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Abstract

Brain is an oxyregulator organ, however extremely vulnerable to oxygen. Both high and low 
oxygen concentrations generate free radicals and may cause oxidative stress and damage 
because of an insufficient response of the antioxidant system. Hypoxic preconditioning (HP) 
exerts neuroprotective effects and may be a protecting tool against oxygen fluctuations, 
thus preventing neuronal damage in events such as ischaemia, acute hypoxia, stroke, 
or traumatic brain injury, among others. This review aims to discuss the molecular 
mechanisms involved in the neuroprotective action of HP against oxidative stress and 
subsequently upon the brain under pro-oxidant conditions. Activation of the antioxidant 
defences represents the first line to neutralize oxidative stress and is characterized by low 
reactive oxygen species, reduced oxidative damage biomarkers, and increased level of 
reduced glutathione. These protective mechanisms decrease cell death activating anti-
apoptotic signalling pathways and reducing neuroinflammation by the inactivation of 
microglia and astroglia cells. HP could be considered a new approach to reduce oxidative 
stress derived damage caused by a great variety of brain pathologies. Despite our intriguing 
findings, further experiments are needed for a better understanding of the molecular 
mechanisms involved in the neuroprotective actions of HP.

Hypoxic preconditioning

Hypoxic preconditioning (HP) is defined as a phenomenon 
or response in which a mild and transient hypoxic 
exposure induces cellular protection, thus improving tissue 
tolerance to variable oxygen concentrations (Gidday 2006, 
Li et al. 2017). HP has been widely explored as a means of 
brain protection. Experimental studies suggest that the 
brain can be preconditioned to resist acute injuries, such 
as ischaemic stroke, neonatal hypoxia/ischaemia, trauma, 
and agents used in models of neurodegenerative diseases, 
such as Parkinson’s disease and Alzheimer’s disease (Stetler 
et al. 2014). This review aims to broaden the understanding 

of the neuroprotective role of HP against oxidative stress. 
Both terms, preconditioning and tolerance, were first 
introduced in the 1960s. Subsequent research has led to 
the understanding that HP is an adaptive response that 
interferes with cell death pathways following the activation 
of multiple genes (Janoff 1964, Feng & Bhatt 2015). But 
it was not until 20 years later that it was identified in the 
CNS. CNS is an oxyregulator tissue with a high oxygen 
consumption rate plus an inability to store energetic 
substrates. Consequently, the CNS requires a continuous 
supply of oxygen and is very sensitive to changes in 
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the blood oxygen content (Luo et  al. 2011). Therefore, 
maintaining brain homeostasis requires the presence of 
adaptive mechanisms that allow brain to survive during 
hypoxic episodes. Hypoxic tolerance stimulates brain 
plasticity fostering modifications in its function and 
organisation that improve the adaptability to the changing 
environment to which brain is exposed. A study in P6 rat 
offspring showed that HP protects myelin after a hypoxic–
ischaemic insult either directly or by promoting the 
maturation of oligodendrocyte progenitors to regenerate 
lost or damaged myelin in the white matter (Suryana & Jones 
2014). In another experiment performed in P3 mice, the 
effect of tracheal occlusion on blood pressure was compared 
to adult animals. Hence, while tracheal occlusion dropped 
arterial blood pressure to zero levels, newborn offspring 
responded with a sigsnificantly milder reduction and over a 
more prolonged time (Li et al. 2017). In another study, adult 
mice treated with an intraperitoneal brain homogenate 
from mice subjected to HP experienced a longer survival 
time in a hypobaric chamber. In addition, cells co-cultured 
under hypoxia with brain extract from preconditioned 
animals were substantially more viable than cells from the 
control group. When dissociated synaptosomes of the rat 
cortex were co-cultured under condition of hypoxia with 
this homogenate extract, an indicator of cell death such 
as lactate dehydrogenase was released to a lesser extent, 
indicating protection by the extract (Lu et  al. 2005).  
These results indicate a neurochemical adaptation to 
hypoxic stress.

In vitro and in vivo studies have shown that HP 
induces protection against subsequent ischaemic 
brain injury in experimental adult and newborn 
models. Neuroprotection has been seen in different cell 
populations such as astrocytes (Liu & Alkayed 2005), 
hippocampal cells (Bickler & Fahlman 2009), and primary 
neuronal cultures (Arthur et al. 2004), as well as in adult 
murine models of cerebrovascular accident tolerance  
(Fan et al. 2011).

The different in vitro and in vivo models to study HP 
differ in the concentration of oxygen to induce hypoxia, as 
well as in the moments in which they are subjected to these 
conditions. Oxygen concentrations to which cell cultures 
are normally subjected in in vitro HP studies are around 5% 
O2. In vivo studies often differ, but the most employed HP 
conditions target 8% O2 for 3 h, 24 h before exposure to the 
injurious intervention. Rat pups at P6 are the most widely 
employed experimental model (Table 1).

Importantly, the duration of the tolerant state 
induced by HP may be age dependent. Thus, in adult 
mice, tolerance may be limited to 72 h (Zhan et al. 2010). 
However, in neonatal brains, the preconditioned period 
can be extended to 8 weeks and improve recovery after an 
ischaemic insult (Gustavsson et al. 2005). For adult brains, 
the repair capacity after injury is much lower, and if the 
animal is aged, HP has no protective effect upon brain 
deficit of oxygen and/or glucose (Bickler et  al. 2010). In 
line with these studies, hypoxic–ischaemic injury in the 
neonatal brain is also less susceptible to oxidative injury 
and recovery is better than in the aged brain (Xu et al. 2007).

Oxidative stress

Oxidative stress can be defined following Sies definition 
‘as an imbalance between oxidants and antioxidants in 
favor of the oxidants, leading to a disruption of redox 
signalling and control and/or molecular damage’ (Sies 
2015). Under normoxic conditions, the brain keeps a 
balance between pro- and antioxidants, but an excess 
of free radicals can lead to oxidative stress affecting cell 
signalling pathways (Sies 2017). The brain is particularly 
vulnerable to reactive oxygen species (ROS) due to its high 
content of unsaturated fatty acids which when oxidized 
produce peroxyl radicals. Moreover, the abundance of 
catalytic transition metals especially iron in some regions 
of the brain plus a low activity of antioxidant enzymes 

Table 1 Experimental models of HP in vivo/in vitro.

In vitro/In vivo Age HP %O2 Time of HP Reference 

Mouse cortical neurons G16 5% 15 h Liu et al. (2005)
Primary rat cortical neuronal cultures G18-19 5% 25 min Arthur et al. (2004)
Rat hippocampal slice cultures P9 5% 1 h Bickler & Fahlman (2009)
Rat hippocampal slice cultures 2 year 5% 1–10 min Bickler et al. (2010)
Rats P6 8% 3 h Gustavsson et al. (2005), Jones et al. (2006),  

Yin et al. (2007), Suryana & Jones (2014),  
Chen et al. (2015), Feng & Bhatt (2015), Xu et al. (2019)

Rats P7 8% 2.5 h Alkan et al. (2008)
Rats Adult 7% 4 h/8 days Coimbra-Costa et al. (2021)

G, gestational day; P, postnatal day.
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such as glutathione peroxidase (GPx) and catalase (CAT), 
and a high aerobic metabolic rate with high oxygen 
consumption undoubtedly cause an imbalance towards a 
pro-oxidant milieu (Coimbra-Costa et al. 2017).

Oxidative stress is linked to several neuropathological 
processes involving specific mitochondrial targets 
(Bhat et  al. 2015). However, enzymatic complexes 
linked to other structures and functions not involved 
in mitochondrial respiration also generate ROS. Hence, 
cytochrome P450 mono-oxygenase system, xanthine 
oxidoreductase, NADPH oxidases, heme oxygenases, 
myeloperoxidases and nitric oxide synthase among 
others are also capable of producing significant amounts 
of ROS. Moreover, in the presence of ‘free’ metals such 
as iron, copper, and manganese, Fenton chemistry 
exacerbates the generation of highly toxic hydroxyl 
radicals (Sanderson et al. 2013).

ROS involved in neurodegeneration include hydrogen 
peroxide (H2O2), superoxide anion (O2

·−), and hydroxyl 
radical (HO·). Reactive nitrogen species (RNS) such as 
nitric oxide (NO) and peroxynitrite (ONOO−·) also have a 
detrimental effect on neurons (Singh et al. 2019).

Increased ROS production results in increased 
lipid peroxidation, protein and DNA oxidation, and 
NO levels in brain tissue leading to oxidative injury, 
compromising mitochondrial integrity and energy 
production leading finally to cell death (Torres-Cuevas 
et  al. 2017). Indeed, neurons rely almost exclusively on 
mitochondria producing the energy required for most of 
the cellular processes, including synaptic plasticity and 
neurotransmitter synthesis (Torres-Cuevas et  al. 2019). 
Therefore, neurons and neuronal functions are highly 
susceptible to hypoxia, and a brief disruption of oxygen 
supply to the brain will lead to oxidative stress and cell 
damage (Wang & Michaelis 2010).

HP prior to severe acute hypoxia preserves at least 
partially the mitochondrial function. The preconditioning 
protocol of exposure to intermittent hypobaric hypoxia 
before an acute severe normobaric hypoxia insult leads to 
the preservation of a reducing milieu characterized by a 
lower level of ROS and the maintenance of intracellular 
glutathione (GSH) concentration and Mn superoxide 
dismutase (SOD) activity. This antioxidant response 
decreases the activity of pro-apoptotic cascades mediated 
by the downregulation of nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-κB) and the 
upregulation of erythropoietin (EPO) highlighting the 
neuroprotective effect of HP. Furthermore, sublethal 
hypoxic conditions stimulate neurogenesis and 
angiogenesis similar to what occurs during embryonic 
brain development (Coimbra-Costa et  al. 2021). Thus, 
the neuroprotective mechanisms triggered by HP include 
activation of antioxidant and anti-apoptotic pathways, 
suppression of excitotoxicity, promotion of cell 
proliferation, activation of anti-inflammatory responses, 
and enhancement of vascular regulation (Fan et al. 2020) 
(Fig. 1). HP could have, therefore, different therapeutic 
uses in the prevention of diseases where hypoxia is the 
basis of pathogenesis.

Biological response to HP may include two 
differentiated types of responses depending on the 
timing of the stimulus. First, a rapid onset response just 
a few minutes or hours after the exposure to hypoxia and 
results in post-translational responses such as alterations 
in ion channel permeability, protein phosphorylation, 
and a second with later onset period delayed by hours 
or days, which depends on gene expression and protein 
synthesis, involving survival and repair mechanisms. 
Both responses are transient but can be repeatedly 
induced (Gidday 2006).

Figure 1
Neuroprotective mechanisms resulting from HP. 
Preconditioning by hypoxia can produce a 
neuroprotective effect in the brain through the 
activation of several metabolic pathways that can 
be grouped into four main blocks: increased 
antioxidant defences, decreased neurotoxicity, 
decreased neuroinflammation, and improved cell 
survival. Hypoxia inducible factor (HIF-1), 
erythropoietin (EPO), glutathione (GSH), 
peroxisome proliferator-activated receptor 
gamma coactivator 1-alpha (PGC-1α), B-cell 
lymphoma 2 (Bcl-2), nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-κB), and 
brain-derived neurotrophic factor (BDNF).
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Mechanisms of neuroprotection

Activation of antioxidant defence

HP induces the activation of the transcription factor 
nuclear erythroid 2-related factor 2 (Nrf2). Nrf2 is a master 
regulator that upregulates an ample array of antioxidant 
enzymes such as heme oxygenase (HO-1), NAD(P)H 
quinone dehydrogenase 1, and GPx among others (Fig. 2). 
In adult mice, HP significantly increased Nrf2 and HO-1 
protein levels 24 h after a traumatic brain injury causing 
a decrease in the level of oxidative stress by-products such 
as protein carbonyl, 4-hydroxy-2-nonenal, and 8-hydroxy-
2-deoxyguanosine in the cerebral cortex (Shu et al. 2016). 
In vitro studies of cortical neurons first subjected to HP and 
then to oxygen and glucose deprivation (OGD) showed 
an increased activity of Nrf2 targets, specifically GPx, 
glutathione reductase (GR), and SOD with a concomitant 
reduction in the concentration of O2

− and H2O2 (Arthur 
et  al. 2004). In another experimental study, mouse pups 
subjected to HP and subsequent ischaemia showed an 
increase in brain GPx and SOD activity (Alkan et al. 2008). 
These results are of especial relevance in neonatology 
where the immaturity of the antioxidant defence system 
generates a series of free radical-associated diseases and HP 
could be employed to prevent free radical-derived brain 
damage (Fan et al. 2020).

HP also increases the levels of GSH. GSH is the most 
relevant non-enzymatic cytoplasmic antioxidant. Under 
pro-oxidant conditions, two mols of GSH establish a 
di-sulphur bond to produce oxidized glutathione (GSSG) 
and provide ROS with reducing electrons. GPx and GR 
enzymes are responsible for the glutathione oxidation–
reduction cycle, involved in the detoxification of H2O2 
to water and oxygen. GPx oxidizes GSH to GSSG which is 
then further reduced to GSH by GR (Dwivedi et al. 2020). 
Adult mice subjected to HP compared to an acute hypoxia 
group showed increased GSH and decreased GSSG levels 
in the hippocampus which revealed enhanced GPx and 
GR activities (Liao et  al. 2018). Increasing GSH levels in 
the brain could be a potential strategy against hypoxia-
induced brain injury.

Astrocytes exposed to HP exhibited an increased 
expression of the peroxisome proliferator-activated 
receptor-γ coactivator (PGC-1α) gene. PGC-1α is a 
transcriptional coactivator that, in addition to being 
involved in mitochondrial biogenesis and function, 
participates in mitochondrial ROS detoxification by 
modulating the expression of mitochondrial antioxidant 
defence in cells (Rius-Pérez et al. 2020). Specifically, PGC-
1α increases the levels of SOD, CAT, peroxiredoxins, UCP-
2, and thioredoxin and, consequently, protects cells from 
mitochondrial dysfunction. In in vitro study, astrocytes 

Figure 2
Activation of antioxidant defence by hypoxia preconditioning. Activation of the Nrf2 pathway, increases reduced glutathione (GSH) levels and peroxisome 
proliferator-activated receptor-γ coactivator (PGC-1α) gene expression through HP leading to an increase in antioxidant enzymes and protecting the cell 
from oxidative stress at the brain level. Heme oxygenase-1 (HO-1), Mn superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), 
glutathione peroxidase (GPx), hydrogen peroxide (H2O2), superoxide anion (O2

·-), oxidized glutathione (GSSG), and reactive oxygen species (ROS).
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submitted to 24 h of intermittent HP produced an increase 
of PGC-1α mRNA levels and SOD, CAT, and GPx activity 
compared to the control group (Wu et  al. 2021). These 
results could be indicative of the activation of PGC-1α by 
HP that could contribute to a decrease in oxidative stress 
beneficial for the recovery of the developing brain after 
ischaemic or hypoxic injuries (Jia et  al. 2020). However, 
more studies will be necessary to further elucidate the 
induction of neuroprotective mechanisms of PGC-1α 
during HP.

Decreasing neuro-excitotoxity

The increase in intracellular GSH constitutes an essential 
neuroprotective response to HP. However, GSH synthesis 
depends specifically on the availability of l-cysteine. 
The incorporation of l-cysteine to the astrocytes needs 
the concourse of the cystine/glutamate exchanger (Xc-
). However, glutamate is one of the main excitatory 
neurotransmitters. Hence, during episodes of ischaemia 
or acute hypoxia, increased concentrations of glutamate 
inhibit the Xc- transporter system and subsequently 
the cystine uptake into cells leading to diminished GSH 
synthesis and subsequently to an increased oxidative 
stress. Thus, the Xc-system plays a key role promoting 
GSH synthesis and glutamatergic signalling (Sims et  al. 
2012, Lewerenz et al. 2013). Neuronal stem cells in a mouse 
model of HP exhibited decreased excitotoxicity due to an 
increment of the activity of the Xc- system resulting in less 
oxidative stress (Fan et al. 2020).

Enhancing anti-inflammatory response

HP decreases neuronal inflammation through the 
activation of different pathways. Inflammatory 
processes are of great pathophysiologic relevance in 
neurodegenerative conditions and in brain development 
both during gestation and postnatally. Inflammatory 
responses to injury occur through a variety of cellular 
and molecular mechanisms which may include free 
radicals. Recently, cellular and molecular mechanisms, 
such as transcriptional profiling that cause oxidative 
stress, were identified in cells of the innate immune 
system. In this study, a genetic signature was defined 
which produces oxidative injury and neurotoxicity that 
have been identified in neuroinflammatory diseases. This 
finding is very relevant as they can be used as therapeutic 
targets (Mendiola et  al. 2020). The immune system in 

the brain is mainly regulated by microglia (resident 
macrophages). Under stress conditions, the activation of 
microglia triggers a series of processes that culminate in 
a more cytotoxic phenotype. This response is the result 
of the secretion of proinflammatory cytokines such as 
IL-1β, IL-6, tomor necrosis factor alpha (TNFα), IFNγ, 
ROS, matrix metalloproteins, and excitatory amino acids 
such as glutamate (Kraft & Harry 2011). Thus, during 
sustained neuroinflammation, the neuroprotective 
microglial response switches from a protective to 
a neurotoxic response (Hickman et  al. 2018). Thus, 
preventing the activation of microglial inflammatory 
signalling pathways may be a potential approach for 
neuroprotection (Muzio et al. 2021).

Another cell type essential for maintaining neuronal 
health are glial cells, especially astrocytes. In physiological 
conditions, astrocytes play a role as key homeostatic cells 
of the CNS by providing nutrients to neurons, maintaining 
the integrity of blood–brain barrier, controlling synaptic 
activity, and also in preventing oxidative stress. However, 
under pathological conditions, such as mitochondrial 
damage or calcium overload, astrocytes become activated. 
They produce harmful ROS and RNS which ultimately may 
induce microglial activation or even directly cause neural 
death since they express caspase-3 apoptotic markers 
leading to secondary cerebral damage (Chen et  al. 2020, 
Goshi et al. 2020).

The activation of microglia by moderate hypoxia can 
be induced mainly by hypoxia-inducible factor (HIF) and 
its targets (vascular endothelial growth factor (VEGF), 
EPO), nitric oxide synthase, adenosine receptor 1, or 
glycogen synthase among others (Fan et  al. 2020, Gao 
et al. 2021). P6 mice subjected to HP followed by hypoxia/
ischaemia showed a significant decrease in the expression 
levels of iNOS, Cox-2, TNF-α, and IL-1β. Therefore, the 
results suggest that HP has anti-inflammatory effects at 
the brain level in neonates (Chen et al. 2015). In an in vitro 
assay, BV2 microglia cell line was exposed to OGD and 
reoxygenation and thereafter treated with mesenchymal 
stem cell culture medium that had been previously 
exposed to HP. Results showed an alleviation of the injury 
of microglia due to an inhibition of proinflammatory 
cytokines (TNF-α, IL-1β, and IL-6), CD86, and inducible 
nitric oxide synthase, with a significant decrease in 
ROS, while concomitantly increased levels of anti-
inflammatory cytokine (IL-10), CD206, and arginase-1 
were assessed. Mesenchymal stem cell cultures subjected 
to HP were more effective in alleviating cell injury and 
promoting anti-inflammatory microglia activation than 
those exposed to normoxia or acute hypoxia. These results 
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demonstrate how HP exposure is able to induce the release 
of exosomes (bilayer lipid enclosed spheroids, actively 
transmitting CD9, CD63, and TSG101). Therefore, they 
have the capacity to exert anti-inflammatory functions 
by promoting the anti-inflammatory polarization of 
microglia (Yu et al. 2021).

Another signalling pathway that is activated 
following hypoxic–ischaemic brain injury leading to brain 
inflammation is the serine-threonine kinase, glycogen 
synthase kinase 3β (GSK-3β). This enzyme is involved 
in different cellular processes including proliferation, 
differentiation, apoptosis, adhesion, and migration. 
Moreover, GSK3 plays keys roles in embryonic and 
tissue development, tumour suppression, and immune 
responses. Additionally, the protein is involved in the 
pathogenesis of numerous disorders affecting the CNS such 
as Alzheimer's or Parkinson’s disease. GSK-3β inactivation, 
via the phosphoinositide 3-kinase (PI3K)/Akt signalling 
pathway, negatively modulates the NF-κB pathway. GSK-3β 
regulates the promoter-specific recruitment of NF-κB and 
consequently plays an essential role in gene transcription 
(i.e., transactivation activity and target gene expression). 
Therefore, the activation of the PI3K/Akt/GSK-3β 
signalling pathway also causes reduction in NF-κB nuclear 
translocation, and this pathway seems to be the main factor 
responsible for inflammatory protection. Furthermore, 
inhibition of GSK-3β can reduce the production of pro-
inflammatory cytokines (such as ILβ, IL-6, and IFNγ) 
which, in turn, increases the release of anti-inflammatory 
cytokines (such as IL-10) (Hoffmeister et al. 2020). Studies 
with P7 rats showed increased phosphorylation of GSK-3β, 
through the PI3K/Akt pathway, and also decreased levels 
of inflammatory markers, such as NF-κB, Cox-2, CD68, 
myeloperoxidase, and microglia activation in the cerebral 
cortex, striatum, and hippocampus of mice subjected to 
HP followed by hypoxia/ischaemia (H/I) vs those subjected 
to H/I alone. These results show that HP-mediated 
increase in PI3K/Akt activity may contribute to protect 
the brain against hypoxic–-ischaemic neonatal brain 
injury (Yin et al. 2007). Moreover, in further experiments, 
HP sustained the development of white matter and 
grey matter of the immature brain contributing to 
long‐term neurological functional recovery after H/I brain 
injury. HP restored the differentiation and maturation 
capacities of oligodendrocyte progenitor cell and reduced  
microglia/macrophage activation and neuroinflammation 
(Xu et al. 2019).

HP could be relevant to neuroinflammatory 
conditions in which damage is caused by cerebral hypoxia 
or ischaemia.

Enhanced neuronal cell survival

Depending on the duration and severity of hypoxia, 
cells can adapt, become injured, or die. The transcription 
factor HIF-1 is a heterodimer composed of an O2-regulated 
HIF-1α subunit and a constitutively expressed HIF-1β 
subunit. In response to hypoxia, HIF-1α is activated and 
upregulates a wide set of genes whose functions range 
from angiogenesis, glycolysis, and erythropoiesis to 
inflammation and remodelling. The degree of exposure to 
oxygen will have a determinant effect upon HIF signalling 
pathways (Schönenberger & Kovacs 2015). If hypoxia is 
significant and long-lasting, HIF-1α will activate apoptosis 
via p53, generating a zone of intense cell death (Merelli 
et al. 2021). However, HP prevents the degradation of HIF-1 
and consequently enhances neuronal survival (Liu et  al. 
2005). HIF-1 upregulation following HP has been observed 
both in neonatal and adult brains (Jones et al. 2006). HIF-1 
can induce genes with anti-apoptotic capacity in neurons 
such as EPO (Sirén et al. 2001). It has been proposed that 
the mechanism of action of EPO takes place through 
several signalling pathways that increase the expression 
of anti-apoptotic proteins of the Bcl-2 family, decreasing 
the expression and release of the main markers of the 
mitochondrial apoptotic pathway, such as cytochrome 
c and caspase-3 (Rabie & Marti 2008). In experimental 
studies, rat brains subjected to acute hypoxia exhibited 
increased cytochrome c and caspase 3. In contrast, when 
acute hypoxia was preceded by HP, no differences were 
found in these markers compared to normoxic rats 
(Coimbra-Costa et al. 2021) suggesting that HP may prevent 
mitochondrial dysfunction and apoptosis.

The mechanisms of hypoxic damage to brain neurons 
are closely related to oxidative stress. Sublethal ROS 
generated during HP can upregulate HIF-1α and EPO, 
stimulating neuroprotection through the Jak-Stat and 
NF-κB pathways, as seen in neurons preconditioned with 
hypoxia in vitro for 2 h (Liu et  al. 2005). EPO binds to its 
receptor, phosphorylates, and activates Jak2 which, in turn, 
phosphorylates other kinases such as the transcription 
factor Stat family (Dawson 2002). Stat5 is able to induce 
the expression of Bcl-xL, a gene that regulates cytokine-
induced survival signalling; thus, Jak-Stat signalling has an 
anti-apoptotic role (Liu et al. 2005, Ma et al. 2014). On the 
other hand, EPO may cause an interaction between the Jak2 
and NF-κB signalling pathways, where activation of Jak2 
phosphorylates the NF-κB inhibitor and allows its nuclear 
translocation and transcription of neuroprotective genes, 
such as Bcl-2 and Bcl-xL that prevent cellular apoptosis 
(Digicaylioglu & Lipton 2001).
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NF-κB activation is also linked to another protective 
pathway involving the expression of brain-derived 
neurotrophic factor (BDNF), a neurotrophin belonging 
to a family of neurotrophic factors. The binding of BDNF 
to tropomyosin receptor kinase B triggers intracellular 
signalling cascades such as the PI3K/Akt pathways resulting 
in upregulation of pro-survival protein genes, in particular 
Bcl-2 (Reichardt 2006). In addition, BDNF positively 
controls the transcription of its own gene resulting in 
further upregulation of neuronal BDNF expression. BDNF 
upregulation has been demonstrated in cortical neurons 
of rat brains exposed to HP (Samoilov et al. 2014). In 2017, 
an additional example has been reported in which it has 
been demonstrated that HP improves the survival rate of 
rats subjected to cerebral ischaemia, reduce neurological 
deficits, and inhibits the inflammatory response. These 
effects are regulated by HIF-1α. Consequently, HP has a 
positive therapeutic effect on cerebral ischaemia in this 
model and may become a novel clinical treatment for 
cerebral ischaemia (Yang et al. 2017).

Conclusions

Finding strategies and/or mechanisms to reduce or 
minimize damage to such a complex and oxygen-sensitive 
organ as the brain is a challenge. Brain damage is linked to 
oxidative stress in different conditions and may be the cause 
or the consequence of cell death or neuroinflammation.

The effect of HP reducing cerebral oxidative stress 
is of paramount relevance and opens new lines of 
research that will contribute to unravel the intrinsic 
mechanisms of neuroprotection involved in neuronal 
cell protection in brain injury, such as stroke, hypoxic 
ischaemic encephalopathy, trauma, or neurodegenerative 
diseases. The next step will be to consolidate that HP 
represents an innovative therapeutic modality to induce 
neuroprotection, neuroplasticity, and brain recovery while 
remaining safe and harmless for the patients.
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