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A B S T R A C T

Accurate and fast demand forecast is one of the hot topics in supply chain for enabling the precise execution
of the corresponding downstream processes (inbound and outbound planning, inventory placement, network
planning, etc.). We develop three alternatives to tackle the problem of forecasting the customer sales at
day/store/item level using deep learning techniques and the Corporación Favorita data set, published as part
of a Kaggle competition. Our empirical results show how good performance can be achieved by using a
simple sequence to sequence architecture with minimal data preprocessing effort. Additionally, we describe a
training trick for making the model more time independent and hence improving generalization over time. The
proposed solution achieves a RMSLE of around 0.54, which is competitive with other more specific solutions
to the problem proposed in the Kaggle competition
1. Introduction

We have observed how the retail industry economic activity is
moving online. In the last years, e-commerce companies are gaining
more and more adepts every day. E-Marketer (Cramer-Flood, 2020;
Lipsman, 2019) reported consistent year on year growths in number of
sales of more than 13% in the last 5 years in the US. The percentage of
total sales in the US owned by e-commerce companies increased from
8,9% to 14,5% in 2020 (Cramer-Flood, 2020; Lipsman, 2019).

The continuously increasing demand requires the online industries
to constantly improve their supply chain systems. This process entails
multiple challenges such as: optimal inventory placement (Graves &
Willems, 2008), accurate network expansion (Badri et al., 2017), pre-
cise inbound and outbound planning (Kaipia, 2009), etc. One of the
most important wires that enables all those improvements is the ability
to accurately forecast the customer demand for different products,
locations and times (Forslund & Jonsson, 2007).

This paper proposes several alternatives to solve the demand fore-
cast problem using deep learning techniques (Goodfellow et al., 2016).
The generalization power of these algorithms enables solving the prob-
lem using a single model for all the different locations and products
time series, while other algorithms like the ARIMA family of models
(Hyndman & Athanasopoulos, 2018) only can tackle one product–
location time series at a time.
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Two approaches are described in this work: a sequence-to-sequence
(seq2seq hereafter) architecture with product and location conditioning
and an adapted transformer architecture for time series forecasting. The
code used in this work has been published in GitHub: https://github.
com/ivallesp/cFavorita.

Section 1.1 describes the data set used in this study and the ob-
jective to be forecasted. The previous work done in the field of de-
mand forecast and with the Corporación Favorita data is described in
Section 1.2. Section 2 dives deep into the different forecasting method-
ologies used, together with the different tricks of each implementation.
Finally, Sections 3 and 4 detail the results obtained and summarize the
conclusions of this work.

1.1. Data

The Corporación Favorita Grocery Sales data set has been used to
conduct this study (Corporación Favorita, 2018). Corporación Favorita,
an Ecuadorian company owner of multiple supermarkets across Latin
America, released this data set around 2017 as a Kaggle competition to
challenge the community to forecast their sales. It contains daily sales
records for 4400 unique items, in 54 different Ecuadorian stores from
January 1st 2013 to August 15th 2017. Additional data provided along
with the number of sales are described below.
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Fig. 1. Long tail distributions for items (left) and stores (right). Y axes represent total sells across all the history (around 5 years).
Fig. 2. Daily total sales for the 5 years included in the data.
• ID variables: date, store number and item number.
• Promotions: a binary variable indicating if a given item, in a given

store at a given time was on promotion.
• Store information: location (city and state) and segment (type and

cluster).
• Item information: item family, class, and a binary variable indi-

cating if the item is perishable.
• Transactions: Number of total sales for each store at each date.
• Oil price: price of the oil on each date.
• Holidays and events: dates, locations and types of holidays.

As it is usual in the supply chain organizations, the distribution of
ales across products is very uneven (see Fig. 1-left where the top 10%
f the products bring the 44% of the sales). The same characteristic is
bserved in the case of the stores (see Fig. 1-right where the top 10
tores bring 40% of the sales). The sales for some products are very
parse: during the test period, the probability of having one or more
ells for a given product is 47.6%, which in practice means that more
han half of the days in the time series will have value of zero.

As it can be noticed in Fig. 2, the total sales show clear year on
ear trends as well as a very remarkable weekly seasonality (see Fig. 3).
here is also a peak of sales at the end of each year

The data set does not contain records for items in days when there
ere zero unit sales. It also lacks information about the available

nventory. These two facts together make the forecast effort more
omplicated, given that when there are zero sales of a given product in
store at a given date, it can be either because there was not available

nventory, or because there was inventory but not demand (or both of
hem at the same time).

Estimating the actual demand of a retailer is not a straightforward
ask (Deep & Salhi, 2019). In our case, the quantity being forecasted
s the number of sales. That would have an important implication in
he demand estimation: the number of sales represent the demand as
ong as there exists available inventory. Hence, the quantity estimated
y the machine learning model will be the demand bounded by the
nventory 𝑚𝑖𝑛(𝑑𝑒𝑚𝑎𝑛𝑑(𝑖, 𝑠, 𝑑), 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦(𝑖, 𝑠, 𝑑)) (where 𝑖, 𝑠 and 𝑑 are the
nventory, the store and the date). There are techniques to correct the
emand in these cases (e.g. Bell (2000)). However as the objective of
his study is to build the forecast model, it is out of the scope of this
aper to deal with that inconvenience.
2

Fig. 3. Weekly pattern detail, including the 2014 sales.

1.2. Previous work

We have found several works applying deep learning techniques for
demand and sales forecast in the supply chain environment. Kilimci
et al. (2019) use several multi-layer perceptrons (MLP) to build a unified
forecast and compare it with more classical techniques. The main dis-
advantage of this approach is that it requires heavy feature engineering
work, as the MLPs are not suitable to deal with time series. In a supply
chain problem, this is not practical given the huge quantity of data
normally available. In the work by Talupula (2018), different deep
learning architectures Convolutional Neural Networks (CNN), Long–
Short Term Memory (LSTM) and Multi Layer Perceptron performance
are compared over an outbound demand forecast task, using data from
a retailer. Similarly, Helmini et al. (2019) compare a deep learning
model based on LSTMs with peephole connections with more classical



Expert Systems With Applications 201 (2022) 116993I. Vallés-Pérez et al.

o

i

Fig. 4. Seq2seq architecture diagram. The left box shows the encoder, which takes the historical actual sales 𝑦𝑖 as input as well as other exogenous time-dependent features (i.e. oil
price, holidays and events, transactions and promotions) denoted by 𝑥𝑖, and returns the hidden vector ℎ𝑡 of the last recurrent module as output (aka context vector). The middle
f the figure shows the context conditioning module, which is our variation proposal over the original sequence to sequence proposal. This module receives the context vector ℎ𝑡

from the encoder module and concatenates it with static data 𝑥̂ producing a conditioned context vector ℎ̂𝑡 = (ℎ𝑡 , 𝑥̂). Finally, on the right, the decoder module receives as initial
state the conditioned context vector and provides the first recurrent cell with a go symbol (constant input indicating the input of the decoded sequence). The decoder generates
the sequence prediction in an autoregressive way. 𝑓 is a stack of two fully-connected layers applied to each output of the decoder.
2

Fig. 5. Transformer architecture used to perform time series forecasting. In the
diagram, the ∥ symbol stands for the concatenation operation, and similarly as
n Vaswani et al. (2017), 𝑁𝑋 represents the number of repetitions of the encoder

and decoder blocks.

approaches using tree-based models. The difference with our approach
is that we propose a set of flexible architectures capable to deal with
multi-modal data more efficiently, while the models proposed in these
works can only deal with time series. Furthermore, we use sequence-to-
sequence modeling, which minimizes the error across all the predicted
sequence, while the authors of the aforementioned papers use a next-
step prediction auto-regressive model, which only optimizes the error
of the next time step.

However, we only found a few reports using this data set for
benchmarking. In Kechyn et al. (2018), the authors used the WaveNet
(van den Oord et al., 2016) architecture to build an autoregressive
forecast. They achieved the 2nd position in the Kaggle competition
3

that published the Corporación Favorita data. The authors only show
some charts summarizing their results, pointing to Root Mean Squared
Weighted Logarithmic Errors (RMSWLE) of around 0.578. However,
they do not give many details about the architecture used and the
experimental framework. They also do not specify the period of time
used to measure the errors. Calero and Caro (2018) used multiple
classical techniques (historical average, ARIMA/SARIMA, Snaive and
exponential smoothing) to forecast the daily sales. These techniques
do not consider multiple sale points and products at the same time.
They reach a minimum RMSWLE of 0.555. These solutions achieve
competitive results. However, they require training one model per item
and store (around 238,000 models), which is not a scalable approach
for a production environment. The methods proposed in this paper
consist of a single model that is used over all the time periods, items
and points of sale.

Other studies using the same data set have been found: Curtin et al.
(2020), Khamis et al. (2020), Kuleshov et al. (2018), Lim et al. (2019),
Malik et al. (2019), Schleich et al. (2019), Shaikhha et al. (2020) and
Wang et al. (2020). Although some of them may be interesting for the
supply chain goals, they deviate from our demand/sales forecast goal.

2. Material and methods

The size of the data set chosen (around 4 ⋅ 108 samples) enables the
use of deep learning models. Two different neural architectures have
been designed: a seq2seq model and a transformer model.

.1. Seq2seq

A sequence-to-sequence architecture (abbreviated as seq2seq) is a
model that is trained to map an input sequence to an output se-
quence, without any length restriction in both sides (input and output
sequences can be of different length) (Sutskever et al., 2014). This
architecture contains two main blocks: one encoder and one decoder.
The encoder consists of a recurrent neural network which processes the
input sequence, one sample at a time, condensing all the relevant input
sequence information into a fixed length context vector. This vector
is usually the last hidden state of the encoder 𝐡𝐭 (Uday Kamath &
Whitaker, 2019). The decoder, also consisting of a recurrent neural
network, generates the output sequence conditioned to the context
vector. Both modules are trained together to minimize an error term
over the output.

For the purpose of the current study, the original seq2seq archi-
tecture has been slightly modified to condition the context vector to a
set of static (non time-dependent) features (see Fig. 4 for a graphical
representation of the architecture). To achieve that, the original context
vector 𝐡𝐭 has been concatenated with the static features (item and store
embeddings and related features) and then passed into a feed-forward
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Fig. 6. Evolution of the train and validation (dev) error during the process of training, for all the models.
Fig. 7. Distribution of the error across stores (left) and across items (right) for every model and for the three different test periods used.
𝑓

neural network with two hidden layers. The context conditioning mod-
ule is an important part of the network because it allows the model to
adapt the predictions to each product and store. The output of the feed-
forward neural network has been used as the initial state of the decoder.
The input of the first recurrent cell of the decoder is a special symbol
that indicates the model that it is the first step of the output sequence.
In this case, the special symbol is a vector containing all zeros.

The decoder module is a first order auto-regressive model, i.e. the
predicted value for time step 𝑡 is used as input for the prediction of time
tep 𝑡 + 1.

.2. Transformer

Transformer architectures were firstly published in 2017 (Vaswani
t al., 2017). This architecture removes the need to use recurrent neural
etworks by implementing attention and self-attention mechanisms
Bahdanau et al., 2015). Like seq2seq architectures, the transformers are
ble to map an input sequence to an output sequence, with potentially
ifferent lengths. Similarly, they also consist of two blocks: the encoder
nd the decoder.

The attention mechanism can be described as shown in Eq. (1).
here 𝑄, 𝐾, 𝑉 stand for query, key and value, respectively. These three

ieces represent an analogy, introduced by Vaswani et al. (2017), of
he information retrieval systems where a query is used in order to
ook for the matching key (or the most similar one) and retrieving its
alue. The attention mechanism working principle is similar to those
ystems. There are many possible differentiable similarity functions (𝑓 )
hat can be used (Uday Kamath & Whitaker, 2019). Vaswani et al.
2017) propose the Scaled Dot Product as similarity function, given that
t is scaled so that different length sequences can be easily compared
ogether. The Scaled Dot Product is defined in Eq. (2), where 𝑑𝐾
epresents the length of the key vector 𝐾. We have adopted this version

as it showed to work well in the initial transformer publication.
We applied a slight modification over the original transformer,
4

removing the softmax operation of the output and only using the
categorical embeddings for the categorical inputs. This is necessary in
our case because our task is a regression and not a classification.

𝐶(𝑄,𝐾, 𝑉 ) = softmax(𝑓 (𝐐,𝐊)) ⋅ 𝐕 (1)

SDP(𝐐,𝐊) =
(𝐐 ⋅𝐊𝑇 )
√

𝑑𝐾
(2)

Following the information retrieval analogy and as illustrated
in Fig. 5, there are two types of attention being used in this architecture.

• encoder–encoder attention: this is a form of self-attention that is
used in the encoder module. In it, the query, the key and the value
come from the same time series.

• decoder–decoder masked attention: this is also a form of self-
attention with the particularity that the operation is forced to be
causal, i.e. it only uses time steps from the past, the future ones
are masked out. The query, key and value come from the same
time series.

• encoder–decoder attention: this attention mechanism compares the
decoder information with the encoder one, hence it is not self-
attention. The query comes from the decoder while the key and
value are taken from the encoder output.

To train the transformer architecture the teacher forcing technique
(Goyal et al., 2016; Williams & Zipser, 1989) is used. It consists in
feeding the decoder with the target sequence, right-shifted by one
sample so that the training can be done in one single calculation per
batch. This technique is commonly used in auto-regressive models to
improve the speed of training, and showed good results in the litera-
ture (Vaswani et al., 2017). On inference, teacher forcing is no longer
available (because the future time steps of the time series are unknown)
so auto-regression is used to compute the next steps recursively (i.e. the
predicted sample is fed back to the input in order to predict the next

sample).



Expert Systems With Applications 201 (2022) 116993I. Vallés-Pérez et al.
Fig. 8. Actual and forecasted sales in log space for six examples of store–item combinations representing the 0th (best prediction), 1st, 2nd, 5th 15th and 50th percentiles of
RMSLE (relative to the target variable average) from top to bottom. The three test periods have been concatenated along the X axis. The error bars show the standard deviation
across the 5 runs.
r
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2.3. Random max time step trick

At training time and with the aim of improving generalization over
different periods of time, each minibatch has been constructed so that
the maximum time step (the most recent one) is drawn randomly from
the time line. This trick allows the algorithm to learn a model that
generalizes over different periods of time, preventing it to overfit to
a single time span.

3. Experimental setup and results

3.1. Experimental setup

The data set provided has intentionally been minimally
pre-processed as one of the goals of the current study is to provide a
simple and flexible solution to the demand forecast problem. The most
important transformation consisted of filling the zero sales records,
as the data set was provided without them. The numerical input
5

2

variables have been normalized by centering and scaling them while
the categorical variables have been turned into one hot encoding repre-
sentations. The target variable has been normalized using a logarithmic
transformation, as suggested by the authors of the data set in the
Kaggle competition (Corporación Favorita, 2018). The ID variables
corresponding to the store and the item have been used as an input
to an embedding lookup layer to give the model the opportunity to
learn store or item related information.

The model has been trained using daily data from January 1st 2013
to May 27th 2017, to produce daily forecasts of the next 16 days.2
Data from June 13th 2017 to June 28th 2017 have been used for
validation purposes and the next 3 16-days time spans (June 29th to
July 14th, July 15th to July 30th and July 31st to August 15th, referred

2 This is not an arbitrary decision, we chose 16 days because that was the
equirement in the Kaggle competition. That choice would make sense for bi-
onthly forecast publications, as it would be applicable for months with 28,
9, 30 and 31 days.
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Fig. 9. Actual and forecasted sales in linear space for six examples of store–item combinations representing the 0th (best prediction), 1st, 2nd, 5th 15th and 50th percentiles of
RMSLE (relative to the target variable average) from top to bottom. The three test periods have been concatenated along the X axis. The error bars show the standard deviation
across the 5 runs.
r
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subsequently as period 1, 2 and 3 respectively) have been used to test
the performance of the algorithms.

The random max time step has been constrained not to lay before
October 29th 2013, to assure that the model has at least 300 days of
history to learn from.

In the seq2seq model all the history (from January 1st 2013) has
been used as input. In the transformer model, given the quadratic
computational complexity dependence on the length of the input se-
quence, the history had to be shortened to 200 days. In the spirit of fair
comparison, an alternative seq2seq version (referred subsequently as
seq2seq trimmed) has been trained using the 200 most recent time steps
in every minibatch. To facilitate the interpretation of the results, two
baselines have been included: random and average. The first one consists
of measuring the accuracy of a naive prediction built by randomly
permuting the target variable. The second one consists of predicting
the average of the target variable for all the instances.
6

3.2. Results and discussion

The results have been measured using the Root Mean Squared Loga-
ithmic Error (RMSLE, defined in Eq. (3)), Root Mean Squared Weighted
ogarithmic Error (RMSWLE, defined in Eq. (4), where the perishable
tems are given a weight of 1.25, and 1.0 to the rest), and Mean Absolute
ogarithmic Error (MALE, defined in Eq. (5)).

𝑅𝑀𝑆𝐿𝐸 =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1

(

log(𝑦̂𝑖 + 1) − log(𝑦𝑖 + 1)
)2 (3)

𝑅𝑀𝑆𝑊𝐿𝐸 =

√

√

√

√

√

√

√

√

√

√

𝑛
∑

𝑖=1
𝑤𝑖

(

log(𝑦̂𝑖 + 1) − log(𝑦𝑖 + 1)
)2

𝑛
∑

𝑖=1
𝑤𝑖

(4)

𝑀𝐴𝐿𝐸 =

√

√

√

√
1

𝑁
∑

|

|

log(𝑦̂𝑖 + 1) − log(𝑦𝑖 + 1)|
|

(5)

𝑁 𝑖=1
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Table 1
Results of the models trained for three different time spans. All the models have been
trained five times to reduce the effect of different random initialization. The errors are
represented as mean ± standard deviation, across the five runs. We have highlighted the
rows corresponding with the models that achieved the lowest RMSLE. At the bottom of
the table we have included two benchmark metrics extracted from the previous works,
although the authors do not clearly specify the period of time used to measure the
results, they should be used only as a reference.

Period Model RMSLE RMSWLE MALE

1 Seq2seq 𝟎.𝟓𝟑𝟖𝟎 ± 𝟎.𝟎𝟎𝟏𝟔 𝟎.𝟓𝟑𝟕𝟔 ± 𝟎.𝟎𝟎𝟏𝟔 𝟎.𝟑𝟒𝟓𝟎 ± 𝟎.𝟎𝟎𝟐𝟒
Seq2seq trimmed 0.5381 ± 0.0008 0.5377 ± 0.0008 0.3442 ± 0.0008
Transformer 0.5439 ± 0.0024 0.5436 ± 0.0023 0.3386 ± 0.001
Baseline: random 1.474 ± 0.0003 1.4795 ± 0.0003 1.0691 ± 0.0002
Baseline: average 1.0422 1.05 0.8744

2 Seq2seq 0.5431 ± 0.0014 0.5421 ± 0.0013 0.3475 ± 0.0012
Seq2seq trimmed 𝟎.𝟓𝟒𝟏𝟑 ± 𝟎.𝟎𝟎𝟏𝟗 0.𝟓𝟒𝟎𝟑 ± 𝟎.𝟎𝟎𝟏𝟖 𝟎.𝟑𝟒𝟒𝟒 ± 𝟎.𝟎𝟎𝟏𝟐
Transformer 0.5495 ± 0.0021 0.5486 ± 0.0021 0.3415 ± 0.0012
Baseline: random 1.4649 ± 0.0002 1.4702 ± 0.0002 1.0577 ± 0.0003
Baseline: average 1.0358 1.0433 0.8655

3 Seq2seq 0.544 ± 0.0021 0.5431 ± 0.0021 0.3502 ± 0.0028
Seq2seq trimmed 0.5423 ± 0.0015 0.5414 ± 0.0016 0.3481 ± 0.0017
Transformer 𝟎.𝟓𝟒𝟏𝟒 ± 𝟎.𝟎𝟎𝟏𝟓 𝟎.𝟓𝟒𝟎𝟕 ± 𝟎.𝟎𝟎𝟏𝟒 𝟎.𝟑𝟑𝟔𝟔 ± 𝟎.𝟎𝟎𝟏𝟐
Baseline: random 1.4555 ± 0.0002 1.4606 ± 0.0002 1.0517 ± 0.0002
Baseline: average 1.029 1.0363 0.8616

Benchmark Kechyn et al. (2018) – 0.578 –
Benchmark Calero and Caro (2018) – 0.555 –

Table 2
Results of the models trained with and without the random max time step trick. All
he models have been trained five times to reduce the effect of different random
nitialization. The errors are represented as mean ± standard deviation, across the five
uns. We have highlighted the rows corresponding with the models that achieved the
owest RMSLE.
Period Trick/No trick RMSLE RMSWLE MALE

1 Trick 𝟎.𝟓𝟑𝟖𝟏 ± 𝟎.𝟎𝟎𝟎𝟖 𝟎.𝟓𝟑𝟕𝟕 ± 𝟎.𝟎𝟎𝟎𝟖 𝟎.𝟑𝟒𝟒𝟐 ± 𝟎.𝟎𝟎𝟎𝟖
No trick 0.6077 ± 0.0055 0.6073 ± 0.0054 0.4037 ± 0.0171

2 Trick 𝟎.𝟓𝟒𝟏𝟑 ± 𝟎.𝟎𝟎𝟏𝟗 𝟎.𝟓𝟒𝟎𝟑 ± 𝟎.𝟎𝟎𝟏𝟖 𝟎.𝟑𝟒𝟒𝟒 ± 𝟎.𝟎𝟎𝟏𝟐
No trick 0.5895 ± 0.0042 0.5886 ± 0.0042 0.3892 ± 0.0216

3 Trick 𝟎.𝟓𝟒𝟐𝟑 ± 𝟎.𝟎𝟎𝟏𝟓 𝟎.𝟓𝟒𝟏𝟒 ± 𝟎.𝟎𝟎𝟏𝟔 𝟎.𝟑𝟒𝟖𝟏 ± 𝟎.𝟎𝟎𝟏𝟕
No trick 0.5929 ± 0.0127 0.5922 ± 0.0125 0.3938 ± 0.0318

In the previous equations, 𝑦̂ represents the predicted sales, 𝑦 rep-
resents the actual sales and 𝑁 is the total number of samples. The
ogarithmic component of the error metrics was introduced because
ifferent products at different shops have arbitrarily different demand
evels. The usage of the logarithm normalizes the unit sales distribution
nd makes the whole problem easier to measure. We always used
he natural logarithm in this study. The RMSWLE error metric has
een introduced for easier comparison and benchmarking with future
tudies.

Fig. 6 shows how the errors evolve in every epoch. Fig. 7 decom-
oses the error at store and item level, in order to show in detail how
he errors vary along these dimensions. Finally, Figs. 8 and 9 show
xamples of actual and forecasted time series in log and linear scales,
espectively.

From Fig. 7, we observe that the performance is very similar across
odels. A numerical comparison of the errors obtained for every model

s presented in Table 1. Additionally, a deeper daily analysis is provided
n Fig. 10. From these figures, we conclude that the error is not
istributed randomly across products, stores and time.

From Table 1, we can conclude that the three models perform
imilarly. However, the daily figures show that the transformer error
as more variability around the second and fourth day of forecast.
his may be due to the fact that the model has been trained using

eacher forcing (Goyal et al., 2016; Williams & Zipser, 1989), and at
nference time, an auto-regressive strategy has been used to compute
he forecasted sales. This may cause distribution shifts that impact the
uality of the forecast. Besides, the seq2seq models were much faster
7

t training and inference time. This is due to the quadratic complexity
Table 3
Results of the Seq2seq models trained with different input sequence lengths. All
the models have been trained five times to reduce the effect of different random
initialization. The errors are represented as mean ± standard deviation, across the five
runs. We have highlighted the rows corresponding with the models that achieved the
lowest RMSLE.

Period Sequence length RMSLE RMSWLE MALE

1 Full 0.5380 ± 0.0016 0.5376 ± 0.0016 0.3450 ± 0.0024
200 0.5381 ± 0.0008 0.5377 ± 0.0008 0.3442 ± 0.0008
75 𝟎.𝟓𝟑𝟕𝟐 ± 𝟎.𝟎𝟎𝟏𝟔 𝟎.𝟓𝟑𝟔𝟗 ± 𝟎.𝟎𝟎𝟏𝟔 𝟎.𝟑𝟒𝟓𝟖 ± 𝟎.𝟎𝟎𝟑𝟒
10 0.5452 ± 0.0008a 0.5447 ± 0.0009a 0.3478 ± 0.0017
1 0.5812 ± 0.0042a 0.5807 ± 0.0042a 0.3795 ± 0.0029a

0 0.8411 ± 0.0016a 0.8453 ± 0.0015a 0.5408 ± 0.0028a

2 Full 0.5431 ± 0.0014 0.5421 ± 0.0013 0.3475 ± 0.0012
200 0.5413 ± 0.0019 0.5403 ± 0.0018 0.3444 ± 0.0012a

75 𝟎.𝟓𝟒𝟎𝟎 ± 𝟎.𝟎𝟎𝟏𝟎a 𝟎.𝟓𝟑𝟗𝟐 ± 𝟎.𝟎𝟎𝟏a 𝟎.𝟑𝟒𝟓𝟖 ± 𝟎.𝟎𝟎𝟎𝟗
10 0.5510 ± 0.0049a 0.5501 ± 0.0048a 0.3509 ± 0.0038
1 0.6162 ± 0.0035a 0.6156 ± 0.0037a 0.4011 ± 0.0032a

0 0.8426 ± 0.0016a 0.8461 ± 0.0015a 0.5388 ± 0.0027a

3 Full 0.5440 ± 0.0021 0.5431 ± 0.0021 0.3502 ± 0.0028
200 0.5423 ± 0.0015 0.5414 ± 0.0016 0.3481 ± 0.001
75 𝟎.𝟓𝟒𝟏𝟖 ± 𝟎.𝟎𝟎𝟐𝟔 𝟎.𝟓𝟒𝟏𝟏 ± 𝟎.𝟎𝟎𝟐𝟓 𝟎.𝟑𝟒𝟗𝟗 ± 𝟎.𝟎𝟎𝟒𝟕
10 0.5560 ± 0.0051a 0.5548 ± 0.0051a 0.3562 ± 0.0049
1 0.6360 ± 0.0058a 0.6352 ± 0.0062a 0.4163 ± 0.0041a

0 0.8387 ± 0.0017a 0.8419 ± 0.0016a 0.5373 ± 0.0027a

aAdded to the experiments where the metric is significantly different than the full
sequence error (as per a two-tail T-test with 𝛼 = 0.05).

dependence on the sequence length in the transformer architecture; in
seq2seq it is linear. The simplest model (seq2seq trimmed) was the fastest
of the three alternatives, with no noticeable decrease in performance,
either in the general picture or in the daily figures.

3.3. Ablation study

In this subsection we analyze the effect of two core pieces of our
proposed architecture: the random max time step trick and the length of
the input sequences in the Seq2seq trimmed model.

3.3.1. Random max time step trick
We retrained the Seq2seq trimmed model without the random max

time step trick. Table 2 summarizes the errors obtained at the best
iteration of each model, averaged across five repeated runs. From the
results, we conclude that when the random max time step trick is used
the model achieves significantly superior performance. This is due
to the fact that randomizing the max time step helps the model to
capture behaviors of the target signal at different times. Fig. 11, shows
the training curves when the trick is used and when it is not used,
suggesting that the trick may also act as a regularization technique,
as the model is much less prone to overfitting when the trick is used.

3.3.2. Input sequences length
As we showed in the Table 1, the Seq2seq model can be further

simplified by trimming the length of the input sequences. In this
subsection we study the minimum length of the input sequence without
significant performance degradation. For that, we retrained the Seq2seq
model with different input sequence lengths to determine where is the
optimum. The Table 3 shows the results of the model with the full se-
quences, and with sequences trimmed to 200, 75, 10, 1 and 0 time steps
(where 0 time steps means not using any input sequence information
at all, only static features). The results show that we can reduce the
sequence lengths to up to 75 time steps without losing performance
(and even slightly improving the generalization). Further reductions to
10 and 1 time steps start showing performance degradation. When not
using input sequences (length = 0) the performance degrades notably,
s compared to using only one time step. We hypothesize that this
appens because the model needs some reference level of number of
ales per product to produce accurate forecasts.
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Fig. 10. Daily RMSLE for the three test periods (in chronological order, from top to bottom). The error bars shown in the figures represent the standard deviation of the three
runs. Despite the error spikes in the 2nd day of the forecast, an ANOVA test shows non-significant differences between the average performance of the three models (with the
following p-values: 0.0947, 0.1823 and 0.6181 for periods 1, 2 and 3, respectively).
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Fig. 11. Training and validation MALE curves of the Seq2seq trimmed when using the
andom max time step trick and when disabling it.

. Conclusions

Along this work, we have proposed a seq2seq and a transformer
architecture capable to solving the problem of sales forecasting for the
Corporación Favorita problem. We have also provided a trick (that we
named random max time step trick) that allowed to train the model to
dapt to different time steps, not requiring to retrain the model every
ime a prediction is needed. We have empirically proved that it is
ossible to build a forecast for different products, at different points
f sale and at different points in time using a single model. Our seq2seq

trimmed model achieved the best performance at the lowest theoretical
8

computational cost. For that reason, we recommend its usage for this
type of use cases.

Deeper and more complex models must be tested further in order
to try to improve performance by allowing more non-linear repre-
sentations. In a real case, feature engineering may also be useful in
order to help finding better representations. Finally, more sophisticated
normalization methods for the target variable might be useful to deal
with different magnitudes and sparsity.
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