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ABSTRACT
Gravitational waves provide a unique and powerful opportunity to constrain the dynamics in the interior of proto-neutron stars
during core collapse supernovae. Convective motions play an important role in generating neutron stars magnetic fields, which
could explain magnetar formation in the presence of fast rotation. We compute the gravitational wave emission from proto-
neutron star convection and its associated dynamo, by post-processing three-dimensional MHD simulations of a model restricted
to the convective zone in the anelastic approximation. We consider two different proto-neutron star structures representative of
early times (with a convective layer) and late times (when the star is almost entirely convective). In the slow rotation regime,
the gravitational wave emission follows a broad spectrum peaking at about three times the turnover frequency. In this regime,
the inclusion of magnetic fields slightly decreases the amplitude without changing the spectrum significantly compared to a
non-magnetized simulation. Fast rotation changes both the amplitude and spectrum dramatically. The amplitude is increased
by a factor of up to a few thousands. The spectrum is characterized by several peaks associated with inertial modes, whose
frequency scales with the rotation frequency. Using simple physical arguments, we derive scalings that reproduce quantitatively
several aspects of these numerical results. We also observe an excess of low-frequency gravitational waves, which appears at
the transition to a strong field dynamo characterized by a strong axisymmetric toroidal magnetic field. This signature of dynamo
action could be used to constrain the dynamo efficiency in a proto-neutron star with future gravitational wave detections.
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1 IN T RO D U C T I O N

The gravitational wave signal from the collapse of massive stars
is an excellent opportunity to learn about the physics of neutron
stars. During core collapse supernovae (CCSNe), the core of stars
born with masses in the range M ∼ 8–100 M� collapses1 and, after
reaching nuclear matter density and bouncing, a proto-neutron star
(PNS) is formed surrounded by an accretion shock. In a time-scale
of 0.1–1 s, the strong neutrinos flux coming out of the PNS deposits
sufficient energy behind the shock to drive a supernova explosion that
disrupts the outer layers of the star. This neutrino-driven explosion
mechanism is expected to be the dominant driver of supernovae for
slowly rotating progenitor cores (Burrows & Lattimer 1986; Bethe
1990; Janka, Kifonidis & Rampp 2001; Janka 2017). A small fraction
of the electromagnetic observation of CCSNe (∼ 1 per cent) show
indications of a fast-rotating progenitor (broad-lined type Ic SNe; Li
et al. 2011, or long duration gamma-ray bursts; Chapman et al. 2007).
In those cases the supernova is probably driven by magneto-rotational
explosions (see Bugli et al. 2020; Obergaulinger & Aloy 2020, and
references therein). This scenario has also been suggested as birth
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1Stars of more than 10 M� ultimately develop an iron core, while in the range
8–10 M� they develop a O+Ne + Mg core resulting in an electron-capture
supernova (Hiramatsu et al. 2021).

place of magnetars, neutron stars with magnetic fields of 1016 G,
which could be the result of dynamo action generated by turbulent
convection that develops inside the proto-neutron stars (Thompson &
Duncan 1993; Raynaud et al. 2020). The magnetar birthrate has
been observationally estimated to be at least 10 per cent (with large
uncertainties) of the CCNSe rate (Kouveliotou et al. 1994; Gill &
Heyl 2007; Beniamini et al. 2019), which would imply that dynamos
could be operative in cases in which magneto-rotational explosions
are not produced. Regardless of the mechanism, the explosion leaves
behind a compact remnant that in most cases is a hot neutron star.
Alternatively, the PNS could undergo black hole formation, although
this possibility is observationally constrained to about 15–20 per cent
of all CCSNe (Kochanek 2014; Adams et al. 2017).

Multidimensional numerical simulations (Marek, Janka & Müller
2009; Murphy, Ott & Burrows 2009; Scheidegger et al. 2010;
Yakunin et al. 2010; Müller, Janka & Wongwathanarat 2012; Müller,
Janka & Marek 2013; Yakunin et al. 2015; Andresen et al. 2017;
Kuroda et al. 2017; Morozova et al. 2018; Powell & Müller 2019;
Mezzacappa et al. 2020; Andresen, Glas & Janka 2021) show that
the GW signal during neutrino-driven explosions is dominated by the
excitation of high frequency (buoyancy driven) g-modes in the PNS
and low frequency (∼ 100 Hz) standing shock accretion instabilities
(SASI; Kuroda, Kotake & Takiwaki 2016) during the period of time
elapsed between the bounce and the time of the explosion (∼ 1 s). In
those cases, the typical rms strain of the GW signal in 3D simulations
is h ∼ 4−15 × 10−24 at 10 kpc, with frequencies ranging from
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∼50 Hz to a few kHz (Lopez Portilla et al. 2021). For simulations
of fast rotating progenitors, the GW strain depends on the rotation
rate and can reach values of ∼10−21 at 10 kpc (Ott et al. 2005;
Scheidegger et al. 2008, 2010; Cerdá-Durán et al. 2013; Kuroda,
Takiwaki & Kotake 2014; Takiwaki & Kotake 2018; Pajkos et al.
2019; Pan et al. 2021; Shibagaki et al. 2021). These signals could
be observed with current GW detectors, aLIGO (LIGO Scientific
Collaboration 2015), aVirgo (Acernese & et al. 2015), and KAGRA
(Aso et al. 2013), within ∼10 kpc for neutrino-driven explosions and
up to ∼100 kpc for magneto-rotational explosions (Szczepanczyk
2021). Additional details about the GW signal from CCSNe can be
found at Kotake & Kuroda (2017) and Abdikamalov, Pagliaroli &
Radice (2020).

After the onset of the explosion, the amplitude of the two dominant
contributions to the GW signal, the excitation of g-modes, and the
SASI, decay very rapidly. The only mass motion in the resulting
PNS is the result of the convection driven by the neutrino cooling of
the PNS. Calculations of the cooling of PNSs (Burrows & Lattimer
1988; Keil & Janka 1995; Keil, Janka & Mueller 1996; Pons et al.
1999; Miralles, Pons & Urpin 2000; Roberts et al. 2012; Mirizzi et al.
2016) show that extended regions of the star can stay convectively
active for 3−50 s after the explosion. No attempts have been made so
far to estimate the GW signature during this phase, the main reason
being the difficulty to perform multidimensional simulations of the
PNS in such long time-scales, due to the severe time-step restrictions
of numerical hydrodynamics codes. Ferrari, Miniutti & Pons (2003),
Ferrari et al. (2004), Ferrari, Gualtieri & Pons (2007) have studied
the appearance of unstable g-modes in PNSs as a possible source
of GW, concluding that non-linear saturation would likely limit the
maximum strain to values unobservable with current detectors. Very
recently there has been an increased interest in the study of proto-
neutron star convection (Nagakura et al. 2020) and its associated
dynamo (Masada, Takiwaki & Kotake 2020; Raynaud et al. 2020),
though these works have been focused on the early post-bounce phase
and did not provide a description of the late-time post-explosion
phase several seconds after bounce. Raynaud et al. (2020) ran a
series of MHD simulations focused on the convective zone, varying
in particular the rotation rate. They showed that the efficiency of
dynamo action increases for fast rotation rates in the regime where
the Coriolis force is dominant compared to the non-linear advection
term (i.e. at low Rossby numbers). In this regime, they obtain a
new kind of strong field dynamo solution with a magnetic field
dominated by its axisymmetric azimuthal component. The magnetic
energy is up to 10 times larger than the kinetic energy and follows
a magnetostrophic scaling, in which the Lorentz force balances the
Coriolis force. This dynamo solution is obtained above a critical
rotation rate and Raynaud et al. (2020) have shown that it has the
potential to explain the formation of magnetars.

We aim at estimating for the first time the characteristic strain,
frequency and spectral features present in the post-explosion GW
emission of PNSs within the first 10 s after bounce. In this signal, we
also look for a signature of the magnetic fields generated by dynamo
action, as this could provide a unique testbed for PNS dynamo
models and magnetar formation theories. We base our calculations
on the 3D simulations of the convective zone of PNSs of Raynaud
et al. (2020) and an extension of this model with a PNS structure
representative of late times several seconds after bounce (Raynaud
et al., in preparation).

This work is organized as follows: in Section 2 we describe the
numerical setup used in the numerical simulations, in Section 3 we
present the results of the GW signals in the different regimes studied
and find scaling relations for the amplitude and typical frequencies

in terms of the properties of the PNS. We present our conclusions in
Section 4.

2 MO D E L L I N G

Our study directly follows from the new setup introduced by Raynaud
et al. (2020) to study PNS convective dynamo as a scenario of mag-
netar formation. While recalling the main features and the underlying
hypotheses of this setup, we refer the reader to the above article for
further details. The gravitational wave signal generated by proto-
neutron star convection is computed from three-dimensional (3D)
numerical simulations solving non-linear magneto-hydrodynamic
equations governing the flow of an electrically conducting fluid in
a rotating spherical shell. Energy-based scalings are consistent with
convective velocities of order 108 cm s−1 (Thompson & Duncan
1993), and hence a relatively low Mach number turbulence (M ∼
10−2), since the typical sound speed in the convective zone ranges
from 0.2c to 0.6c (c being the speed of light). This justifies the use
of the soundproof anelastic approximation to describe the convective
fluid motions, which are treated as perturbations from an isentropic
background state assumed at mechanical (hydrostatic) and thermal
(isentropic) equilibrium (Jones et al. 2011).

A major difficulty in modelling neutron star formation lies in
the treatment of neutrinos. In our case, however, this can also be
greatly simplified assuming that the neutrinos are in thermodynamic
equilibrium with matter within the hot and dense newborn PNS. At
length scales much larger than the neutrino mean free path (λ ∼
10 m), energy and momentum transport can be approximated by the
diffusion approximation. This approximation is, of course, less and
less justified as we get closer to the PNS surface. It is none the less
a fair hypothesis in our case, since we will focus on the convective
zone that lies well inside the neutrinosphere.

With our approach, the complexity of neutrino-matter interactions
is then reduced to the transport coefficients controlling viscous and
thermal diffusion, while all the PNS characteristics are embedded
within the prescription of the adiabatic background, which not only
includes the density and temperature stratification of the convective
zone but also the thermodynamics coefficients entering the physics of
thermal convection. In what follows, all our knowledge of the PNS
structure and evolution encapsulated in the adiabatic background
is extracted from a 1D core-collapse supernova simulation that
describes the formation of neutron star with a baryonic mass of
1.78 M� (Hüdepohl et al. 2010; Hüdepohl 2014). The calculations
were performed with the code PROMETHEUS-VERTEX (Rampp &
Janka 2002) and use the non-rotating 27 M� progenitor s27.0 by
Woosley et al. (Woosley, Heger & Weaver 2002) and the equation of
state LS220 (Lattimer & Swesty 1991).

Last but not least, we will make a strong approximation concerning
the time evolution of the PNS structure (see Fig. 1). Indeed, the
simultaneous computation of the turbulent convection and the com-
paratively slow contraction of the PNS from R ∼ 39 km at t = 0.2 s
post-bounce to R ∼ 14 km at t = 5 s would require to include
overlying and underlying stably stratified layers in the computational
domain and a time-evolving background, which is far beyond the
scope of the present study that aims at a first characterization of
the GW signal generated by rotating convection. We thus restrict
the simulation domain to a spherical shell corresponding to the
convective region. We also keep the anelastic background steady and
consider instead two independent sets of numerical models with two
different adiabatic backgrounds representative of the PNS convective
zone at ‘early’ time (t = 0.2 s) and ‘late’ time (t = 5 s), respectively.
Table 1 summarizes the important characteristics of the convective
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3412 R. Raynaud, P. Cerdá-Durán and J. Guilet

Figure 1. Evolution of the proto-neutron star structure. The black (blue)
line shows the entropy per baryon (density) as a function of radius. The
red hatched area shows the extent of the convective zone according to the
Schwarzschild criterion ∂S/∂r < 0 and the grey areas indicate stably stratified
zones. The vertical grey line indicates a proxy for the PNS surface defined
by �̃(R) = 1011 g cm−3. The solid red line indicates the outer radius of the
convective zone ro, while the dotted line indicates the inner radius ri delimiting
the 3D computational domain.

Table 1. Characteristics of the convective zone. The subscript o designates
quantities evaluated at the outer edge of the convective zone at r = ro. The
sound speed cs, adiabatic index γ , and the temperature gradient are evaluated
in the middle of the convective zone.

Time post-bounce [s] 0.2 5

ro [km] 25 12.6
rmid [km] 18.3 6.59
�̃o [g cm−3] 8.33 × 1012 1.45 × 1014

�̃mid [g cm−3] 3.06 × 1013 6.11 × 1014

T̃o [K] 1.36 × 1011 8.72 × 1010

�o [erg s−1] 2.16 × 1052 1.13 × 1051

Mconv/M� 0.83 1.70
cs/c 0.198 0.555
γ 1.43 2.14∣∣∂r ln T̃

∣∣ [cm−1] 9.43 × 10−7 8.74 × 10−7

zone derived from the 1D core-collapse model. We see in Fig. 1
that we did not try to match exactly the size of the convective zone
predicted by the 1D model (solid and dashed red line). At t = 0.2 s,
we approximate the shell aspect ratio to χ = ri/ro = 0.5. At t = 5 s, we
artificially increase the shell aspect ratio to avoid technical difficulties
that may arise with a setup approaching a full sphere.

This way, we replace the continuous evolution of the PNS
by two ‘snapshots’ representative of a proto-neutron star at two
different times. Although this will make the interpretation of the
GW waveforms more difficult, our simplified models allow us to
capture the full complexity of magneto-hydrodynamic processes and
the dynamo amplification of the magnetic field, which makes them
complementary to global core-collapse supernova models.

We carried out a systematic parameter study consisting of 20
early-time and 36 late-time models. With both types of models, we
mainly vary the PNS rotation rate (through the Ekman number – see
Section 2.1) to probe different dynamical regimes. In hydrodynamic
models, the velocity field is initialized with a solid-body rotation.
For 8 models, as in Raynaud et al. (2020), we added to the saturated
turbulent state of the hydrodynamic simulation a seed magnetic field

whose amplitude is small enough to clearly observe the kinematic
growth of the dynamo. However, to avoid the systematic computation
of the transient kinematic growth which is computationally expen-
sive, we often restarted from a ‘nearby’ solution in the parameter
space to ensure a faster convergence toward the equilibrium solution
of the new parameter set (of course, this procedure stands only for
models sharing the same anelastic background). The initial value
of the magnetic field is summarized in Table A1 in the Appendix.
Our data base includes rotation periods ranging from milliseconds to
seconds, which allows us to cover about three orders of magnitude in
terms of Rossby number, which is a common dimensionless measure
of the importance of the non-linear advection term with respect to
the Coriolis force.

2.1 Governing equations

Under the above assumptions, the dynamics in the convective zone
of the PNS is governed by the Lantz–Braginsky–Roberts anelastic
equations (Braginsky & Roberts 1995; Lantz & Fan 1999). In the
reference frame of the PNS rotating at angular frequency 	, they read

∇ · (�̃u) = 0 , (1)

Du
Dt

= − 1

E
∇
(

p

�̃

)
− 2

E
ez × u − Ra

Pr

dT̃

dr
Ser

+ 1

EPm

1

�̃
(∇ × B) × B + Fν , (2)

�̃T̃
DS

Dt
= 1

Pr

(∇ · (κ̃ �̃T̃ ∇S
) + H

) + Pr

Ra

(
Qν + Qj

)
, (3)

∂ B
∂t

= ∇ × (u × B) − 1

Pm
∇ × (η̃∇ × B) , (4)

∇ · B = 0 . (5)

To make these equations dimensionless, we use the shell gap d = ro

− ri = ro(1 − χ ) as reference length scale, where ro and ri are the
inner and outer radius of the convective zone and χ = ri/ro. We fix
χ = 0.5 for the models at t = 0.2 s and χ = 0.1 for the models at
t = 5 s. The viscous time d2/νo serves as reference time-scale. We
write νo, κo, and ηo the values at r = ro of the kinematic viscosity,
thermal diffusivity, and magnetic diffusivity and use them to rescale
the corresponding profiles ν̃(r), κ̃(r), and η̃(r). Similarly, we scale
the background density �̃(r) and temperature T̃ (r) by their values
at the outer edge, �̃o and T̃o. The velocity u is expressed in units of
νo/d, the magnetic field B in units of

√
	�̃oηoμ0, where μ0 is the

vacuum permeability, and the entropy S in units of |d∂S/∂r|ro
.

We used only entropy to describe the buoyancy force because it
is the dominant driver of convection in the 1D models on which
we base our setup. The size of the convective zone is indeed not
affected by the inclusion of the lepton number gradient in the
stability criterion. The lepton number gradient may, however, play
an important role according to other models (e.g. Nagakura et al.
2020). In the limit where the thermal and lepton number diffusivities
are assumed to be identical, the anelastic equations can be written
such that the entropy S can be seen as a codensity that describes
buoyancy effects associated with both entropy and lepton number
gradients (see Braginsky & Roberts 1995; Section 4.2). We therefore
expect our results to hold at least qualitatively also in cases where
lepton-number gradient is important.

The viscous force Fν and the viscous heating Qν are defined by
Fν

i = �̃−1∂jσij and Qν = ∂ juiσ ij, where the rate of strain tensor
σij = 2�̃ν̃

(
eij − ekkδij /3

)
and the deformation tensor eij = (∂ jui +

∂ iuj)/2 are expressed with the Einstein summation convention and the
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Kronecker delta δij. The Joule heating entering the energy equation
is defined by Qj = η̃ (∇ × B)2 /(Pm2E).

Convection is driven by a fixed energy flux at the outer boundary
�o = 4πr2

o κo�̃oT̃o ∂S/∂r|ro
. For the models at t = 0.2 s the energy

flux at the inner boundary is fixed so that it balances the outer heat
flux and the internal heat source term H is set to zero. For the models
at t = 5 s that are characterized by a smaller aspect ratio χ = 0.1
(larger shell), we impose a zero flux condition at the inner boundary
and we introduce a homogeneous internal heat source term H to
balance the outer energy flux (Lepot, Aumaı̂tre & Gallet 2018).
For the models at t = 0.2 s, we impose perfect conductor magnetic
boundary conditions, i.e. B · n = 0 with n the unit vector normal
to the boundary. For the models at t = 5 s, we keep the perfect
conductor condition at the inner boundary and use perfect conductor
or pseudo-vacuum (B × n = 0) condition at the outer boundary.
Finally, we apply stress-free boundary conditions for the velocity
field, ur = ∂ uθ

r
/∂r = ∂

uφ

r
/∂r = 0.

The remaining physical control parameters entering the Navier–
Stokes, energy and induction equations are the Ekman, Rayleigh,
thermal, and magnetic Prandtl numbers defined respectively by

E = νo

	d2
, Ra =

T̃od
3 ∂S

∂r

∣∣
ro

νoκo
, P r = νo

κo
, Pm = νo

ηo
. (6)

We proceed as in Raynaud et al. (2020) to express the simulations
outputs in physical units. We first deduce the PNS rotation rate with
the relation

	 =
(

�o

4πr2
o �̃od3

Pr2

E3Ra

)1/3

. (7)

The values of the diffusivities follow from the definitions of the
Ekman and Prandtl numbers in equation (6). Thus, our rescaling
process relies on the typical values of the convective zone outer radius
ro, density �̃o, and width d on the one hand, and the energy flux �o

on the other hand. One may wonder to what extent all these values
are sensitive to the lepton fraction gradient that is also expected to be
driving convection in a real proto-neutron star. In this regard, a first
point to note is that the values we use (see Table 1) are independent
of the simplifications we make to set up the 3D model, since we used
a 1D core-collapse model to estimate these quantities. Further, we
stress that this 1D model takes into account the destabilizing effect
of both the entropy and lepton fraction gradients, which enabled us
to check that we obtain exactly the same results when using the
Schwarzschild or Ledoux criterion to determine the localization of
the convective zone. An uncertainty remains regarding the energy
flux �o that we estimate as half of the total neutrino luminosity at
the outer edge of the convective zone and whose time evolution is
shown in Fig. A1. We find that our estimate agrees within 30 per cent
with the turbulent energy flux obtained with more advanced 3D
core-collapse supernova models, at least at t = 0.2 s (Nagakura et al.
2020, Fig. 16). Last but not least, even if the numerical values of
the characteristic parameters of the GW signal might change with
finer estimates of the above quantities, we stress that (i) these must
currently be taken with care since we do not take into account the
background evolution, (ii) we believe that the 1D model provides us
with at least good order of magnitudes to estimate the quantities we
need and (iii) this will not affect the physical analysis and the scaling
relations we will derive.

2.2 Background implementation

The background density �̃ and temperature T̃ profiles at t = 0.2 s and
t = 5 s post-bounce are implemented with fifth order polynomials
that fit the outputs of the 1D core-collapse supernova model. Fig. 2

Figure 2. Normalized diffusivity profile as a function of radius. The solid
lines show the profiles from the 1D simulation and the dotted lines show
the profiles implemented in the code (approximated by a polynomial fit or a
scaling relation as explained in the text).

displays the radial profiles of the viscous, thermal, and magnetic dif-
fusivities overplotted with their approximations implemented in the
code. For the neutrino kinematic viscosity, we use the approximation
(Guilet, Müller & Janka 2015).

ν̃ ∝ T̃ 2�̃−2 . (8)

Assuming each neutrino opacity is proportional to the square of the
neutrino energy χν = χ0(hν)2/E2

0 (Socrates et al. 2005), the neutrino
thermal diffusivity is given by (Raynaud et al. 2020)

κ = 1

36

1

�̃cp

k2
BT

c2�3

[(
E2

0

χ0

)
νe

+
(

E2
0

χ0

)
ν̄e

+ 4

(
E2

0

χ0

)
νx

]
, (9)

where the x subscript refers to muon and tau neutrino and
antineutrino flavours, kB the Boltzmann constant, and � the reduced
Planck constant. At t = 0.2 s, we perform a polynomial fit of
equation (9) in which we use the opacities given by Janka (2001).
At t = 5 s, the radial profile of the thermal diffusivity is well
approximated by the scaling,

κ̃ ∝ �̃−4/3 , (10)

which derives from equation (8) and the Prandtl number scaling,
Pr ∝ T̃ 2�̃−2/3 (Thompson & Duncan 1993).

Finally, the magnetic diffusivity η of degenerate relativistic elec-
trons scattering on non-degenerate protons scales as (Raynaud et al.
2020)

η ∝ (�̃Ye)−1/3 , (11)

where Ye is the electron fraction. At t = 0.2 s, we can neglect the Ye

dependency (dotted versus solid red lines in the top panel of Fig. 2),
whereas we fit the profile at t = 5 s. When looking at Fig. 2, note that
the difference of the radial extent between the top and bottom curves
reflects the evolution of the spherical shell geometry approaching a
full sphere at t = 5 s. The difference between solid and dashed lines
shows again that we did not try to match exactly the shell aspect ratio
predicted by the 1D model (for the reasons mentioned above).

2.3 Numerical methods

The system of equations (1)–(5), completed by the set of boundary
conditions indicated above, is integrated in time with the pseudo-
spectral code MAGIC (Gastine & Wicht 2012). The code uses
poloidal-toroidal decomposition to satisfy the solenoidal constraints
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(1) and (5). The poloidal and toroidal potentials describing the
velocity and magnetic fields and the entropy and pressure fields are
expanded on a basis of spherical harmonics in the angular directions
and of Chebyshev polynomials in the radial directions. The code
relies on the SHTNS library to compute the spherical harmonic
transforms (Schaeffer 2013).

The time integration is performed with mixed implicit or/and
explicit algorithms (IMEX), in which are treated explicitly all the
terms coupling different harmonic modes (namely the non-linear
terms and the Coriolis force). The default scheme is a combination
of Crank–Nicolson or/and Adams–Bashforth second order schemes
(Glatzmaier 1984). We also make use of IMEX Runge–Kutta
multistage methods implemented in MAGIC, of second (PC2;
Jameson, Schmidt & Turkel 1981) and third order (BPR353;
Boscarino, Pareschi & Russo 2013). We refer the reader to the
online code documentation2 for a more comprehensive presentation
of the numerical methods (see also Gastine, Aubert & Fournier
2020, and references therein).

2.4 Gravitational wave computation

In the slow-motion approximation (u � c, GM/Rc2 � 1), the
gravitational wave emission from a source with compact support
can be computed using the quadrupole formula (Misner, Thorne &
Wheeler 1973; Landau & Lifshitz 1975):

hTT
ij (X, T ) = 2

D

G

c4
Pijkl Q̈kl(t), (12)

where X is the vector position of the source’s center, D = |X| is the
distance to the source, T = t + D/c is the advanced time, Pijkl is the
transverse-traceless projector operator (see section 36.10 in Misner
et al. 1973), we use dots to denote time derivatives and Qij is its
reduced mass quadrupole moment defined as

Qij (t) ≡
∫

�(x, t)

(
xixj − 1

3
δij r2

)
d3x. (13)

The two polarizations of the gravitational signal can be computed
(Oohara, Nakamura & Shibata 1997) as h+ = (hTT

θθ − hTT
ϕϕ)/2 and

h× = hTT
θϕ , where we have expressed hTT

ij in the orthonormal basis
associated to the spherical coordinates (r, θ , ϕ). It is possible to
express the GW strain in single complex scalar h = h+ − ih×.

For spheroidal objects, it is convenient to express the strain in
terms of the mass multipole moments (see Appendix B for details):

h(X, T ) = 1

D

G

c4

8π

5

√
2

3

+2∑
m=−2

Q̈2m(t) −2Y
2m(�, �), (14)

where sYlm are the spin-weighted spherical harmonics; � and � are
the angles associated to the X in spherical coordinates and are directly
related to the location of the source in the sky; finally

Qlm ≡
∫

�(x, t)r2Y �
lm(θ, ϕ)d3x (15)

are the mass multipole moments, where Ylm are the spherical
harmonics.

In the anelastic approximation used in our numerical simulations,
the density is formally equal to its background value �̃ and assumed
steady in time. However, it is still possible to evaluate the density
fluctuations �′ = � − �̃, which are the only ones contributing to Q̈lm.
The difficulty here is that the density fluctuations are not part of the
time-stepped variables by the code since they do not appear explicitly

2https://magic-sph.github.io

in the anelastic equations. We have to evaluate the density fluctuations
as a function of the entropy S and pressure perturbations p, according
to the thermodynamics relation

�′ = α̃

cp

(
−T̃ �̃S + 1

�
p

)
, (16)

where the Grünesein parameter �, the thermal expansion α̃, and the
specific heat at constant pressure cp are defined by

� =
(

∂ ln T̃

∂ ln �̃

)
S

, (17)

α̃ = − 1

�̃

(
∂�̃

∂P̃

)
P

, (18)

cp = T̃

(
∂S

∂T̃

)
P

, (19)

respectively. In practice, the ratio α̃/cp is related to the adiabatic
temperature gradient |∂r ln T̃ | = α̃g/cp and the background density,
temperature, and gravity are fitted from our 1D supernova model.

To evaluate the time varying part of Qlm, we make use of the
spectral representation used in the code MAGIC, which, e.g., for �

is

�′
lm(r) =

∫ π

0

∫ 2π

0
�′(x, t)Y �

lm(θ, ϕ) sin θdθdφ. (20)

Using the spectral variables, we can write

Q′
lm =

∫
r2�′Y �

lm d3x =
∫ ro

ri

dr r4�′
lm(r) , (21)

such that Q̈lm = Q̈′
lm. ρ ′

lm is computed using equation (16) with the
spectral decomposition of the entropy, Slm, and of the pressure, plm.
Finally, to compute the second time derivatives, we must take into
account the change of reference frame,

d2

dt2

∣∣∣∣
obs

X = d2

dt2
X + d

dt

(
2

E

d

dϕ
X

)
+ 1

E2

d2

dϕ2
X . (22)

To evaluate this expression, the code outputs the time-series{
t, X, 2

E
d
dϕ

X, 1
E2

d2

dϕ2 X
}

, where X represents the quadrupole entropy

or pressure contributions of the density fluctuations. The assembling
of the second order time derivative is done during the post-processing
stage. The time derivatives are then evaluated with a second order
central differences scheme, while the angular derivatives have been
computed directly in the code to take advantage of the spectral
representation.

It is convenient to introduce the characteristic strain

hchar(f ) = 1

D

√
2

π2

G

c3

dEGW

df
, (23)

which is related to spectrum of GW energy emitted EGW/df. The
latter can be expressed in terms of the mass multipoles

dEGW

df
(f ) = G

c5

16π

75
(2πf )2

m=+l∑
m=−l

∣∣∣ ̂̈Q2m

∣∣∣2
, (24)

where ̂̈Qlm is the Fourier transform of Q̈lm.

3 R ESULTS

3.1 Representative cases

Fig. 3 compares two early time models representative of the slow
and fast rotation regimes and highlights the impact of rotation and
magnetic field on the GW signal. On the left-hand panel showing a
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GW signal of PNS convection 3415

Figure 3. Summary of two typical simulations EMP175.0 (Pm = 5) and EMP2.1 (Pm = 2), respectively, in the slow rotation (left-hand panels) and the fast
rotation (right-hand panels) regime. The first row of panels shows the time evolution of the kinetic energy (blue line), magnetic energy (red line), and dipolar
magnetic energy (pink line). The second and third rows show the GW waveform polarizations and the corresponding spectrograms (sum of both polarizations),
respectively, at 10 kpc observed along the rotation axis. Coloured regions in the upper two rows correspond to the purely hydrodynamic phase (blue, defined as
EB/Ek < 10−3), the first plateau (orange) and the second plateau where the strong dynamo is active (green, only in the second model). Typical frequencies are
overplotted on the spectrogram: the rotational frequency, frot, the turnover frequency, fturn, and the Alfvén frequency, fA. The bottom row shows the characteristic
strain of the GW signal at 10 kpc for each of the three phases (same colours as above) compared to the sensitivity of different GW detectors.

model rotating at P = 175 ms, we see the kinematic growth of the
dynamo (blue background on the top row) that saturates at t ∼ 0.4 s
(orange background). At first sight, we do not notice any striking dif-
ference between these two phases, when looking at the polarization

strain h+ and h× time-series and the corresponding spectrograms. The
characteristic strain of the signal shows a relatively broad spectrum
around 1 kHz which falls in the upper bandwidth of ground-based
GW detectors and just above the design sensitivity of the Einstein
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3416 R. Raynaud, P. Cerdá-Durán and J. Guilet

Telescope (far below other detectors) for a supernova at a distance
of ∼ 10 kpc. A closer inspection reveals that the saturation of the
dynamo tends to slightly decrease the amplitude of the GW signal,
which is most easily seen on the bottom panel where we see the
blue and orange curves showing the characteristic strain during the
kinematic (blue) and saturated (orange) phase. This feature seems
consistent with the fact that the back reaction of the Lorentz force
usually leads to a slight decrease of the kinetic energy of the flow.

The situation is quite different on the right-hand panel of Fig. 3 that
shows dynamo action in a fast rotating model at 2.1 ms. As reported
in Raynaud et al. (2020), the dynamo saturation process in this fast
rotation regime is characterized as first plateau (orange background)
followed by a secondary growth leading to a stronger dynamo field
(green background). When compared to the slow rotating model,
key differences are already visible in the kinematic phase (blue
background), where the magnetic field has no impact on the GW
signal. The characteristic strain spectrum (blue curve on the bottom
row) is now above the sensitivity of all the GW detectors, and it
displays several peaks between 102 and 103 Hz (also visible in the
spectrogram). At this stage, we recall that one should not draw direct
conclusions regarding the detectability of the GW signal from Fig. 3
since it derives from an early time model neglecting the structural
changes of the PNS that occurs over the integration time interval. The
sensitivity curves are nevertheless useful to highlight the increase of
the signal amplitude between the slow and fast rotation regimes.
When the magnetic field enters the force balance at t ∼ 1.5 s (orange
background), we first observe a decrease of the amplitude of the
GW signal qualitatively similar to what occurs in the slow rotation
regime but more pronounced. The spectrum remains similar, with
peak frequencies that are still visible between 102 and 103 Hz.

Interestingly, the transition to the strong field dynamo regime
(green background) is associated with a significant change of the
GW spectrum, with low frequencies becoming dominant (see the
spectrogram and the green curve in the bottom panel). In parallel to
the appearance of this low frequency component, the strain amplitude
is significantly increased.

After presenting these typical features of the GW signals gener-
ated by PNS turbulent convection, we discuss in more details the
amplitude and frequency scalings of the signal. To that end, we use
the results of our parameter study in which we systematically varied
the PNS rotation rate, for both early and late time3 models.

3.2 Amplitude scaling

We define the amplitude hrms of the GW signal as the root mean
square of the strain averaged over observation angles and time (the
time average being performed only on the time interval where the
system converged towards its equilibrium state). Fig. 4 shows the
evolution of hrms as a function of the PNS angular frequency for all
the models of our data base. The GW amplitude drops significantly
between early (blue) and late (red) time models. This is a direct
consequence of the decrease of the convective energy flux �o with
time (see Table 1). The second important feature is the steep increase
of the rms amplitude for fast rotation rates by up to three orders of
magnitudes as compared to the slow rotation regime. Differences
between hydrodynamic (square) and dynamo (circle) models are
visible but remain minor compared to the main trend with rotation
frequency. Consistently with the description of representative models

3Fig. 3 shows two early time models, but the general features discussed in
Section 3.1 also stand for late time models. See also Fig. 10 below.

Figure 4. Gravitational wave amplitude as a function of the PNS rotation
rate 	 for models at t = 0.2 s (blue) and t = 5 s (red) post-bounce. Circles
(squares) indicate dynamo (hydrodynamic) models. White circles indicate
dynamo runs with a pseudo-vacuum outer boundary condition.

Figure 5. Normalized gravitational wave amplitude as a function of the
inverse Rossby number 1/Ro. The amplitude h� = hrms/hslow has been rescaled
using equation (33). The grey lines show the best fits h� = 0.35 (for Ro > 1)
and h� = 0.59Ro−4/3 (for Ro < 1). The meaning of the symbols is defined in
Fig. 4.

in Section 3.1, hydrodynamic models have systematically higher
GW amplitudes than the magnetic models for 	 < 102 Hz, and the
situation reverses for fast rotating strong field dynamos. Note that this
does not apply to late time models with pseudo-vacuum boundary
conditions (white circles), which do not display the transition to
a strong field dynamo solution and which remain closer to the
hydrodynamics cases (red squares) and below the models with
perfect-conductor boundary conditions (red circles). Overall, these
results agree and reinforce the conclusions drawn from the typical
cases illustrated in Fig. 3. Moreover, Fig. 4 further suggests the
existence of two distinct regimes, since the GW amplitude becomes
independent of 	 for low rotation rates. As already observed in
Raynaud et al. (2020), these different regimes are controlled by the
Rossby number defined by Ro = urms/(	d). This is indeed shown in
Fig. 5, where all the models collapse on a master curve after rescaling
the amplitudes as a function of the inverse Rossby number 1/Ro.

To do so, we derive the following scaling for the amplitude of the
gravitational wave based on order of magnitude considerations (and
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neglecting any effects related to the magnetic field). The first step
consists in expressing the density perturbation �

′

�′ = ∂�

∂S

∣∣∣∣
P

S + ∂�

∂P

∣∣∣∣
S

P = �′
S + �′

P (25)

as a function of the fluid velocity. To evaluate the entropy contribution
�′

S , we equate the kinetic and potential energies of an entropy
perturbation displaced over a ‘mixing’ length �

�′
S g̃� ∼ 1

2
�̃u2 . (26)

To estimate the pressure contribution from an isentropic perturbation,
we use the relation

�′
P = p′

c2
s

∼ �̃u2

c2
s

, (27)

where we assume that the pressure perturbation is balanced by
the ram pressure. Using the hydrostatic balance ∂P̃ /∂r = �̃g̃

and the standard expression of the mixing length � ∼ αmltHP =
αmlt

∣∣∂r ln P̃
∣∣−1

and introducing the adiabatic index γ = c2
s �̃/P̃ ,

equations (26) and (27) give

�′

�̃
∼

(
γ

2αmlt
+ 1

)
u2

c2
s

. (28)

Then, we estimate the order of magnitude of the quadrupole moments
as

Q ∼ r2
midMconv

�′

�̃
, (29)

where Mconv is the mass of convective zone and rmid the middle radius
of the convective zone. The second time derivative of Q finally gives
the expression for the GW amplitude

h ∼ 2G

Dc4
Q̈ , (30)

with D the distance to the source. At this point, we are left with the
estimates of the second time derivative and the fluid velocity. For the
former, we take the eddy turnover time-scale d/u or the inverse of the
rotation rate 	−1 as the typical time-scale depending on the rotation
regime (see Section 3.3 for a description of the GW spectrum), which
gives

Q̈ ∼
{

Qu2/d2 for Ro � 1 ,

Q	2 for Ro � 1 .
(31)

Finally, for the estimate of the fluid velocity, we use the scaling
laws derived by Aurnou, Horn & Julien (2020) for slowly rotating
and rapidly rotating convection. They read

u ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
g̃α̃�od

cp4πr2
mid�̃

)1/3

=
(∣∣∂r ln T̃

∣∣ �o

4πr2
mid

d

�̃

)1/3

for Ro � 1 ,

(∣∣∂r ln T̃
∣∣ �o

4πr2
mid�̃

)2/5 (
d

2	

)1/5

for Ro � 1 .

(32)

Note that a simple estimate of the convective energy flux � ∼
4πr2�̃u3 is consistent with the slow rotating scaling u ∝ �1/3

o .
This gives the following scalings hslow and hfast for the GW

amplitude in the slow and fast rotation regimes,

hslow ∝ 2G

Dc4
r2

midMconv

(
γ

2αmlt
+ 1

)
d−2/3

c2
s

(∣∣∂r ln T̃
∣∣ �o

4πr2
mid�̃

)4/3

, (33)

hfast ∝ 2G

Dc4
r2

midMconv

(
γ

2αmlt
+ 1

)
d2/5

c2
s

(∣∣∂r ln T̃
∣∣ �o

4πr2
mid�̃

)4/5

	8/5 . (34)

For the mixing length parameter, we use the typical value obtained
from the calibration of field stars αmlt ∼ 2 (Valle et al. 2019). We
recall that the width of the convective zone is related to the shell
aspect ratio by the relation d = ro(1 − χ ). We estimate cs, γ , �̃,
∂r ln T̃ at r = rmid using the background model and the EoS LS220nl
from the CompOSE data base.4 Finally, Mconv is directly taken from
the 1D model.

Using these scalings, it is possible to rescale the numerical results
at different times to a unique curve as a function of the Rossby
number. The velocity scaling in the fast rotation regime (Equation 32)
gives the following scaling for the Rossby number

Ro = u

d	
∼

(∣∣∂r ln T̃
∣∣ �od

4πr2
mid�̃

)2/5 ( 1

2d6	6

)1/5

. (35)

The GW amplitude scaling can then be recast as a function of the
Rossby number and the GW amplitude in the slow rotation regime

hfast ∝ hslowRo−4/3 . (36)

Equation (33) is used to rescale the GW amplitudes in Fig. 5 and we
see that the transition toward the rotation dominated regime occurs
around Ro ∼ 1 as expected. The figure also shows that the scaling that
we propose explains the differences in the GW amplitude between
early and late time models. This confirms that the decrease of the GW
amplitude is dominated by a decrease of the fluid velocity caused by
a decrease of the energy flux �o by one order of magnitude and a
similar increase of the density �̃ (see Table 1).

3.3 Frequency scaling

3.3.1 Slow rotation

We display in the top panel of Fig. 6 all the GW spectra of our data
base and highlight with colours slow rotating models with Ro > 1.
Both early (blue) and late (red) time models are characterized by
relatively broad spectra like the one displayed in the left-hand panel
of Fig. 3. Moreover, one can distinguish for both early and late time
models a slight difference in amplitude which reflects the difference
between hydrodynamic and MHD models (the latter having a lower
characteristic strain). That being said, the global similarity of these
spectra becomes clearer after normalizing the characteristic strain
hchar by its maximum and rescaling the frequency by the turnover
frequency fturn = urms/d (bottom panel of Fig. 6). This shows that
the turnover frequency is the characteristic time-scale of the GW
emission induced by PNS convection in the limit of slow rotation. To
illustrate this point more quantitatively, Fig. 7 shows the dependence
of the ratio of the peak frequency of these spectra with the turnover
frequency fpeak/fturn as function of the inverse Rossby number 1/Ro
for all models. For slow rotating models (1/Ro < 1), this confirms
that the maximum frequency is indeed proportional to the turnover
frequency (with a best fit at f = 2.68fturn). On the other hand, we
observe that the turnover frequency is not the characteristic time-
scale once the flow becomes rotationally constrained (1/Ro>1).

3.3.2 Fast rotation

In the fast rotation regime, the gravitational wave spectra are
characterized by several peaks (as already shown in the right-hand
panel of Fig. 3). Their interpretation is complicated by the fact
that these peaks originate from density fluctuations with different

4http://compose.obspm.fr

MNRAS 509, 3410–3426 (2022)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/509/3/3410/6413573 by U
niversitat de Valencia user on 20 June 2023

http://compose.obspm.fr


3418 R. Raynaud, P. Cerdá-Durán and J. Guilet

Figure 6. Top: spectrum of hchar in the frequency range [10, 2000] Hz.
Colour lines show slow rotating models (Ro > 1) at t = 0.2 s (blue) and
t = 5 s (red). Faster rotating models with Ro < 1 are displayed in the grey
background. The black lines show the sensitivity of different GW detectors.
Bottom: hchar scaled by its maximum as a function of the frequency scaled
by the turnover frequency fturn for slow rotating models. The vertical line
indicates the typical location of the maximum of these spectra f/fturn = 2.68.

Figure 7. Peak frequency scaled by the turnover frequency fturn = urms/d as a
function of 1/Ro. The horizontal line y = 2.68 fits the scaled peak frequencies
for Ro > 1. The meaning of the symbols is defined in Fig. 4.

Figure 8. Characteristic strain hchar in the frequency range [0.3frot−2frot] for
a hydrodynamic (top) and dynamo (bottom) model at t = 5 s post-bounce.
The vertical lines in the top panel show inertial mode frequencies computed
by Lockitch & Friedman (1999) coloured as a function of their azimuthal
wavenumber (dashed or solid lines indicate retrograde or prograde modes).
The black crosses in the top panel indicates some peak frequencies for the
|m| = 2 component and the horizontal black arrows highlight the frequency
offset of these modes.

azimuthal wavenumbers |m| ∈ {0, 1, 2}, as illustrated by Fig. 8,
where, for each |m|, we show the contributions to the waveform by
the components h2m and h2(− m) (see equation B30). While all the
three components contribute equally to the GW emission for slow
rotating models (not shown) – which can be expected from symmetry
considerations in the absence of a preferred direction – we find that
the signal is mostly dominated by the |m| = 2 component for fast
rotating models (red lines in Fig. 8). Other components like |m| = 1
can also contribute significantly to the GW signal (blue lines in Fig. 8)
at special frequencies where their spectrum is peaked. These peaks
are clear when looking at the spectrum of a single azimuthal number
but can be difficult to distinguish in the total signal combining all m.
A closer comparison of the top and bottom panels of Fig. 8 tends to
indicate that several modes are present in both the hydrodynamic and
dynamo cases but with different relative amplitudes, which modifies
their visibility. Moreover, we note that the main peaks of the |m| =
2 component seem slightly shifted toward lower frequencies (see
horizontal black arrows in Fig. 8).

We claim that most of these peaks are the signature of inertial
modes, which are a class of oscillation modes that appear in rotating
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GW signal of PNS convection 3419

fluids and for which the Coriolis force acts as the restoring force.
Their frequency in the rotating frame scales with the rotation
frequency and lies in the interval [−2	, 2	] (e.g. Rieutord 2015).
Hereafter, we consider modes of the form ∝ ei(mϕ−ωrott) with positive
m, retrogrades modes have negative frequencies, while prograde
modes have positives frequencies.5 Rossby modes (often called r-
modes) are a special class of inertial modes first studied in the
dynamics of planetary atmospheres and then in stellar radiative
zones and finally neutron stars. They obey the well-known dispersion
relation (e.g. Papaloizou & Pringle 1978; Paschalidis & Stergioulas
2017),

ωrot = 2m

l(l + 1)
	 , (37)

where ωrot is the mode frequency in the rotating frame. This
dispersion relation applies for the case of a thin atmosphere or zones
with a strong stable stratification that prevents radial motions. Neither
condition applies to a PNS convective zone, whose stratification
is unstable and can be considered close to isentropic (see Fig. 1).
Lockitch & Friedman (1999) showed that most of the Rossby modes
do not exist in an isentropic star, where only the Rossby modes with
m = l are present with the frequency ωrot = 2	/(m + 1). The rest of
the modes visible in the spectra are the more general class of inertial
modes; these have also been called ‘rotation modes’ or ‘generalized
r-modes’ by Lockitch & Friedman (1999).

In order to compare inertial modes to the GW spectra computed in
this paper, their frequency should be converted to the observer frame
through the relation,

ωobs = ωrot − m	, (38)

where ωobs is the mode frequency in the observer frame. Since the
modes that can contribute to GW emission have azimuthal indices
m = 0, 1, or 2, inertial modes are expected in the range of frequencies
[0, 4	] (in absolute as measured in our spectra). Prograde modes
with m = 2 lie in the frequency interval [2	, 4	], while retrograde
modes lie in the interval [0, 2	]. For m = 1, prograde modes lie
in the interval [	, 3	], while retrograde modes lie in the interval
[0, 	].

The vertical lines in Fig. 8 show the mode frequencies obtained
by Lockitch & Friedman (1999). While this gives us an idea of
the richness of modes to be expected in this frequency range, we
find that most of them do not perfectly match with the peaks of
the GW signal. However, this discrepancy can be explained by the
fact that the numerical and the theoretical models are not built on
the same hypotheses and differ at least on these three points: first,
Lockitch & Friedman (1999) carried out their computation in full
sphere geometry, whereas to simplify the numerical setup we assume
a spherical shell geometry of aspect ratio χ = 0.1. Secondly, the
results we show of Lockitch & Friedman (1999) assume a polytropic
equation of state of the form p = K�2, which can only be considered
a crude approximation of the PNS equation of state. Finally, when
comparing the top and bottom panel in Fig. 8, we see that the
magnetic field could also impact the mode frequencies, a case which
has not been studied by Lockitch & Friedman (1999).

Given all these differences and the richness of modes present
in the spectra, it is difficult to identify the modes with their

5Note that considering only modes with positive m does not exclude any
physical mode because we allow negative frequencies. Indeed, a mode with
negative m and positive frequency ωrot is the same as the mode with (positive)
azimuthal number −m and (negative) frequency −ωrot.

Figure 9. Top: hchar (arbitrary units) in the frequency range [10, 2000] Hz
for a subset of fast rotating models at t = 5 s post-bounce with rotation
periods ranging from P = 1 ms to P = 5.9 ms. Bottom: same quantities after
rescaling the frequency by the rotation frequency frot = 	/(2π ). The grey
vertical lines show the frequencies of inertial modes obtained with a model
of decaying turbulence where we fix Ra = 0.

corresponding predictions by Lockitch & Friedman (1999) proba-
bly because the uncertainty in the prediction is comparable with
the separation between different modes. Our statement that these
peaks are the signature of inertial modes is rather supported
by Fig. 9, where we show that the different peak frequencies
scale with the rotation rate of the PNS. In the top panel, we
stack a subset of hydrodynamic and dynamo models with rota-
tion rates ranging from 1 to 5.9 ms, and whose spectra display
clear peaks in the frequency range of inertial modes. The bottom
panel presents the same models after rescaling the frequency by
the rotation frequency. We also overplot in the bottom panel the
mode frequencies we obtain in a decaying turbulence model in
which we suppress the buoyancy force setting Ra = 0 and we
initialized with an hydrodynamic turbulent state rotating at P =
11.5 ms (see Fig. A2 in Appendix). We see that we recover in
this model most of the inertial modes obtained in the convective
cases.

Finally, we also find that the GW signal produced by fast rotating
models has a circular polarization, in contrast with the slow rotating
case. A more in depth study of this aspect will be considered in an
upcoming work focused on the detectability of these signals.
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Figure 10. Summary of the late time modelLMP9.4. The first row shows the
time evolution of the kinetic energy (blue line), magnetic energy (red line),
and dipolar magnetic energy (pink line). The second and third rows show
the GW waveform polarizations and the corresponding spectrogram (sum of
both polarizations) at 10 kpc observed along the rotation axis. The typical
frequencies overplotted on the spectrogram are the rotational frequency frot,
the turnover frequency fturn, the Alfvén frequency fA, and the ratio f 2

A/frot.
The bottom row shows the characteristic strain of the GW signal at 10 kpc
for each of the three phases (same colours as above).

3.4 A signature of the strong field dynamo

As discussed in Section 3.1, a strong GW component at low frequency
appears in the fast rotating models when the strong field dynamo
sets in (see Figs 3 and 10). It is striking that, in a subset of our

simulations, we observe a pattern with increasing frequency in time-
coincidence with the increasing strength of the axisymmetric toroidal
magnetic field, as we can see in Fig. 10. Fig. 11 displays for the same
models snapshots of the non-axisymmetric density fluctuations and
the radial component of velocity and magnetic fields, taken at the
end of the first plateau (t ∼ 1.0 s) and in the strong field regime
(t ∼ 2.8 s) where they become characterized by a strong m = 1
pattern. We therefore hypothesize that the low frequency excess is a
consequence of the strong azimuthal magnetic field characteristic of
the strong field dynamo branch (Raynaud et al. 2020). As shown in
the previous section, the GW spectra of fast rotating modes contain
a number of inertial modes. It may therefore seem natural to seek an
explanation for the low frequency component in a modification of
inertial modes by the azimuthal magnetic field (Hide 1966; Malkus
1967; Morsink & Rezania 2002).

Hide (1966) developed a simple analytical model of Rossby waves
in a spherical shell in the presence of magnetic field. They obtained
the following dispersion relation for the wave frequency in the
rotating frame:

ωrot  ω0

2
± ω0

2

[
1 + 4m2 ω2

A

ω2
0

]1/2

, (39)

where ω0 is the angular frequency of the non-magnetized Rossby
wave in the rotating frame, ωA ≡ vA/r is the Alfvén angular frequency
and m is the azimuthal number of the Rossby wave. The angular
frequency of the two corresponding wave solutions can be simplified
in the limit ω2

A � ω2
0 (which is relevant here as ω2

A � 0.1	2) as a
Rossby wave modified by magnetic effects :

ωrot  ω0

[
1 + m2 ω2

A

ω2
0

]
, (40)

and a magneto-Coriolis wave :

ωrot  −m2 ω2
A

ω0
. (41)

Malkus (1967) studied magneto-inertial modes in a sphere. He
showed that an analytical solution can be found for a special
configuration of the magnetic field: a purely toroidal magnetic field
with an intensity proportional to the distance from the axis (this
corresponds to a uniform current along the axis of rotation), giving
rise to a uniform Alfvén frequency in the spherical domain. Similarly
to the results of Hide (1966), each inertial mode is associated to two
magnetized solutions:

ωrot  ω0

2
± ω0

2

[
1 − 4m

(ω0

	
+ m

) ω2
A

ω2
0

]1/2

, (42)

where ω0 is the frequency of the unmagnetized inertial mode. In
the limit ω2

A � ω2
0, this simplifies once again as an inertial mode

modified by magnetic effects:

ωrot  ω0

[
1 + m

(ω0

	
+ m

) ω2
A

ω2
0

]
, (43)

and a magneto-Coriolis mode:

ωrot  −m
(ω0

	
+ m

) ω2
A

ω0
. (44)

Despite a difference in the numerical factor due to their different
assumptions, Hide (1966) and Malkus (1967) agree on the conclusion
that Rossby and inertial modes are modified by a magnetic field
in such a way that their frequency is shifted proportionally to
∝ ω2

A/	 (since ω0 ∝ 	). Note that, in our magnetic simulations
on the strong branch, the peak frequencies of m = 2 modes tend
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Figure 11. Equatorial slices of the non-axisymmetric density fluctuations �′
turb (left), radial velocity (middle), and magnetic field (right) at t = 1.0 s (top) and

t = 2.8 s (bottom) for the model LMP9.4.

to be systematically shifted to lower frequencies when compared
to hydrodynamic simulations (see Fig. 8). This is qualitatively
consistent with the expectations from Hide (1966) and Malkus
(1967), but we do not attempt to perform a precise quantitative
analysis because of the large uncertainty in measuring precisely the
frequency shift from the spectra.

When interpreting the GW spectra, the mode frequency should
be converted to the observer frame using Equation (38). With
ω2

A � 0.1	2, the magneto-Coriolis modes would appear close to
the frequency m	 with a small correction proportional to ω2

A/	.
Since we do not observe any special features in this region of
the spectrum, we conclude that magneto-Coriolis modes are not
contributing significantly to the GW spectrum.

Fig. 12 shows that the low-frequency excess is predominantly
generated by the m = 1 component of the quadrupole. We therefore
focus our analysis on the peak frequency of the GW spectrum
generated by the m = 1 component indicated by a cross in these
spectra. For comparison with theoretical results, we evaluate the
Alfvén frequency fA ≡ ωA/(2π ) = vA/(2πr) by using the radius rmid

and approximating the Alfvén speed by

vA  Baxi
tor√

4π�̃mid
, (45)

where Baxi
tor is the rms value of the axisymmetric toroidal magnetic

field. Fig. 13 shows that the m = 1 peak frequency lies very close
to f 2

A/frot. A possible interpretation is that this peak corresponds
to the magnetic modification of a Rossby or inertial mode, whose
frequency vanishes in the observer frame in the absence of magnetic
field. Equation (38) shows that this happens for an m = 1 mode if
ω0 = 	. The l = m = 1 Rossby mode satisfies this condition and fits
well in this interpretation. The observer frame frequency according
to equation (40) from Hide (1966) is then f 2

A/frot in good agreement
with Fig. 13. Note that equation (43) from Malkus (1967) predicts

Figure 12. hchar (arbitrary units) in the frequency range [1, 2000] Hz for
a subset of fast rotating MHD models at t = 5 s. The grey lines show the
component of hm=1

char and the black crosses indicate its maximum.

the same scaling with Alfvén and rotation frequency but a factor of
2 higher. The time evolution of the low frequency mode appearing
in Fig. 3 (right side) and in Fig. 10 also seem to follow the time
evolution of f 2

A/frot.

4 C O N C L U S I O N

In this paper, we have investigated the gravitational waves emitted
by convective motions and the associated dynamo inside a proto-
neutron star. While this signal is probably subdominant before the
launch of the supernova explosion, it may become the dominant
source of GW in the few seconds following the explosion. We have
computed GW waveforms by applying the quadrupole formula to
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Figure 13. Peak frequency of the m = 1 component of hchar as a function of
f 2

A/frot for the subset of models displayed in Fig. 12.

outputs of 3D MHD numerical simulations describing the convective
zone in the anelastic approximation. The simulations follow from
Raynaud et al. (2020) with a PNS structure representative of early
times (0.2s after bounce) as well as an extension of their setup with
a PNS structure representative of late post-explosion times (5s after
bounce). With both PNS structures, we performed and analysed a
series of simulations in which the rotation rate is systematically
varied. Our main results can be summarized as follows:

(i) In the slow rotation regime (Rossby numbers larger than 1),
convection emits gravitational waves with a broad spectrum peaking
at about three times the turnover frequency. Compared to non-
magnetized simulations, the magnetic field impacts the dynamics
in a such a way as to decrease slightly the GW amplitude without
changing significantly the spectrum.

(ii) In the fast rotation regime (Rossby numbers smaller than 1),
the gravitational wave amplitude increases steeply with the rotation
rate. The rms strain reaches values up to a few thousand times larger
than in a corresponding non-rotating simulation. The signal is also
circularly polarized, unlike in the slow rotation regime.

(iii) The GW spectrum of fast rotating convection is characterized
by the presence of several peaks whose frequency scales with the
rotation rate, which we interpret as inertial modes.

(iv) The growth of the axisymmetric toroidal magnetic field
characteristic of the strong field dynamo solution described by
Raynaud et al. (2020) is accompanied by an increase of the GW
amplitude and the appearance of a low-frequency excess in the GW
spectrum at frequencies � 100 Hz. This low-frequency excess is
mostly emitted by the m = 1 component of the quadrupole, while
the m = 2 component is the main contributor to the rest of the
spectrum (except for some peaks associated to inertial modes).
We observe that the emission by the m = 1 component peaks at
a frequency proportional to the square of the Alfvén frequency
divided by the rotation frequency. This low-frequency emission is
a signature of the strong field dynamo and is tentatively interpreted
as due to the m = 1 Rossby mode modified by the toroidal magnetic
field.

(v) By using simple physical arguments, we derive scaling laws
for the GW amplitude in the regime of slow and fast rotation. These
scaling laws compare favourably with the numerical results.

The identification in the GW spectrum of fast rotating con-
vection of peaks associated to inertial modes opens interesting

new perspectives for PNS asterosismology. g, f, and p modes
have been identified previously in the GW spectrum (Morozova
et al. 2018; Torres-Forné et al. 2018; 2019b,a; Sotani et al. 2019;
Sotani & Takiwaki 2020) and have the potential to constrain PNS
properties such as combinations of radius and mass (Bizouard
et al. 2021). The identification of inertial modes would open the
possibility to constrain the rotation frequency of the PNS. This may
be a challenging task because of the richness of inertial modes
potentially present in the spectra and deserves further investiga-
tion. The GW excess at low frequency appearing in the strong
field dynamo opens furthermore the perspective to constrain the
dynamo efficiency and the strength of the magnetic field inside
the PNS.

We stress that the computation of our waveforms has several
limitations: i) with our current numerical setup, we cannot compute a
single continuous waveform including the evolution of the different
features as the PNS contracts and cools down. Instead we have
probed the features of this GW signal at different times during this
cooling phase. This is sufficient to make an estimation of the typical
values of the strain and frequencies but does not allow us to produce
realistic GW templates. ii) The second important limitation of these
simulations is that they are restricted to the convective zone of the
PNS. While this is useful to isolate and study the physics of a specific
signal, it misses several other important sources of GW including g-
modes from the PNS surface and possibly the SASI. Before the onset
of explosion, these other signals are probably dominant and would
hide the signal from convection computed here. The relevance of
our analysis may therefore be limited to times after the onset of the
explosion. The time of the onset of the explosion will affect greatly
the amplitude of the GW strain at the time it is first observed in
a clean environment (the later the weaker). And iii) this work is
limited to a particular PNS structure obtained from a 1D simulation
based on a specific progenitor and with the LS220 EOS to define
the anelastic background. Roberts et al. (2012) has shown that the
duration of the PNS convection is very sensitive to the nuclear
symmetry energy, so different EOS could produce a longer or shorter
duration signal. It also remains to be explored how the amplitude
of the GW signal depends on the EOS (and other microphysical
properties such as the neutrino opacities) and on the progenitor
structure.

Although the contribution from PNS convection to the GW strain
of CCSNe is in general subdominant (with respect to the pre-
explosion contribution), the typical strain and frequency range and
the potentially long duration of the signal, could allow its detection
by current GW detectors in a nearby supernova explosion, and may
be a primary target for next generation of GW detectors, the Einstein
Telescope (Hild et al. 2011) and Cosmic Explorer (Reitze et al. 2019).
The detectability of these signals is out of the scope of this work and
will be considered in an upcoming work.

Further work should also extend the numerical domain to include
other regions of the PNS outside of the convective zone. This would in
particular allow us to study the interaction of the convective dynamo
with the magnetorotational instability which develops in the stably
stratified outer layers of the PNS (e.g. Guilet et al. 2015; Reboul-
Salze et al. 2021) and with the g-mode oscillations of the PNS. It will
also be interesting to study how this signal could compare to other
important GW signal contributors after the onset of explosion, like
the aspherical explosion morphology (Obergaulinger, Aloy & Müller
2006; Scheidegger et al. 2010) and anisotropic neutrino emission
(Müller et al. 2012; Vartanyan & Burrows 2020), with typical
frequencies of 1–10 Hz, that may lay in a similar frequency range as
the m = 1 signature of the dynamo observed in our simulations.
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A P P E N D I X A : N U M E R I C A L M O D E L S

Fig. A1 shows the time evolution of the energy flux �o. Fig. A2
shows the characteristic strains of two models initialized with

Figure A1. Post-bounce evolution of �o as a function of time according to
our 1D background model. The vertical dotted line indicate the time t = 0.2 s
and t = 5 s corresponding to the early and late time models.

Figure A2. Spectra of models initialized with late time PNS models in a
turbulent state and evolved in time without the buoyancy force. The periods
indicate the rotation period of turbulent model used for the initial condition.
The modes highlighted with vertical grey lines are the ones reported in Fig. 9.

hydrodynamic turbulent states in which we suppress the buoyancy
force setting Ra = 0. Finally, Table A1 summarizes all the numerical
simulations used in this work.
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Table A1. Overview of the numerical simulations carried out. The thermal Prandtl number is fixed to Pr = 0.1 for all models. The names follow this convention:
the first letter differentiates early (E) and late (L) time models, the second one hydrodynamic (H) or magnetic (M) models, and then rotation period. The majority
of models use a perfect conductor outer boundary condition, except the ones whose name end ’PV’ refers to pseudo-vacuum boundary condition. Early time
models (t = 0.1 s post-bounce) have an aspect ratio χ = 0.5 whereas late time models (t = 5 s post-bounce) have an aspect ratio χ = 0.1. The MAGIC code uses
a slightly different definition of the Rayleigh number and we give here the numerical values used in code name list. B0 corresponds to the initial magnetic field
strength. �T indicates the duration of the time interval over which time averaging is performed once the system reaches a steady state. Nr and Nφ correspond to
the number of radial and azimuthal grid points, respectively. The corresponding spectral resolution for the spherical harmonic decomposition is given by �max =
�Nφ /3�.

Name Pm RaM E P [ms] Ro hrms hslow fpeak [Hz] fturn [Hz] B0 [G] �T [s] Nr Nφ

EHP1.3 1.77 × 104 5.00 × 10−4 1.33 × 100 3.92 × 10−2 3.82 × 10−23 3.90 × 10−24 2.17 × 102 1.85 × 102 0.42 145 320
EMP1.3 2 1.77 × 104 5.00 × 10−4 1.33 × 100 2.07 × 10−2 5.72 × 10−22 3.90 × 10−24 1.32 × 101 9.80 × 101 9.2 × 1015 4.19 145 320
EHP2.1 8.84 × 103 1.00 × 10−3 2.11 × 100 7.01 × 10−2 4.08 × 10−23 3.90 × 10−24 1.83 × 102 2.09 × 102 1.01 145 320
EMP2.1 2 8.84 × 103 1.00 × 10−3 2.11 × 100 4.01 × 10−2 1.41 × 10−22 3.90 × 10−24 2.21 × 101 1.19 × 102 2.4 × 109 2.32 145 320
EHP3.5 8.84 × 103 1.66 × 10−3 3.50 × 100 1.45 × 10−1 1.75 × 10−23 3.90 × 10−24 1.36 × 102 2.60 × 102 4.65 181 512
EMP3.5 5 8.84 × 103 1.66 × 10−3 3.50 × 100 8.95 × 10−2 1.02 × 10−23 3.90 × 10−24 1.91 × 102 1.61 × 102 2.5 × 109 1.51 181 512
EHP5.3 8.84 × 103 2.49 × 10−3 5.25 × 100 2.19 × 10−1 5.24 × 10−24 3.90 × 10−24 1.01 × 102 2.61 × 102 0.77 201 864
EMP5.3 5 8.84 × 103 2.49 × 10−3 5.25 × 100 1.59 × 10−1 1.69 × 10−23 3.90 × 10−24 2.88 × 101 1.90 × 102 5.8 × 1015 0.80 201 864
EMP6.1 5 8.84 × 103 2.91 × 10−3 6.13 × 100 1.98 × 10−1 5.51 × 10−24 3.90 × 10−24 1.36 × 102 2.03 × 102 2.6 × 1015 0.60 201 864
EMP7.0 5 8.84 × 103 3.32 × 10−3 7.00 × 100 2.18 × 10−1 6.40 × 10−24 3.90 × 10−24 9.37 × 101 1.96 × 102 5.6 × 1015 0.24 241 864
EMP8.0 5 8.84 × 103 3.79 × 10−3 7.99 × 100 2.70 × 10−1 5.30 × 10−24 3.90 × 10−24 1.03 × 102 2.13 × 102 5.2 × 1015 0.39 241 864
EHP8.8 8.84 × 103 4.15 × 10−3 8.75 × 100 3.36 × 10−1 2.01 × 10−24 3.90 × 10−24 1.64 × 102 2.41 × 102 2.60 181 512
EMP8.8 5 8.84 × 103 4.15 × 10−3 8.75 × 100 3.08 × 10−1 2.98 × 10−24 3.90 × 10−24 9.11 × 101 2.21 × 102 4.0 × 1015 0.23 201 512
EHP17.2 8.84 × 103 8.15 × 10−3 1.72 × 101 8.11 × 10−1 1.60 × 10−24 3.90 × 10−24 6.04 × 102 2.97 × 102 0.48 201 864
EMP17.2 5 8.84 × 103 8.15 × 10−3 1.72 × 101 7.60 × 10−1 1.44 × 10−24 3.90 × 10−24 1.47 × 102 2.78 × 102 1.9 × 1015 0.34 201 864
EHP50.6 8.84 × 103 2.40 × 10−2 5.06 × 101 2.53 × 100 1.26 × 10−24 3.90 × 10−24 6.77 × 102 3.14 × 102 0.90 201 864
EMP50.6 5 8.84 × 103 2.40 × 10−2 5.06 × 101 2.37 × 100 9.29 × 10−25 3.90 × 10−24 9.03 × 102 2.94 × 102 1.7 × 1015 0.40 257 864
EMP175.0 5 8.84 × 103 8.30 × 10−2 1.75 × 102 8.70 × 100 1.18 × 10−24 3.90 × 10−24 9.16 × 102 3.12 × 102 2.4 × 108 0.31 201 864
EHP1750.5 8.84 × 103 8.30 × 10−1 1.75 × 103 8.85 × 101 1.50 × 10−24 3.90 × 10−24 7.49 × 102 3.18 × 102 0.61 257 864
EMP1750.5 5 8.84 × 103 8.30 × 10−1 1.75 × 103 9.05 × 101 1.23 × 10−24 3.90 × 10−24 7.82 × 102 3.25 × 102 5.4 × 1010 0.17 257 864
LMP1.0PV 5 3.75 × 107 1.90 × 10−5 9.90 × 10−1 3.11 × 10−3 4.83 × 10−24 4.85 × 10−27 4.30 × 102 1.97 × 101 2.8 × 1015 0.48 201 864
LMP1.0 5 3.75 × 107 1.90 × 10−5 9.90 × 10−1 3.94 × 10−3 9.52 × 10−24 4.85 × 10−27 5.78 × 100 2.50 × 101 3.3 × 1015 1.83 289 1024
LHP1.6 3.75 × 107 3.00 × 10−5 1.56 × 100 2.93 × 10−2 1.38 × 10−24 4.85 × 10−27 3.25 × 102 1.18 × 102 2.55 145 320
LMP2.0PV 5 3.75 × 107 3.80 × 10−5 1.98 × 100 1.14 × 10−2 8.96 × 10−25 4.85 × 10−27 5.73 × 102 3.61 × 101 1.9 × 1013 0.19 257 864
LMP2.0 5 3.75 × 107 3.80 × 10−5 1.98 × 100 1.50 × 10−2 3.25 × 10−24 4.85 × 10−27 1.73 × 101 4.77 × 101 2.9 × 1015 0.80 257 864
LHP3.4 3.75 × 107 6.45 × 10−5 3.36 × 100 9.43 × 10−2 2.19 × 10−25 4.85 × 10−27 2.22 × 102 1.76 × 102 0.64 145 320
LHP5.2 3.75 × 107 1.00 × 10−4 5.21 × 100 1.36 × 10−1 9.53 × 10−26 4.85 × 10−27 1.77 × 102 1.63 × 102 0.86 145 320
LHP3.4 3.75 × 106 1.40 × 10−4 3.39 × 100 3.67 × 10−2 2.19 × 10−25 4.85 × 10−27 1.47 × 102 6.81 × 101 3.83 145 320
LMP3.4 5 3.75 × 106 1.40 × 10−4 3.39 × 100 3.20 × 10−2 2.11 × 10−25 4.85 × 10−27 3.35 × 101 5.94 × 101 1.1 × 1016 2.31 241 512
LMP3.4PV 5 3.75 × 106 1.40 × 10−4 3.39 × 100 1.69 × 10−2 3.11 × 10−25 4.85 × 10−27 1.28 × 102 3.13 × 101 2.4 × 1015 0.23 257 864
LMP5.1 5 3.75 × 106 2.10 × 10−4 5.08 × 100 5.22 × 10−2 1.04 × 10−25 4.85 × 10−27 1.05 × 102 6.46 × 101 2.1 × 1015 1.30 201 512
LHP11.5 3.75 × 107 2.20 × 10−4 1.15 × 101 3.25 × 10−1 2.64 × 10−26 4.85 × 10−27 5.21 × 101 1.78 × 102 0.81 201 512
LMP6.0 5 3.75 × 106 2.50 × 10−4 6.05 × 100 7.92 × 10−2 1.68 × 10−25 4.85 × 10−27 5.15 × 101 8.24 × 101 2.5 × 1016 0.53 257 864
LMP8.0 5 3.75 × 106 3.30 × 10−4 7.98 × 100 1.10 × 10−1 1.34 × 10−25 4.85 × 10−27 6.86 × 101 8.66 × 101 1.7 × 1016 1.18 201 512
LMP8.9 5 3.75 × 106 3.70 × 10−4 8.95 × 100 1.24 × 10−1 1.30 × 10−25 4.85 × 10−27 4.10 × 101 8.68 × 101 1.6 × 1016 1.15 201 512
LHP9.4 3.75 × 106 3.90 × 10−4 9.43 × 100 1.60 × 10−1 2.60 × 10−26 4.85 × 10−27 1.00 × 102 1.07 × 102 2.87 201 512
LMP9.4PV 5 3.75 × 106 3.90 × 10−4 9.43 × 100 9.89 × 10−2 3.18 × 10−26 4.85 × 10−27 9.87 × 101 6.59 × 101 2.8 × 1015 0.22 201 864
LMP9.4 5 3.75 × 106 3.90 × 10−4 9.43 × 100 1.32 × 10−1 1.12 × 10−25 4.85 × 10−27 7.33 × 101 8.81 × 101 1.6 × 1011 0.93 201 512
LMP9.9 5 3.75 × 106 4.10 × 10−4 9.91 × 100 1.33 × 10−1 1.18 × 10−25 4.85 × 10−27 2.94 × 101 8.43 × 101 1.5 × 1016 4.28 201 512
LMP10.9 5 3.75 × 106 4.50 × 10−4 1.09 × 101 1.51 × 10−1 9.63 × 10−26 4.85 × 10−27 4.68 × 101 8.71 × 101 1.5 × 1016 3.50 201 512
LHP24.0 3.75 × 107 4.60 × 10−4 2.40 × 101 4.43 × 10−1 7.81 × 10−27 4.85 × 10−27 3.24 × 102 1.16 × 102 0.83 201 512
LMP12.1 5 3.75 × 106 5.00 × 10−4 1.21 × 101 1.65 × 10−1 8.34 × 10−26 4.85 × 10−27 4.98 × 101 8.55 × 101 1.4 × 1016 3.60 201 512
LMP15.0 5 3.75 × 106 6.20 × 10−4 1.50 × 101 2.00 × 10−1 6.24 × 10−26 4.85 × 10−27 3.00 × 101 8.38 × 101 9.2 × 1015 3.94 201 512
LMP17.9 5 3.75 × 106 7.40 × 10−4 1.79 × 101 2.33 × 10−1 4.42 × 10−26 4.85 × 10−27 3.12 × 101 8.19 × 101 1.0 × 1016 3.53 201 512
LHP9.4 3.75 × 105 8.40 × 10−4 9.43 × 100 8.33 × 10−2 1.59 × 10−26 4.85 × 10−27 1.25 × 102 5.55 × 101 1.78 145 320
LHP11.2 3.75 × 105 1.00 × 10−3 1.12 × 101 1.17 × 10−1 1.57 × 10−26 4.85 × 10−27 5.69 × 101 6.54 × 101 1.79 145 320
LHP24.2 3.75 × 106 1.00 × 10−3 2.42 × 101 4.28 × 10−1 7.50 × 10−27 4.85 × 10−27 2.54 × 102 1.11 × 102 1.52 145 320
LMP24.2 5 3.75 × 106 1.00 × 10−3 2.42 × 101 3.18 × 10−1 6.05 × 10−27 4.85 × 10−27 1.17 × 102 8.27 × 101 2.9 × 1015 0.77 257 864
LMP24.2PV 5 3.75 × 106 1.00 × 10−3 2.42 × 101 3.05 × 10−1 5.54 × 10−27 4.85 × 10−27 1.54 × 102 7.91 × 101 3.3 × 1015 0.21 257 864
LHP5.9 3.75 × 105 1.10 × 10−3 5.94 × 100 3.78 × 10−2 1.08 × 10−25 4.85 × 10−27 7.48 × 101 4.00 × 101 1.72 145 320
LHP50.8 3.75 × 106 2.10 × 10−3 5.08 × 101 7.49 × 10−1 3.86 × 10−27 4.85 × 10−27 2.20 × 102 9.27 × 101 0.72 257 864
LMP50.8 5 3.75 × 106 2.10 × 10−3 5.08 × 101 6.48 × 10−1 2.69 × 10−27 4.85 × 10−27 1.66 × 102 8.02 × 101 6.7 × 1010 0.38 257 864
LHP99.1 3.75 × 106 4.10 × 10−3 9.91 × 101 1.44 × 100 3.34 × 10−27 4.85 × 10−27 2.84 × 102 9.15 × 101 2.19 201 512
LMP99.1 5 3.75 × 106 4.10 × 10−3 9.91 × 101 1.22 × 100 1.88 × 10−27 4.85 × 10−27 1.84 × 102 7.73 × 101 4.8 × 1010 0.33 241 864
LHP991.4 3.75 × 106 4.10 × 10−2 9.91 × 102 1.47 × 101 3.28 × 10−27 4.85 × 10−27 2.75 × 102 9.34 × 101 1.46 201 512
LMP991.4 5 3.75 × 106 4.10 × 10−2 9.91 × 102 1.20 × 101 1.68 × 10−27 4.85 × 10−27 2.09 × 102 7.59 × 101 1.5 × 1010 0.48 241 864

APPENDIX B: MASS MULTIPOLE
D E C O M P O S I T I O N O F TH E QUA D RU P O L E
F O R M U L A

A popular way of computing the GW in 3D numerical simulations
(even if performed in spherical coordinates) is to use Cartesian
components to evaluate the quadrupole formula (see e.g. Oohara

et al. 1997; Scheidegger et al. 2008, 2010; Müller et al. 2012).6 In
this case, we can compute the two polarizations of the GW signal as
(Oohara et al. 1997):

h+(T , X) = 1

R

G

c4
(Q̈θθ − Q̈ϕϕ), (B1)

6Note that equation 25 in Müller et al. (2012) contains some typos.

MNRAS 509, 3410–3426 (2022)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/509/3/3410/6413573 by U
niversitat de Valencia user on 20 June 2023



3426 R. Raynaud, P. Cerdá-Durán and J. Guilet

h×(T , X) = 2

R

G

c4
(Q̈θϕ), (B2)

while the necessary components of Qij (expressed in an orthonormal
spherical coordinate basis) can be computed as a function of the
Cartesian components (Oohara et al. 1997):

Qθθ = (Qxx cos2 � + Qyy sin2 � + 2Qxy sin � cos �) cos2 �

+Qzz sin2 � − 2(Qxz cos � + Qyz sin �) sin � cos �, (B3)

Qϕϕ = Qxx sin2 � + Qyy cos2 � − 2Qxy sin � cos �, (B4)

Qθϕ = (Qyy − Qxx) cos � sin � cos �

+Qxy cos �(cos2 � − sin2 �)

+Qxz sin � sin � − Qyz sin � cos �. (B5)

The goal is to decompose Qij in terms of the mass quadrupole
moment Qlm given by equation (15). For this purpose we write the
l = 2 spherical harmonics in term of (x, y, z):

Y20(θ, ϕ) = 3

4

√
5

π

xzz

r2
, (B6)

Y21(θ, ϕ) = −1

2

√
15

2π

xxz + ixyz

r2
, (B7)

Y22(θ, ϕ) = 1

4

√
15

2π

xxx − xyy + 2xxyi

r2
, (B8)

Y2−1(θ, ϕ) = −Y �
21(θ, ϕ), (B9)

Y2−2(θ, ϕ) = Y �
22(θ, ϕ), (B10)

where xij ≡ xixj − 1/3 r2δij . Solving for xij:

xxx = 1

3

√
π

5
r2

[√
6(Y22 + Y2−2) − 2Y20)

]
, (B11)

xyy = −1

3

√
π

5
r2

[√
6(Y22 + Y2−2) + 2Y20)

]
, (B12)

xzz = 4

3

√
π

5
r2 Y20, (B13)

xxy = −
√

2π

15
r2 (Y22 − Y2−2) i, (B14)

xxz = −
√

2π

15
r2 (Y21 − Y2−1), (B15)

xyz =
√

2π

15
r2 (Y21 + Y2−1)i (B16)

Using these relations the mass quadrupole can be expressed in terms
of Qlm as

Qxx = −2

3

√
π

5

(
QR

20 −
√

6 QR
22

)
, (B17)

Qyy = −2

3

√
π

5

(
QR

20 +
√

6 QR
22

)
, (B18)

Qzz = 4

3

√
π

5
QR

20, (B19)

Qxy = −2

√
2π

15
QI

22, (B20)

Qxz = −2

√
2π

15
QR

21, (B21)

Qyz = 2

√
2π

5
QI

21, (B22)

where QR
lm and QI

lm are the real and imaginary part of Qlm,
respectively. Finally, the strain from the two polarizations observed
with an angle (�, �) is

h+ = 1

R

G

c4

1

3

√
π

5

{
6 Q̈R

20 sin2 �

+2
√

6
[
Q̈R

21 cos � − Q̈I
21 sin �

]
sin(2�)

+
√

6
[
Q̈R

22 cos(2�) − Q̈I
22 sin(2�)

]
[3 + cos(2�)]

}
, (B23)

h× = − 1

R

G

c4
4

√
2π

15

{[
Q̈R

21 sin � + Q̈I
21 cos �

]
sin �

+ [
Q̈R

22 sin(2�) + Q̈I
22 cos(2�)

]
cos �

}
. (B24)

Equations (B23–B24) can be expressed in a very compact form in
terms of the spin-weighted spherical harmonics with s = −2:

h = h+ − ih× = 1

R

G

c4

8π

5

√
2

3

+2∑
m=−2

Q̈2m −2Y
2m(�,�), (B25)

where we have used the values of the l = 2 spin-weighted spherical
harmonics with s = −2:

−2Y
20(θ, ϕ) = 1

4

√
15

2π
sin2 θ, (B26)

−2Y
2±1(θ, ϕ) = 1

8

√
5

π
(2 sin θ ± sin 2θ )e±i ϕ, (B27)

−2Y
2±2(θ, ϕ) = 1

16

√
5

π
(3 ± 4 cos θ + cos 2θ )e±i 2ϕ, (B28)

that fulfil the orthonormality relation∫
d	 sY

lm
sY

l′m′∗ = δll′δmm′ . (B29)

This decomposition naturally expresses h in terms of the spin-
weighted spherical harmonics with s = −2 (the only ones capable
of describing GWs) and l = 2 (because our derivation comes from
the quadrupole formula where higher order l are subdominant). This
expression allows to connect our results with the usual expansion of
h in spin-weighted spherical harmonics

h(X, T ) =
∞∑
l=2

hlm(D, T ) −2Y
lm(�,�). (B30)

The coefficients hlm (with l = 2 in our case this case) can be directly
related to the corresponding Q2m, and allow to study the impact of a
perturbation with particular m in the GW strain.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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