do not acknowledge the
oss of tracking. In the case of CSRT, this tracker works well with
ow and high frequencies and tends to follow the object correctly,
ith a cost lower than GOTURN and MIL, which in any case is
cceptable for this type of application.
The most important conclusion, however, is that in almost all

ases, the total computational cost is lower than the length of
he video. For instance, all but one method (MIL) can perform the

nnotation task in less than 72 s for Use Case #0, in less than
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30 s for Use Case #1, and in less than 60 s for Use Case #2. Thus,
the proposed method can work in real-time. Another important
conclusion is that the time needed for tracking roughly equals the
time needed for stereo matching in most cases.

4.2.3. Assessment by domain expert
As no absolute ground truth is possible for this particular

domain and type of application, we also performed a validation
with a domain expert. The domain expert is a gastrointesti-
nal surgeon with RAS certification. He has performed dozens of
robotic-assisted surgeries. He has also performed the kind of RAS
procedure seen in the videos.

We were interested in the evolution of two quantities – track-
ing quality and depth perception – over time. Thus, we designed
an assessment tool by which the domain expert could watch the
annotated videos and at the same time perform a continuous
rating of what he perceives. We asked him to watch each of
the annotated videos (one video per tracking method, for each
of the Use Cases) with VR glasses, while using our continuous
rating tool. An Oculus Quest 2 [50] with the application Bigscreen
[51] was used to show the stereoscopic annotated videos. Fig. 11
shows a picture of the evaluation process. The videos were shown
in randomized order. No head tracking was used.

For the sake of simplicity, the rater was a keyboard-based
application by which the domain expert could either press or
release the space key. A key pressed means the rating is good.

A key released means the rating is bad. This way, we can find out
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Fig. 11. Domain expert assessing the stereoscopic RAS videos enhanced with
MR annotations, using an Oculus Quest 2 device.

which parts of the video are poorly annotated, both in terms of
depth perception and in terms of object tracking. The rater was
applied twice: once for rating depth perception and then again
for rating tracking perception, since we considered it to be too
difficult for the expert to rate both features at the same time.
To the best of our knowledge, this evaluation system is a new
contribution in this area.

The annotated video included a blue rectangle highlighting
the ROI and a text over the blue rectangle. Since the video is
stereoscopic, we are assessing if the annotations are properly
placed in both the left and right images. If the horizontal or the
vertical disparity are wrong, the domain expert will not be able to
perceive stereoscopic vision. In addition, if the tracking is wrong,
he would complain and rate the target tracking poorly.

Figs. 12 and 13 show the average results provided by the
domain expert and the evolution of the ratings over time. Depth
ratings were conditionally averaged, i.e., only the values cor-
responding to a correctly tracked object were included in the
average. Green means a positive evaluation, red means negative,
and yellow means the evaluation is not applicable (this occurs
when depth perception cannot be assessed because no annotation
appears as a result of a tracking loss). GOTURN was excluded
from the test due to its poor performance. Use Case #0 was also
excluded from the subjective test since it does not show real
footage.

As can be seen, although the CSRT-based solution seems to
be the best of the tested methods in terms of tracking, it is not
always the best in terms of depth perception; the domain expert
felt that other methods, such as Median Flow, albeit being inferior
in terms of tracking record, had a higher level of functionality
in terms of depth perception. After some conversations with the
expert, we reached the conclusion that the CSRT tracker tends to
create size disparity. In other words, the annotated area grows
and shrinks constantly. While this could be good for some appli-
cations, it seems counterproductive for this application. There are
also small fluctuations in the centroid with this method.

Thus, we decided to perform a final test making a change in
the CSRT parameters so that the auto-scale is disabled. Table 9
shows the results of assessing the CSRT method with a fixed
ROI size. As can be seen, tracking accuracy decreases greatly
using a fixed-sized ROI and therefore the small increase in depth
perception is not relevant, as the method fails to track the object
for most of the video. In this regard, it is important to point out
that depth ratings are conditionally averaged, and therefore the
average depth ratings of methods like Median Flow or MOSSE
only include a small part of the video, whereas the average ratings
136
of the depth perception with CSRT include most of the video
because tracking does not fail as often. This partially explains
the lower rating of CSRT in depth perception and can be clearly
observed in Fig. 13.

5. Discussion

The results presented in the previous section suggest that
the proposed method could be used for real-time annotation
of different RAS videos and that it is able to work well even
in challenging scenarios such as Use Case #2. The supplemen-
tary material contains the annotated videos. Nevertheless, 100%
success is not guaranteed.

With respect to the objective comparative evaluation, the
feasibility of the proposed method is demonstrated given the sim-
ilarity between the metrics of the PGT and those of some versions
of the proposed algorithm. In this regard, the most appropriate
tracker seems to be the CSRT method, since it works well for Use
Cases #0 and #1. It can also work extremely well for Use Case #2,
although in this case, fine-tuning seems necessary. Nevertheless,
this tracker presents one small problem: in the default implemen-
tation of this method with OpenCV, the size of the tracked ROI
is not fixed and changes continuously, albeit in small amounts.
When using these changing ROIs for stereoscopic annotation, the
domain expert complained about this and verbalized that it was
negative for depth perception. The tracker can be forced to work
with a fixed-sized ROI. However, making the tracker work with a
fixed size increases the likelihood that it would fail to track the
object. A trade-off needs to be found in order to be able to use
the method reliably with no fine-tuning of its parameters and
no human supervision. In any case, a smoothing process, such as
a weighted moving average could be applied to the size of the
of calculated ROI, significantly reducing the importance of this
problem. Another solution could be to calculate a variable size
ROI but show a constant size ROI to the user.

In addition to the proposed hybrid tracking–matching solution
and the comparison of several tracking algorithms for the RAS
domain, this work also proposes a simple quality metric for
assessing the solutions to this problem. Our quality metric seems
to correlate well with IoU and with the domain expert if the
tracker is able to report the events of tracking failure. It also
works better than the IoU metric for some particular cases (for
instance, CSRT2 vs CSRT10 in Use Case #2). In addition, it is also
much easier to calculate than IoU, since IoU needs a PGT, which
is very laborious to obtain for this problem. For some cases, such
as Use Case #2, the amount of tissue deformation makes the PGT
not only laborious but difficult to determine.

However, the main weakness of the proposed quality metric is
precisely that it is based on tracking confidence reported by the
tracking method. Therefore, we could argue that this proposed
metric is useful if the tracker has the ability to be aware of
the loss of tracking. In this regard, it is important to note that
some trackers are more reliable than others in terms of reporting
their tracking confidence. Indeed, some trackers report tracking
failures when they cannot detect the object, as occurs with the
CSRT tracker, while others do not, such as the MIL tracker. This
makes an objective evaluation hard to perform. It is also worth
noting that the quality metric is sensitive to frequency, but in a
different way than other metrics are. It also uses thresholds for
spatial and temporal disparities that could be modified. Further
analyses in this regard may be of interest.

With respect to the performance of the proposed solution, the
experiments suggest that MIL and GOTURN are the most expen-
sive methods in terms of computation time, and they also do not
track the ROI very well. CSRT comes in third place and its cost
is higher than other methods, but those other methods (KCF and
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Fig. 12. Use Case #1 – Evaluation by domain expert for each tracking method (average ± standard deviation).
Fig. 13. Use Case #2 – Evaluation by domain expert for each tracking method (average ± standard deviation).
Table 9
Assessment by domain expert after setting CSRT method to avoid auto-scaling. Average results.
Tracking method Use Case #1 Use Case #2

Depth Target tracking Depth Target tracking

CSRT default 1.000 0.967 0.662 0.887
CSRT fixed size 0.938 0.967 0.717 0.279
Median Flow mainly) perform poorly and often lose track of the
ROI. This reduces the computation time when tracking failure is
acknowledged by the methods, since stereo matching is avoided
137
if tracking fails. On the contrary, CSRT performs much better, but
at a higher cost. Nevertheless, in the worst-case scenario, less
than a tenth of a second is needed for each annotation with a
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0 Hz annotation frequency using CSRT. This will allow real-time
sage, since the measured time includes rendering. In addition, if
e assume that annotations do not last long and the annotation

requency may be reduced to 5 Hz or even lower values, since
bjects in RAS do not normally move at extremely high speeds,
e could further reduce the computation time.
In this regard, it is worth noting that the stereo matching

rocess takes a lot of time and could be optimized. Currently, the
tereo matching algorithm searches through the whole image. For
arallel stereo images, like the ones tested in our experiments,
nly horizontal epipolar matching is necessary. This would allow
s to restrict the search of the ROI to an epipolar band, optimizing
he process substantially. However, in order to keep the method
s general as possible we decided not to restrict the search to
orizontal matching. This way, the method would also be poten-
ially suitable for non-parallel stereo cameras in which vertical
isparity is not always zero.
It is important to highlight that we intentionally used HD

ideos and a regular computer for the evaluation, in order to get
esults that are meaningful for real day-to-day use. We cannot
xpect that high-end hardware will be needed to apply our an-
otation method. Surgeons will probably use average computers
or their training. Therefore, measuring performance with high-
nd computers using CUDA or other GPU-based accelerations –
s other authors do [33] – is, in our opinion, not useful for this
articular application, since we want to maximize the portability
nd universality of the solution. We are also using Python for
imilar reasons, as the application is still in a research phase. The
se of C++ could further improve performance.
It is also important to highlight that for simplicity we used

tatic texts, but dynamic texts with quantitative data – such as
esion sizes – could be used as well. The proposed method also
llows several regions to be marked and tracked simultaneously.
With respect to the domain expert evaluation, the proposed

ontinuous rating method seems to have worked well. It did
rovide results that match our experience and, most importantly,
orrelate with most of the objective metrics, with the caveats pre-
iously mentioned concerning the reported confidence provided
y the tracking methods. Although this assessment is limited to
ne person and does not constitute a user study, the evaluation is
ystematic and it was performed by an expert, whose opinion is
uch more meaningful than that of a random group of people. In
ddition, by choosing a continuous rating, the final average rating
s much more reliable than simply asking the domain expert to
ate the whole experience with a single value, which is much
arder. To the best of our knowledge, this is the first time this
ype of evaluation has been applied to this field. It is worth noting
hat although a $350 VR system was used for the assessment with
he domain expert, cheap VR glasses/cardboards – some of them
osting just a few US dollars – could also be used to visualize
he annotated videos, making our solution easy to deploy in real
eaching environments. The choice of a high-quality VR device
esponds to the need to offer the expert a configuration that is
s immersive as possible, so that the strengths and weaknesses
f the proposed solution appear as clearly as possible.
Overall, the results can be considered satisfactory. We have

o take into account that this study is quite singular, because we
re using tracking methods that have been mostly designed and
ested to find outdoor objects, such as cars or people. Tissues
ehave differently. In addition, in RAS, occlusions with surgical
ools are common, making the tracking process very challenging
or short-term trackers, like the ones that were tested. The CSRT
ethod, however, seems to deal well with short occlusions and

s able to remember what it was trying to track even if occlusions
ccur. Nevertheless, these occlusions need to be short and partial,

therwise the method will fail unless a low annotation update
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frequency is used. The problem with lower frequencies is that
they increase the chance that the tracking method will fail in
non-occlusion cases.

However, it seems that real-time tracking is not enough to
obtain a bulletproof unsupervised annotation method, since there
are situations where the tracker gets lost because of occlusions
and quick camera movements. These situations cannot be pre-
dicted beforehand, and it is impractical to fine-tune the parame-
ters of the trackers or the annotation update frequency for each
particular situation. A possible improvement could be testing in
real-time the accuracy of the method to determine a dynamic
optimized annotation frequency. However, other solutions, such
as trackers based on machine learning may be necessary to offer
a more robust solution, even if this is not a real-time one. These
trackers should be trained with inputs that are similar to the
ones that need to be annotated. Given the variety of surgical
procedures, this is not easy. Solutions based on deep learning
could be an alternative, although they take a great deal of time
to be trained and are better for generic contexts. This explains
why the GOTURN tracker fails for this problem, since this deep
learning tracker is trained with generic objects and not with
internal body tissues.

6. Conclusions and future work

Given the increasing importance of RAS within the surgical
field, this paper presents a hybrid tracking–matching method
for the creation of MR-based annotations in stereoscopic RAS
videos with a teaching perspective. The method is hybrid because
it uses a tracking algorithm for the temporal dimension and a
matching algorithm for the spatial dimension (left-to-right stereo
matching).

As demonstrated in the experiments performed, the method
can work well with RAS videos, as it has been successfully used
and assessed in two different real Use Cases and in one simulated
case. The method is unsupervised and can be run in real-time
with a regular computer. Therefore, it could be used by any RAS
teacher in order to improve their teaching materials. This is the
most important conclusion of this work.

Of all the trackers tested for the presented method, the CSRT
tracker seems to be the most reliable and robust, since it is able
to work under harsh conditions. It also does not need a high
update frequency to work well. Thus, it seems a good tracker
for this application, although it usually works better when the
tracked ROI can change in size over time, something that may
be counterproductive for the correct depth perception of the
annotations. Indeed, a virtual annotation that is constantly chang-
ing its position or size over time is uncomfortable. In any case,
this problem can be minimized by reducing the rate at which
the annotations are calculated, or by smoothing out the solution
using a weighted moving average. The reduction in the update
rate of the annotation could also have a positive effect in avoiding
loss of tracking due to occlusions, as one of our experiments has
shown. Any combination of calculation frequency and annotation
frequency is possible.

Validation by a domain expert also confirms that the proposed
method is a suitable solution for this problem. The method works
well, although it is true that the virtual annotations created with
this algorithm will not be properly occluded if a real object is
placed between the camera and the virtual annotation. The most
important limitation of this method is that virtual objects are not
occlusion-aware since we skip true depth estimation calculations.
However, annotations of occluded objects are rare and not very
useful, since annotations usually highlight visible objects. In fact,
the domain expert did not complain about this at all. In addition,
knowing the intrinsic parameters of the camera, the method
would also be able to calculate the true depth of the ROI.
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It is also true that sustained occlusions can make short term
rackers fail, even the CSRT. Thus, for long-term tracking it is
mportant to also explore methods that are either based on the
se of AI or combine AI with traditional methods based on con-
olutional filters. Future work includes improving this method to
etter deal with occlusions and use depth estimation to make
t occlusion-aware. It will also be interesting to try a different
racker, develop a tracker tailored for this problem, perform an
blation study of the parameters involved in the proposed an-
otation method or even compare tracked annotations to fixed
nnotations. We will also add the option to perform the stereo
atching restricted to an epipolar band in order to allow further
ptimization at the cost of losing universality. Last but not least,
he researchers plan to include this MR-based annotation method
n a RAS video teaching application, so that we can test it under
eal conditions and perform usability studies with surgeons.
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