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Abstract

Quantum Field Theory in Curved Spacetimes has proven to be a very useful
semiclassical theory for studying physical phenomena that combine gravity
and quantum effects. In particular, it predicts that the dynamics of a
background gravitational field can spontaneously excite particles out of
the quantum vacuum. The process of particle production is of particular
importance in the study of the very early universe in Cosmology, and it
is the basis of Hawking radiation in black hole physics. Physically, this
quantum effect is analogous to the well-known Schwinger effect in quantum
electrodynamics. The goal of this Thesis is to study this general phenomenon
of particle production, as well as other related fundamental aspects, such as

backreaction effects, quantum anomalies, and renormalization techniques.

One of the main contributions of this Thesis is the development and
transfer of techniques typically used in QFT in curved spacetimes to quantum
fields coupled to strong electrodynamics backgrounds. For instance, the
study includes the exploration of whether the gravitational anomaly for
Weyl fields is also present for electric backgrounds. Moreover, this Thesis
also addresses if the fundamental property of the adiabatic invariance of
the number of created particles in an expanding universe is maintained in
the case of a pure electric background. Finally, the method of adiabatic
renormalization, which is particularly useful for quantum fields in expanding
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universes, is developed here for 4-dimensional Dirac fields that are coupled
to a general, electric background.

This Thesis also provides relevant contributions in the area of Gravitation.
On the one hand, we extend a successful regularization and renormalization
method recently communicated in the literature, called pragmatic mode-
sum regularization. This method was originally developed for black holes,
and in this Thesis we adapted it for expanding universes. On the other
hand, the Thesis includes a detailed study of quantum corrections to the
Schwarzschild metric, originated from the back-reaction effects of quantum
fields living in this black hole background. As we will see in more detail
below, the driving argument in the analysis is the conformal anomaly and
the assumption of staticity. The geometrical properties and applications of
the new (horizonless) spacetime are also analyzed.

All these results improve considerably our understanding of the behavior
of quantum fields coupled to external gravitational and electromagnetic
backgrounds. The role of quantum anomalies has been fundamental to

achieve this.



Agraiments

Hi ha moltes persones a qui voldria agrair moltes coses. Algunes que han
contribuit al fet que puga estar en la situacié que estic, altres que han
col-laborat en tot el treball que hi ha darrere d’esta tesi, i altres que ho
han fet amb suport emocional, o que simplement m’agradaria aprofitar esta
oportunitat per a recordar-los el que signifiquen per a mi.

En primer lloc, als meus pares, Lupe i Vicent, perque heu estat sempre
ahi per a donar-me consell a I’hora de prendre les decisions més importants
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mai heu tractat de forcar-me a escollir cap cami i m’heu donat sempre
suport, independentment que el que decidira o pensara fora més o menys del
vostre gust. I en definitiva, per haver-me ensenyat a interactuar amb el meu
entorn amb ulls curiosos, ment critica i cor obert. A la meua germana, Sara,
perque és igual com d’angoixant o depriment haja sigut la setmana, quan
arriba el diumenge i ens trobem al maset sempre aconsegueixes traure’'m un
somriure. Ja siga fent el tonto, amb una conversa profunda al cotxe, o amb
una de les teues “turres” inacabables (perd normalment interessants). I al
meu germa, Angel, a.k.a. “ma broda”. Perque els caps de setmana que ens
trobem a Castell6 sén com tornar a casa. Per aguantar les meues “xapes”
queixant-me de com de mal esta el mon de la investigacid, i del capitalisme
en general. I perqué quan més desmotivat estava amb tot, em vas descobrir
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el que acabaria sent la meua auteéntica passié (tu ja ho saps). En definitiva,
no nomsés sou els meus germans, sou dels millor amics que he pogut tindre,

i no vos imagineu com d’orgullés em sent de vatros.

En I'ambit academic, per descomptat, gracies a Pepe per haver-me guiat
durant d’esta etapa. Podria dir moltes coses bones de tu com a director de
tesi, pero la que més valoro és que mai ens has fet sentir per baix teu, sempre
ens has parlat des del respecte, transmetent confianca i fent-nos sentir que
tots tenim el mateix pes a ’hora d’escriure un article o en qualsevol tasca.
A més, la passié que transmets quan parles de fisica sempre ens ha contagiat
a tots. En definitiva, has sigut per a mi una inspiraci6, com a professor
i com a cientific. També vull agrair a Adridn, qui en els tltims anys ha
sigut el meu segon guia i qui m’ha introduit en I’apassionant i enrevessat
mon dels forats negres. He aprés moltissim amb tu a través de les infinites
reunions per Skype. [Per cert, no oblides escoltar el podcast!] I would also
like to thank Vitor Cardoso for the enriching conversations and comments
that were of great help to us in one of the works in the Thesis.

I seguint amb els membres del grup, no podria estar més agrait amb Silvia,
Sergi i Antonio. Una tesi doctoral és el resultat d’un treball col-laboratiu,
i gran part del que hi ha en esta tesi ho he fet amb vosaltres, aixi que
esta tesi també és vostra. Silvia, si hi ha una cosa que trobaré a faltar del
doctorat és anar al teu despatx a molestar-te, queixar-me, xafardejar, fer la
siesta al sofa, i (de vegades) parlar de feina. Pero si hi ha algi qui mereix
un premi per aguantar les meues queixes, els meus sorollets al despatx,
i fins i tot els meus ronquits en un hotel, és Sergi. Jo diria que el teu
optimisme i el meu pessimisme s’han complementat molt bé. Ha sigut un
plaer tindre’t de company. I no puc oblidar-me de la resta de companys del
departament: Carlos, Dani, Flavio, Fabio i Leo, i durant una temporada
Renan, Tan i Dimitrios. Els dinars en la facultat amb vosaltres li donen
un poc d’alegria a la rutina. I recordeu que Campus SEMPRE millor que
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Farmacia (cientificament provat). I per acabar amb el departament, si hi
ha una cosa que caracteritza un doctorat, a banda d’allo academic, és la
quantitat de burocracia que cal fer, aixi com de gestions varies (viatges,
compra de material, organitzacié de workshops...). En este sentit 1i estic
molt agrait a Gonzalo per la seua disponibilitat, i també a Cristina i la
resta del personal de Secretaria, que sén la base per a que este departament

funcione.

En la interseccié entre el conjunt de companys de feina i el d’amics
estan Andreu, a.k.a. “el r0jo”, i Kevin. Andreu, crec que tu i jo més que
donar-nos suport, ens hem enfonsat mutuament... Perdo que bé ens ho hem
passat al fons! Este doctorat no haguera sigut el mateix sense la classica
“molestaeta” de meitat vesprada al teu despatx, les “pauades”, les paelles a
la teua terrassa o els “rewatches” anuals del Senyor dels Anells (que espero
continuen molt anys més). I Kevin, queé haguera sigut del doctorat sense
eixos “dal makhani” dels divendres, les converses sobre comunisme després
de les classes amb Elliot, les converses eternes sobre lore de I’Elden o els
diumenges de Shingeki? Gracies per estar sempre ahi, per ser una de les
persones que més confianca em transmet, per escoltar-me sempre (en el
podcast i en la vida), i per fer facil parlar amb tu sobre qualsevol cosa. Als
dos, només he de dir-vos una ultima cosa: “No diré no lloréis, pues no todas
las ldgrimas son amargas”. A més a més, a través d’Andreu he conegut a un
grapat de personetes que sén dels millors regals que m’enduc d’esta epoca:
Silvia, Ana, Marti, Iker i Vero. La meua vida a Valéncia és més bonica des
que vos he conegut, i també ha millorat la meua salut, ja que no sé com,
heu aconseguit que vaja en bici i jugue a basquet. No sé com deu fer La
Oreja per a “capturar nuestra historia en tan solo un segundo”, pero jo no
soc capag, aixi que simplement gracies per tot i espero que la nostra historia
continue molt de temps. I un especial agraiment a Ana per la preocupacié i
el temps que has dedicat en ajudar-me, tant amb el material de les classes
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com amb la burocracia de la tesi. I també gracies a Mar, en especial pels
videos de tiktok que em donaven un poquet d’alegria enmig de les setmanes
més angoixants de la tesi.

I finalment, i amb una estima infinita, a Andreu, Sara, Marina, Joan,
Abel, Marta, Xavi i Lidén. Vos he deixat per al final, perd vos podria
haver posat al principi perque sou també la meua familia. Tindre-vos prop
és la rad per la qual no vull anar-me’n lluny, perque vull continuar vivint
en vatros moments d’eixos que sén “objectivament el millor moment de la
meua vida”. Potser no siga el millor company per a fer caminates, o que de
vegades em quede empanat mentre parleu, o que vos hagen afectat les meues
“pauades”, o que de vegades sorgisquen conflictes... Pero 'afecte que vos
tinc supera tot aix0, i espero haver-vos-ho sabut demostrar. Senzillament,
una grandissima part de mi sou vatros, o com deia una cangd, “sou les claus
que guarden ma casa”. Voldria agrair en especial a Andreu i Joan, perque
si sent que el pis és ma casa és per vatros. Gracies per estar al meu costat
en els moments més dificils i per haver-me donat suport durant les angoixes
d’esta ultima part del doctorat. [Andreu, hi ha un missatge ocult en la
tesi, confio en la teua capacitat per a desxifrar missatges encriptats.] I per
altim, a la quarta companya del pis, Mistela, per la companyia que m’ha
fet en totes les hores que he estat escrivint la tesi, encara que fora dormint
al costat. Si hi ha alguna errata en la tesi, potser siga pel seu especial gust
per caminar sobre el teclat.

Em deixo a molta gent que també m’ha acompanyat d’una manera o
altra en esta etapa, pero ago ja s’esta fent massa llarg. A tots ells i elles,
també, gracies.

Amb molta estima,
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Resum de la Tesi

Introduccio i motivacio

Dos sén les teories més fonamentals que vertebren la fisica moderna hui en
dia, la Relativitat General (GR), que explica la fisica de ['univers, i la Teoria
Quantica de Camps (QFT), en la que es fonamenta la fisica de particules.
Les dos teories estan ampliament acceptades per la comunitat cientifica, tot
i que estan lluny de resoldre tots els problemes de la fisica actual. I el més
fonamental d’estos problemes és precisament com encaixar estes dos teories
per tal d’explicar els fenomens fisics que involucren fisica de particules com
efectes gravitatoris. Una teoria unificada podria donar llum a problemes que
els fisics tracten de resoldre des de fa decades. Els dos més importants en
este sentit sén: D’una banda descobrir 'autentica natura dels forats negres
(i la fisica en les regions properes a estos), i d’altra banda, els processos
fisics que van tindre lloc en els origens de I'univers i que van donar pas a la

creacio de la materia.

Estem lluny de trobar una teoria unificada, pero aixo no implica que
estos problemes siguen una completa incognita. Hi ha moltes maneres
d’apropar-se a eixos problemes, com sén teories que van més enlla del
Model Estandard o teories de Gravetat Modificada, les quals i proposen
correccions a la Relativitat General classica. Hi ha també teories recents que
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tracten d’apropar-se a una teoria unificada de gravetat i mecanica Quantica,
com son teories de Loop Quantum Gravity o Teoria de Cordes. Pero hi
ha una teoria que destaca per la seua capacitat per a estudiar i donar
resultats sobre els fenomens fisics que inclouen gravetat i camps quantics,
que ¢és la Teoria Quantica de Camps en espais corbats. Un dels principals
descobriments d’esta teoria és el fet que particules elementals poden ser
creades per un camp gravitatori depenent del temps. Aco va ser descobert
en [II, 2, B, 4], donant lloc a un nou i fructifer camp d’investigacié. Aquest va
ser posteriorment analitzat i estés per molts autors, i recopilat en diversos
monografics [0, 6] [7, §]. Esta teoria parteix d’una idea ben coneguda en
Teoria quantica de Camps, I’aproximacié semi-classica. Consisteix en acoblar
un camp quantic a un camp extern molt intens, que pot ser aproximat
a un camp classic, sense necessitat de quantitzar-lo. Esta aproximaci6
és ampliament utilitzada, i ha donat interessants resultats per exemple
en ambit de I'optica quantica [9]. Gravetat semi-classica consisteix en
traslladar esta idea al camp gravitatori. Si assumim que este camp actua
com a un camp extern intens, que és el que ocorre per exemple en ’entorn
d’un forat negres o en un univers en expansié, es pot tractar el camp
gravitatori com un camp classic, sense necessitat de passar pel problema no
resolt de quantitzar la gravetat. La teoria consisteix en acoblar este camp a
camps de materia quantitzats, com ara camps escalars, camps de Dirac o
camps vectorials.

Aixi, esta és una teoria efectiva que no unifica la Gravetat i la Fisica
Quantica, ja que no proposa un metode per a quantitzar la gravetat, pero
tot i aix0 ha demostrat ser molt 1til per a explicar fenomens que abans no
havia hagut manera d’abordar. Un d’ells és la ben coneguda radiaci6é de
Hawking [10, [11], que mostra com, a diferéencia del que durant decades s’ha
assumit, els forats negres no sén simplement embornals de materia que no

deixen passar cap tipus de particula més enlla de les seues fronteres. Els
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forats negres radien materia, i ago és un efecte que només es pot explicar
si es tenen en compte els efectes quantics generats al voltant de I’horitzé.
Altra important efecte que fusiona gravetat i quantica i que la teoria semi-
classica és capacg d’explicar esta emmarcada en el context de Cosmologia.
Consisteix en la creacié espontania de particules com a conseqiiencia de
I’expansioé de 'univers, un efecte que va ser per primera vegada descobert
per L. Parker [I]. Este fenomen és conseqiiencia de que en un espai-temps
no estatic el buit quantic no pot definir-se de manera univoca, ja que un
estat buit per a un observador pot no ser-ho per a un altre. Aixo provoca un
resultat diferent en la mesura del nombre de particules en diferents instants.
Este efecte adquireix especial importancia en ’estudi dels primers instants
de 'univers posteriors al Big Bang i en la creacié de la materia. [12] [13]
D’altra banda, el fenomen de creacié espontania de particules no és només
propi d’espai-temps corbats, també pot donar-se en espai-temps plans. En
particular, un camp electric intens pot generar també creacié espontania de
parells particula-antiparticula a partir del buit quantic. Es el que es coneix
com efecte Schwinger [14] 15], un efecte no pertorbatiu que només es pot
obtenir mitjangant l'enfocament semi-classic (és a dir, la one-loop effective

action).

En definitiva, en tots estos escenaris (Electrodinamica, Cosmologia i
Forats negres) veiem que els camps quantics en presencia de camps intensos
externs tenen propietats interessants que s’han d’estudiar mitjancant teories
semi-classiques. Este és el context teoric en que esta tesi esta emmarcada.
Els articles que conformen la tesi (mostrats en la part consisteixen en
I’estudi, desenvolupament i aplicacions de la teoria semi-classica en estos

escenaris fisics (anomalies, renormalitzacid, efectes de backreaction...).

Pel que fa al cas d’Electrodinamica, la nostra aportacié es pot resumir
amb que hem estudiat com es traslladen al context d’un background elec-
tromagnetic certs fenomens ben coneguts en el context de QFT en espais
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corbats. D’una banda, en I’Article 1 d’esta tesi, estudiem si la coneguda com
anomalia gravitatoria, que es dona per a un fermié de Weyl 2-dimensionals
acoblat a gravetat, es trasllada al cas d’un background electric. Veurem que
efectivament en este segon cas també sorgeix una anomalia en la conservacié
del moment. D’altra banda, en I’ Article 2, estudiem si el cas electromagnétic
manté la invariancia adiabatica del nimero de particules, que consisteix
en la no creacié de particules en el limit d’un univers expandint-se infini-
tament lent. Veurem que, en certes condicions, esta invariancia es trenca
en este segon cas. Este fenomen esta intimament relacionat amb la ben
coneguda anomalia axial. 1 per ultim, en I’Article 3, estenem el metode de
renormalitzacid adiabatica (de gran utilitat en el context cosmologic) al cas
d’un camp de Dirac 4-dimensional acoblat a un background electric.

Pel que fa a ’ambit de Cosmologia, en I’Article 4, estenem al context
cosmologic un recent metode de renormalitzacié (pragmatic mode-sum) que
fins ara només s’havia aplicat al context de forats negres, on ha demostrat ser
molt eficient. I per ultim, ja en ’ambit de Forats negres, estudiem correccions
quantiques de buit a la metrica de Schwarzschild, concretament en 1’ Article
5. Estes correccions provenen dels efectes de backreaction que generen
els camps quantics sobre el propi background gravitatori. Veurem que la
geometria del nou espaitemps generat presenta diferencies significatives
respecte de la dels forats negres. Este resultat pot contribuir a I'estudi de la
formacié d’objectes ultra-compactes que imiten la fisica dels forats negres.

Estructura i convencions

La tesi esta organitzada de la segiient manera. En la part [[] es fa un
repas sobre els principals conceptes que conformen el marc teoric d’esta
tesi (situant-los historicament), els quals convé introduir per a facilitar
la comprensié dels articles. En la part [[T] es fa un resum dels resultats i
conclusions que s’han obtingut al llarg del doctorat. I finalment, en la part



XV

incloem els articles que conformen la tesi.

Respecte a les convencions, al llarg de tota la tesi es treballa en unitats
naturals, és a dir, G = ¢ = h = 1, excepte si resulta convenient introduir
les constants. Per a la signatura de les metriques s’utilitza (+, —, —, —),
excepte en I’Article 5 on s’utilitza la signatura contraria (i es mostra h

explicitament). Per als tensors de curvatura es segueixen les convencions de

I5].

Metodologia

Per a la realitzacié dels articles s’ha consultat bibliografia actualitzada de les
diferents arees teoriques involucrades en el treball. Pel que fa a la realitzacié
dels calculs necessaris per al desenvolupament dels articles, cal destacar
principalment 'is de Mathematica per als calculs analitics (i en especial del
paquet z-Act de calcul tensorial), aixi com 1'is de Matlab per als calculs
numerics més complicats.

Els articles s’han realitzat en col-laboracié d’altres membres del grup
d’investigacio i cientifics externs, mitjancant reunions i repartiment de
tasques. Per tant, 'autoria dels articles esta repartida equitativament (els
noms dels autors als articles estan ordenats alfabéticament, com és habitual
en este les publicacions en este camp). I per ultim, també s’ha assistit a
congressos per a posar en comu els resultats obtinguts amb altres grups
d’investigacid, aix{ com per a aprendre del treball d’altres autors en materies
semblants.

Anomalia translacional en backgrounds electrics

Les anomalies quantiques sén el trencament de simetries classiques produit
al quantitzar el camp, com expliquem en detall en el capitol @ Es ben
conegut que acoblar camps quantics a backgrounds gravitacionals pot generar
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el que es coneixen com anomalies gravitacionals [16]. Estes anomalies
consisteixen en el trencament de la covariancia general, i per tant impliquen
una no conservacié del valor esperat del tensor energia-moment, és a dir
(V,TH) # 0. Estes anomalies sén un tipus de gauge anomalies, les quals
indiquen que la teoria no esta ben construida. En concret, les anomalies
gravitacionals apareixen en teories amb fermions de Weyl (o quirals) acoblats
a gravetat per a espaitemps de dimensié 2,6, 10... En particular per al cas
2-dimensional s’obté ’anomalia

VT = — By e (1)

( putv 967y/—g BYpt va

En I'Article 1 de la tesi (mostrat en la part demostrem que també
es genera una anomalia de tipus “gravitacional” en este mateix cas pero
considerant un background electric en lloc d’un gravitacional. En concret
ho demostrem per al cas d’'un camp de Weyl en dos dimensions acoblat a un
camp eléctric homogeni i depenent del temps E(t). Des d’'un punt de vista
classic, este sistema es invariant baix translacions en la direccié espacial, la
qual cosa implica la conservacié de moment, és a dir, 8uT“1 = 0. Pero, com
veurem en breu, en quantitzar el camp de Weyl trobem que esta simetria es
trenca.

Per a obtenir esta anomalia cal trobar 'expressié renormalitzada del
tensor energia-moment. Per a fer-ho hem aplicat la ben coneguda renormal-
itzacid adiabatica [5] que expliquem en detall en la secci6 Amb ajuda
d’este metode arribem al segiient resultat

o
o (1p) = =T22, 2
on R i L indiquen la quiralitat (dretana o esquerrana) del fermié considerat,
i A(t) és el potencial vector, definit com E(t) = —A(t). Este resultat no
havia sigut indicat en la bibliografia previa. Com que esta anomalia trenca

la simetria translacional, I’hem anomenada anomalia translacional.
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L’aparicié d’esta tipus d’anomalia és una senyal de que la teoria no
esta completa. De fet és ben conegut que este sistema fisic presenta també
una altra anomalia gauge en la conservacié de la corrent electrica. Totes
dues anomalies es cancel-len en considerar la teoria completa: el camp de
Dirac. Per a un fermié de Dirac (V = Ui + Uy) sense massa el tensor

energia-moment és la suma de les dos components quirals, de manera que

s’obté
o ((Th'),,, +(1t")..) =0 Q

D’altra banda, a ’article mostrem també la relacié d’esta anomalia amb
el fenomen de creacié espontania de particules per camps electrics intensos
(que expliquem en el capitol . Per a un camp de Weyl les particules
creades es mouen totes en la mateixa direccid i sentit de la direccid espacial,
generant una quantitat de moment total que coincideix amb el resultat de
I’anomalia. En canvi si considerem un camp de Dirac, veiem que el que es
creen son parells particula-antiparticula que viatgen en direccions oposades,
mantenint la conservacié total del moment.

Finalment, a 'article resolem ’equacié de Maxwell semi-classica del sis-
tema per tal d’estudiar els efectes de backreaction que generen les particules
creades sobre el camp electric. Comprovem que la creacié de moment en
cada sector quiral oscil-la amb freqiiencia igual a la d’E(t). Aixi mateix
veiem que la suma de les oscil-lacions dels dos sectors quirals es cancel-len

perfectament.

Trencament de la invariancia adiabatica en
backgrounds electromagnetics
El fenomen de creaci6 de particules en un univers en expansié (que expliquem

en la secci [2.2)) posseeix una propietat interessant. En el limit d’una

expansié de 'univers infinitament lenta (limit adiabatic) no es produeix
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creacié de particules a partir del buit. Es per aixo que es diu que el
numero de particules és un invariant adiabatic [I7]. En I’Article 2 d’esta tesi
(mostrat en la part estudiem si esta propietat es manté per al cas d’un
background electromagnétic. Analitzem primerament el cas 2-dimensional
per la seua simplicitat, i posteriorment estenem al cas 4-dimensional. Aixi
mateix estudiem tant el cas d’'un camp escalar carregat acoblat al camp
electromagnetic (QED escalar) com el cas d’'un camp de Dirac (QED).
Considerem un camp electric homogeni i depenent del temps actu-
ant en la direccié espacial, E(t). El seu potencial 2-vector associat sera
A, = (0,—A(t)), on E(t) = A(t). El potencial vector juga el rol analeg
al factor d’escala en el cas gravitatori, aixi que convé considerar una ex-
pansié asimptotica per a A(t) i aixi poder definir el nimero de particules
en t — *oo. Per tal de poder estudiar el problema analiticament, hem
considerat una forma concreta per al camp electric que és ben coneguda:
un pols electric de Sauter [I8]. En este cas el potencial vector ve donat per

Alt) = %Ao(tanh(pt) +1), (4)

on Ag i p sén constants. Es pot veure que el potencial tendeix a 0 en el
limit ¢t - oo ia Ay en t — oco. El parametre p estableix la velocitat amb
que creix el potencial, de manera que es pot considerar com el parametre
d’adiabaticitat. El limit adiabatic (creixement extremadament lent) ve
donat per p — 0. L’objectiu en 'article és estudiar si en este limit el nimero
de particules tendeix o no a 0.

En 'article obtenim que per a bosons (b) i per a fermions (f) el valor
esperat del ntimero de particules creades per un camp electric extern ve
donat per

(Ny/f) = = ,

1 o cosh (27~ ) + cosh o oL
/ dk (o ) (o) (5)
T J—o0 2 sinh (W%) sinh (7‘(“"’%)
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on wip = Vk2+m27 Wout = \/(k—qu)Q‘i‘mQ, w4+ = %(Wout =+ win ),

Kp = % (qu)2 —p? i kp=qAo/2.

Estudiant el limit p — 0 en estes expressions extraiem les segiients
conclusions. Per al cas amb massa (m # 0) (V) — 0 en el limit adiabatic,
és a dir per a un creixement infinitament lent d’A(¢) no es creen bosons ni
fermions massius, mantenint-se aixi la invariancia adiabatica del nimero de
particules. Pero la situacié és diferent en el cas sense massa (m = 0). En
este cas s’obté que (N ¢) # 0 quan p — 0, en concret

(N ) = 120l (6)

™

Per tant concloem que per a un potencial vector creixent infinitament lent
si que es creen particules sense massa, i la invariancia adiabatica es trenca.
També hem comprovat que ’espectre de moments d’estes particules sense
massa creades es troba en l'interval k € [—|qAy|, |gAo|]. Cal remarcar que
hi ha una diferencia clara entre el cas de bosons i el de fermions que es
pot extraure de I'expressio . Els bosons sense massa creats tendeixen a
acumular-se en els valors k = 01 k = +qAp, mentre que els fermions sense
massa es creen en la mateixa proporcié per a tot k. Aco és pot interpretar
en termes del principi d’exclusié de Pauli, que no permet que els fermions
s’acumulen en un mateix estat. A més a més, a diferéncia del cas escalar, el
nimero de fermions sense massa creats (aixi com el seu espectre de moments)
no depen del parametre p, és a dir no depen de la historia d’A(t), sindé només
del seu valor inicial i final.

D’altra banda, per tal de donar consisténcia a este resultat, hem calculat
també mitjangant el metode de renormalitzacié adiabatica (explicat en la
seccio el valor esperat de la corrent electrica i de la densitat d’energia
del camp quantic. De manera analoga al ntimero de particules, s’obté
que estos observables tendeixen a 0 en el limit adiabatic, excepte en el
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cas sense massa. Kixe romanent d’energia i corrent correspon al generat
per les particules sense massa creades. A més a més, la simplicitat del
cas de fermions sense massa permet donar una expressié analitica de la
corrent electrica renormalitzada en funcié del temps, que ve donada per
(3 ) ren = —@. Aquesta expressié permet obtenir ’equacié semi-classica
de Maxwell, que ve donada per A + gA. Esta equacié de tipus oscil-lador
armonic te en compte els efectes de backreaction de les particules creades
sobre el camp electric. En concret s’obté que el camp electric oscil-la amb
freqiiéncia |q|/+/7, aixi com ho fa el nimero de particules. Es pot veure
facilment que I’energia associada al camp eléctric i ’energia de les particules
creades es cancel-len per a tot ¢, mantenint-se la conservacié d’energia. El
valor obtingut per a la freqiiéncia és consistent amb el fet ben conegut de
que les correccions radiatives al model de Schwinger indueixen una massa

al fot6 de valor m2 = ¢*/m [19].

Per 1ltim hem estes el calcul al cas 4-dimensional, considerant un camp
electric E(t) en la direccié z per conveniencia. En este cas trobem que
(Ny/f) — 0 en el limit adiabatic (independentment de m). Aixi, en 4
dimensions es manté la invariancia adiabatica per a un background electric.
Pero la situacié canvia si afegim un camp magnetic. Hem considerat per
simplicitat un camp magnetic constant B en direcci6 paral-lela a E (t). La
presencia del camp magnetic genera una discretitzacié del moment en la
direccié perpendicular als camps, en els coneguts com nivells de Landau,
la qual cosa canvia drasticament el resultat. Trobem que, mentre per a
bosons amb qualsevol massa la invariancia adiabatica es respecta, per a
fermions sense massa en presencia de camps electric i magnetic la invariancia
adiabatica es perd. Este resultat es manté per a altres direccions de g,
excepte quan és perpendicular al camp electric. En eixe cas la invariancia

adiabatica és preservada.

En resum, hem obtingut que la invariancia adiabatica de les particules
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creades es manté per al cas d’un background electromagnetic exceptuant
alguns casos concrets. Eixos casos son: bosons i fermions sense massa en 2
dimensions, i fermions sense massa en 4 dimensions en presencia de camps
electric 1 magnetic no perpendiculars. Aco indica que hi ha una relacié entre
el fenomen del trencament de la invariancia adiabatica i la ben coneguda
anomalia axial [I4], ja que aquesta esta present precisament en els casos
esmentats. Esta anomalia consisteix en el trencament de la simetria axial,
propia del camp de Dirac sense massa classic, que es produeix al quantitzar
el camp (a la seccié expliquem amb més detall esta anomalia). En 2
dimensions 'anomalia axial ve donada per ’expressié
q

<8ujg>ren = —%E“VFMZM (7)

que en el cas d'un camp homogeni és equivalent a dir que la densitat
de carrega quiral jg no és conservada. En 2 dimensions esta carrega és
proporcional a la corrent electrica. En 'article hem comparat ’expressié de
I’anomalia amb la corrent generada per les particules sense massa creades en
el limit adiabatic, i hem comprovat que efectivament la creacié de carrega
quiral coincideix amb la causada per 'anomalia axial. Esta idea es pot
visualitzar facilment en el cas 2-dimensional. El camp electric crea les
particules en parells particula-antiparticula de carrega electrica i moment
oposats. La quiralitat per a particules sense massa en 2 dimensions esta
relacionada amb el sentit de moviment i canvia el criteri entre particules
i antiparticules. De manera que, per exemple, una particula sense massa
movent-se cap a la dreta tindria quiralitat dretana, i una antiparticula sense
massa movent-se cap a ’esquerra també. Aixi, la creacié de parells sense
massa implica una creacié de carrega quiral. Eixa no conservacié de la
carrega quiral és consistent amb ’anomalia axial. Esta anomalia es manté
independentment de la velocitat a la que canvie el camp background, fins i
tot en el limit adiabatic, i per aixo en eixe limit ha de quedar sempre un

romanent de creacié de parells sense massa.
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Pel que fa al cas 4-dimensional, ’anomalia només sorgeix per a fermions

sense massa, i ve donada per

2
. q v
<aﬂjﬁ> == 1672 e aBF.U«VFOCB . (8)

En el cas d'un camp electric depenent del temps i un camp magnétic constant
esta expressié és equivalent a

q2

¢
(38)en = ~5.3 N d'E (t') B. (9)
Podem veure que només es crea carrega axial quan els camps E i B no sén
perpendiculars, el mateix cas en que es dona el trencament de la invariancia
adiabatica. A més a més, també en este cas hem comprovat que la creacidé
de carrega quiral dels fermions sense massa en el limit adiabatic coincideix
amb l'expressié de I’anomalia.

En definitiva concloem que el trencament de la invariancia adiabatica
es dona en els casos on sorgeix ’anomalia axial, de manera que estos dos
fenomens estan intimament relacionats. En altres paraules, el trencament
de la invariancia adiabatica és una condicié necessaria per al compliment de

I’anomalia axial.

Metode de renormalitzacié adiabatica per a camps

de Dirac en un background electric

El metode de renormalitzacié adiabatica va ser introduit per L. Parker
i S. A. Fulling per a renormalitzar observables fisics, com és el tensor
energia-moment, en el context de QFT en espais corbats [20, 21]. En la
seccid fem un repas d’este metode per al cas d’un camp escalar en un
univers en expansio. Tot i que este metode s’aplica habitualment en el
context d’un background cosmologic, es pot estendre també a altres teories
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semi-classiques on el background classic és un camp homogeni que depéen del
temps. El cas concret d’un background electric va ser estudiat primerament
per Cooper et.al. [22, 23, 24], qui van proposar una extensié del metode
adiabatic a este cas. Tot i aix0, estudis recents han demostrat que hi ha un
inconvenient en estos treballs [25] 26]. El potencial vector A* es considera
d’ordre adiabatic 0, de manera analoga al factor d’escala a(t) en el cas
cosmologic. Agd és consistent en el cas de (només) un background eléctric,
pero si afegim la preséncia d’un background gravitatori s’obtenen expressions
renormalitzades que sén inconsistents amb la conservacié covariant del tensor
energia-moment, aixi com amb ’anomalia axial i de traca. En estos treballs
s’ha demostrat que per a recuperar la consistencia del metode cal imposar
que A* siga d’ordre adiabatic 1 (la primera derivada seria d’ordre 2, la
segona d’ordre 3...). Aix{ mateix, es proposa una nova reformulacié del
metode amb aquesta assumpcié per al cas de camps escalars carregats i per
a camps de Dirac en 2 dimensions. L’extensié de 2 a 4 dimensions per camps
de Dirac (amb la nova assumpcid) resulta no ser trivial, i requerix d’un
analisi en profunditat. Eixe és 'objectiu de 1’Article 3 d’esta tesi (mostrat
en la seccié .

El primer resultat que obtenim en l’article és un nou argument que
fonamente Deleccié d’A* com a ordre adiabatic 1. Es sabut que el metode de
renormalitzacié adiabatica per a un background gravitatori és consistent amb
el metode de DeWitt-Schwinger point-splitting [27, 28] (el qual expliquem
breument en la seccid . En D'article comprovem que en presencia de
backgrounds electric i gravitatori esta consistencia només es manté amb
I'assumpci6 de que A* és d’ordre adiabatic 1. En concret provem que, tant
per al camp escalar com per al de Dirac en 2 dimensions, I’expansié adiabatica
de la funcié de dos punts (¢?) coincideix exactament amb la de DeWitt-
Schwinger si considerem esta assumpcié (ho comprovem explicitament fins

a ordre adiabatic 6). Este argument, junt amb els explicats previament,
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motiven a una reformulacié del metode adiabatic, aplicant la nova assumpcio,
per a camps de Dirac en 4 dimensions acoblats a un background electric.
El principal problema que sorgeix en este cas és que ’ansatz habitual de
tipus WKB per als modes del camp no funciona a I’hora de desenvolupar
I’expansié adiabatica. Es per aixo que en este article proposem un nou
ansatz, el qual comprovem que és consistent i permet procedir amb la
regularitzacié adiabatica.

Vegem breument en que consisteix el nostre metode. Considerem un
camp de Dirac 1 en 4 dimensions, de massa m i carrega ¢, acoblat a un
background electric amb potencial vector de la forma A4, = (0,0,0, —A(t)).
L’equacié de Dirac d’este sistema ve donada per

(Y Dy —m)¢p =0, (10)

on D, = 0, —iqA, i" sén les matrius de Dirac. Per tal de poder construir

I’ansatz convé aplicar una transformacié unitaria al camp de la forma
/
Y = Uy, on

U= \270 (I- W?’) . (11)

AcoO ens ha permés expressar el camp de Dirac en termes de només dos
funcions dependents del temps, hé(t) i héj (t), que es poden considerat com
els modes del camp amb moment k= (k1, ko, k3). Cal destacar que la idea
d’aplicar esta transformacié ha sigut crucial per a poder desenvolupar el
metode, i considerem que cal remarcar-la. Finalment obtenim que 1’equacié

de Dirac es redueix a les seglients equacions diferencials per als modes del

camp
il I . Il
hi —i(ks + qA) h —ikh; =0, (12)
PIr I .31
hi! +i(ks+ qA)hy —ikh; =0, (13)
on k= k% + k% + m2. La principal avantatja d’este procediment és que ens

ha permes escriure I’equacio de Dirac en termes de dos equacions diferencials
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molt semblants a les del mateix cas en 2 dimensions (veure [26]). L’tnica
diferéncia és que ara x juga el paper de m. Finalment, a parir d’estes
expressions, es pot quantitzar el camp en termes dels operadors creacié i
destruccié (veure I'article per a més detalls). Les relacions d’anticommutacié
dels operadors estan garantides si es compleix la condicié de normalitzacié

2 2
‘hé +‘h§’ ~1. (14)

Amb tots estos ingredients ja es pot desenvolupar I’expansié adiabatica.
Aci és on entra el nostre ansatz. Seguint la idea de ’analogia amb el cas
2-dimensional, construim el mateix ansatz proposat en eixe cas (veure [26])

pero aplicant el canvi m — &, és a dir

_k ; / !
nE o= T e e, (15)

n = e o (16)

on w = \/k:g + k2, F' i G s6n funcions complexes i 2 és una funci6 real. Ex-

pressant estes funcions com una expansié adiabatica i resolent les equacions

diferencials ordre a ordre s’obté I’expansié adiabatica dels modes, de manera
analoga a com es fa en el cas d’'un background gravitatori [5]. En Iarticle
donem expressions de recurrencia que serveixen com a algoritme per a
obtenir els ordres adiabatics d’estes funcions fins a qualsevol ordre. A partir
d’esta expansié es poden expandir també els valors esperats d’observables
en ordres adiabatics. Aixi es poden identificar i sostraure els ordres que
generen les divergencies, és a dir, aplicar la renormalitzacié adiabatica. En
I’article hem aplicat este metode per a calcular el valor esperat renormalitzat
de la corrent electrica, definida per (j#) = —q <1E'y“¢>. Per a la component
rellevant (j3) s’obté I’expressi6

.3 . q oo [e'e) i 9 ; 9 k3

—00
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K2qA  3k%ksq? A2 k2 — 4k2) K22 A3 K20A
_ q3 n 3q5 i ( 3)7 q I q5 . (7)
w 2w 2w 4w

onk, = wk:%—kk%.

Aix{ mateix, a I'article incloem dos tests d’este meétode. D’una banda

calculem D’expressio renormalitzada de la traga del tensor energia-moment,
que ve donada per (T}/) = m(1)), i comprovem que en el limit m — 0 s’obté
I’expressié de I'anomalia de traga. En el cas de camps de Dirac sense massa
en presencia d’'un background electromagnetic esta anomalia ve donada

2

per (Tf))on = 5z Fju F* [29]. [En la secci6 expliquem en detall esta
anomalia]. D’altra banda, comprovem també que, de la mateixa manera que
ocorre en tota la resta de casos on s’aplica el metode adiabatic, ’expansid
adiabatica coincideix amb 'expansié de DeWitt-Schwinger, provant aixi
I’equivalencia entre els dos metodes. Finalment comprovem també, en un
apendix, l'equivaléncia amb el meétode de renormalitzacié de Hadamard [30].

El formalisme adiabatic usual assumeix implicitament que ’escala de
renormalizacié p és igual a la massa del camp. En el nostre treball estenem
el metode per a una escala de renormalitzacié arbitraria. Per a fer-ho fem
servir, com ja s’ha fet en treballs previs [31], ambigiitat intrinseca que
hi ha en el metode adiabatic en 'eleccié de 'ordre adiabatic zero quan es
solucionen les equacions de recurrencia. En lloc de v/ k2 +m2 és possible
definir w® = w = A/ k2 + w2, on u és una escala de massa arbitraria. Aixi,
obtenim una nova expansié dels modes en termes de l’escala de massa. A
més a més, I'apliquem per a renormalitzar la corrent electrica amb esta
extensio, obtenint una expressié que depen de u. Este tipus d’ambigiiitats en
la renormalitzacié poden ser absorbides en la renormalitzacié de la constant
d’acoblament, en este cas q. Seguint esta idea obtenim l’expressié de la
carrega efectiva en funcié de l'escala: ¢=2(u) — q¢=2 (o) = — (127r2)71 In Z—;}.
Esta expressié coincideix amb 'obtinguda en QED pertorbativa per mig de
regularitzacié dimensional [19].
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Per dltim, per tal de provar la utilitat practica del metode, I’hem aplicat
a un background electric concret. Hem considerat un pols de tipus Sauter
donat per E(t) = Egcosh™2(t/7), on Ey indica l'altura del pols i 7 ’amplaria.
Aix0 ens ha permes també estudiar propietats fisiques del fenomen de creacié
de particules. Hem calculat numericament la corrent renormalitzada en
funcié del temps per a este cas a partir de ’expressié obtinguda amb el
nostre metode . A TDarticle es poden trobar representacions del resultat
per a diferents valors dels parametres. Comprovem que la corrent tendeix
a fer-se constant en el limit ¢ — 0o, com és esperat per a este background.
Este limit es pot calcular analiticament, en concret obtenim

. ks + qA
(5 ren~—/ dekL/ dks 24 O\Bk\ , (18)

oN Wyt = \/(k:g + qu)2 + K2 i |ﬂE’2 és el coeficient de Bogoliubov que
dona la densitat de particules creades amb moment k£ en ¢ — oco. Noteu
que esta expressié és valida per a qualsevol background que tendisca a un
valor constant. Aplicant I’expressié de } ﬁE|2 corresponent al pols de Sauter
(obtinguda en la seccié anterior) obtenim el resultat per a eixe cas. A més
a més, hem utilitzat este resultat per a fer una estimaci6 del valor de la
corrent electrica en el limit d’un camp electric molt intens (Ey >> 0). En

este limit obtenim ’expressié

. 2
<‘73>ren 3T 3q3EOT (19)

Aix{ mateix, hem obtingut I’expressio de la densitat de particules en este
mateix limit, obtenint (N) ~ %QQE(%T.
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Metode de regularitzacié pragmatic mode-sum en un

background cosmologic

El metode de renormalitzacié de DeWitt-Schwinger point-splitting (que
expliquem en la seccid proposa un procediment per a renormalitzar
observables fisic en el context de QFT en espais corbats. Este metode
esta ampliament acceptat, pero no és facilment aplicable en molts escenaris
on els modes dels camps es tenen només en forma numerica, com és el
cas dels forats negres. Recentment, A. Levi i A. Or han proposat un
metode que ha demostrat ser molt eficient per a implementar numeéricament
el procediment de point-splitting, conegut com metode de regularitzacié
pragmatic mode-sum [32],33] B34]. Pot aplicar-se en metriques que posseeixen
algun tipus de simetria (com ara forats negres estatics, estacionaris) i es pot
entendre com un metode que completa I’inicialment proposat per Candelas
en els anys 80 [35]. [En la seccié fem un repas historic dels metodes
proposats per a tractar d’implementar el point-splitting en forats negres.]
En I’Article 4 d’esta tesi (mostrat en la part fem un repas d’este metode
i 'estenem al cas d’espai-temps amb simetria respecte de translacions en les
3 direccions espacials (homogeni), en concret al context cosmologic. Aixi
mateix demostrem que en este context el metode de Levi i Ori és consistent
amb metode de renormalitzacié adiabatica.

En particular hem considerat un camp escalar acoblat a una metrica
FLRW, ds? = dt?> — a?(t)di?, i ens hem centrat en la renormalitzacié de
(). Seguint el metode de point-splitting, 1’expressié renormalitzada d’este
observable ve donada per

(6(@))on = lim [({6(2),0 (¢)}) =GR (@) . (20)

Ggg és el terme de sostraccié de DeWitt-Schwinger per a la funcié de dos
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punts, que ve donat per

1 1 1 m2|o
GO (z,2) = 87T2[—UJr(mQJr(g—l/ﬁ)R) <7+210g< 2‘ ’))
m2 1 Poalatoxla
Y + ERaﬁ pn ] ) (21)

on R és 'escalar de curvatura, R, el tensor de Ricci, 7 la constant d’Euler
i o un mig del quadrat de la distancia geodeésica que connecta x i z/. Seguint
la guia del metode de Candelas, posteriorment completat per Levi i Ori,
escollim els punts en base a la simetria del sistema. En este cas la simetria
translacional de I'espaitemps ens indica que convé escollir punts separats
espacialment, és a dir, x = (¢,Z) i 2/ = (¢t,Z + €). Aix{, obtenim que el valor
esperat de la funcié de dos punts per a estos punts ve donat per

sin ke

{00 @)} = gz [ AR IO (@)

on € = |€] 1 hg(t) sén els modes del camp.

El terme G](DI% es pot expandir en potencies d’e com

Gg% (z,2") = ﬁ {02162 + % (m*+ (£ —1/6)R) (’y + log (%e))
—7f+g%0@. (23)

Aplicant identitats integrals del tipus fooo dkk% = }2, podem expressar
com una integral en k i sostraure-la en . La divergencia en ¢ — 0
és cancel-lada, de manera que podem prendre el limit de punts coincidents
abans de la integracié. L’expressio final obtinguda és

1 [ 1 (-9R R
2 2 2 6
. 24
(" )ren 47r2a3/0 ank ['hk| w 2w3 28872 (24)
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Esta expressi6 coincideix exactament amb I'obtinguda mitjangant el metode
de renormalitzacié adiabatica (veure ’equaci6 de la secci6 [5.2)). Aixi,
concloem que l'extensié del metode de Levi i Ori per a un background
homogeni depenent del temps és compatible amb el metode adiabatic. En
I’article donem també un argument per a provar que ’equivalencia entre
el metode pragmatic mode-sum i 'adiabatic es manté també per al cas del
tensor energia-moment.

Per 1ltim, també en este cas, hem estes el meétode incloent una escala de
massa arbitraria p. Esta extensi6 és necessaria per tal de poder aplicar el
metode al cas m = 0, ja que el terme de sostracci no esta ben definit
en eixe cas. Seguint la tecnica proposada en [36], apliquem un canvi del

2 5 m? + 4% en un punt especific del metode de point-splitting.

tipus m
Aixi, arribem a la segiient expressié per al terme de sostraccié que s’ha

d’aplicar a la integral de la funcié de dos punts

1 o0 sin(ke) | 1 (:—&R 2
G(l) / — / dk’k?2 - 6
ps (#:2') 4r2a3 J, ke Weff + 2wy + 2wy
R
2

on wgﬁ = Z‘—; +m? + p?. Aixi mateix, obtenim el terme de sostraccié d’ordre
2 de la renormalitzacié adiabatica, afegint el mateix tipus d’escala pu, i
comprovem que efectivament coincideix amb , reforcant la consistencia
entre els dos metodes.

Correccions quantiques de buit a la metrica de
Schwarzschild

Els recents progressos en la deteccié d’ones gravitacionals [37] aix{ com en
interferometria de molt llarga base [3§] han obert la porta a la possibilitat de
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demostrar experimentalment l’existencia d’horitzons de forats negres. Aixo
ha despertat en els dltims anys un creixent interés en l’estudi d’objectes
exotics compactes (ECOs) que imiten la fisica dels forats negres, aixi com
dels processos fisics que permetrien diferenciar-los dels forats negres [39].
[En la seccié donem una breu explicaci6 sobre els tipus d’ECOs proposats
fins ara.] La Relativitat General classica no permet l’existéncia d’este tipus
d’objectes a causa del teorema de Buchdahl, pero la introduccié d’efectes
quantics pot permetre la violacié d’este teorema, obrint la porta a la possible
formacié d’ECOs. Existeixen diverses maneres de construir estos objectes,
i una d’elles és considerant els efectes semi-classics generats pels camps
quantics. Eixa és la via que explorem en I’Article 5 d’esta tesi (mostrat en
la part . En particular, estudiem els efectes de backreaction produits per
la polaritzacié del buit quantic al voltant d’un forat negres estatic i sense
rotacid, obtenint aixi correccions quantiques a la metrica de Schwarzschild.

Per a tal objectiu, busquem solucions de les equacions semi-classiques

d’einstein sense materia

Gap = 87 (Thp) . (26)

El principal problema a I’hora d’afrontar este problema és que en 4 di-
mensions no tenim una expressié analitica renormalizada de (T};) per a
una metrica general. Pero en el cas de dimensions 1 + 1 si que es coneix
I'expressié exacta del tensor energia-moment renormalitzat. Es per aixo
que en [40, [4T], 42] es va proposar una aproximacié per a resoldre les equa-
cions semi-classiques d’Einsten mitjancant la integracié de les components
angulars, traslladant el problema a un espai 2-dimensional. AcoO va ser
posteriorment analitzat en més detall i estudiat per a diferents casos per
altres autors [43, 44], [45], 46, 47]. En canvi, en este article proposem una
via alternativa per a resoldre este problema directament en 4 dimensions.
En particular, considerem només els efectes quantics generats per camps

conformes (en concret un camp escalar conforme), ja que per la seua sime-
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tria es simplifica considerablement el problema. Es raonable pensar que els
resultats per a altres tipus de camps seran qualitativament similars. Per
a camps conformes la ben coneguda anomalia de traca (que expliquem en
detall en la seccié defineix univocament una relacié entre les components

del tensor energia-moment, que ve donada per

=)+ (pr) +2(pe) = (T3) (27)

on (p) és la densitat del buit quantic, (p,) i (p¢) les pressions radial i tangen-
cials, i (T)) és I'expressi6 de 'anomalia de traga, que depeén de la metrica.
[Com que busquem solucions estatiques i esfericament simetriques, hem
escollit també un estat de buit amb estes simetries, la qual cosa dona lloc a
un tensor energia-moment diagonal i independent del temps.] Aixi, la nos-
tra proposta consisteix en resoldre les equacions semi-classiques d’Einstein
afegint com a equacié d’estat. Noteu que amb este procediment no és
necessari donar una expressié del tensor energia-moment en termes d’una
metrica general (que era el principal problema), ja que ara les seues compo-
nents s’introdueixen com a incognites del sistema d’equacions diferencials.

Per ultim fem una 1ltima assumpcio per tal de fer el sistema resoluble,
que consisteix en considerar la pressié radial igual a la tangencial ({p,) =
(pt)). Esta simplificacié esta inspirada en el resultat del tensor energia-
moment per a un background de Schwarzschild fixat [35], on s’obté que prop
de I'horitzé les pressions tendeixen a igualar-se. Es raonable esperar que
la soluci6 exacta, afegint backreaction, es comporte de manera semblant
((pr) = (pt)) prop de r = 2M. En qualsevol cas, posteriorment hem
comprovat que els resultats per a altres assumpcions per a les pressions sén
qualitativament similars.

Busquem solucions estatiques i amb simmetria esferica, per tant el
sistema d’equacions a resoldre és analeg a les equacions de TOV (amb la

densitat i la pressié quantiques), afegint ’equacié d’estat esmentada abans.
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Com a primera aproximacié a la solucié resolem el sistema pertorbativament
en h. Restringint-nos a la regi6 propera a I’horitz6 (on més pes tenen els
efectes quantics), obtenim la segiient correccié a primer ordre en h de la
metrica de Schwarzschild
ds® = — <f(r) —h (1 + O(log f(r))) +0 (h2)> dt?
134407 M2 f(r)
dr?

1) = h (g + Olog (1)) + O (1)

on f(r) =1—2M/r. D’este resultat podem extraure una conclusié principal:

- +r2dQ%,  (28)

I’horitzo classic de la metrica de Schwarzschild desapareix. Per al valor de r
per al qual g.,}(r) = 0, que ve donat per

Vh
4707

la component g (r) no s’anul-la (g (rg) # 0), a diferencia del que ocorre

ro = 2M +

+ O(h), (29)

en la metrica de Schwarzschild classica. S’obté aixi una metrica de tipus
forat de cuc (veure seccié per a més detalls sobre estos objectes). Tot
i aix0, este resultat no és totalment fiable, ja que la densitat i pressio
quantiques resulten ser sén d’ordre h/f2, que prop de la gola del forat de
cuc (r = rg) tendeixen a ser d’ordre A°. Per tant en la regié propera a la
gola la hipotesi pertorbativa falla, i cal estudiar el problema de manera
exacta numericament. A I'article mostrem la representacié obtinguda de la
solucié exacta, i obtenim que és qualitativament semblant a la pertorbativa,
llevat de factors numerics. En concret obtenim que la gola esta situada en
ro /~ 2M + 0.01947V/h, que difereix lleugerament del resultat anterior.

En resum, hem obtingut una singularitat coordenada per a un valor
de r separat del valor classic (r = 2M) per una distancia de l'ordre de la
longitud de Planck (v/4). La singularitat representa la gola d’un forat de
cuc. Kl segiient pas logic és estendre la metrica més enlla d’esta singularitat
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coordenada, com es fa en el cas classic. En ’article proposem una extensié de
tipus Morris-Thorne, convenient per a una metrica de forat de cuc, definida
pel canvi [(r) = qu; \/mdr’. La gola del forat de cuc esta situada
en | = 0. L’extensié de la metrica a la regié [ < 0 dona com a resultat
un forat de cuc asimeétric. A més a més, trobem una nova singularitat
situada en Iy ~ —0.278hY/4/M. A Darticle provem que esta singularitat
és de curvatura i esta situada sobre una hiper-superficie de tipus nul. En
la Figura mostrem un diagrama de Penrose qualitatiu d’esta solucié.
Aixi mateix demostrem que esta singularitat esta situada a una distancia
geodesica d’ordre (’)(\/ﬁ) respecte de la gola, de manera que un observador
travessant el forat de cuc trobaria quasi immediatament la singularitat.
La forma d’esta solucié (forat de cuc asimetric amb una singularitat de
curvatura nul-la) coincideix qualitativament amb I'obtinguda mitjangant
laproximacié 2-dimensional [41], la qual cosa reforga la validesa d’esta
aproximacio.

Esta soluci6 de forat de cuc és ’extensié maximal de la solucié de les
equacions semi-classiques d’Einstein de buit (quantic) pur. Pero u es pot
plantejar empalmar esta metrica amb l'interior d’'una estrela estatica i amb
simetria esferica. La inclusié de materia pot generar objectes estel-lars
ultra-compactes [48] 44 45, 46, [47]. Si empalmem estes solucions a la nostra
metrica per a ’exterior de I'estrela, el nostre resultat imposa un valor maxim
per a la compacitat d’estos objectes, que ve donat pel minim de la funcié
radial (la gola del forat de cuc). En concret obtenim que el maxim de
compacitat (mesurat com 2M /r) seria

2M Vh

— ~1-0.01686—— . 30

To 2M ( )
Esta és una important restriccié per als ECOs, que considerem com un dels
principals resultats de ’article.
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Figure 0.1: Diagrama de Penrose mostrant la gola del forat de cuc (I =0) i
la singularitat de curvatura nul-la (I = ;).

Per 1ltim, comprovem que les implicacions fisiques de les correccions
quantiques lluny de » = 2M sén menyspreables i no serien detectables amb
els interferometres actuals. En particular, a mode d’exemple, obtenim la
correccié quantica (a primer ordre en ) de les freqiiencies dels modes del
light-ring generat per pertorbacions escalars i electromagnetiques. Per a
fer-ho utilitzem ’aproximacié analitica WKB [49] 50]. Obtenim resultats
de la forma w? = Wg‘ch + O(h), on wgch sén les freqiiencies per al cas de
Schwarzschild. Per exemple, en el cas de pertorbacions electromagnetiques
obtenim

h
170107 M2

Podem veure que les correccions quantiques a estos observables sén menyspre-

2

w? = wd,, + (—13Re [wd,] + 11i Im [wd]) - (31)

ables. Aco és el que esperavem, ja que el light-ring es troba entorn a r = 3M
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que esta suficientment allunyat de la regié de la gola, on s’espera que les
correccions quantiques tinguen més pes. Concloem per tant que, tot i que
els efectes quantics impliquen canvis drastics en la geometria del forat negre
prop de I’horitz6, no sembla que impliquen correccions significatives en
exterior. Es a dir, des del punt de vista d’'un observador distant, esta

solucid semi-classica és indistingible d’un forat negre sense rotacio.
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Chapter 1

Introduction and motivation

There are two fundamental theories that underpin modern physics today:
General Relativity (GR), which explains gravitation and the physics of the
universe; and Quantum Field Theory, which is able to describe a wide range
of quantum phenomena, ranging from condensed matter to the physics of
particle interactions. Both theories have been tested experimentally and
are widely accepted by the scientific community, although they are far from
solving all the problems of current physics. One of the most fundamental
problems remaining nowadays is precisely how to fit these two theories
together in order to explain physical phenomena involving both quantum
and gravitational effects. A unified theory may shed light on problems that
physicists have been trying to solve for decades. The two most important in
this regard are: discovering the true nature of black holes and the physics
around their curvature singularity, as well as the physical processes that
took place at the origins of the universe and led to the creation of matter.

We are far from finding a unified theory, but that does not mean
that these problems are a complete mystery. Theories that go beyond
the Standard Model [51], modified theories of gravity that review and

3
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provide corrections to classical General Relativity [52], quantum theories
for gravity [53], etc, have their own proposal. However, all of them require
additional hypoThesis that need to be confirmed by experiments. If there
is a theory that stands out for its reliability, as well as for its practicality
to study and to produce results of physical interest involving both gravity
and quantum fields, this is Quantum Field Theory in curved spacetimes.
This approach was originally started by Leonard Parker in 1966 [11 2, [3] 4],
where it was discovered that elementary particles can be created by a time-
dependent gravitational field. These works launched a new and fruitful
field in physics, which was subsequently analyzed and extended by many
authors and summarized in standard monographs [5] [6, [7, [§]. This theory
is a semiclassical approximation, in which quantum fields describing matter
and /or radiation are coupled to an external, background gravitational field,
which is approximated by a classical field in the weak-field regime. The
semiclassical approximation is widely used and has historically paved the
way for significative advances in our understanding of physical interactions,
for example, in the early years of the quantum electrodynamics during the
past century. The basic idea of semiclassical gravity is to apply this idea to
the gravitational field. If gravity plays an important role in the dynamics
of a quantum field (this happens, for example, in the vicinity of a black
hole or in the early universe), but in such a way that quantum gravitational
fluctuations are still negligible, then the gravitational field can be treated as
a classical, external field. This avoids dealing with the unresolved problem
of quantizing gravity in those situations where quantum fluctuations of the
spacetime metric are expected to be negligible.

Quantum field theory in curved spacetimes is, in this sense, an effective
theory that does not unify gravity and quantum physics, as it does not
propose a method to quantize gravity, but it has nevertheless proven to be
very useful in explaining phenomena that could not be tackled otherwise.



One of these is the well-known Hawking radiation [10, [11], which shows how,
contrary to what has been assumed for decades, black holes are not simply
sinks of matter that do not allow any kind of particle to pass beyond their
boundaries. Black holes radiate matter, and this is an effect that can only
be explained if the quantum fluctuations excited around the horizon are
taken into account. Another important effect that the semiclassical theory
is able to explain arises in cosmology. This is the spontaneous creation of
particles that results from the expansion of the universe, an effect that was
first discovered by L. Parker [1]. This phenomenon reveals the fundamental
property that in a non-static spacetime there is no unique or preferred choice
for a vacuum state in quantum field theory: observers at both early and
late times differ in their “natural” notions of vacuum state. This results
in a different measurement of the number of particles at different instants.
This effect becomes particularly important during the first instants of time
of the universe after the Big Bang and to explain the creation of matter
[12, 13]. In fact, the phenomenon of spontaneous particle creation is not
only present in curved spacetimes, but it can also occur in flat spacetimes.
More precisely, an intense electric field can also generate particle-antiparticle
pairs out of the quantum vacuum. This is known as the Schwinger effect
[14, 15], a non-perturbative effect that can only be obtained through the
semiclassical approach (via the one-loop effective action).

In conclusion, in all these scenarios (Electrodynamics, Cosmology, and
Black holes), we see that quantum fields in the presence of external classical
fields exhibit interesting properties that must be explored using semiclassical
theories. This is the theoretical framework of this Thesis. The articles
that make up this Thesis (shown in part are focused on the study,
development, and application of the semiclassical theory in these physical
scenarios (anomalies, renormalization, backreaction effects...).

Regarding Electrodynamics, we examined how certain well-known phe-
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nomena in the context of QFT in curved spacetimes can also be recovered in
the context of an electromagnetic background. For instance, in the Article 1
of this Thesis we study whether the so-called gravitational anomaly, which is
known to occur for a 2-dimensional Weyl fermion coupled to gravity, arises
when the background is an electric field. We will see that in this second case,
an anomaly also arises in the conservation of momentum. On the other hand,
in the Article 2, we study whether the electromagnetic case maintains the
adiabatic invariance of the number of particles, which consists of no particle
creation in the limit of an infinitely slowly expanding universe. We will
see that, under certain conditions, this invariance is broken in this second
case. In fact, this phenomenon is intimately related to the well-known
axial anomaly. Finally, in the Article 3, we extend the method of adiabatic
renormalization (which is very useful in the cosmological context) to the
case of a 4-dimensional Dirac field coupled to an electric background.

Regarding the field of Cosmology, in the Article 4, we extend to the
cosmological context a recent and successful regularization method (prag-
matic mode-sum regularization) that had only been applied in the context
of black holes up to now. Finally, in the context of black holes, we study
quantum corrections to the Schwarzschild metric, specifically in the Article
5. These corrections come from the effects of backreaction generated by the
quantum fields on the gravitational background itself. We will see that the
geometry of the newly generated spacetime presents significant differences
compared to that of black holes. This result may contribute to the study
of the formation of ultra-compact objects that mimic the physics of black
holes.
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1.1 Structure and conventions

The Thesis is organized as follows. In Part[l]we review the main concepts that
make up the theoretical framework of this Thesis (placing them historically),
which are necessary to facilitate the understanding of the articles. In
Part [[l, we summarize the results and conclusions that have been obtained
throughout the PhD. Finally, in Part [[TI} we include the articles that support
the Thesis.

Regarding conventions, throughout the Thesis we work in natural units,
i.e., G =c=h=1, unless otherwise stated. For the signature of the metric
we use (+,—,—,—), except in the Article 5 where we use the opposite
signature (and where we leave h explicitly). For curvature tensors, we follow
the conventions of [5].

1.2 Methodology

For the development of the articles, it has been consulted updated literature
from the different theoretical areas involved in the work. Regarding the
calculations that were necessary for the development of the articles, it should
be noted mainly the use of Mathematica for analytical calculations (including
the z-Act package for tensorial calculations), as well as the use of Matlab
for more involved numerical calculations.

The articles have been developed in collaboration with other members
of the research group and external scientists, through meetings and task
distribution. Therefore, the authorship of the articles is distributed equally
(the names of the authors in the articles are listed alphabetically, as is
customary in publications in this field). Lastly, conferences have also been
attended to communicate the results obtained with other research groups,
as well as to learn the work of other authors in related subjects.






Part 1

Theoretical framework






Chapter 2

Review on Quantum Field
Theory in curved spacetimes

All the articles that comprise this Thesis are, to a greater or lesser extent,
based on Quantum Field Theory in curved spacetimes, as well as on semi-
classical electrodynamics. The underlying idea in both theories is the same:
to consider the gravitational/electromagnetic field as a classical background
and to couple them to quantized fields. This approach allows the analysis
of non-perturbative effects such as the spontaneous creation of particles.
In this first section we will briefly explain the basic concepts of Quantum
Field Theory in curved spacetimes, as well as a proof of the phenomenon of
particle production in the cosmological context. [A more detailed derivation
can be found in [5]]. In the next section we will introduce its electromagnetic
analogue.

Let us consider a set of scalar fields ¢;(z) propagating in a n-dimensional,
globally hyperbolic spacetime background (M, g4p), where the manifold
can be decomposed as M ~ R x o, for some n — 1-dimensional spacelike
hypersurface o. Global hyperbolicity is required to guarantee that the

11



CHAPTER 2. REVIEW ON QUANTUM FIELD THEORY IN CURVED
12 SPACETIMES

time evolution of the fields is mathematically well-posed. In coordinates
the metric can be expressed as ds? = Guv (x)datdx” , where we will denote

2% = t as the time coordinate, and (z!,..2"" 1)

= ¥ as the spatial ones.
The classical field theory is described by an action functional, which in
curved spacetime also depends on the metric, so it must have the form
S(pi(x), Voi(x), gu(x)). Such action can be constructed by following the
minimal coupling prescription, which is consistent with the Einstein principle
of equivalence. Starting from the usual action for the field in Minkowski
spacetime, the prescription consists in replacing the flat Minkowski metric
Nab Dy the curved metric gqp, the flat covariant derivative V,[n] by the non-
flat connection V,[g], and the measure d"x\/—n by the invariant volume
element d"x\/—g, where g = det (g,,). As we will see later, one can add
additional terms involving higher derivatives of the metric, but for now we
will only consider the simplest case of minimal coupling.

The resulting action in curved spacetime can then be expressed in terms

of a lagrangian density L, as

5= / T eL(65, Y ubis g 2.1)

This functional must be invariant under general coordinate transformations.
Requiring invariance of the action under variations of g,, induced by an
infinitesimal coordinate transformation leads to the conservation law

v, T =0, (2.2)
where T}, is the symmetric stress-energy tensor, defined by
2 4§
T = —T—S : (2.3)
19112 69y

On the other hand, requiring invariance of the action under variations of
the fields ¢; yields the Euler-Lagrangian equations

oL oL
On (aw,m) “oe " 24
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Similarly to QFT in Minkowski spacetime, the fields ¢; are quantized
by following the canonical procedure. More precisely, we impose the usual

commutation relations

[0i(t. D), m; (7)) = 00 (F—F),
[qbl-(t, f), gf)j (t,f’)] = [Wi(t,f),ﬂ'j (t,f’)] = 0, (25)

<

for bosonic fields, and

{¢i(t,2),7; (t, &)} = 60 (F—12"),
{0t 8), 05 (1,7)} = {m(t.®),7; (t.7)} =0, (2.6)

for fermionic fields. Here m; are the canonical conjugated momentum
defined by m; = %, d;j is the Kronecker delta, and 6 (¥ — 2) is the
Dirac delta. These relations are covariant under transformations of the

spatial coordinates, and they remain valid for any ¢ = constant hypersurface.

2.1 Scalar field

In this section we briefly explain how this theory can be applied to the
simplest case, a scalar field (spin 0) coupled to a gravitational background.
We will then restrict to cosmological spacetime backgrounds, consisting of
expanding universes. This is a particularly useful arena for understanding
the phenomenon of particle creation.

For Minkowski spacetime the Lagrangian density of a real scalar field
with mass m is given by £ = %(77’“’ 0,90, — m?¢?). Therefore, following
the minimal coupling prescription described in the previous section, the
Lagrangian density in a curved spacetime becomes

L= lol"? (¢ 0,00,0 — ) (27)
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(the factor |g|'/? comes from the change of the volume element in (2.1]),
and the covariant derivatives reduce to partial derivatives for scalar fields).
Besides the minimal coupling prescription, there is also the freedom of

adding a coupling with curvature in the following form

1
L= 519l (9" 0400y — m*¢* — ER$?) . (2.8)

where £ is a dimensionless real number known as coupling constant between
the field and the background, and R is the scalar curvature. This extra term
is needed to ensure the renormalizability of the theory when interaction
terms are included in the Lagrangian (see section 6.7 of [5]). Note that
the case & = 0 corresponds to the minimal coupling prescription. On the
other hand, when £ = 1/6 and m = 0 the Lagrangian density is invariant
under conformal transformations of the spacetime. For this reason the value
& = 1/6 is known as conformal coupling. As we will explain in more detail in
section [6.2] conformal symmetry implies that the trace of the stress-energy
tensor is 0 for solutions of the equation of motion, but in the quantum
theory this is no longer true (and it is known as the Trace Anomaly).

The Euler-Lagrange equation of the Lagrangian density produces
the Klein-Gordon equation for curved spacetimes

(O+m*+¢R) ¢ =0. (2.9)

The operator [J in curved spacetimes acts as [ = |g|_1/28u (|g|1/28“<;5).
Since the field equations are linear, the space of solutions has the structure
of a vector space. This vector space can be endowed with a symplectic
structure. Consider two functions f; and fo that are solutions of the above

equation. We define the Klein-Gordon inner product

(f1, f2) = i/da|g|1/2n“f1*g,jf2, (2.10)
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where ¢ is an arbitrary spacelike hypersurface, and n* is the future-pointing,
unit normal vector. It can be proven that this product is independent of the
choice of o. In particular, if one considers a {t = constant} hypersurface of

dimension n — 1, this product becomes

<
(Fir fo) = i / " Lalg| V2, g £100 £y (2.11)

and using the field equations it is not difficult to find that this quantity is
conserved in time. Throughout this text the notation (,) will refer to this
product.

At this point, one can proceed to do the quantization of the scalar field by
following the same procedure as in Minkowski spacetime. For convenience,
let us consider finite spacelike hypersurfaces o consisting of a cube of side
length L (this length will be taken to infinity at the end of the analysis),
and impose periodic boundary conditions on the field. Given a complete
basis for the space of solutions of the field equation , [7» labelled by
n — 1 real numbers k, the quantum field can be expanded in terms of the
usual annihilation and creation operators (A, A]T;) as

o) = (Agfe(t. ) + AL ) (2.12)

k

The mode functions f; are orthonormal with respect to the symplectic inner

product
(fEafE/) :6]2,]2/ ) (fgvf];"k/) =0. (213)

Since this product is conserved in time, these conditions will be valid for all
t. Using these relations and the properties of the § distribution, one can
prove that the usual commutation relations (2.5 are equivalent to

[Ap ALl =6 [Ap Agl = (AL 4l =0, (2.14)
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which are the same relations as in QFT in Minkowski spacetime. As we will
see in the next subsection, if the spacetime evolves from an asymptotically
flat region at early times, one can assign {Ag, A;%} a notion of annihilation /
creation operators of particles with momentum k with respect to observers
that remain static at early times, i.e. with respect to the integral curves
of the asymptotic Killing vector field 0/0t. However, at later times when
spacetime is dynamical (non-vanishing curvature) this statement is no longer
true. This is the origin of the phenomenon of spontaneous particle creation
by the curvature of the spacetime, that we will introduce in the following

section.

2.2 Particle creation in an expanding universe

To analyze the phenomenon of particle creation it is convenient to consider a
particular cosmological model: an expanding universe that is asymptotically
flat at early and late times. This configuration is illustrative because the
annihilation and creation operators (and therefore the concept of vacuum
state, and in turn the notion of particle) can be given a clear physical
meaning at both early and late times. Therefore, in this model one can
obtain a rigorous calculation of the number of particles created by the
spacetime expansion by comparing how the two notions of vacuum state
relate to each other.

Let us then consider an isotropical and homogeneous spacetime in four di-
mensions, given by the well-known Friedmann—Lemaitre-Robertson—Walker
(FLRW) metric

ds® = dt* — a(t)*dz?, (2.15)

where a(t) is a real function, known as scale factor. The asymptotically
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flatness condition requires that the scale factor behaves as

a(t) %{ @ asto oo (2.16)

a®  ast — oo

where a” and a°“* are positive constants. Since the background metric is
spatially homogeneous, the field will be propagated spatially as a free wave,
so we can consider the following ansatz for the mode functions in (2.12))

Folt,7) = B (1) (2.17)

V2L3a(t)? "
(The factor 1/4/2L3a(t)? is introduced for simplicity in the following calcu-
lations). Therefore, the Klein-Gordon equation (2.9) with these assumptions
is reduced to the differential equation

2
dh;;
dt?

+ (wi+0)hy =0, (2.18)

where wy, = \/m? + (%)2, and

-2 .
a:(65—2>;‘2+<6§—;)z. (2.19)

This last term is called the frequency scale of the background. Notice that
when the spacetime tends to a flat region (a — const.) then o — 0 and the
solution of this equation is just a free oscillating mode propagating with
frequency wy. Then, at early and late times the modes hj tend to be a
linear combination of the Minkowskian positive (e *#?) and negative (e®*?)
frequency solutions.

On the other hand, the normalization relations imply the following

normalization condition

hiht — hihy = 2i. (2.20)
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Since the inner product is conserved in time, this equation will also be pre-
served. Therefore if we impose initial conditions which verify this condition,
it will be ensured for all times. In fact, hfc'hz — hZhIZ is a Wronskian of
the equation , which is a conserved quantity. This equation fixes an
integration constant of the differential equation , while the other one
must be fixed by choosing the vacuum state |0) of the theory. For instance
we can choose the vacuum state to be fixed at early times, i.e., no particles
are present in the early universe. This is equivalent to fix that when t — —o0
the modes behave as positive frequency solutions with respect to the Killing
vector 0/0t, i.e.,

]. ;oin
hi(t = —o0) ~ e it (2.21)

in
Wi

where wi" = (a’fn )2 + m?2. Therefore, Ay and AL in (2.12)) are the annihi-
lation/creation operators of particles in the early universe, and it is verified
Az]0) = 0.

However, at late times the solution will be a combination of positive and
negative frequency solutions, as a consequence of the time evolution of the

differential equation, i.e.

1
/szt
t_ ( k

—at )2 +m? and oy, By are dimensionless integration con-

h(t = 00) ~ (ape™ ™"t 4 Bty (2.22)

where wi"
stants. As we will see later, this fact is the reason behind the particle
production effect. The normalization equation (2.20) implies the relation

o — |Bkl> = 1. (2.23)

Since in general S # 0, the operators Ag, AL are no longer the standard
annihilation and creation operators in the late universe. Introducing (2.22))
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into the field expansion (2.12)) and regrouping terms one can find the
expression for the annihilation/creation operators at late times in terms of

the corresponding operators at early times
A% = ap Ap + ﬁ,’;AT_E. (2.24)

These relations are known as Bogoliubov transformations, and have their
origin in condensed matter physics [54] 55]. Using it can be proved
that these new operators verify the usual commutation relations .

We have all the elements now to prove the production of particles by the
expanding universe. The particle number operator at late times for modes
with momentum & is defined by ALOUtAz“t. The vacuum expectation value
of this operator can be easily computed using the commutation relations,
and yields

(NZ") = (0] A} AZ(0) = |- (2.25)

For a general changing scale factor a(t), the coefficients j3; are different from
zero. Therefore, particles can be created during the expansion because of
the curvature of the spacetime. The momentum distribution of the created
particles is given by the Bogoliubov coefficients |3;|?. Its expression depends
on the particular form of a(t), and for some simple cases it can be obtained
in closed analytical form. Summing this distribution for all the possible
momenta and dividing by the comoving volume of the universe at late times
(L a®"*)3, we obtain the average density of created particles

(1) = 3L (226)

In the continuum limit (L — oo) one obtains:

1 o
outy .~ dka out2. 2.97
(™) = gy | AR (227)
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This is the total number of particles created by the dynamics of the spacetime
between the two asymptotically flat limits at early and late times. It can
be proved that |B8|? decreases faster than any negative power of k when
k — 400, so this integral converges (see, for instance, [7]).

A very important property of the number of particles created is that it
is an adiabatic invariant. This means that in the limit of an infinitely slow
expanding universe, no particles would be created (see [I7] for a historical
review). In the Article 2 of this Thesis (shown in part we explain this
phenomenon in detail, and we analyze whether this property holds when the
background is not a gravitational field but an electromagnetic one. We prove
that, in certain cases, this adiabatic invariance is broken in the presence of

electromagnetic fields.



Chapter 3

Semiclassical
Electrodynamics and the
Schwinger Effect

As explained in Chapter (1} the semiclassical approach (i.e. coupling a
quantum field to a classical background field) is very useful to study quantum
effects in gravity because Einstein’s equations are highly non-linear and the
quantization of the full theory is far from obvious. But this is not the only
case where this approach works. It is well-known that in Quantum Field
Theory (in flat space), the semiclassical prescription gives interesting results.
For instance, in Quantum Electrodynamics (QED) this method allows the
analysis of non-perturbative effects that arise when the background is very
strong (yet, classical) and are difficult to examine in the full theory. This is
the case of the well-known Schwinger effect, which involves the spontaneous
creation of particle-antiparticle pairs generated by the effect of a strong
electric field. Note that this is analogous to the particle creation by the
expansion of the universe that we explained above, but in this case, the

21



CHAPTER 3. SEMICLASSICAL ELECTRODYNAMICS AND THE
22 SCHWINGER EFFECT

strong background field is an electric field, instead of a gravitational one. The
instability of the vacuum caused by an electric field was, however, discovered
much earlier. It was predicted for the first time in 1936 by W. Heisenberg
and H. Euler [56], inspired by the work of F. Sauter on the Klein paradox [18].
Some years later, it was formalized in Quantum Electrodynamics (QED) by
J. Schwinger [14], 57, [58]. This phenomenon is of particular interest from an
experimental point of view, as it may soon be possible to detect it in high
intensity lasers [59] and beam-beam collisions [60]. Additionally, this effect
holds significant importance in some scenarios in astrophysics [61], 62] and
cosmology [63], 64}, 65, [66, [67], as well as in non-equilibrium processes that
are induced by strong fields [68], 69, [70]. On the other hand, recent works
have resumed the study of semiclassical electrodynamics and the Schwinger
effect to analyze technical aspects, such as the renormalization of physical
observables associated with this effect |25 26] (and also the Article 3 of this
Thesis). Other works have also analyzed the ambiguities in defining the
vacuum state at times when the electric field is acting, and have proposed
criteria for selecting vacuum states that allow estimating the number of
particles at these instants [71, [72] [73], [74] [75].

In this section we will introduce this phenomenon for the case of a
constant electric background and will make some comments on its extension
to the time-dependent case, which can be studied in a very analogous way
to the particle creation in expanding universes. This will be useful for
understanding the first three articles of the Thesis (shown in part , which
are based on semiclassical electrodynamics and are closely related to the
Schwinger effect. We will show how this effect was derived for the first
time, i.e., by using the Euler-Heisenberg effective Lagrangians [56]. These
Lagrangians take into account the effect of vacuum polarization to one
loop and describe the dynamics of a quantum field coupled to a strong and
slowly varying electromagnetic field that is considered classical. Before the
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development of renormalization theory, these Lagrangians were employed
to describe the nonlinear dynamics of electromagnetic fields in the vacuum,
obtaining significant results, such as the Schwinger effect, as we will see
briefly next (for a more detailed analysis see [76]).

Let us consider the case of charged bosons (spin 0) and Dirac fermions
(spin 1/2). Note that, unlike the gravitational case, this effect can only
produce charged particles, since the electromagnetic field couples only with
charged fields. The effective Lagrangian densities for bosons and fermions
(respectively), with mass m and charge g, coupled to a strong electromagnetic
background field F,,, can be written as [56] [15]

G2abs? 252

h
s3 <sinh (gbs) sin (gas) + 6

2
1 [ e " q*abs? ?s*, 5
- - —a?) -1 2
Ly 87T2/0 ds $3 (tanh (gbs) tan (qas) 3 (b"—a) (32

where

1 oo

e
— ds
16772 0

Ly =

(b —a?) — 1> , (3.1)

= VP E-F . b=\WVErGE+F, (33

1 1,2 - 1 ~ R
F=Fub" =—S(B°=B) | G={F,F"=-E-B, (34)
and E and B are the electric and magnetic fields respectively. Note that if
E and B are parallel then a = |E| and b = |B|. For simplicity, we consider
the case of a purely electric background (E = 0), which is enough to produce
the creation of particles. Then the Lagrangian densities become

2
1 © e "R qEs (qEs)?
Ly = —— d — -1 3.9
b 1672 /0 = (Sin (gEs) 6 o (39)
2,
Y e qEs (qEs)?
- d -1 .
Ly 812 Jo T (tan (gEs) + 3 ’ (3:6)

where we denoted E = |E|.
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As a first approach to the problem, let us consider a constant electric
field E. In this case, the Lagrangians above are just constants, and so is the
effective action S = [d*zL (L can be either £, or £¢). This implies that
the scattering matrix of this theory is just e*®. Therefore, the probability
that no particles are created, i.e., that the vacuum state |0) remains the

vacuum, is given by
P([0) = 10)) = [ (0] " 10) |2 = |e™|* (3.7)

Since the Lagrangians are constants, we have S = VT L, where V and T
are the volume and time scales of the experiment. Then |¢?%|? = ¢=2VTTm(£],
As a result, assuming 2Im[£] is small, the quantity 2Im[L] can be regarded
as the probability per unit time and volume that any number of pairs are
created. By using contour integration over the poles of the integrals

and ([3.6), one can calculate the imaginary part of the lagrangians, yielding

2p2 e —1)nt1 w2
oIm(Ly) = 2 Z( - haE (3.8)

873 n2
n=1
2172 X 2
q E 1 _nmm
2Im(Ly) = 3 —e  haE (3.9)
4 =n

These expressions give the rates for Schwinger pair production by a constant
electric field.

One can see the non-perturbative nature of the Schwinger effect, as the
argument of the exponential is proportional to the inverse of the charge,
making it impossible to expand the expressions in power series of ¢, as
typically done in perturbative QED. Consequently, pair production cannot
be observed at any fixed order in perturbative QED.

According to equations and , these rates are insignificant for
low values of F, but become relevant when E 2 E, = 72—;. This is known
as the Schwinger limit, beyond which the electric field becomes nonlinear.
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For instance, in the case of electrons, E. ~ 108V /m, indicating that the
Schwinger effect can only be produced by highly powerful electric fields,
that are otherwise incredibly challenging to generate in laboratories. This
is why the Schwinger effect has yet to be observed experimentally. However,
with current laser technology, it may be possible to observe the Schwinger
effect in laser experiments in the near future [59, [77, [78, [79].

We have analyzed this effect in the ideal scenario of constant electric
fields, but it can be extended to the case in which the background is time-
dependent. One possible approach to address this problem is through
Bogoliubov transformations (see, for example, [15]). As mentioned before,
particle production by electric fields is closely analogous to particle cre-
ation in expanding universes. The method described in section [2:2] can be
straightforwardly extended to the case of an electromagnetic background.
For example, consider a scalar field ¢ with mass m and charge ¢ coupled to
a time-dependent electric background (semiclassical scalar QED). The field
equation is given by

(D,D* +m*)¢ =0, (3.10)

where D, = (0, + iqA,) is a covariant derivative and A* is the 4-vector
potential associated with the electric field. Expanding the scalar field in
Fourier modes, one obtains harmonic oscillator-type differential equations
with time-dependent frequencies, similarly to the gravitational case. Now
the frequencies of the equations depend on the vector potential A*, which
plays the role of the scale factor a(t) in gravity. If we consider a configuration
where the electric field is asymptotically vanishing at both early and late
times, then the vacuum states at early and late times will in general differ,
and as a consequence the creation and annihilation operators associated
with early and late times can be related through Bogoliubov transformations.
By calculating the expectation value of the number of particles at late times,
one can find that particles have been spontaneously created by the dynamics
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of the electric background.

In the Article 2 of this Thesis (shown in part we perform this
calculation in 2 dimensions, for both scalar and Dirac fields. [A 4-dimensional
approach can be found, for instance, in [15].] In addition, we obtain the
momentum spectrum of the number of particles created for a specific form
of the electric field (a Sauter pulse), which allows us to solve the problem
in closed analytical form. Furthermore, we analyze how this observable
behaves in the limit in which the electric field varies adiabatically, and
prove that the well-known adiabatic invariance of the particle number in
expanding universes is not preserved in certain cases for an electromagnetic
background. On the other hand, in the Article 3, we study the extension
of the adiabatic renormalization method in the context of semiclassical
electrodynamics. Finally, in the Article 1, we study the emergence of a
momentum conservation anomaly associated with this effect in the case of
Weyl fermions.



Chapter 4

Black Holes in the presence
of Quantum Fields

As we have seen in previous sections, even without having a complete theory
of quantum gravity at our disposal there are ways to deal with scenarios
that combine gravity and quantum physics, that give rise to phenomena
of great interest. In addition to cosmology, in this Thesis we have also
addressed one of the most important frameworks that combine these two
branches of physics: black holes. The prediction of black holes in General
Relativity dates back to the early 20th century. However, it is worth noting
that the first indication of objects of this type dates back to the late 18th
century. J. Michel and P. S. Laplace independently proposed, based on
Newtonian gravitation, that a very massive star could gravitationally attract
light, turning it into an invisible object to our eyes [80, [8I]. In Laplace’s
words, “The gravitation attraction of a star with a diameter 250 times that
of the Sun and comparable in density to the earth would be so great no light
could escape from its surface. The largest bodies in the universe may thus
be inwvisible by reason of their magnitude’. Much later, the development
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of Albert Einstein’s theory of General Relativity gave rise to the modern
concept of a black hole. Although the metric that describes the gravitational
field of a non-rotating black hole was first obtained by K. Schwarzschild
already in 1916 (what we now call the Schwarzschild metric [82], it was not
until 1939 when the physical meaning of this vacuum solution of Einstein’s
equations was fully understood. This was the seminal paper by Oppenheimer
and Snyder that describes the process of gravitational collapse of stars [83]

(see [84] for a historical review).

The notion of black hole horizons is one of the most fascinating predic-
tions of the theory of General Relativity. By definition, a black hole consists
in a region of spacetime that concentrates a strong gravitational field, so
strong that no particle can escape its influence, not even light. The boundary
of this region is what we call the horizon. The formation of these objects
is a consequence of the accumulation of matter in small regions of space,
which inevitably collapses to a singular point when it exceeds a certain limit.
For instance, for spherically symmetric spacetimes the Buchdahl theorem
imposes a limit to the compacity of a star. Specifically, a star with a mass
and radius such that M/R < 4/9 is unstable and will collapse inevitably in
a black hole [85].

In the last decades the analysis of quantum fluctuations of fields around
black holes has provided fundamental insights in our understanding of
quantum gravity. In fact, the inclusion of quantum fields in the physics of
black holes has called into question various basic properties that General
Relativity predicted about these objects. On the one hand, the presence
of quantum fields around black hole horizons leads to the emission of the
well-known Hawking radiation, an effect that challenges the old statement
that nothing can escape from black holes. This is perhaps the cornerstone of
Quantum Field Theory in curved spacetimes. On the other hand, quantum
effects also allow to bypass the assumptions of Buchdahl’s theorem, thus
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opening up the possibility of forming exotic compact objects (ECOs) in
astrophysics that may mimic the physics of black holes. This second question
has been addressed in this Thesis, in particular in the Article 5 (shown in
part . In the following sections we will go through all these topics.

4.1 Hawking Radiation

The phenomenon of Hawking radiation, discovered by S. Hawking in 1974
[10L 1] refutes the idea that black holes are really “black”. Instead, they
emit thermal radiation composed of particles of any quantum field, which
are excited by the gravitational collapse during the formation of the black
hole. In Chapter [2] we have already seen how an intense and time varying
gravitational background, like an expanding universe, can generate the
spontaneous creation of particles that emerge from the quantum vacuum.
The gravitational collapse of a star is physically a similar process and
particles can be created in a similar fashion. Let us briefly see how this
effect can be derived, as originally calculated by Hawking.

Consider for definiteness a spherically symmetric spacetime that de-
scribes a non-rotating, collapsing star into a black hole. This spacetime can
be represented by the Penrose diagram in Fig. In the region outside
the star the metric is given by the Schwarzschild metric (Birkhoff’s theorem
[86]:

oM oM\ !
ds? = (1 - > dt? — <1 — > dr? —r* (d6® + sin® 0d¢?) , (4.1)
T T

where M is the mass of the black hole. Now we couple this background to
a quantum field propagating along the spacetime. For simplicity, consider a
massless, minimally coupled (£ = 0) scalar field ¢, which evolves according
to the Klein-Gordon equation ¢ = 0. Following the exposition given
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Singularity  j+

r=0

Collapsing
matter

i_

Figure 4.1: Penrose diagram of a spherically symmetric collapsing body into a
black hole. I~ and It are past and future null infinities respectively, i~ and i T
are past and future time-like infinities respectively, and i° is space-like infinity.
The red arrows represent a field mode that propagates from I~, goes through the
collapsing star and reaches I+.

in Chapter 2, we can expand the quantum field in terms of the usual

creation/annihilation operators as

o(x) = 3 (fila)Ai + fi (2)4]) | (4.2)

2

where the set of functions f;(z) form an orthonormal family of solutions of
the Klein-Gordon equation (the subindex i labels the quantum numbers of
each mode). f;(x) are solutions of positive frequency at past null infinity 7~
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with respect to the affine parameter v, which is the Eddington-Finkelstein
coordinate defined by v =t +r + 2M log ‘ﬁ — 1’. This positive-frequency
condition is equivalent to say that the field modes behave as e ", where w
is the frequency of the modes. On the other hand, A; and A;r represent the
annihilation and creation operators of particles at I~ (ingoing particles).
We can also express the field in terms of a different orthonormal family

of solutions g;(x), that is,

6(@) = Y (9:(0)Bi + g (@)B] ) . (4.3)
i

such that B; and B;r are the annihilation and creation operators of particles
at future null infinity I. g; form a family of positive frequency solutions
at future null infinity /™ with respect to the affine parameter u (outgoing
particles), which is the outgoing Eddington-Finkelstein coordinate defined by
u=t—r—2Mlog ‘ﬁ — 1|. That is, they behave as e~®. It is important
to note that this is not completely accurate, since I is not by itself a
Cauchy surface, the event horizon must be taken into account. Therefore, to
have a complete family of solutions we would need to add the contribution
of the operators of particles that cross the event horizon. Nevertheless,
this contribution will not play any crucial role in the calculation of particle

emission to I, so we will ignore it here.
Having defined the two families of solutions, we can write one as a linear
combination of the other. [We are ignoring incoming modes at the horizon
at late times.] In other words, the early and late time operators are related

by a Bogoliubov transformation of the form
B =" (ai4; - 541 . (4.4)
J

The vacuum state at I~ is defined by A;|0) = 0. However, due to the
dynamics (curvature) of the spacetime, this state will not be observed as a
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vacuum state to an observer at I*. In fact, if we calculate the expectation
value of the number of particles (for a particular ¢) at I, we will obtain

(N:) = (0[b]b;]0) = Zyﬁ”, (4.5)

which is generally different from zero. The calculation of the coefficients 3;;
depends on the details of the collapse, but its asymptotic expression for late
times turns out to be independent of this. As we will see shortly, it only
depends on the mass of the black hole.

Consider a positive frequency mode f,, ~ e~ of the field propagating
from I~. If v is below the threshold vy indicated in Fig. this mode will
pass through the collapsing star and reach I™ as a combination of positive
and negative frequency solutions, f,, ~ a,e ™% + f,e™%. This distortion
of the modes implies the spontaneous creation of particles, as explained in
Section But not all modes that leave I~ generate this effect. Those
that start with v > vy will inevitably fall into the horizon. Therefore, we
are only interested in the modes that start with v < vy. In addition, there is
a cumulative effect that causes more particles to be generated as the initial
value of v approaches vyg. Therefore, the coefficient 8 can be estimated
by considering only the modes that start from a value of v close to (and
less than) vg. A detailed computation shows that the expectation value of
the number of particles created with frequency w (see [I1] or [40] for more
details in the calculation, including grey-body factors) is

1

<Nw> ~ eSTMw _ 1° (46)

Note that this expression is equivalent to the Planck distribution for
bosons that describes the thermal radiation of a black body. This is given by
1/(eM/(k8T) _1) where kg is the Boltzmann constant. Therefore, comparing
both expressions, one can identify a temperature for a Schwarzschild black
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hole
h

= SnkpM’

which is known as the Hawking temperature. This is one of the most

Tw (4.7)

prominent results in QFT in curved spacetimes. Although the analysis given

here was restricted to a scalar field, this effect holds for any quantum field.

4.2 Exotic Compact Objects (ECOs)

In the last years some researchers have given strong indications supporting
the idea that the dark, compact, massive objects that are observed in astro-
physics may not be necessarily black holes, in the sense that they may not
possess an actual event horizon. The advent of gravitational-wave astronomy
has triggered a lot of interest in this direction. Different phenomenological
models propose the existence of ultra-compact dark massive objects, named
as Exotic Compact Objects (ECOs), that can mimic the physics of black
holes in observations. However, they all require physics beyond the standard
model. The possibility offered by gravitational wave interferometers to shed
light on this matter has sparked special interest in recent years in studying
possible types of ECOs, as well as in ways to distinguish them from classical
black holes through several mechanisms [39, [87]. An interesting question is
whether quantum fluctuations of fields may be capable of preventing the
formation of black holes in situations where, from a classical point of view,
collapse would be inevitable, leaving as a result the formation of an ECO.

The problem that arises when trying to construct such objects is that
General Relativity establishes a limit on the compactness of self-gravitating
objects, meaning that if this limit is exceeded, the object inevitably collapses
into a black hole. This limit is given by the well-known Buchdahl theorem
[85]: Let there be a static, spherically symmetric star composed of a perfect,
1sotropic fluid with total mass M and radius R. Assuming that its radial
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pressure is positive and its energy density is positive and decreasing with
radius, then the object can only be stable if % > %. This theorem can
be proved just using the Tolman-Oppenheimer-Volkoff (TOV) equations,
which are the Einstein’s equations for a static and spherically symmetric
configuration. For a long time, this theorem has maintained the idea that
stable stars with similar compactness to a black hole cannot exist, but in
recent years this idea has been called into question. Various groups have
proposed scenarios in which the assumptions of the theorem are not met,
opening up the possibility of the existence of ECOs. In [39] one can find a
compendium of the types of ECOs that can be constructed depending on

the assumptions of the theorem that are relaxed.

The presence of quantum fields can imply the violation of some of
the assumptions of the theorem. To give an example, quantum fields can
generate anisotropies in the stress-energy tensor, and/or negative pressures
and densities. Thus, a negative pressure may counteract the gravitational
attraction and generate stable configurations of high compactness. The idea
that quantum effects may play a crucial role in the formation of astrophysical
objects dates back to Chandrasekhar in 1931 [88], who showed that the
quantum degeneracy pressure of fermions due to the Pauli exclusion principle
can counterbalance the gravitational force and prevent collapse into a black
hole, forming as a result a White Dwarf. Three years later, W. Baade and
F. Zwicky proposed the existence of what is known as neutron stars [89],
which are based on the Chandrasekhar’s idea. Unfortunately such stars
do not reach sufficiently high values of compactness so as to be able to
mimic black holes in gravitational-wave observations, and in fact they can
be identified with other techniques in astrophysics. Other types of fermion
star configurations based on the same idea were subsequently proposed in
[90, 87]. Most of these models consider a polytropic equation of state for
the fluid instead of a pure perfect fluid, which violates the assumptions of
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the Buchdahl theorem. However they also have not found stable solutions
with compactness similar to that of black holes.

In parallel, various groups have worked on extending this idea to the
case of bosonic fields, leading to what is known as boson stars (see for
instance [90, 91], [92], 93] 94]). Depending on how the interaction between the
bosons is defined, the maximum mass and compactness of these stars varies.
Additionally, the stress-energy tensor of these objects presents anisotropies,
which bypasses the assumptions of Buchdahl’s theorem. However, the
compactness of this type of star is around R/(2M) =~ 1.4, still not surpassing
the Buchdahl’s limit [95].

The type of ultra-compact stars that allows for the highest compact-
ness, even violating Buchdahl’s theorem, are anisotropic stars, which are
configurations of matter that exhibit high anisotropies in their pressures
[96]. There are many types of anisotropic stars, depending on the origin
of these anisotropies (see for instance [97, 98] 99, 100} 101, 102]). Some of
these models reach compactness very close to r = 2M. Many other ECO
models have been proposed that accept compactness similar to that of black
holes, most of which are based on quantum effects. This is the case for
Gravastars (based on one-loop QFT in curved spacetimes [103]), Fuzzballs
(based on String Theory [104, 105} 106l 107, 108]), or Firewalls (black holes
surrounded by some hard structure made of quantum matter that behaves
as a compact horizonless object [109, 110, 111]).

Wormbholes

Ultra-compact stars are not the only type of horizonless objects that can
mimic the behavior of black holes. Wormholes are an interesting candidate
in this regard. They can be defined as astrophysical objects that connect two
regions of spacetime, so that matter could pass through the wormhole and
go from one zone to another. This idea was firstly introduced by A. Einstein
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and N. Rosen [112], who constructed a spacetime formed by coupling two
Schwarzschild exteriors, which is known as Einstein-Rosen bridge. Several
decades later, wormholes regained interest as possible exotic objects that
mimic the physics of black holes [113, [I14]. There are different ways to
construct wormholes, but exotic matter is usually required. For instance,
the Einstein-Rosen bridge can be obtained as the solution of Einstein’s
equations for a thin shell of matter located at the throat of the wormhole
[113].

Another, more complex way of constructing a wormhole is by means
of some type of matter distribution that generates a decoupling between
the components of the metric, so that, the tt-component does not vanish in
the region where the rr-component diverges (as it happens in black holes).
This implies that this region is not a horizon, but the throat of a wormhole.

The simplest example would be a spacetime given by [115]
2M oM\
ds® = (1 - )\2> dt® — (1 - T) dr? —r?dQ?,  (4.8)

where A is a constant that is usually taken to be very small. These types
of objects can be extremely compact, but it is not yet clear what process
could lead to their formation, nor is it clear whether the required matter
configuration can be stable. In the Article 5 of this Thesis (shown in part
we obtain a wormhole of this kind by considering the quantum vacuum
as the matter source. We will explain in the following subsection how to
address this type of problems.

It is important to remark that exotic matter is not the only way to
construct wormholes. There are several works in different Modified Gravity
theories that have recently proposed vacuum solutions which give rise to
wormbhole-like spacetimes [116, 117, 118, (119, 120].
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Possibility of ECOs via Semiclassical Gravity

We have seen several proposals, in different theoretical frameworks, to
construct ECOs or wormholes that mimic black hole physics. QFT in
curved spacetimes is no exception. Several works framed in this theory have
proposed the possibility that semiclassical effects can prevent the formation
of black holes. Likewise, these effects could facilitate the formation of ultra-
compact stars known as dark stars [121], 48, [122], as well as wormhole-type
spacetimes [41), 42]. This is the idea that we explore in this Thesis.

To study the quantum effects in the context of semiclassical gravity, it is
necessary to analyze the expectation value of the stress-energy tensor (7, W).
This calculation is considerably complex due to the renormalization process
(we will see it in detail in the following section). The methods applied to
calculate this observable usually assume a fixed background metric. This
is a good approximation in general, but it has its limitations and does not
give a complete picture of the problem. To thoroughly study the quantum
effects in black holes and obtain the quantum corrections to the metric, the

complete semiclassical Einstein equations should be solved
Guw = 87r(TF‘i,lj"SSiC‘r”‘1 + (T\w)) - (4.9)

That is, it is necessary to include the backreaction effects generated by quan-
tum fields on the metric itself. To solve these equations, the stress-energy
tensor is required as a function of a general metric, which unfortunately we
do not have. The main problem in obtaining a general expression lies in
the complexity of the renormalization process. As we will see in the next
section, there are methods to obtain the renormalized stress-energy tensor
for given a metric [123] 33], but they are highly complicated to implement
in terms of a general metric, since they require very involved numerical

calculations.
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However, there is a particular case in which the semiclassical equations
can be solved exactly and analytically. This consists in freezing the angular
degrees of freedom and working in an effective two-dimensional spacetime
(the t — r plane). Several groups have studied the semiclassical Einstein’s
equations with backreaction in this 2-dimensional context, and have explored
the possibility of constructing ECOs or wormholes from semiclassical effects
[40), 4T), 42], 43), [44], [45], 146, [47]. In the Article 5 of this Thesis (shown in
part , we propose a novel way to solve the equations directly in the
4-dimensional spacetime. The main idea is to treat the components of
the quantum stress-energy tensor as variables, to be determined by the
differential equations. By considering one mild assumption on the quantum
state, and using the trace anomaly (which we will introduce in detail in the
section @, we manage to solve the full problem in closed form. In particular,
we obtain the quantum corrections to the Schwarzschild metric generated
by the quantum vacuum, and we study which role these corrections play in

the construction of ECOs or wormholes.



Chapter 5

Renormalization in Curved

Spacetimes

To explore quantum effects that arise in the extreme universe, it is helpful
to calculate relevant physical observables, such as the expectation value
of the stress-energy tensor (7},,). However, the direct evaluation of the
expectation value (7),,) by expanding the quantum field in modes leads to
integrals that present ultraviolet (UV) divergences. These divergences are
not physical and, as usual in QFT, renormalization is required to obtain

physical results.

The usual renormalization techniques in QFT employed in Minkowski
space do not work in curved spacetimes, because the presence of curvature
reveals new UV divergences that are absent in flat space. As a result, an
important field of research started in the 70’s to develop local, covariant
renormalization techniques that manage to get physically sensible results,
and that reduce to the usual expressions in the flat limit. The widely accepted
method to renormalize expectation values of quadratic operators is based on
the covariant point-splitting regularization technique [124], 125, 126, [127],

39
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which we explain in detail in the following section. The applicability of
this method to specific cases is not straightforward, so different variants
have been developed (depending on the type of spacetime background). In
this chapter, we will introduce some of them, in particular the adiabatic
renormalization method [0, [6], useful in the context of cosmology and
electrodynamics, as well as methods for the case of black holes and stellar
configurations [128] 123, [33].

The different problems addressed in this Thesis have required one or
another renormalization method. Moreover, in some articles we have focused
on studying and extending these methods. This is the case in Article 3 of this
Thesis (shown in part , where we extend the adiabatic renormalization
method to the case of spin 1/2 fields with an electric background (which had
only been studied in two dimensions). Furthermore, in Article 4 we analyze
a recent renormalization method of increasing interest in the context of

black holes and extend it to the case of an expanding universe.

5.1 Point-Splitting regularization

In [125] B.S. DeWitt outlined a method, known as geodesic point separation
or point-splitting regularization, to regularize the divergences in the vacuum
expectation values of the stress-energy tensor in a manifestly covariant
way. The method is supplemented with the DeWitt-Schwinger proper time
algorithm [14], [124]. The overall procedure resulted in the development
of a successful regularization and renormalization framework to deal with
divergences in quantum field theory in curved spacetimes [126), [127].

To give an overview of the point-splitting method, consider the vacuum
expectation value of a quadratic observable, for example (¢ (x)?), where ¢ is
a scalar field. As commented above, this quantity is ill-defined. We replace
then one of the ¢(z) by ¢(z'), with 2’ a point in a normal neighborhood of
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x, and define the two-point function G (z,2') = ({#(z), ¢(2')}), which is
also known as the Hadamard elementary function. This is a well-defined
bi-distribution in the spacetime. The UV divergence arises in the limit when
the two points merge z’ — z, in which G (z, z) fails to be well-defined
even in a distributional sense. Thus, this splitting of points allows us to
regularize the UV divergences. The potentially divergent part that has to be
subtracted is known as the DeWitt-Schwinger counter-term, which we will
denote as Gg)s(x, x’). This term completely captures the singular structure
of the two-point function, maintaining the covariance of the full observable.
To obtain the renormalized observable we subtract this bi-distribution and
take the limit 2’ — x,
<¢2(:E)>ren = xl/iglx {G’(l) (z,2') — Ggg (z, x’)} . (5.1)
Instead of GV, it is generally more useful to work with the Feynman

Green’s function, defined by
G (a,4) = G (w,') — 5iGO (z,) | (5.2)

where G (z,2) is the principal-value function (one-half the sum of the
advanced and retarded Green’s functions). Either G (x,2') or G (z,2")
are calculated by expanding the quantum field in field modes, which have
to be obtained by solving the corresponding equations of motion. The only
remaining question is then getting an expression for G(Dlgq (x,2").

The method for calculating G%)S (z,2") must be completely covariant.
DeWitt proposed to extend the Schwinger’s proper-time technique to curved
spaces. The Feynman Green’s function for a scalar field (with mass m and
coupling constant &) in a curved spacetime g, satisfies the equation

(O+ m? + ¢R) G (z,2') = g Y2 ()0 (z—12), (5.3)
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where R is the scalar curvature and g = |det(gu.)|. The solution to this
equation admits the following asymptotic expansion (see [126] for more

details of the calculation)

AV2(z ) [ ds i(m2et 2 > \n
Olw!) ~ i [ e R S awaiors G
n=0

where o is the geodesic distance squared associated with the geodesic con-
necting x and 2’ (which is unique if 2’ is in a normal neighborhood of z
[129]), and A is the Van Vleck-Morette determinant defined by A(z,z’) =
—|g(x)|7Y2det [~8,0,/0(x,2")] |g(«')| /2. The functions a,(z,z’) are ob-
tained through the recurrence relations

(0"0) (Dpans1) + (n+ Dansy = AY20 <A1/2an) —€Ran,  (5.5)

starting with ag = 1. The integration can be solved in terms of second-order
Hankel functions, and expanding these in a power series of ¢ yields the
following expression for G(1)

A2 1 1 m?|o]| m?
(1) N o= _ = 2 - _
GW (z,2") < [a0< U+m (7+210g< 5 >> 5 )

—a <7+;log (mga‘)ﬂ oo, (56)

where v is the Euler constant. The terms shown in (5.6 capture the full
singular structure of the two-point function, since these divergences arise

when taking the limit 2’ — z, i.e., 0 — 0.

To proceed further, it is convenient to expand the bi-scalars (dependent
on z and z’) as functions of x and the tangent vector O*c. By definition o
can be expressed as o = 3(9,0)(0"0). Likewise, A (z,2’) is expanded as
[126]

1
AY2 =14 I (5.7)
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With these expressions and using the recurrent relation (5.5)), the expansions
of a, can be obtained. In particular we have that the leading order of a;

(the only one necessary to renormalize the two-point function) is
, 1
ay(z,x') = 6—{ R+---. (5.8)

Using these results, the covariant expansion of G(!) up to order O(¢?) can
finally be obtained. This is what is identified as the DeWitt-Schwinger

counter-term for the two point function, GS)S, and it is given by

2
GS?S (z,2') = 8% [—i + <m2+ <§— (13) R) (’y—i— %log <m2|a|>)

m2 1 8“08”0]

5 + 1o ftmw (5.9)
This expression capture all the divergences of the two-point function. To
obtain the renormalized expression of (¢(z)?) in a given spacetime, the pro-
cedure is to select a point-splitting direction, calculate o(x,z’), evaluate the
previous expression, and then compute the subtraction and limit described
in .

The procedure to follow for any other observable is the same. For
instance, (T),,) can be expressed in terms of G!) and its second order
derivatives, as [5]

1 1 ,
— 1 Z_ ey Rvareld _ 2 o’ (1)
<z—:ul/> - xl’lglm |: <2 §> (v,uvy G + Vu VVG ) + <2€ 2) guyvav G
—< (VNVG“) + VMV,/G“)> +E9u (vavacm + VQ/VQ'G(I))
1
+ <_§R,u,u + §(§R + m2)gw> G(l):| 7(510)

where the primes refer to derivatives respect to x’. Applying the procedure
explained above to each component of (T},,), one can obtain the renormalized
expression for the stress tensor (see [126] for more details).
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The point-splitting renormalization method is widely accepted today,
but its practical implementation faces some challenges in many cases due
to the complexity of its expressions. The main disadvantage is that, since
the solution for the field modes is only available numerically for most space-
times, it is not possible to take the limit ' — z directly. As a result, other
methods equivalent to point-splitting renormalization were developed, valid
under special circumstances, but otherwise easy to implement. In the fol-
lowing subsections, we briefly summarize the most accepted renormalization
methods in the fields of cosmology and black holes.

5.2 Adiabatic renormalization

In the field of cosmology, the method of adiabatic renormalization is well-
known and has produced fruitful results. It was introduced by L. Parker and
S. Fulling in 1974 [20} 21] to renormalize the stress-energy tensor of scalar
fields in an expanding universe. It was further analyzed in [130], 131, 132,
133], and extended to the case of spin 1/2 fields [134] 135} 136} 137, 138, [139].
Moreover, it was applied to study inflationary cosmology [140}, 141], to
analyze preferred vacuum states in cosmology [142] 143, 144, 145] and to
obtain running coupling constants [311, [146].

This renormalization method is equivalent to the DeWitt point-splitting
procedure [27, 28] (and also to the Hadamard’s renormalization method
[147]), but much more manageable, since it writes the subtraction terms
as integrals over momenta so that the subtraction can be performed under
the integral of modes, obtaining finite integrals that can be calculated
numerically. The method works in homogeneous spacetime backgrounds,
as for instance in FLRW metrics. But this is not the only case where the
adiabatic method has shown its usefulness. Recent works have shown that
it can also be applied to a homogeneous, time dependent electromagnetic
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background [25] [26], 148], [149]. Despite this, there is still considerable work
to do in this field. In particular, for Dirac fields coupled to external, classical
electric fields the adiabatic method was only known in 2 dimensions due to
the difficulty of finding a suitable ansatz in 4 dimensions. In the Article 3
of this Thesis (shown in part we solved this problem.

The adiabatic renormalization method is based on the adiabatic expan-
sion of the field modes [5]. This is an asymptotic expansion of the solutions
of the field equations in which the n-th adiabatic order in the expansion
involves n time derivatives of the metric. To be more precise, let us consider
a scalar field propagating on a FLRW metric ds? = dt? — a?(t)d#?. By using
an appropriate ansatz for the field modes in the Klein-Gordon equation
(based on the WKB approximation), one can solve the differential equation
for the modes order by order in the number of derivatives of a(t). Thus, the
zero adiabatic order will only involve the scale factor a(t), the first order
includes the first derivative a(t), the second order includes d(t) and a(t)?,
and so on. Since higher order terms in the adiabatic expansion involve more
and more derivatives, the leading order terms recover the usual modes in
Minkowski spacetime (in which the scale factor is strictly constant). The
idea is that higher order adiabatic terms capture, or sense, the dependence
of the field modes on the curvature of the spacetime.

Given the vacuum expectation value of a quadratic operator expanded
in field modes, we can use the adiabatic expansion of the modes to produce
an adiabatic expansion of this observable. It turns out that the leading
order terms in the expansion contain all the UV divergences. We can then
do the renormalization by subtracting (inside the formal integrals or sums
of modes) a truncated expansion to a given adiabatic order. The specific
order of truncation depends on the observable to work.

For example, consider the stress-energy tensor of a given field in a FLRW
metric. Because the background is homogeneous the field modes admit a
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Fourier expansion in momenta k. The stress-energy tensor can be formally

expressed in the form

(T () = / Bl T (R ). (5.11)
and the renormalized expression takes the form
T @ren = [ [Toufo) = T ()] (5.12)

where Tﬁ is the adiabatic expansion of TW(E,JU) truncated at order N,
which is chosen to be the minimum order required to cancel the divergences
of the integral. It is crucial to note that even if the last adiabatic order that
we subtract contains both divergent and convergent terms, we must subtract
all of them. This condition is a requirement to ensure the covariance of the
method. In particular, the subtractions constructed this way preserve the
covariant conservation law, V“T/ﬁ\; = 0, thereby ensuring the conservation
of the renormalized stress-energy tensor.

There exists also a specific rule based on dimensional grounds to identify
the adiabatic orders that need to be subtracted. The highest adiabatic
order that can potentially contain divergences corresponds to the scaling
dimension of the observable in question. For instance, the dimensions of the
stress-energy tensor in a 4-dimensional spacetime are k?, and therefore, the
term TW(E, x) in has dimensions of k'. Consequently, in the general
case, the 0" adiabatic order of TW(E,JU) behaves (at large k) as k', the
first one as k°, the second one as k!, and so on. To ensure convergence
of the integral, it is necessary to subtract up to the 4** adiabatic order in
such a way that all the possible terms k"< are cancelled. This coincidence
between the scaling dimension of the observable and the adiabatic orders
that must be substracted can be used as a general rule for any observable.

It is important to apply this rule consistently in all cases, even when
some of the adiabatic orders are convergent. Sometimes, specific parameter



5.2. ADIABATIC RENORMALIZATION 47

selections of the theory may result in the convergence of some terms, which
would otherwise diverge. For instance, in the scalar theory, choosing the
minimal coupling & = 0 causes the fourth adiabatic order of the stress-energy
tensor to converge, whereas for a generic value of &, it diverges. However,
the renormalization method cannot depend on the value of the parameters,
and hence, the rule must be applied uniformly for all values of &.

As mentioned above, the adiabatic renormalization method is not re-
stricted to cosmological scenarios and can be applied to cases involving an
electric homogeneous background as well. In such cases, it is crucial to take
into account an important consideration. Recent studies have demonstrated
that when applying the adiabatic regularization method simultaneously to
gravitational and electric fields, it is necessary to consider the potential
vector as first adiabatic order, in order to ensure the local conservation of
energy and the consistency with the trace and chiral anomalies [25, 26]. For
instance, consider the case of a FLRW spacetime and a potential 4-vector
of the form A, = (0,0,0,—A(t)). While the scale factor a(t) would be
considered as zeroth adiabatic order, A(t) must be treated as first order.

Scalar field in an expanding universe

It is illustrative to show this method applied to a specific case. Let us
consider a real scalar field in a FLRW background. As shown in section [2.2]
the equation for the field modes is given by

d?h 3\ a2 3\ a
k 2 _ ) 2 —— | = h> = 1
dt2+[w+(ﬁg 4)a2+<6g 2)] =0, (5.13)

where w = \/m?2 + (%)2, with k = |]§] The modes must also satisfy the

normalization condition

hiht — hihy = 2i. (5.14)
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To address this problem it is convenient to consider a Wentzel-Kramers-
Brillouin (WKB) ansatz for the modes of the field
1

hy = ————e 1S Wit (5.15)
Wi (1)

where Wy (t) is a real function that can be expanded in adiabatic orders as
Wi(t) = w,io) + w,(j) + w,(f) + ... Inserting this ansatz into the differential
equation for the field, one obtains an algebraic equation for each order.
Solving the equation order by order, we find

W = W, (5.16)

w = o0, (5.17)
3.2 3.. 3]{/‘2.2 k2.. 5k4.2 3 .2 3..

OJ,(CQ) _ a a a a a &a n §a7 (5.18)

8a2w daw 4a*w?®  4adwd  8abwb  a?w aw

It is worth noting that the solution at the zeroth adiabatic order, corre-
sponding to a slow expansion (a(t) ~ 0, a(t) ~ 0, ...), coincides with the
solution in flat (Minkowski) spacetime, confirming that the ansatz in
is appropriate. It is also convenient to expand adiabatically the term W, !

wihH” = ot (5.19)
(w;HM = o, (5.20)
242 24 bm*a? 1./ 3a? 3d
wohy@ - ma e Ce— ) (2 4 2% Y501
( k ) 2a2wd + daw®  8alw7 (€ 6) a?w3 + aw3 )

We can use this expansion to renormalize, for example, the vacuum

polarization, which is given by

1 0 1 > 1
2 _ 2 2 _ 2
(0] ¢() |0>_47T2a3/0 dkk?|h? = 4772(13/0 g (5:22)
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Since this observable has dimensions of k2, one must subtract up to the
second adiabatic order. The expression for the renormalized vacuum polar-

ization is then

1 (e e]
(0]p(z)?|0),,, = 4772a3/0 dkk? [\hkF -

where Wy, (t)~! is given by (5.21). By integrating the finite terms and using
the expression of the scalar curvature for a FLRW metric, R = 6 (% + & ),

a?
we can rewrite ((5.23)) as

I 1 (-9R R
<0 }¢($)2‘ O>ren - 47r2a3/0 dka [|hk|2 - ; - (6 )

1

w

- (Wﬁ)“)} . (5.23)

23 | 288n2°
(5.24)
This integral is convergent, and can be computed numerically for a given
function a(t).

In a similar manner, one can also apply the adiabatic renormalization
method to obtain the vacuum expectation value of the stress-energy tensor.
The procedure is the same, the only difference is that the subtractions must
include up to fourth adiabatic order, since the stress-energy tensor has
dimensions of k*.

5.3 Renormalization in Black Holes

For black holes, Candelas was the first to implement the point-splitting
method in a Schwarzschild metric [35]. Let us see how it would be applied,
for example, to renormalize (¢?) for a massless scalar field. The spherical
symmetry and static nature of the spacetime allows us to express the formal

two-point function as

0o 00 l
(6@P) = [ o> Y W@ [’ (525)

0 1=0 m=—1
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where Y},,(6, ) are the spherical harmonics and 1, is the field mode of
frequency w and angular momentum /. This integral is divergent and must be
renormalized. Following the point-splitting method, the quadratic operator
must be evaluated at two different points. Since it is a static spacetime,
it is convenient (for simplicity of the calculation) to choose two points
located in the same place and time-like separated, i.e., x = (¢,r,0, ¢) and
' = (t+e,r0,0¢). For this case, the two-point function is simply

({o(x), (a")}) = / dwz Z cos (we) [Yim (0, @) [ua (r)|* . (5.26)

On the other hand, the DeWitt counter-term reduces to Gg; =
= 2 for a massless field and Schwarszchild spacetlme (Where Ry =0), and
the geodesic distance squared o between these points is given by

1 2 M?

o (1—2M/r)e? * 6r4(1 —2M/r)

+0(e). (5.27)

As we can see the divergence is captured by the term 1/¢2, but in order
to obtain a manifestly finite quantity after subtracting this contribution in
, it is convenient to find first an integral representation. To do this,
Candelas proposed the Laplace transform

& 1
/ dww cos (we) = —— . (5.28)
0 €

Therefore, from ([5.1)), the renormalized expression of the two-point function

can be written as

<¢(m)2>ren = lim dwz Z cos (we |:D/lm ] W)wl ’

e—0
=0 m=—I
w M?
472(1 — 2M/r) 48m2rd(1 —2M/r)

(5.29)
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Similarly, Candelas obtained a renormalized expression for the stress-energy
tensor.

These integrals require numerical calculations because the field modes
,1(r) cannot be solved analytically. Still, the numerical computation of
these integrals for any r > 2M is not easy at all. [In particular, Candelas did
not evaluate the integrals for all r, but focused only on the limits r — 2M
and 7 — oo, for which he could infer analytical expressions using some
tricks.] As a consequence, Candelas and Howard proposed an alternative
strategy to obtain an analytical estimation of the renormalized two-point
function (valid only for the Hartle-Hawking vacuum) [150, 128]. The method
requires some knowledge from the field modes, in particular, they proposed
a WKB expansion. By expanding the modes for large w and [, one can
construct an analytical approximation for ({¢(z),#(z)}), which we will
denote as ({¢(z), ¢(2')})wkp, that captures the full singular structure of
the two-point function. Next, we add and subtract this expression from

<¢2 (x)>ren; Obtaining

((2)),0n = limeso [({6(2), 6 (2)}) — {6(2), & () D)
Flimeso | ({6(2), & () s — Gk (@.2)] - (5:30)

Thus, the expression is divided into a part that must be analyzed numerically
(the first limit) and a completely analytical part (the second limit). They
also showed that the analytical part gives much larger values, so it can
be used as a first approximation for (¢?),.,. To be more precise, for the
Hartle-Hawking vacuum they obtained

1 1—(2M/r)*

(& (@))ren = 1287M)2 1 —2M)r

+ numerical part, (5.31)

which coincides with a previous result obtained with a different approach
[151]. Howard extended the method to the case of the stress-energy tensor
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[152], and later Anderson et. al. extended it to the case of a general static

and spherically symmetric spacetime [153].

Despite these advances, the calculation of the numerical contribution
above continues to be difficult. In view of this, Candelas and Howard
proposed to go higher order in the WKB expansion of the field modes. This
analysis is however a daunting task and requires several approximations.
In particular, the main problem was the presence of a turning point. To
overcome this difficulty, they proposed the idea of analytically continue
the background metric to the Euclidean space through a Wick rotation
(t - —i7). In this Euclidean space there are no turning points and the

WKB expansion works well.

The extension to the Euclidean space can be applied to any static metric,
and in particular Anderson et al. applied it to solve the numerical part in a
general static and spherically symmetric background [123]. However, time-
dependent spacetimes generally do not admit an extension to the Fuclidean
space, so this method cannot be extended, for example, to analyze the
evaporation process of black holes. Additionally, the WKB expansion is
considerably complicated if the modes depend on two variables (t,7), which
greatly hinders the resolution of the numerical part. In this context, a
new and more general renormalization method has been recently developed
by A. Levi and A. Ori [32, 33, 34]. It was called pragmatic mode-sum
method of reqularization. This method addresses the numerical problem
from scratch, and it does not require any approximation nor analytical
continuation to the Euclidean space. It only demands that the spacetime
presents a symmetry so as to take the splitting of points in the corresponding
spacetime direction. Roughly speaking, the method takes up the path
originally proposed by Candelas [35], and solves the integral using
accurate numerical techniques. Therefore, for the Schwarzschild black hole
this method can be understood as a completion of what Candelas initially
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started. Subsequently, this numerical method has been applied to obtain
renormalized observables in different types of black hole frameworks, thus
showing the power of the new technique [154] [155] 156, [157].

In the Article 4 of this Thesis (shown in part we provide a brief
summary of this method, and extend it to a scenario where it had not yet
been applied: cosmology. We show how the translational symmetry of the
FLRW metric allows the implementation of these ideas, and we will prove
that the final expressions for the renormalized observables are equivalent
to those provided by the well-known adiabatic renormalization method

explained in the previous section.






Chapter 6

Anomalies in QFT and

Gravitation

In this section we introduce a concept that will be present in all the articles
that comprise this Thesis: quantum anomalies. As is well known symme-
tries play a fundamental role in Physics. In particular, Noether’s theorem
establishes that they are in one-to-one correspondence with conservation
laws. However, since the late 60’s it is known that some symmetries of
classical fields are broken when the fields are quantized. When this happens,
we say that there is an anomaly. A quick way to understand this is by using
the path integral framework. In classical field theory, one says that a certain
transformation of a field ¢ is a symmetry if the transformation leaves the
action S[¢| invariant. But in QFT what must remain invariant is the full
quantum effective action, given by the path integral [ Di[¢]e*® [, The mea-
sure D[¢] may not be necessarily invariant under the above transformation,
and therefore the symmetry can be broken in the quantum theory. For a
detailed study on anomalies in QFT see for instance [158] or [76].

There are several types of anomalies. On the one hand, there are

55
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anomalies that break global symmetries (global anomalies). This is the case
of the well-known axial anomaly in QED, that we will explain in the next
section. The Standard Model contains anomalies of this type, which leads
for instance to the anomalous non-conservation of baryon number (which
is important in studies of the asymmetry between matter and antimatter
observed in the universe [159]). On the other hand, there are anomalies
that break gauge symmetries (gauge anomalies). Many important theories
in physics are gauge theories, that is, their Lagrangians are invariant under
certain local transformations. The presence of a gauge anomaly in one of
these theories indicates that the theory is inconsistent. For example, if we
consider the theory of a single charged and massless fermion (Weyl fermion
or chiral fermion) we obtain a gauge anomaly, since the gauge current is
not conserved when the field is quantized. To make the theory consistent, a
charged Weyl fermion of opposite chirality must be added so that the gauge
symmetry is preserved [76].

Another type of anomalies are known as gravitational anomalies, which
were discovered in 1984 by L. Alvarez-Gaumé and E. Witten [16]. As the
name suggests, they appear in the context of gravity, and consist of a
violation of the principle of general covariance. These anomalies can also be
understood as gauge anomalies, since General Relativity can be understood
as a gauge theory, where transformations from one coordinate system
to another (diffeomorphisms) would be the gauge transformations. The
principle of general covariance requires that physical laws must be invariant
under these types of transformations. When quantum fields (in particular
chiral fields) are coupled to the gravitational field, these anomalies arise,
implying the non-conservation of the stress-energy tensor ((V,T*") # 0).
Fortunately, this does not occur in the 4-dimensional case, but rather it
occurs in spacetimes of dimension 2,6, 10... In the Article 1 of this Thesis
(shown in part we point out the existence of an anomaly of this type in
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flat spacetimes. In particular, in the case of a Weyl fermion coupled to a
time-varying homogeneous electric field in two dimensions.

Finally, there is another type of anomalies, the ones that break the scale
invariance, which are known as trace anomalies (or conformal anomalies,
or Weyl anomalies) [I60]. [See [29] for a historical review.] In Minkowski
spacetime the anomalous trace of the stress-energy tensor in massless theories
is related to the well-known beta functions and the renormalization group
flow. For instance, there is an anomaly of this kind in massless quantum
electrodynamics, which has scale invariance in the classical theory, but it is
broken when the theory is quantized. Trace anomalies also appear in the
context of free field theories in curved spacetimes. In certain cases, such as
the electromagnetic field or the massless Dirac field coupled to gravitational
backgrounds, the action is invariant under conformal transformations of the
metric. However, this symmetry is lost when quantizing the matter field,
generating a trace anomaly (see, for instance, [5] for more details). At the
end of this chapter we will further explore this topic.

Next, we will explain briefly the two anomalies that are most relevant
to understand the articles of this Thesis: the axial anomaly in QED and

the trace anomaly in QFT in curved spacetimes.

6.1 Axial anomaly in QED

Studying the decay 7 — 7, in 1949 J. Steinberger [161], and independently
H. Fukuda and Y. Miyamoto [162], found an inconsistency between the
theoretical prediction for the decay rate and the experimental results. The
confusion persisted for some years and this question was known as the pion
decay puzzle. It was not until 1969 when J. Bell and R. Jackiv [163], and
independently S. L. Adler [164], solved the problem of the pion decay. By
noting that the axial symmetry in QED fails in the quantum theory, they
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obtained theoretical predictions that matched perfectly with the experiments.
This was the first discovery of an anomaly in quantum field theory.

The QED action for a Dirac field v of mass m and charge ¢, and an
electromagnetic field given by the potential 4-vector A*, reads

S = / dat [q]) (iv" Dy, — m) ¢ — iF‘“’FW , (6.1)

where D, = 0, —iqA,, F, = 0,A, — 0,A,, and v are the Dirac matrices.
One can easily see that, in the massless case (m = 0), this action is invariant
under the transformation v — 6_“751/1 (chiral transformation), where 7° =
i7°y142y3. The Noether’s current associated with this transformation (axial
current) is given by j4 = Yy, Tt can be verified that, for solutions of
the Dirac equation,

Oujhy = 2impy®yp. (6.2)

Therefore, in the case m = 0 one obtains 9,5 = 0, that is, the axial current
is conserved in the massless case.

But this is no longer true when quantizing the Dirac field. The formal
vacuum expectation value of the divergence of the axial current would be

(Ouils) = 2im () . (6.3)

When trying to compute the right-hand side one finds that it diverges. To
obtain the physical result, a renormalization method must be applied. There
are different ways to perform this calculation with different renormalization
methods. For example, in [76] a derivation of the axial anomaly can be
found using the proper-time Schwinger method of regularization. Similarly,
the adiabatic regularization method explained in which can be applied
in the case of electromagnetic backgrounds, is also a useful tool for obtaining
this anomaly. In [26], the anomaly is recovered using the adiabatic method
in two dimensions. In the Article 3 of this Thesis (shown in part , the
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adiabatic method is extended to 4 dimensions and could be easily applied
to obtain the axial anomaly.

After renormalization (1)751)) contains residual poles in the mass go-
ing like 1/m. As a consequenece, the massless limit in produces
(03 )ren # 0. In particular, one obtains

2
(Oud)ren = = 62" FiarFap (6:49)
where €8 is the Levi-Civita symbol. This is the well-known expression of
the axial anomaly in QED. In the Article 2 of this Thesis (shown in part
we explain the relationship between this anomaly and the phenomenon
of spontaneous particle creation by an electric field (Schwinger effect), as
well as its relation with the breaking of adiabatic invariance that occurs in

this context.

6.2 Trace Anomaly in QFT in curved spacetimes

As we have previously mentioned, trace anomalies (or conformal anomalies)
occur when the scale symmetry (or conformal invariance) of a theory is bro-
ken upon quantization. This type of anomaly was discovered by D. Capper
and M. J. Duff in 1974 [160]. This discovery was of great relevance in the
field of Gravitation, and in the following years it found multiple applications,
as for example in cosmology [165], (166, 167, [168], supersymmetry [169] [170],
or string theory [171], 172].

Let us see what this anomaly consists of in the context of QFT in curved
spacetimes. A field theory is said to be conformally invariant if it remains
invariant under a conformal transformation, i.e., under a rescaling of the

metric g, of the form

guu(x) = Qz(x)g;w(x)a (6.5)
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where §(z) is an arbitrary function. For example, both the electromagnetic
and massless Dirac fields are conformally invariant. Likewise, the scalar
field can also be conformally invariant, but only under certain conditions,
as we will see shortly. It is possible to prove that, as a consequence of
this symmetry, particle creation does not occur for conformally invariant
fields propagating in conformally flat spacetimes (as for instance in FLRW
metrics). In particular, the expansion of the universe does not produce
particles associated to conformal fields, like massless neutrinos or photons
[5].

What is the conserved current associated to this symmetry? Consider
the action S of a scalar field ¢ in a background g,, . If it is invariant under

conformal transformations, then

0=465= /dnx {?i&oqb + (Sii/&oguy} , (6.6)
where dp¢ and dpg,,, are the infinitesimal variations associated to the con-
formal transformation. The first term vanishes if the field satisfies the
Euler-Lagrange equation, which is equivalent to §5/d¢ = 0. On the other
hand, dpg,, can be obtained by considering an infinitesimal variation of
the metric, i.e., Q%(z) = 1 + 0Q2(x), where [§Q%(z)| << 1. Therefore,
d0Gur = gW(SQ?. We finally obtain

68
d"x g0 =0. 6.7
J s (67)
For this to hold for any 6%, we must impose
0S
Juv(x) =0. 6.8
5g;w(93) [ ( ) ( )

On the other hand, recall that the stress-energy tensor of the theory is given

by @3). ie.
oS

™ = —2|g|*1/2759 ok
g

(6.9)
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Combining the last two equations, it is straightforward to get
T",=0. (6.10)

In summary, in the classical theory the trace of the stress-energy tensor of
a conformally invariant theory vanishes for solutions of the field equations.
But as we will see later, upon quantization this is no longer true.

As we advanced before, there are some conditions upon which a scalar
field theory can be conformally invariant. Let us consider a scalar field with
mass m and coupling constant £. Its Lagrangian is given by

L= %lgﬁ/? (9" 00y — m*¢* — ERP?) (6.11)

Under a conformal transformation as in , we have g = Q~2¢" and
g'/? = Q%¢'/2. Therefore, from the first term one can see that for the
Lagrangian to be invariant, the field must transform as ¢ = Q~'¢. On
the other hand, under a conformal transformation, the scalar curvature

transforms as

R=QYR-607'0Q), (6.12)

where 0O = g71/29,(g"/20*Q). If we now consider the case m = 0 and
¢ = 1/6 (which, recall from section , is known as conformal coupling),
we deduce that the Lagrangian transforms as (see [5] for more details in the
calculation)

F—C-0, <;|g|1/2§21(8"§2)¢2> . (6.13)

The Lagrangian is therefore conserved except for a total derivative that
cancels in the integration of the action S. Only for the case m = 0 and.
€ = 1/6 can the Lagrangian be expressed in this way. Therefore, massless,
conformally coupled (£ = 1/6) scalar fields are conformally invariant. In
fact, for solutions of the Klein-Gordon equation the trace of the stress-energy
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tensor of a scalar field is
TH, = (6§ — 1) ((0,0)(0"¢) — ER) 4 2(1 — 35)m?¢? (6.14)

which vanishes in the case m = 0 and £ = 1/6, as expected from the
conformal symmetry.

But what happens if we quantize the field? As we mentioned several
times earlier in this Thesis, quantization breaks conformal symmetry, giving
rise to a non-zero trace of the stress-energy tensor, known as the trace
anomaly. There are different ways to obtain the expression for this anomaly,
for example, using the DeWitt-Schwinger renormalization method [126] or
via the one-loop effective action [173, [174]. For a FLRW spacetime there is
a much simpler way to derive it using the adiabatic renormalization method
introduced in section [5.2 which is particularly illustrative. In fact, this
is the method we have used in some articles of this Thesis to calculate
anomalies. Therefore, it is convenient to detail this calculation here as an
introduction, as it will be useful for understanding analogous calculations
in the articles of the Thesis.

Let us take £ = 1/6. The vacuum expectation value of the trace of the
stress-energy tensor (6.14]) reads

(TH,) =m?(¢*) . (6.15)

This expression is divergent and must be renormalized. In section [5.2], we
already renormalized the vacuum polarization using the adiabatic method,
but the procedure now is not as simple as imposing (T*,) . = m? <¢2>T€n.
Recall that to renormalize the stress-energy tensor consistently in such a
way that covariance is respected, one must subtract an adiabatic expansion
truncated up to fourth order (in contrast to the vacuum polarization, where
it is enough to truncate at second adiabatic order). Therefore, following the

adiabatic procedure, we must calculate the adiabatic expansion of (¢?) up
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to fourth order, and then we arrive to
m2

(T e = (") e~ g [, U WY (6.16)

where (¢?) s obtained in section (Eq. (5-24)) and (W, 1)(4) is the
fourth order in the adiabatic expansion of W~ ! (defined in (G-15)).

The conformal symmetry occurs classically in the massless case, so let us
see what happens when taking the limit m — 0. The expression for (¢?),en
does not contain any subtraction term of the form 1/m", and there is no
reason to expect that the contribution from the modes becomes divergent
in the massless limit, so we can assert that in the limit m — 0 we have
m2(¢?)en — 0. But the same is not true for the fourth-order adiabatic
subtraction. Following the adiabatic expansion procedure one can find its
expression, which is

(W_l)(4) _ m2at _ Tm?2a? _ m2d B 33m2aa B 11m2aa  49m*a*

k 2¢4wT  16a2w7  16aw” 16a3w? 16a2w? Satw?
21m*a?  35m*a%a  Tm*ad _ 231mbat _ 231mSa%a  1155mBa* (6.17)
32a2w? 4a2w? 8a2w? 16a4w!! 32a3wll 128a%wi3 N7

By integrating this expression in and making a change of variable of
the form k — k/(ma), one can infer that [;° dkk? (W,;l)(A‘) is proportional
to m~2. Therefore, the massless limit m — 0 of does not vanish.
Moreover, this integral is convergent and can be evaluated analytically,

resulting in

1 a2 @ _aa _ad
<T’uﬁ’4>ren - W <a2 + E - 3? + 3a2> . (618)

Overall, we have shown that upon quantization of the scalar field, the trace
is no longer zero, even in the case m = 0 and £ = 1/6. Quantization breaks

conformal symmetry.
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As a last remark, it is convenient to express (6.18) in terms of covariant
geometric scalars. In a FLRW universe, we have the following identities

a4 d2
RHVUPRMVO'[) = 12 <a4 + a2> s (619)
.4 ..2 .2..
v a a a“a
RM R,uzz = 12 <a4 + ? + a3> y (6.20)
a? 4@ ha’a  3ad

With a bit of algebra, we can finally express (6.18)) as

1
THY, o =
) ven = 955072

in agreement with the general expression for the trace anomaly for a scalar

(—=R"™PR 15p + R* Ry, + OR) | (6.22)

field in a general curved spacetime [5].

The conformal anomaly also appears in other quantum fields, as men-
tioned earlier. The result is similar, except for changes in the numerical
coeflicients. The general expression for the trace anomaly for any quantum

field has the form

T ) =
(T 288072

where C'*?* is the Weyl tensor, which can be related to the other scalars

(CLC‘WUPCMVUp + bR#yRuu + cR? + dDR) ) (6’23)

via

CuvopC"? = RyepRM7P — 2R, R + %RQ . (6.24)
And a,b,c and d are constants that depend on the specific field. For
instance, for conformal scalar fields they are a = b = —1 and ¢ = —1/3; for
massless Dirac fermions a = —7/4,b = —11/2 and ¢ = 11/6; and for photons
a=13,b = —62 and ¢ = 62/3 [6]. The coefficient d can take different values
depending on the chosen renormalization method. This is because it is
subject to an ambiguity related to the choice of the renormalization scheme,
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and then it can be chosen arbitrarily by adding a local counter-term in the
Lagrangian [175]. In the Article 5 of this Thesis (shown in part we use
this anomaly as an effective equation of state that allows us to solve the
semiclassical TOV equations.

It is worth noting that there exists an analogous trace anomaly for
quantum fields coupled to electromagnetic backgrounds [29]. For instance,
in the case of a massless Dirac field, this is given by

2

q
<TMN’>7’€7L - mF/ﬂ,F”V . (625)

In the Article 3 of this Thesis (see part we perform a test of the proposed
method by computing this anomaly and verifying that we obtain (6.25]).
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Chapter 7

Results and Conclusions

7.1 Article 1: Translational anomaly in electric

backgrounds

Quantum anomalies are the failure of classical symmetries to survive quan-
tization, as explained in detail in chapter [6] In addition to the well-known
chiral anomalies, which entail the non-conservation of the axial current,
gravitational anomalies imply the non-conservation of the expected value
of the stress-energy tensor, i.e. (V,T"") # 0. Gravitational anomalies are
somewhat similar to gauge anomalies, signaling the inconsistency of the
theory. They arise in theories with Weyl (or chiral) fermions coupled to
gravity for spacetimes of dimension 2,6, 10, ... In particular, a chiral field in

two spacetime dimensions displays the following gravitational anomaly

(VL)) = eaﬁaﬂapFﬁa : (7.1)

1
967+/—g
In the Article 1 of the Thesis (shown in section [[II}), we show that a

gravitational-type anomaly can also appear in flat space, provided the Weyl
fermion is coupled to an electric background. To be more concrete, we

69
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consider a Weyl field in two dimensions coupled to a homogeneous and
time-dependent electric field E(¢). From a classical point of view, this
system is invariant under translations in the spatial direction, which implies
the conservation of momentum, i.e. a#Tul = 0. However, upon quantization
of the Weyl field, this symmetry is broken. To obtain this anomaly, we
need to find the renormalized expression of the stress-energy tensor. To do
this, we have applied the adiabatic renormalization method [5], which we
explain in detail in section With the help of this method, we arrive at
the following result
PAA

O <T§,1L> =t 5 (7.2)

where R and L indicate the chirality (right-handed or left-handed) of the
fermion under consideration, and A(t) is the potential vector, defined by

E(t) = —A(t). This result was unknown in the literature. As this anomaly
breaks translational symmetry, we have named it translational anomaly.
The appearance of this type of anomaly is an indication that the theory
is incomplete. In fact, this physical system also exhibits a gauge anomaly
(the electric current is not conserved). We show that both anomalies cancel
out when a Weyl fermion of the opposite chirality is added. For a massless
Dirac fermion (¥ = Wy + W), the stress-energy tensor is the sum of the

two chiral components, so we obtain:

(T8 (7)) = 73

On top of this, in the mentioned article we also show the relationship
of this anomaly with the phenomenon of spontaneous particle creation by
intense electric fields (which we explain in Chapter [3|). For a Weyl field the
created particles all move in the same direction, generating a total amount
of momentum that coincides with the result of the anomaly. Instead, if we
consider a Dirac field, we see that what is created are particle-antiparticle
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pairs. Particles and antiparticles travel in opposite directions, maintaining
the conservation of the total momentum.

Finally, we also solve the full semiclassical Maxwell equation of the
system to explore the backreaction effects generated by the created particles
on the electric field. We verify that the amount of linear moment created by
each chiral sector oscillates with the same frequency as E(t). Likewise, we

see that the sum of the oscillations of the two chiral sectors cancels perfectly.

7.2 Article 2: Breaking of adiabatic invariance in
electromagnetic backgrounds

The phenomenon of particle creation in an expanding universe (which
we explain in Section has a fundamental property. In the limit of
an infinitely slow expansion of the universe (adiabatic limit), no particle
creation occurs. More precisely, the density of created particles tends to
zero at each instant of time in the limit in which the Hubble rate approaches
zero, even if the net change in the scale factor is large. This is why it is said
that the particle number is an adiabatic invariant. This property was of
major relevance in the pioneer papers on cosmological particle creation (for
an historical review see [17]). In the Article 2 of this Thesis (shown in Part
, we study whether this property holds for the case of an electromagnetic
background. We first analyze the 2-dimensional case for its simplicity and
then extend it to the 4-dimensional case. We also study both the case of a
charged scalar field coupled to the electromagnetic field (scalar QED) and
the case of a Dirac field (QED).

Let us consider a homogeneous, time-dependent electric field acting in the
spatial direction, E(t). Its associated 2-vector potential is A, = (0, —A(t)),
where E(t) = A(t). The vector potential plays a similar role as the scale
factor a(t) in cosmology, so it is convenient to consider a similar adiabatic



72 CHAPTER 7. RESULTS AND CONCLUSIONS

expansion for A(t) which may allow us to define the number of particles in
t — £o00. In order to study the problem analytically, we have considered a
specific form for the electric field that is well known: a Sauter electric pulse

[18]. In this case, the potential vector reads

Alt) = %Ao(tanh(pt) +1), (7.4)

where Ay and p are real-valued constants. It is not difficult to see that
the potential tends to 0 in the limit ¢ — —oco, and to Ag as t — oo. The
parameter p sets the rate at which the potential grows, so it can be considered
as the adiabaticity parameter. The adiabatic limit (extremely slow growth)
is given by p — 0. The goal in the article is to examine whether in this
limit the number of particles tends to 0 or not.

In the article we obtain that for bosons (b) and for fermions (f) the

expected number of particles created by the external electric field reads

Vo 1 /oo dkCOSh (27‘(%) + cosh (27?%) 15)

T J—c0 2 sinh (77“’%) sinh (ﬂ'—w";t ) 7

where wi, = V2 +m2, wouy = \/(k —qAg)? +m2, wy = 3 (Wout = win ),

Kb = 3 (gAo)? — p2, and ks = qAp/2.

By studying the limit p — 0 in these expressions we draw the following
conclusions. For the massive case (m # 0), (N;/;) — 0 in the adiabatic limit.
That is, for an infinitely slow growth of A(¢) no massive bosons or fermions
are created, thus maintaining the adiabatic invariance of the number of
particles. However, the situation is different in the massless case (m = 0).
Namely, we obtain that (N,/;) # 0 as p — 0, or to be more precise,

(Nojs) = qf()'- (7.6)
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Therefore, we conclude that for a potential vector growing infinitely slowly,
massless particles are indeed created, and adiabatic invariance is broken.
We have also found that the moment spectrum of these massless particles
created lies in the interval k € [—|qAo|, |¢Ao|]. It should be noted that there
is a clear difference between bosons and fermions that can be extracted
from equation . Massless bosons tend to accumulate at k = 0 and
k = +qAp, while massless fermions are created in the same proportion for
all k. This can be interpreted in terms of Pauli’s exclusion principle, which
does not allow fermions to accumulate in the same state. Moreover, and
unlike the scalar case, the number of created massless fermions (as well
as their spectrum in momenta) does not depend on the parameter p, i.e.,
it does not depend on the history of A(¢) but only on its initial and final

values.

This is a remarkable outcome. In order to give consistency to this
result, we have also calculated the expected value of the electric current
and energy density of the quantum field using the adiabatic renormalization
method (explained in section . Just like the number of particles, we
observe that these quantities tend to 0 in the adiabatic limit, except in the
case of massless particles. This residual energy and current correspond to
the energy generated by the massless particles created. Furthermore, the
simplicity of the theory of massless fermions allows getting an analytical
expression of the renormalized electric current as a function of time, which
we find as (j*),.,, = —@. The semiclassical Maxwell equation then reads
A+ éA = (0. This harmonic oscillator equation takes into account the
backreaction effects of the created particles on the electric field. The electric
field that solves this semiclassical equation oscillates with a frequency of
lg|/+/7, as does the number of particles. It can be easily seen that the energy
associated with the electric field and the energy of the created particles

cancel out for all ¢, maintaining energy conservation. As a final remark, the
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value obtained for the frequency is consistent with the well-known fact that
radiative corrections to the Schwinger model induce a photon mass of value
mi =¢*/m [19).

We have also performed the above calculation in the 4-dimensional case,
taking the clectric field E(t) in the z direction for convenience. In this case
we find (N, r) — 0 in the adiabatic limit, independently of m. Thus, the
adiabatic invariance for an electric background does hold in 4 dimensions.
However, the situation changes if we add a magnetic field. Let us consider,
for simplicity, a constant magnetic field B acting in the direction parallel to
E(t) The presence of the magnetic field generates a discretization of the
momentum in the direction perpendicular to the fields, known as Landau
levels, which drastically changes the picture. We find that, while for bosons
of any mass the adiabatic invariance is respected, for massless fermions in
presence of both electric and magnetic fields the adiabatic invariance is lost.
This result holds for other directions of B’, except when it is perpendicular
to the electric field. In that case, adiabatic invariance is preserved.

Overall, we have shown that the adiabatic invariance of the particle
number is maintained for electromagnetic backgrounds except for some
specific cases. These cases are: massless bosons and fermions in 2 dimen-
sions, and massless fermions in 4 dimensions in the presence of electric and
magnetic fields not perpendicular to each other. This indicates that there
is a relationship between the phenomenon of breaking adiabatic invariance
and the well-known axial anomaly [14], since it is present precisely in the
mentioned cases. This is the anomaly associated to the classical axial sym-
metry of massless Dirac fields, resulting from the quantization of the theory
(in section we explain this anomaly in more detail). In 2 dimensions, the
axial anomaly is given by the expression

. q v
<aﬂ/]g>ren = _%eu F,UVJ (77)

which, for homogeneous fields, is equivalent to the statement that the
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chiral charge density j% is not conserved. In 2 dimensions this charge is
proportional to the electric current. In the article, we compare the expression
for the anomaly with the current generated by massless particles created
in the adiabatic limit, and we verify that the creation of chiral charge
indeed agrees with the source of the axial anomaly. In fact, this idea can
be easily visualized in the 2-dimensional case since the chirality is related
to the direction of motion, and changes the criterion between particles and
antiparticles. Thus, for example, a massless particle moving to the right
would have right-handed chirality, and a massless antiparticle moving to the
left would also have right-handed chirality. Since the electric field creates
particle-antiparticle pairs with opposite electric charge and momentum, it
implies a net creation of chiral charge. This non-conservation of chiral charge
is consistent with the axial anomaly. This anomaly persists regardless of the
speed at which the background field changes, even in the adiabatic limit,
and therefore, in that limit, there must always be a remnant creation of
massless pairs.
Regarding the 4-dimensional case, the anomaly only arises for massless
fermions and is given by
2

(03 e = ~ 753" FunFass. (7.8)
For a time-dependent electric field and a constant magnetic field, this
expression reduces to

-0 q2 ! N AN 5]

(380 ren = ~3,2 | dE (t')B. (7.9)
We can see that the chiral charge is only created when the fields E and B are
not perpendicular, which occurs, precisely, when the adiabatic invariance is
broken. Furthermore, we have also verified that the creation of chiral charge
of massless fermions in the adiabatic limit coincides with the expression for
the anomaly.
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In conclusion, we infer that the breaking of adiabatic invariance occurs in
those cases where axial anomaly emerges, meaning that these two phenomena
are closely related. In other words, the breaking of adiabatic invariance is a

necessary condition for the existence of the axial anomaly.

7.3 Article 3: Adiabatic renormalization method

to Dirac fields in an electric background

The adiabatic renormalization method was introduced by L. Parker and S.A.
Fulling to renormalize the stress-energy tensor in cosmological backgrounds
[20, 2I]. In Section we reviewed this method for the case of a scalar
field in an expanding universe. Although this method is usually applied
in cosmology, it can also be used for a classical electric field background
[22] 23], 24]. However, recent studies have shown that there is a drawback in
these works [25 26]. The vector potential A* is considered in [22] 23], 24] to
be of adiabatic order 0, in analogy to the scale factor a(t) in the cosmological
case. This is consistent in the case of having (only) an electric background,
but if we also add a gravitational field, the renormalized expressions that one
obtains are inconsistent with the covariant conservation of the stress-energy
tensor, as well as with the axial and trace anomalies. As shown in [25] [26],
to recover the overall consistency of the method it is necessary to impose
that A* is of adiabatic order 1 (the first derivative would be of order 2,
the second of order 3...). Likewise, a new reformulation of the method is
proposed with this assumption for the case of charged scalar fields and for
Dirac fields in 2 dimensions. The extension from 2 to 4 dimensions for Dirac
fields (with the new assumption) turns out to be non-trivial and requires
a thorough analysis. This is the aim of Article 3 of this Thesis (shown in
Section .

The first result we obtain in Article 3 is a new argument that justifies
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the choice of A* as a quantity of adiabatic order 1. It is known that
the adiabatic renormalization method for a gravitational background is
consistent /equivalent with the well-known DeWitt-Schwinger point-splitting
method [27, 28] (which we briefly explain in section [5.1). In the article
we show that, in the presence of electric and gravitational backgrounds,
this consistency is only maintained under the assumption that A* is of
adiabatic order 1. Namely, we prove that, for both scalar and Dirac fields
in 2 dimensions, the adiabatic expansion of the vacuum polarization (¢?)
agrees exactly with the DeWitt-Schwinger expansion if we consider this
assignment (we explicitly verify this up to adiabatic order 6).

Armed with those results in 2 dimensions we then face the main aim
of Article 3: the extension of the adiabatic method for Dirac fields in 4
dimensions in presence of an electric background. The main problem that
arises in this case is that the usual WKB ansatz for the field modes is not
consistent. For this reason we propose a new ansatz, which we show to be
fully consistent and allows us to proceed with the adiabatic regularization
method.

Let us briefly see what our method consists of. We consider a Dirac
field ¢ in 4 dimensions, with mass m and charge ¢, coupled to an electric
background with potential vector of the form A, = (0,0,0,—-A(t)). The
Dirac equation for this system is given by

(iv*Dy —m)y =0, (7.10)

where D, = 0, —iqA, and " are the Dirac matrices. In order to construct
the ansatz, it is necessary to apply a unitary transformation to the field of
the form ' = U1, where
1
U=—=1"(I-+°). 7.11
7" (I-7%) (7.11)

This has allowed us to express the Dirac field in terms of only two functions
dependent on time, hé(t) and hé] (t), which can be regarded as the field
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modes with momentum k = (k1, k2, k3). It should be emphasized that the
idea of applying this transformation has been crucial and it is important to
point this out. We finally obtain that the Dirac equation is reduced to the
following differential equations for the field modes

ht —i (ks + qA) hl. — ik =0, (7.12)
Wit +i (ks + qA) b —ikh =0, (7.13)
where £ = \/k% 4+ k3 + m2. The main advantage of this procedure is that

it has allowed us to write the Dirac equation in terms of two differential
equations very similar to those of the same problem in 2 dimensions (see [26]).
The only difference is that now k plays the role of m. Finally, using these
expressions, the field can be quantized in terms of creation and annihilation
operators (see the article for more details). The anticommutation relations
of those operators are guaranteed if the normalization condition

I 2 2

II
hi

is satisfied.
With all these ingredients, the adiabatic expansion can be proposed. This
is where our ansatz comes in. Inspired by the solution in two dimensions,

we propose a similar ansatz, with the natural replacement m — k,

I _ w — k3 —i [t Q@)dt’
= 5o Flbe J : (7.15)
+]€3 _i [t Ay
Rl — ¥ He—t ] Q)dt 1
L —BG(t)e , (7.16)

where w = \/m, F and G are complex functions and € is a real
function. These functions are assumed to admit an adiabatic expansion,
which is obtained by enforcing the field equations and the normalization
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condition order by order. In the Article 3 we give a set of recurrence relations
that can be solved iteratively to determine the adiabatic expansion to any
order. Using this expansion the expectation values of any other observable
can also be expanded in adiabatic series. This allows us to identify and
subtract the terms that generate UV divergences, that is, to apply adiabatic
renormalization. To illustrate the power of this new method, we apply it to
calculate the renormalized expectation value of the electric current, defined

by (7#) = —¢q <1Efy“¢>. For the relevant spacetime component, we obtain
the expression

.3 . q o > 2 ‘ 1’2 k3
= — kdk dk — |h: - —=
<j >ren 27-[-2/0 1 J_/oo 3|:< k w
2 A 2k 2A2 2 4]{,‘2 2 3A3 2 A
el 3k A (o AR) AT ](7.17)

w3 2w? 2w7 405

where k| = \/k? + k3.

To check the robustness of this new proposed method we verify two

II
hi

non-trivial sanity checks. On the one hand, we calculate the renormalized
trace of the stress-energy tensor, which is given by (T}) = m{(¢)), and we
verify that in the limit m — 0 we recover the usual trace anomaly. For
massless Dirac fields in the presence of an electromagnetic background, this
anomaly is given by (T}),., = %FMVF’“’ [29]. [In section [6.2| we explain
this anomaly in detail]. On the other hand, we also verify that, as it occurs
in all other cases where the adiabatic method is applied, the adiabatic
expansion agrees with the DeWitt-Schwinger expansion, thus proving the
equivalence between both methods. Finally, we also verify the equivalence
with the Hadamard renormalization method [30].

The usual adiabatic formalism implicitly assumes that the renormaliza-
tion scale u equals the mass of the field. In our work we further extend the
method for an arbitrary renormalization scale by noticing, as previous works

did [31], that in the adiabatic method there is an intrinsic ambiguity in
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the choice for the zero adiabatic order when solving the recurrence relation.
Instead of vV k2 + m2, it is possible to define w(® = w = 1/k2 + 12, where s
is an arbitrary mass scale. The method can be developed in a more or less
straightforward manner and we eventually get a new expansion of the modes
in terms of the mass scale u. We applied this extension to renormalize
again the electric current, obtaining an expression that depends on p. The
ambiguity in p can be absorbed in the renormalized coupling constants in
the effective action, in this case the elecric charge ¢. Following usual ideas
in effective field theories, we obtain the effective charge as a function of the
scale: ¢72(u) —q=2 (o) = — (127r2)_1 In Z—g This result agrees with that
obtained in perturbative QED using dimensional regularization [19].
Finally, in order to test the practical usefulness of the method, we applied
it to a specific electric background. We considered a Sauter-type pulse given
by E(t) = Egcosh™?(t/7), where Ey indicates the height of the pulse and 7
the width. This also allowed us to study physical properties of the particle
creation phenomenon. We numerically calculated the renormalized current
as a function of time from the general expression obtained with our method
. In the article, representations of the result can be found for different
values of the parameters. We verify that the current tends to become
constant in the limit ¢ — oo, as expected for this background. This limit

can be calculated analytically, specifically we obtain

. q > > ks + qA 2
() rem ™ _7T2/0 ko dky /_Oodkgzmo}ﬁ,ﬂ . (7.18)

where wous = \/ (ks + qA0)2 + K2 and ‘@3'2 is the Bogoliubov coefficient that
gives the density of particles created with momentum k at ¢ — co. Applying
the expression for ‘BE‘Q corresponding to the Sauter pulse we obtain the
result of the current. In addition, we have used this result to estimate
the value of the electric current in the limit of a very intense electric field
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(Eop >> 0). In this limit, we obtain the expression

2
<j3>ren ~ B?Q:SE[%T (719)

Likewise, we have obtained the expression for the particle density in this
same limit, obtaining (N) ~ %qugT.

7.4 Article 4: Pragmatic mode-sum
regularization method in a cosmological

background

The covariant DeWitt-Schwinger point-splitting renormalization method
[124] [125] (which we explain in section [5.1), although fully satisfactory from
a theoretical viewpoint, is not easy to implement in practical situations.
This is specially problematic in physically important scenarios where the
field modes are only available numerically, as for black holes. Recently,
A. Levi and A. Ori have proposed a method that has proved to be very
efficient for numerically implementing the DeWitt-Schwinger point-splitting
procedure in different black hole frameworks, known as the pragmatic mode-
sum regularization method [32], 33 34]. It can be applied to spacetimes that
possess some type of symmetry (such as static or stationary black holes) and
can be understood as a method that completes what was initially proposed
by Candelas in the 1980s [35]. [In section we review the historical
methods proposed for implementing point-splitting in black holes.] In the
Article 4 of this Thesis (shown in part [[II)), we review this method and
extend it to accommodate spacetimes that have three-dimensional spatial
symmetries, like FLRW metrics in cosmology. We show that the pragmatic
mode-sum regularization method reduces to the conventional adiabatic
regularization method.
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In particular, we consider a scalar field coupled to a FLRW metric,
ds? = dt?> — a®(t)d#?, and focus on the renormalization of the vacuum
polarization (¢?). Following the point-splitting method, the renormalized
vacuum polarization is given by

(6%(2)),p = lm [({6(@), 0 ()}) — GBS (wa))| . (7.20)
Gg% is the DeWitt-Schwinger counter-term for the two-point function (see
Eq. ) Following the initial idea of Candelas, further developed by
Levi and Ori, we separate the points based on the symmetry of the system.
In this case, the translational symmetry of the spacetime suggests that
it is convenient to choose spatially separated points, i.e., x = (¢,Z) and
x' = (t,Z + €). Thus, the expectation value of the (symmetric) two-point

function for these points is given by

{0006 ()}) = gz [, R IO L @2

0

where € = |€] and hg(t) are the field modes.

The counter-terms Gg% can be expanded in powers of € as

1 1 1 1 ma
m? R
- — 4+ = . .22
<t 72] + O(e) (7.22)
Applying integral identities of the form fOOO dkkSiz E’“ = E%, we can express

(7.22)) as an integral in k and subtract it in (7.21)). The divergence at € — 0
is canceled, so we can take the coincident limit under the integral, obtaining

1> 1 (L-9R] R
2 2 2 6
. 2
(%) ren 47r2a3/0 Ak ['hk| w 2w3 28872 (7.23)
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This is exactly the same result that one can obtain by using the adiabatic
renormalization method (see equation ([5.24)) in section [5.2). Thus, we
conclude that the extension of the Levi-Ori renormalization method for a
time-dependent homogeneous background reduces to the adiabatic method.
In the article, we also prove that the equivalence between the pragmatic
mode-sum method and the adiabatic method also holds when computing

the renormalized stress-energy tensor.

Finally, we have extended the pragmatic mode-sum renormalization
method in this framework by including an arbitrary mass scale u. This
is necessary for the m = 0 case, since the subtraction term is not
well defined in this case. Following the technique proposed in [36], we
apply a change of the form m? — m? 4 ;2 at a specific point of the point-
splitting method, and we eventually arrive at the following expression for
the subtraction term (up to order O(e"))

1 [ in(ke) | 1 §—&R 2
Ggé(x,z’)*i/o k2 S ke) [+(6 R 2 |, _R (7.24)

47243 ke Weff 2w3s 2w3s 28872

2 . . .
where wgﬁ = ];—2 + m? + p?. Moreover, doing a similar analysis with the

scale i for the second-order subtraction term in adiabatic renormalization,
we verify that it agrees with (7.24]), manifesting the consistency between
the two methods.

7.5 Article 5: Quantum vacuum corrections to

the Schwarzschild metric

Recent progress in gravitational wave detections [37] as well as in very long
baseline interferometry [38] are opening the door to the possibility of testing
the existence of black hole horizons experimentally. In recent years this has
sparked a growing interest in the study of exotic compact objects (ECOs)
that mimic the physics of black holes, as well as the physical processes that
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would allow to distinguish them from black holes [39]. [In section we
provide a brief explanation of the types of ECOs proposed so far.] Classical
General Relativity does not allow the existence of such objects due to the
Buchdahl theorem, but the introduction of quantum effects may allow for
the violation of this theorem, opening the possibility of formation channels
of ECOs. There are several ways to construct these objects, and one of them
may be through semiclassical effects generated by quantum fields. This is
the path we explore in the Article 5 of this Thesis (shown in part . In
particular, we study the backreaction effects produced by the polarization
of the quantum vacuum around a static, non-rotating black hole, obtaining
quantum corrections to the Schwarzschild metric.

To achieve this, we looked for solutions of the semiclassical Einstein

equations without matter
Gap = 81 (Typ) - (7.25)

The main issue that arises when facing this problem is that in 4 dimensions
we do not have a renormalized expression of (T,;) in closed analytical
form for a general metric. But since the renormalized stress-energy tensor
is known in exact form in 1 4 1 dimensions, the authors of [40l 4T [42]
proposed an approximation to solve the semiclassical Einstein’s equations by
freezing the angular degrees of freedom of the quantized field, and thereby
reducing the problem to a 2-dimensional effective spacetime. This was later
analyzed in more detail and studied for different cases by other authors
[43, 144, [45] 46], [47]. In sharp contrast, in this article we propose an alternative
approach to face this problem directly in 4 dimensions. One simplification
will consist in restricting to quantum effects generated by conformal fields
(more precisely, to a conformal scalar field). It is reasonable to think
that the results for other types of fields will be qualitatively similar. For
conformal fields, the well-known trace anomaly (which we explain in detail
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,in section [6.2)) univocally defines a relationship between the components of
the stress-energy tensor, given by

—(p) + (pr) +2(pe) = (T5) (7.26)

where (p) is the density of the quantum vacuum, (p,) and (p;) are the
radial and tangential pressures, and (7?) is the expression of the trace
anomaly, which depends on the metric. [Since we are looking for static and
spherically symmetric solutions, we have also chosen a vacuum state with
these symmetries, leading to a diagonal, time-independent renormalized
stress-energy tensor.] Thus, our proposal consists of solving the semiclassical
Einstein equations by adding as an equation of state. Note that, with
this procedure, it is not necessary to give an explicit expression for the stress-
energy tensor as a functional of the metric (which was the main problem
of the conventional approach), since now its components are introduced as
unknowns of the system of differential equations.

To make the system fully solvable we need one last assumption, which
consists in considering the radial pressure equal to the tangential pres-
sure ({p;) = (p¢)). This simplification is inspired from the result of the
stress-energy tensor in a fixed Schwarzschild background [35]. Near the
Schwarzschild horizon the pressures tend to equalize. It is reasonable to
expect that the exact solution, including backreaction, behaves similarly
((pr) = (pt)) near r = 2M. In any case, we have subsequently verified that
the results for other assumptions regarding the pressures are qualitatively
similar.

For static and spherically symmetric solutions, the system of equations
to be solved is analogous to the well-known TOV equations (but now with
quantum density and pressure), adding the aforementioned equation of state
. As a first approximation, we solve the system perturbatively in A.
Restricting ourselves to the region near the horizon (where quantum effects
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are more important), we obtain the following first-order correction in # to
the Schwarzschild metric
1
ds* = — —h| 1 h?) ) dt?
; (7)1 (ggzomarage + OUor D) +0 (7))
dr?

+ r2dQ?, (7.27)
1) = 1 (gagmtrryey + Olog f(1) ) + O ()

+

where f(r) =1—2M/r. From this result, we can draw a main conclusion:
the classical horizon of the Schwarzschild metric disappears. Indeed, for the

value that makes g;,!(r) = 0, which is

Vh
4701

the g (r) component does not vanish, i.e. gy (ro) # 0, unlike the classical

ro = 2M + +O(h), (7.28)

Scharzschild metric. Thus, a wormhole-type metric is obtained (see section
for more details on these objects). However, this result may not be
entirely reliable since the quantum pressure and density turn out to be
of order h/f?, which near the throat of the wormhole (r = r() tends to
be of order iV. Therefore, in the region near the throat, the perturbative
assumption fails, and the problem must be studied exactly by numerical
methods. After analyzing the exact numerical solution in great detail,
we found results qualitatively similar to the perturbative case, except for
numerical factors of order one. Specifically, we obtain that the throat is
located at 79 =~ 2M + 0.01947+/h, which differs slightly from the previous
result.

In summary, we have obtained a coordinate singularity for a value
of r separated from the classical value (r = 2M) by a distance of the
order of the Planck length (v/A). The singularity represents the throat of
a wormhole. The next logical step is to extend the metric beyond this
coordinate singularity, as is done in the classical case. In the article, we
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propose a Morris-Thorne-type extension, suitable for a wormhole metric,
defined by the change I(r) = f:o \/gr(r")dr’. The throat of the wormhole
is located at [ = 0. The extension of the metric to the region | < 0 results
in an asymmetric wormhole. Additionally, we find a new singularity located
at g ~ —0.278h/4\/M. In the article we prove that this is a curvature
singularity, and it is located on a null hypersurface. Figure [7.1] shows a
qualitative Penrose diagram of this solution. We also demonstrate that
this singularity is located at a geodesic distance of order O(v/A) from the
throat, so that an observer passing through the wormhole would encounter
the singularity almost immediately. The shape of this solution (asymmetric
wormhole with a null curvature singularity) agrees qualitatively with the
conclusions obtained using the 2-dimensional approximation in [41], which
reinforces the validity of this 2-dimensional approximation.

Figure 7.1: Penrose diagram showing the throat of the wormhole (I = 0)
and the null curvature singularity (I = [y).
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This wormhole solution is the maximal extension of a purely (quantum)
vacuum solution of the semiclassical Einstein’s equations. Alternatively, one
may think of matching the semiclassical solution with the metric describing
the interior of a static, spherically symmetric star. The inclusion of matter
may generate ultra-compact stellar objects [48], 44} [45] 46| 47]. If we match
these solutions to our quantum vacuum Schwarzschild metric for the exterior
of the star, our result imposes a maximum value for the compactness of
these objects, given by the minimum of the radial function (the throat of
the wormhole). To be more precise, we get that the maximum compactness
(measured as 2M /r) would be given by

2M Vh

. ~1-— 0.01686m . (7.29)
This is an important constraint for any exotic compact object that may be
proposed in the literature.

On the other hand, we find that quantum corrections well away from the
classical Schwarschild horizon are very much suppressed to be observed with
current interferometers. In particular, as an example, we calculated the
quantum correction (at first order in &) to the frequencies of the so-called
light-ring modes of scalar and electromagnetic perturbations. To do so we
used the WKB analytical approximation [49, [50]. We obtained results of
the form w? = w%_, + O(h), where w?_, are the frequencies for the classical
Schwarzschild geometry. For instance, in the case of the electromagnetic

perturbation we get

__h
170107 M2

2

w? = Wi, + (13 Re [wi,] + 11iIm [wd,]) - (7.30)

We can see that quantum corrections to the frequencies of light-ring modes
are negligible. This is what we expected, since the light-ring is located at
around r = 3M, which is far enough away from the throat region where
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quantum corrections are expected to play a more important role. We
therefore conclude that, although quantum effects imply drastic changes in
the geometry of the black hole near the horizon, they do not seem to imply
significant corrections in the exterior. As seen by distant exterior observers,

these semiclassical solutions mimic a non-rotating black hole.
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Translational anomaly of chiral fermions in two dimensions
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It is well known that a quantized two-dimensional Weyl fermion coupled to gravity spoils general
covariance and breaks the covariant conservation of the energy-momentum tensor. In this brief article, we
point out that the quantum conservation of the momentum can also fail in flat spacetime, provided the Weyl
fermion is coupled to a time-varying homogeneous electric field. This signals a quantum anomaly of the
space-translation symmetry, which has not been highlighted in the literature so far.

DOI: 10.1103/PhysRevD.99.105008

I. INTRODUCTION

Symmetries and their corresponding Noether conserva-
tion laws play a major role in classical physics. It was long
thought that symmetries and conservation laws are pre-
served in the quantization of the classical system. For
example, the momentum of a classical system possessing
the space-translation invariance is a conserved quantity, and
it is expected to be also conserved in the quantum theory. In
the same way, invariance under phase transformations
implies charge conservation, and it is also expected that,
after quantization, the charge operator is conserved in time.
In some special situations, a classical symmetry cannot be
maintained in the procedure of quantization. This happens
most frequently in field theory, in which one encounters
intrinsic ultraviolet divergences. The removal of these
infinities, through the process of renormalization, might
produce finite and unambiguous results that may imply an
unavoidable conflict with the symmetry of the classical
theory.

This was first discovered in the analysis of a quantized
Dirac field y in the presence of an electromagnetic back-
ground [1,2]. The classical action for a massless Dirac field
is invariant under chiral transformations y — e~"""y. This
implies, via Noether’s theorem, that the axial current jﬁ =
Wy"y>y is a conserved current d,J4 = 0. However, in the
quantized theory, this is no longer true. One finds the
nonzero vacuum expectation value

2
, q
<8;4J£> == 1622

gﬂbuﬂF;wFaﬁv (1)
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where F, is the electromagnetic field strength. This is a
quantum breaking of the original symmetry, and it is
usually referred to as an anomaly.

Equation (1) reflects an anomaly in a global symmetry,
and it allows us to better understand the underlying physics.
However, anomalies in currents coupled to gauge fields
make the theory ill defined. They imply an unavoidable
obstruction to constructing the quantized theory, and only
their exact cancellation can restore the physical consis-
tency. For example, in quantum electrodynamics with a
single charged Weyl fermion, we have (0,j*) # 0, and
hence the theory is inconsistent. However, by adding a
charged Weyl fermion of opposite chirality, consistency is
restored. This type of anomaly can only occur in even-
dimensional spacetimes.

A different class of gauge anomalies involves the break-
ing of general covariance, reflected in the nonzero expect-
ation values in the divergence of the energy-momentum
tensor (V,T#) # 0. They are called gravitational anoma-
lies [3]. These anomalies can occur in theories with chiral
fields coupled to gravity and in spacetimes of dimension
4k +2 =12,6,..., where k is an integer (for a review on
anomalies, see Ref. [4]).

In two dimensions, one can construct very simple
examples of quantum anomalies. A Dirac field interacting
with an external electromagnetic field has a chiral anomaly,

q

(0,14) = = 5= F . @

y

This implies that a (right-handed) Weyl field interacting
with an external electromagnetic field possesses a harmful
anomaly in the source current to which the gauge field
is coupled. The classical U(1) local gauge symmetry
is broken at the quantum level. A chiral field in two
dimensions also possesses a gravitational anomaly [3-5],

© 2019 American Physical Society
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(VT = P30, L. (3
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It signals the breaking of the spacetime coordinate repar-
ametrization group.

The purpose of this paper is to point out that the breaking
of a relevant spacetime symmetry could also happen in the
quantization of a two-dimensional Weyl field, not in the
presence of gravity but in the presence of a homogeneous
electric background E = E(¢). In this case, a charged
Weyl field possesses translation invariance in the spatial
direction. In the classical theory, one has conservation of
the 01 component of the canonical stress-energy tensor
0, T#! = 0. However, in the quantized theory, we find the
anomalous result

2AA

Ou(Thr) =F L. 4)
for right-/left-handed Weyl fields, respectively, where A(7)
is the vector potential for the electric field E(f) = —A(r).
The result (4) has not been stressed in the previous
literature, and it can be easily obtained using the method of
adiabatic regularization. The adiabatic subtraction method
was originally introduced to deal with ultraviolet diver-
gences of quantized scalar fields in a homogeneous
expanding universe [6-8]. It has been extended to quan-
tized Dirac fields in the presence of a homogenous

electromagnetic background in Refs. [9-11].

II. TRANSLATIONAL ANOMALIES AND
ADIABATIC REGULARIZATION

Let us consider a quantized Dirac field interacting with
an external homogeneous electric field E(7). The classical
action for the Dirac field is given by

1_. = _
S= / d*x (iwzy”DMw - mWI//), (5)

where D, =0, —igA, and y* are the Dirac matrices
satisfying the anticommutation relations {y#,y"} = 2n**.
The corresponding Dirac equation reads

(i7" D, = my = 0. (6)

For our purposes, it is very convenient to express
the electric field in terms of a homogeneous vector

potential E(t) = —A(t). The Dirac equation (6), with A, =
(0, —A(r)), becomes (we follow here Refs. [9,10])

(i7°8y + (0, — gA)y' —m)y = 0. (7)

From now on, we will use the Weyl representation (with
=77

0_(0 1) 1_(0 1) 5_(-1 0)
““\10) "\ 0) "7\ 1)

We expand the field in momentum modes

©

w9 = [ aBn(en) + i) (®)

—00

where the two independent spinor solutions are

wg(t,x) = e ( hi (1) )

V2 \ —hi (1)
) = S ()
Vi t,x) = . .
V2 \ h" (1)
B, and Dj are the creation and annihilation operators,
which fulfill the usual anticommutation relations.
Equation (7) is converted into
g — i(k + gAYkl — imh!l =0 (9)
W+ i(k + qA)hl! — imhl = 0, (10)

where we assume the normalization condition |hf|>+
|hi|> =1, ensuring the usual anticommutation relation
between creation and annihilation operators. In the mass-
less case, we have a decoupled system, and it can be solved
analytically.

In the presence of an external homogeneous electric
field, the theory (5) possesses the translational invariance in
the space coordinate: x! > x! + ¢. Therefore, Noether’s
theorem ensures that the classical energy-momentum tensor
T# obeys the conservation law O”T’” = 0. This happens
for every value of the mass. For the study of chiral
conservation laws, we can use the simplest (canonical)
form of the energy-momentum tensor

™ = %t/‘/y“a”w (1
and split it into the two chiral components
T =TF +Th":

LT (12)
R =5 Yy B U4
o
T = ~gyro” . 13
L= (13)

We note that, for a massless theory and as a consequence of
the underlying symmetry, the 1 component of each chiral
Weyl sector is separately conserved,

105008-2
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9,Th, =0. (14)

We will show that this is no longer true in the quantum

theory. We recall that, when A = 0, the chiral fields yr ; =

#u/ obey the equations O, wr=0=0_y;, with

x* = x% £ x!. The quantized fields y g, describe particles
and antiparticles traveling to the right/left, with positive/
negative spatial momentum, respectively.

The formal vacuum expectation values of these currents,
for a generic value of the mass, take the form

[eS)

1
(%) :%/dkkmi

—00

% (15)

S}

1
(1) =5 [ akklnf. (16)

—00

These expressions are divergent, and we have to add
appropriate subtractions. Since we are working with a
homogeneous background, it is very convenient to use the
adiabatic regularization method. The method works with
subtractions derived from the adiabatic expansion of the
modes [6,7]. Following Refs. [9-11], one can univocally
determine the subtractions required in the renormalization
of the above chiral currents. A(?) is considered of adiabatic
order 1, as explained in Refs. [9,11]. For an arbitrary mass,
and assuming that at early times A(z) vanishes, the
renormalized expression for <T%L>,en is given by

1 [e o F k__ 3km*q?A?
01 _ LIy
<TR,L>ren - 2”/_00 dkk(lhk ‘ 20 + 4605 ’

(17)

with @ = Vk* + m?>. We can now evaluate the time
derivative of the above expressions,

5.
m [ . q-AA
at<T0R14L>ren = i;/ klm(hihg )dk + 75 (18)

where we have used the equations for the modes (9) and
(10). In the massless limit, the first term in (18) vanishes,
and we are left with

qZAA

1
8/4<T}Rf.L>ren =+ o .

(19)

This nonvanishing result shows the existence of an
anomaly in the classical translational symmetry for each
chiral sector. Furthermore, this anomaly is accompanied by
the well-known anomaly for the R/L currents,

8/‘ <j}§,L>ren = i% =+ %eﬂbFﬂw (20)
where j’;u = WgrrY"wg, which can also be derived in a
similar way from the adiabatic subtractions. For a massless
Dirac field, the anomalies cancel out, and one restores the
translational  invariance 9, ((T% )ren + (T} Vren) = 0, as
well as the phase invariance 0, ((/%)wen + (/1 )ren) = O

A. Symmetric stress-energy tensor and
translational anomaly

The anomaly (19) in the translational symmetry can also

be realized in terms of the (symmetric) Belinfante stress-
energy tensor ©*, constructed as

i <~ <
O = "D + ' Dy). (21)

We have to remark that, although the canonical stress-
energy tensor is more appropriate to show the existence of
the translational anomaly, it is the Belinfante stress-energy
tensor the right one to understand the anomaly in terms of
the underlying process of particle creation.

The symmetric tensor ®* is related to the canonical one
T* by

O =T + 9,B*™ + quytwA®, (22)
where the antisymmetric tensor B** is defined as
B =Ly {y®, 6"}y, and 6" = L [y*,y*]. The divergence

of the vacuum expectation values (@‘;,'L) can be read
from (22)

0,000, = 0,(Th) + q(0,A ) fe ) + aA' 0, (Jle1)-
(23)

Now, taking into account (20), and the facts that A' = A(r)
and A(f = —o0) = 0, we obtain

. gA
<J(I)€,L>ren = ig (24)

Using the result for the translational anomaly (19), the
anomalies for the R/L currents, and Eq. (24), we get
immediately

quA _ :tq_zE(t) /.I E(¢)dr, (25)

a;¢<®l;\’%L>ren ==+

2r 2r

which can be regarded as parallel to the result (19). Note,
however, the important change of sign, as compared to (19).

It is also interesting to evaluate the rate of the 00
component of the stress-energy tensor. Using adiabatic
regularization we find
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24
o q"AA .
6M< 0>ren = T = _qFol <]1>ren' (26)

The above results can be re-expressed in null coordinates
x* maintaining locality, Lorentz-covariance, and gauge-

invariance. It is not difficult to get

8+<®——>ren = _qF—+<j—>ren (27)

6—<®++>1‘en = _qF+—<j+>ren' (28)
To visualize the anomalous behavior we have to take
second derivatives of the stress-energy tensor. We find
2 (O_)en = =GO+ F . {j_Vren +§—;F%+ and a similar
relation for (®, ,).,. The anomalous c-number terms in
the second derivatives of the stress-energy tensor compo-
nents are linked to the standard anomalous behavior of the
chiral currents 9 (j+ ), = £q(27)"'F,_. Note that © ,
and ©__ are related to the energy flux of the left and right
moving sectors, respectively, of the Dirac field. Note also
that, in flat space, the trace of the two-dimensional stress
tensor is zero, (0, _),., = 0. Summing up the second-order
equations, one also gets

2
8/461/<®W>ren = _qavFDpUp)ren - %FWJF”L' (29)
The quantum theory, mainly due to the above c-number
terms, breaks the conservation of the chiral fluxes of
momenta in a way compatible with the anomalous behavior
of the chiral currents. The underlying reason for all the
above anomalies finds its origin in a particle creation
phenomenon.

B. Relation to particle creation

The result (25) can be understood in terms of the well-
known process of particle creation. Following the
Bogoliubov transformation method [7], the field modes
ht and Rl for a pulsed electric field can be related, at late
times, to the number density of created particles n;. After
some calculations, one obtains the following relations in
the massless limit:

S 0
(O = A dkkny. (O ) = / dkkny. (30)

)

It is clear that the R(L) part of the symmetric tensor gives
the total momentum of the created quanta with positive
(negative) momentum. Assuming A = 0 at early times, the
number density n; in the massless case is (27)~! into the
interval (—gA(t),gA(t)) and O for any other k [2,12].
Integrating (30) between these limits, one obtains a result in
full agreement with (25).

The physical picture of the underlying particle produc-
tion process is significantly modified by the mass. Let us
consider a positive electric pulse E(z) > 0. Massless
particles with positive charge are always created with
positive momentum in the interval (0,|gA(z)|), while
antiparticles with negative charge are created with momen-
tum in the interval (—|gA(#)|. 0). For massive fermions, a
fraction of particles with positive charge can be created
with negative momentum, while antiparticles with negative
charge can also be created with positive momentum.

Finally, we remark that a somewhat similar result can
also be obtained for each chiral sector of quantized
massless scalar fields. However, the result (25) is only
valid in the adiabatic limit, for an infinitely slow evolution
of A(z). In contrast, the result for fermions is completely
general, valid for arbitrary A(z).

C. Relation to backreaction equations

Another way to illustrate the translational anomaly (19)
is by solving the semiclassical backreaction equations for
the quantized Dirac field w = ywp + 1y, obeying the
Maxwell equation £ = —g(j') .-
batic subtraction method, we have

According to the adia-

. 1 [ k  gm?
Ghen =55 [~ k(P -2 = £+ 54). 1)

In the massless limit, the system can be solved analyti-

cally, finding harmonic oscillations with frequency %. In

Fig. 1(a), we show the solution for the electric field.

(a)

0 5 10 15 20 25 30 35 40
qt
(b)
5 T T T T T T T
3
g[**
0 5 10 15 20 25 30 35 40
qt
FIG. 1. Solution for the electric field (a) and the chiral

projections of (O%'),.. (light blue line) and (®9"),., (dark orange
line) (b) for m = 0. We have chosen E, = 4q as the initial
condition for the electric field. The initial state for the matter field
is the vacuum. The solution for the classical limit is also plotted
(yellow line).
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It is very illuminating to see the time evolution of the
fluxes (@Y, )., since they represent the created chiral
momentum in the massless case. As we can see in Fig. 1(b),
for each set of massless right-handed fermions/antifermions
created with total momentum Py > 0, there is a set of
massless left-handed antifermions/fermions with momen-
tum P; = —Pp. The required energy to create particles is
extracted from the electric field, generating a continuous
energy exchange between the electric and the fermionic
fields. Particles can also be destroyed, returning energy to
the electric field.

In the massive case m # 0, the backreaction equations
also induce electric oscillations, which can be regarded as
perturbations of the oscillations at m = 0.

III. CONCLUSIONS

In this brief article, we have pointed out that quantized
chiral fields in two dimensions coupled to a homogeneous
time-varying electric field break the classical conservation

of the canonical stress-energy tensor Oﬂ(T’,‘J Len =F ";‘;‘TA.
This quantum anomaly has not been stressed in the
previous literature. This result can be reexpressed in terms
of the symmetric stress-energy tensor of the left- or right-
moving sectors of the Dirac field 8”<®’£L>ren = i"zziA.
Furthermore, our results have a direct physical interpreta-
tion in terms of particle creation in a way compatible with

the axial anomaly.
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Particles are spontaneously created from the vacuum by time-varying gravitational or electromagnetic
backgrounds. It has been proven that the particle number operator in an expanding universe is an adiabatic
invariant. In this paper we show that, in some special cases, the expected adiabatic invariance of the particle
number fails in presence of electromagnetic backgrounds. In order to do this, we consider as a prototype a
Sauter-type electric pulse. Furthermore, we also show a close relation between the breaking of the adiabatic

invariance and the emergence of the axial anomaly.

DOI: 10.1103/PhysRevD.100.085014

I. INTRODUCTION

The understanding of particle creation phenomena in
terms of Bogolubov transformations was pioneered in the
analysis of quantized fields in an isotropically expanding
universe [1-3] (for a retrospective analysis see [4]).
A fundamental issue in the study of particle creation in
an expanding universe was the adiabatic invariance of the
number of created particles. The particle number of a
quantized field, in the limit of an infinitely slow and smooth
expansion of the universe, that is, an adiabatic expansion,
does not change with time [4], even if the quantized field is
massless. In other words, the density of created particles by
the cosmic expansion approaches zero when the Hubble
rate a/a is each time negligible even if the final amount of
expansion a(Zgna)/a(finia ) 1s large. Hence, we say that the
particle number is an adiabatic invariant. Moreover, pair
production can also take place in time-varying electric [5,6]
or scalar backgrounds, and it can be regarded as a very
important nonperturbative process in quantum field theory
[7]. It is also fundamental to understand the reheating epoch
in cosmology [8], nonequilibrium processes induced by
strong fields [9,10], and astrophysical phenomena [11].

The main purpose of this work is to analyze the adi-
abatic invariance of the particle number observable in the
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presence of an electromagnetic background. We find that
for massive fields adiabatic invariance is, as expected,
preserved. For slowly varying electromagnetic potentials
no quanta is being produced, even if the change in the
electromagnetic potential over a long period is very large.
However, in some cases and only for massless fields, the
particle number is not an adiabatic invariant. In other
words, particles are still created in the adiabatic limit.
We analyze the problem in detail in a two-dimensional
scenario, for both scalar and Dirac fields. As a by-product
of our analysis, we point out a connection between the
(anomalous) breaking of the adiabatic invariance of the
particle number operator and the emergence of a quantum
anomaly in the chiral symmetry. We will show that the
breaking of adiabatic invariance and its connection to the
axial anomaly can be easily translated to four dimensions.

Conservation laws and symmetries play a fundamental
role in the understanding of a physical system. Anomalies
are symmetries of a classical theory that fail to survive upon
quantization. This happens, typically, in field theory
because of the need for regularization and renormalization
of ultraviolet divergences. A very illustrative example
occurs in quantum electrodynamics in the limit of massless
Dirac fermions. The classical theory is invariant under
chiral transformations, and this implies the conservation of
the axial current j5. However, this symmetry is broken in
the quantum theory. The chiral anomaly opens the pos-
sibility of having processes violating the conservation of
chirality. Nevertheless, all elementary processes of quan-
tum electrodynamics, based on the perturbative expansion
of the S-matrix, preserve chirality [12]. One has to resort to
a nonperturbative phenomena, i.e., the spontaneous pair
production by electromagnetic fields, to unveil conserva-
tion-law violation of chirality of massless fermions.
The nonconservation of chirality seems to be directly

Published by the American Physical Society
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related to the breaking of adiabaticity in the particle number
observable.

The paper is organized as follows. Section II is devoted
to briefly illustrate the problem within the conventional
cosmological scenario, as described in [3,4]. In Sec. III we
will analyze the case of a two-dimensional complex scalar
field coupled to an external electric pulse. The role of the
mass is analyzed in detail, and we will show explicitly that
adiabatic invariance of the particle number is broken for
massless fields. In Sec. IV we generalize the result to Dirac
fields, showing a connection between the breaking of
adiabatic invariance and the emergence of the chiral
anomaly. The next step is to extend our result to four
dimensions. This will be done in Sec. V. We will find again
that adiabatic invariance requires a nonvanishing effective
mass, as happens for two-dimensional quantized fields
coupled to an electric field. However, a zero effective mass
can only be achieved for Dirac (not for scalar) fields
coupled to both electric and magnetic fields. The breaking
of adiabatic invariance also emerges in parallel to the
emergence of the chiral anomaly. In Sec. VI we summarize
the main conclusions.

II. A BRIEF ORIENTATION: ADIABATIC
INVARIANCE IN THE EXPANDING UNIVERSE

The adiabatic invariance of the particle number operator
in an expanding universe can be easily illustrated with the
simple example (borrowed from [3]) of a scalar field with
mass m in the presence of a two-dimensional bounded
expanding universe. This example, although well-known,
will serve to better clarify the main idea of the next sections.
Consider the following metric:

ds* = di* — a*(t)dx* = C(n)(dn* — dx?), (1)
where dn = a~'(f)dt and the conformal scale factor is

given by the function C(7) = 1+ B(1 + tanh py), with B a

(@ m

o - mn
=30 -20 -10 10 20

FIG. 1.

positive constant. This represents a smooth expansion
bounded by asymptotically static and flat spacetime
regions. The expansion factor has smoothly shifted from
ap = a(—0) = 1 10 agy = a(+o0) = /1 + 2B. In Fig. 1
it is shown the behavior of the conformal scale factor C(1)

as well as the Hubble rate H(n) = 2C c% for different values
of the adiabatic parameter p in terms of dimensionless
variables.

The equation for the modes of the scalar field in the

background metric (1) is given by

L ) + m2C) + ) =0, (2)
dn

In the remote past the normalized modes are assumed to
behave as the positive frequency modes in Minkowski
space,

1

V2(27)w;,

with @, = VK> +m?. As time evolves these modes
behave, in the remote future, as a mixture of positive
and negative frequency modes of the form,

eikxe—imi"t’ (3)

A eikx g=iwout Pi eikxe+imou|[’ (4)
2 (27[) woul 2(2”)wuut
with @y = 4/(:5)? + m?. a; and B, are the so-called
out

Bogolubov coefficients. The annihilation operators for
physical particles at late times a; are related to the
annihilation and creation operators at early times (A

and AZ) by the relations,

ap = akAk + ﬁZAik (5)

— p/m=1
— p/m=0.5
— p/m=0.1

mn
-10 10 20

Conformal scale factor for B = 2. Figure (a) shows the Hubble rate H/m for different values of the dimensionless “slowness”

parameter p/m. Figure (b) shows the dependence of the conformal scale factor C(i7) on p/m. The adiabatic limit corresponds to p — 0.
Note that the area defined by the curves H(n) in Fig. 1(a) does not depend on p/m.
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The average density number of created particles n;, with
momentum k, is given by

sinh?(z %)

sinh (7 %) sinh (7 4 *

= Al = (6)

where @_ = } (@ou@ou — @i). It is very easy to check that
in the adiabatic limit, that is, for an extremely slow
expansion p — 0, the density number of created particles
goes to 1y ~ e 2*n/P — 0. This shows the fact that the
particle number is an adiabatic invariant. This behavior of
the particle number observable is generic, and it can be
extended to isotropically expanding universes in four
dimensions, irrespective of the value of the mass [1,4].

Furthermore, one can reinforce this idea by looking at a
gravitational collapse producing a black hole. An adiabatic
collapse can be thought as the (physically inaccessible)
limit of a collapse approaching to a black hole with a very
large mass M — oo (and zero surface gravity) in an infinite
amount of advanced time [13]. It is well-known that the
late-time particle creation of a gravitational collapse is
encapsulated by the surface gravity parameter. The pro-
duced radiation is thermal [2,3,14,15], with a temperature
proportional to the surface gravity. In the adiabatic limit the
production of scalar particles is expected to vanish, in
agreement with Hawking’s result.

III. BREAKING OF ADIABATIC INVARIANCE IN
SCALAR PAIR PRODUCTION BY ELECTRIC
FIELDS IN TWO DIMENSIONS

We will now analyze the same question for the phenom-
ena of particle creation in electric fields. We will consider a
classical and homogeneous electric field E(r) interacting
with a quantum, two-dimensional charged scalar field ¢
obeying the field equation,

(D, DH 4 m*)¢p = 0, (7)

where D¢ = (0, + igA,)¢. We can expand the field in
Fourier modes as

dk[Age™ hy(t +B,Le"kxh* (D], (8)

Plt.x) = F =/

where AZ,B}:, and Ay, B, are the usual creation and
annihilation operators. The mode functions /4, (f) must
obey the Wronskian consistency condition,

ik — hihy = 2i, 9)

to ensure the usual commutation relations. Substituting (8)
into (7) we get the equation,

hi(1) + (m + (k = gA(1) )y (1) = 0. (10)
where we have chosen an homogeneous time dependent
potential A, = (0, —A(¢)) in the appropriate gauge. In order
to study the adiabatic limit for the electric pair production,
in a way similar to the gravitational case explained above,
we need to consider a bounded potential A(t). At an
heuristic level, A(r) will play a somewhat similar role to the
conformal factor C(5) for the expanding spacetime. Note
by comparing (2) and (10) that the time dependence of the
mode equation is encoded in C(y) for the gravitational
example and, analogously, it is in A(7) in the electric case
(see, for instance, [5] for a general discussion). We choose
for convenience a Sauter-type electric pulse [16] of the
form,

E() = —‘%cosh (1), (11)

which can be described by the potential [E(f) = —A(1)],
1

A(r) = EAO(tanh(pt) +1). (12)

This potential is bounded both at early and late times, as
shown explicitly in Fig. 2(b). Note that p plays the role of a
slowness parameter. It is very illustrative to compare Fig. 2
with Fig. 1.

We have chosen the above Sauter-type pulse [16] for
convenience. Note that this potential is bounded both
at early and late times (see Fig. 2). Note also that for
all the figures we work with dimensionless variables.
The adiabatic limit is an extremely slow evolution of the
potential, obtained when p — 0. We have to remark that
the adiabatic limit is not the limit of a vanishing electric
field. If the electric field had support in a bounded
period of time, there would not be production of
particles when E(7) — 0. But the adiabatic limit is a
more subtle limit, in which the electric field varies very
slowly. Although E — 0 when p — 0, the width of the
pulse is also very large maintaining constant and non-
vanishing the integral,

+o0 +o0
/ E/,l(t)dtz/ E, (t)dt=constant=—gA,. (13)

To clarity things we remark that a different scenario is
given by the alternative choice E(f) = —E,cosh™2(pt),
with E, a constant value, independent of p. The limit
p — 0 corresponds then to a constant electric field, with an
unbounded potential A(t). This produces, as expected, the
Schwinger-type rate of pair creation by a constant electric
field [17]. In this paper we focus our analysis in the
adiabatic limit p — 0 in (11) and (12), as it produces a
bounded potential and a completely analogous situation to
that considered in the cosmological scenario. As we will
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“E()/q
(@) 25

— plq=1
— p/q=0.3
— plq=0.1

qt

qt

-20 -10 10 20

FIG. 2. Sauter-type electric pulse for A, = 5. Figure (a) shows the electric field E/¢ for different values of p/g. Figure (b) shows the
dependence of the potential A(7) on the dimensionless “slowness” parameter p/q. The adiabatic limit corresponds to p — 0. Note that
the area defined by the curves —E(1)/q in Fig. 2(a) is A, irrespective of the value of p/q.

show later on, in this case, it is indeed possible to produce
particles by the electric field if extra conditions are met (i.e.,
a massless field or the presence of magnetic fields in the
four-dimensional case with fermions).

Inserting the potential (12) in (10) we obtain the physical
solution in terms of the usual hypergeometric functions,

. o« ‘l
hi(t) = 7g—twmr(l + ezm)(%ﬂ;)F(E _ l.w+p+ K’
1 . o_—«x @
— 4 i— ’l_iﬂ;_e%ot)’ 14
2 P p (14)

where «k = % V(qA)? = p? @ = VEE+m?, wgy =
V(k=qA¢)? + m?, and w, =% (woy £ w;,). We have

fixed this solution by demanding that at early times the
modes behave as the Minkowskian modes for a free scalar

field,

hi(t) ~ I (15)
Wiy
At late times the modes behave as
a B i
hk(t) ~ e IOy + €+""°“", (16)
vV (Dnut vV mout

where a; and f, are the Bogoliubov coefficients. They
satisfy the relation |o|? —|B¢]> =1 according to the
normalization condition (9). These coefficients serve to
relate the early time creation and annihilation operators A,
By, defining the initial Fock space, with the late time
operators ay, by,

a = Ay + BiBL,

(17)
(18)

by = a_ By + AT,

Therefore, we can define the number operator as

) =5 [ k= [T kg ). 19)

- 27 J_o 3
where Ny = ny + i, = (0|aja,|0) + (0|b]b,|0) is the
number density of quanta (i.e., n, = |;|* particles and
fi;, = |p_|* antiparticles). Taking the late time limit f — oo
in (14) and matching with (16) we obtain
(1 — i 28)1(~i %)

WDout 14

(l)m I—w(% _ i“);)+K)F(% _ l-(l);—/(‘)

o e
@i D3 + i =)0 + i =)

where we have used the usual properties of the hyper-
geometric function [18]. Finally we get

(20)

ap =

cosh (27%=) + cosh (27%)
2sinh (7“) sinh (7 “5) ~

Bl* =

(22)

Figure 3 shows a representation of this expression for
different values of m and p, which can be interpreted as the
momentum distribution of the created particles (the spectra
of antiparticles would be obtained by making the shift
k — —k). We easily observe that |3|> decreases as p — 0,
for fixed m # 0. In the same way, the particle density also
decreases for large m with p fixed. Note in passing that for a
sudden electric pulse (p > 0) the momentum distribution
of the particles is concentrated in the characteristic values
k=0 and k = ¢A,.

To see whether |$;|?> vanishes in the adiabatic limit we
analyze in detail the behavior p — 0 on (22). We get

|ﬂk|2 ~ e*ZItwm/ﬂ + 6*2”‘Uom//’ 4 e-;’ffs’

(23)
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(@)

— m/q=0.5, p/q=10
—— m/q=05, p/q=3
—— m/q=0.5, p/g=1
— m/q=05, p/g=0.2

AAo

(b)

— m/q=1.5, p/qg=1
plg=1
— m/q=0.5, p/g=1

— ml/q=1,

— m/q=0.1, p/g=1

-4 -2 2 4 6 8 10

FIG.3. Momentum distribution of the created scalar particles with positive charge at late times (|, |*) by an electric pulse with Ay = 5
and different values of m/q and p/q. In Fig. 3(a) the mass is fixed, while in (b) the dimensionless parameter of adiabaticity p/ g is fixed.

where § =2(w, — k) and k — W—;‘“‘. Since wj,, Wy > 0,
the first two terms vanish as p — 0. For m # 0, the func-
tion (k) has a minimum at k= %,
Smin = V/ (qAo)? +4m? — |gA,| > 0. Tt means that § > 0,
and hence |f;|> = 0 when p — 0, as in the case of a
gravitational field. According with that, in Fig. 3(a) one can
realize how the number of particles decreases with the
adiabatic parameter p, vanishing in the limit p — 0.
However, for m = 0 this is no longer valid since 6 =0
for k € (0,gA), and hence |;|*> — 1, meaning that par-
ticles are being produced even in the adiabatic limit. In
short, we have obtained, when p — 0,

with a value

N {0 form#0 or m=0 and ke&(—qgAy,qAg)
=
, 1 form=0 and k€& (—qAg,qAp).

(24)

In order to visualize this behavior, we represent in Fig. 4 the
dependence of the total density of created particles (N)
[given by (19)] on the parameter p. One can see how in the
adiabatic limit the density of quanta tends to vanish, except
in the case m = 0, for which it tends to a nonzero value.
This value is given by

<N>

q
6

5 — mlqg=1

4 m/q=0.3
— m/q=0.1
—— m/q=0.03

— ml/q=0

4
1 2 3 4 5
FIG. 4. Number of late-time created scalar particles as a
function of the dimensionless adiabaticity parameter p/g, for
Ay =5 and for different values of the mass.

(V) :i/‘qA"‘dek _ laAdl (25)

This implies that the particle number is not an adiabatic
invariant for the massless case. Furthermore, as we will see
in the next section, the above result for the density number
of created particles in the adiabatic limit coincides exactly
with the analogous result for massless Dirac particles.

For completeness we will study now the vacuum expect-
ation values of the electric current and the energy density
induced by the underlying particle creation process. This
will also serve to test the adiabatic invariance, or the
breaking of it, in terms of the current and the energy
density.

A. Electric current

For a two-dimensional charged scalar field, the electric
current is given by j* = iq[¢p"D"¢p — (D"¢)"¢]. The vac-
uum expectation of this observable is UV-divergent and has
to be renormalized. In the context of an homogeneous and
time dependent background it is very convenient to use the
adiabatic regularization/renormalization method described
in [17,19]. After performing the appropriated subtractions,
one obtains

dk

. 0 k mPqA
Ghen =4 [ 55| = alp - £ +

, (26)

e

where () are the mode functions of the scalar field
satisfying the equation of motion (10) and @ = V'k*> + m?.
For more details on the original adiabatic method for scalar
fields see [20].

Let us focus on the late-time behavior of the electric
current, for which we can relate (26) to the Bogoliubov
coefficients computed in the last section. We restrict
again the analysis to an electric-pulse configuration (12)
with bounded asymptotic states. Introducing (16) in (26)
we have
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- o dk [k — gA o
hena [~ [EZ 0 2l 4 2Relaypie )

—00 2r Doyt

27)

It is easy to see that the terms which are independent of the
Bogoliubov coefficients do not contribute to the electric
current. One can derive this result by realizing that the first
two terms correspond to linearly divergent integrals, differ-
ing by a constant shift,

/‘mﬁ[ k—qAy k]
1 —w 27 [\/(k = qAo)* +m>  VI>+ m? T’
(28)

while the last term in (27) is a finite integral, which cancels
with (28). The second term in (27) depends on time and
produces oscillations of the form cos (2wy¢). In the limit
t — oo the Riemann-Lebesgue lemma ensures that the
integral in dk of this term vanishes. With the above
considerations, and using the symmetry properties of
|B|* [reflection under k — —(k — gAg)], one can rewrite
the expression of the electric current as follows:

o dk k
W~ [ g (B =1paP). (29)
This equation shows explicitly the close relation between
the density of created quanta and the electric current. The
first term accounts for particles and the second one for
antiparticles. In the adiabatic limit, and for massive
particles, the renormalized electric current also vanishes
since |B;|> — 0. However, the last result changes com-
pletely if m = 0. As we have shown, in the adiabatic
limit|8|> — 1 for k € (0, gAy). Therefore, the current at
late times for massless particles in the adiabatic limit is
given by

a*Ao

KLy (30)

<jx>ren ~ = P

As expected, a nonvanishing particle number (N}, even in
the adiabatic limit, induces an electric current different
from zero.

B. Energy density

The renormalized vacuum expectation value of the
energy density of a two-dimensional scalar field interacting
with an electric field is given by

odk | .
Tuhea = [~ [ + 07+ (= A P

2kgA 24242
gy 2KeA _mq }
[0)

e (31)

where /(1) are again the mode functions of the scalar field
and the three last terms account for the adiabatic sub-
tractions required by renormalization [19]. As for the
electric current, we will we focus on the late time behavior.
Plugging (16) in (31) and using the asymptotic expansion
for the functions /(z),

I:lk(t) ~ _i\/ (Houtake_iwomt + i\/ (‘)outﬂkeJriwomt’ (32)

we finally obtain

o dk
<T00>reu ~ / E |:4woutwk|2 + 2woul —2w

2,242
. 2kgA, _m quO} . (33)
@ @

Using the same arguments as in Sec. IIL A, it is easy to
see that the only term contributing to the energy density is
the one proportional to |$;|?. After some simplifications,
we get the relation between the energy density and the

particle number,

o dk
<T00>renN/ TWNkv (34)

where Ny = |B_i|* + |Bi|*. In the adiabatic limit, we get
|Bc|> = 0, and therefore (T),., — 0. Nevertheless, for
m = 0 there is indeed creation of energy. As we said, the
adiabatic limit for the massless case gives us a nonvanish-
ing |B|* for k € (0, gA). In this region, |$]> =1, and
therefore the created energy density is

242
q-A
<T00>ren Nz_ﬂ,o‘ (35)

IV. BREAKING OF ADIABATIC INVARIANCE IN
FERMIONIC PAIR PRODUCTION BY ELECTRIC
FIELDS IN TWO DIMENSIONS

Let us consider now a two-dimensional charged Dirac
field y interacting with an homogeneous, time-dependent
electric field. The corresponding Dirac equation is

(i" D, = my =0, (36)

where y* are the Dirac matrices satisfying the anticommu-
tation relations {y*,y"} = 2¢** and D, = 0, — iqA,. [We
follow here the convention that the electric charge of the
fermion is —¢g]. The electromagnetic field is assumed to be
an external classical field, while y is a quantized field
interacting with the classical electric background.
Assuming also that the electric field is described by the
potential A, = (0,—A(r)) in the appropriate gauge, the
Dirac equation (36) becomes
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(ir°dp + (i0, — qA)y' —m)y = 0. (37)

From now on we will use the Weyl representation (with

Y =7%".
o -1 0\
0 1

01 0 1
0_ 1 _
P=(V o) "=(5 )

We expand the field in momentum modes,

w(t,x) = /_ ” dk[Byug(1.x) + Divg(r.x)].  (38)

where the two independent and normalized spinor solutions

are
B eikx h{{(z)
uk([!x) - \/E (—hi[([)) (39)
_ e*ikx hl_lk*(t)
it =S () 0

By and D, are the creation and annihilation operators which
fulfill the usual anticommutation relations. The field
equation (37) is converted into

Iy — i(k + qA)hL — imhlf =0 (41)
W+ i(k + gA)h — imhl =0, (42)

and we have assumed the normalization condition
|L|? + |h{T|> = 1. Let us consider, as in the scalar case,
the electric pulse A(f) =1Ap(tanh(pr) + 1). With this
input the mode equations (41) and (42) can be solved
exactly in terms of hypergeometric functions,

0 — k(ﬂ) = (1 . A(r))
205, \ Ag Ag

Ag/2 —qAy/2
xF(iw‘+q o/ ,1+iw_ qAo/ ’

H(1) =

P P
m At
hil(l):— wm——’—k Iﬂ —i5 I_M iz
26Uin AO Ao
><F<l.w_—qA0/2 1+l~w—+qA0/2
P ’ » s
@ ALY w
p A

where @y, = VK> + m?, oo =/ (k+ qA¢)* +m® and

s =% (@oy = wj,). We have fixed the initial condition

in order to recover the positive frequency solution for a free
field at early times t — —oo,

; k .
W~ Din it 45
[0) o[22 (45)

At late times ¢ — +oo the modes can be written as

/ k + gA )
hi/u([) o~ Woy F (k+q O)erﬂwm“y
2woul

Doyt + (k + qAO)ﬁkeiwuult (46)

2wy

a, and S, are the Bogoliubov coefficients satisfying the
relation |ai|* + |¢]* = 1. These coefficients relate the
early time creation and annihilation operators By, D; with
the late time operators by, d; as follows:

by = By + D!, (47)
dy = a_ Dy -, BY,. (48)

The density of created quanta is given by N; =
(0[b} b |0) + (0d}d,|0) = ny + 7y, where ny = |f;]> and
fi;, = |B_|*. Therefore, the particle number is also

) =5 [ akmi= o [Tk P @9)

T J—co

The matching of (43)-(44) with (46) at late times deter-
mines the Bogoliubov coefficients. For the beta coefficients
we get

B = Woyg  Win—k F(l—i%)]‘(_i%)
o Win 0’0ul+k+qA0r(1 + i“L+ZA0/2)F(1 + l-m,—on/Z) .

(50)

And after simplifying, we obtain

cosh (27%=) — cosh (7 "TA")

2 sinh (# %) sinh (7 %)

1B* = (51)

Some representations of this expression are shown in
Fig. 5. As in the scalar case, the number of particles
decreases as p — 0 and increases as m — (. For fermions,
the relation |ay|*> + |B¢|* = 1 implies that |8;|> < 1 for any
value of k, according to Pauli’s exclusion principle.
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1812
(a) 1.0

— m/q=0.5, p/qg=10
—— m/q=0.5, p/q=3
— m/q=0.5, p/g=1
— ml/q=05, p/qg=0.2

\ 1 . . 3

-10 -8 -6 -4 -2 L 2 4 q

—9Ac

1817
(b)
0.8
— mlq=1.5, p/g=1
06 — mlq=1, plq=1
— ml/q=0.5, p/g=1
0 — mlq=0, plg=1
T ra ]

—-9Ao

FIG. 5. Momentum distribution of the created fermions with positive charge at late times |;|* by an electric pulse with Ay = 5 and
different values of m/q and p/q. In Fig. 5(a) the mass is fixed, while in (b) the parameter of adiabaticity is fixed. Note that the relative
position of the of the curves |3;|?> with respect to the vertical axis is different to the scalar plots because of the opposite convention for the

electric charge, as explained in the main text.

In the massless case, irrespective of the value of p, one
obtains [see Fig. 5(b)]

lim A = 1 (52)
m—0
for k € (0, gAg), and hence,
0 for k —qgAy, gA
Nk:{ ﬁ(CIOQO). (53)
1 for ke (—qu, qu)
The total density of created quanta is
1 [laAdl A
<m:—/“&m:ﬁﬁ (54)
27 =lqAo| ”

Note that the same result is obtained by performing the
adiabatic limit p — 0 in the scalar case. In contrast, this
result is valid for any value of p, which means that the
number of created massless fermions does not depend on
the history of A(r), but only on its final value. This
nonvanishing result of the particle number implies again
the breaking of the adiabatic invariance.

For massive fermions and in the limit p — 0, expression
(51) behaves essentially as

Bl ~ e, (55)

where 6 = 2w, —|qAq|. For m #0, the former has a

.. A .
minimum  at k= -%° with a value &y, =

V/(qAg)? +4m? — |gA,| > 0. Hence, >0 and |B;|>—0,

as we can see in Fig. 5(a). Therefore we can conclude that
the particle number is an adiabatic invariant for massive
fermions, as in the scalar case. To visualize this behavior,
we have depicted in Fig. 6 the dependence of the total
density of created particles on the parameter p. We can also
observe that the density of quanta in the massless case does

not vanish and, in contrast to the scalar case, it remains
constant, according to the above calculations.

A. Electric current

Using the renormalization method described in
[17,21,22] for a Dirac field interacting with an homo-
geneous time-dependent electric field, the vacuum expect-
ation value of the electric current j* = —qy*y is given by

. q k  qm?
Ghen =5 [ k(1P =i = £ -2 ). (50

To study the explicit dependence of the electric current (j*)
with the mass, we can compute their time derivative,

2 .
0 Yen = 2 ( / Im(hghmdk) i o7

It is immediate to see that in the massless limit the first term
vanishes, and the equation below can be easily integrated.
With A(—oc0) = 0 as initial condition one obtains

<N>

— miq=15

— m/q=05
— miq=02
0.5 — m/q=0

2
1 2 3 4 5 9

FIG. 6. Number of late-time created fermions as a function of
the dimensionless adiabaticity parameter p/q, for Ay = 5 and for
different values of the mass.
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A1)

(jx>ren == (58)

Note again that at each instant 7, the value of the electric
current depends only on the value of the potential vector
A(r) at 1, and not on its history. This contrasts with the
behavior of the created current for a massive field, since /4
and h depend on the particular shape of the electric pulse.
In the latter case, and assuming the electric pulse configu-
ration given in (12), it can be proven by using the
Bogoliubov coefficient (51) and repeating the same calcu-
lations done in Sec. III A that the electric current vanishes
in the adiabatic limit. The analysis of the renormalized
energy density can be carried out analogously, and it leads
to a similar physical conclusion.

As a final comment, and for completeness, we remark
that in the massless case, one can directly solve the
semiclassical Maxwell equations for the electric field
E=—{j Y ren- Assumlng, for instance, the initial conditions
A(0) =0 and A(0) = —E, the previous equation can be

easily integrated, with solution E(f) = E, cos(l;l‘- ). We

find harmonic oscillations with frequency l;”; This is

consistent with the well-known fact that radiative correc-
tions to the Schwinger model induce a mass for the
“photon”, with a value m? = ¢*/x [12,23].

B. Relation with the axial anomaly

We have found that the expected adiabatic invariance of
the particle number observable fails for a massless Dirac
field. This is accompanied with a nonvanishing electric
current, even in the adiabatic limit, as can be read from (58).
Furthermore, this result brings about a creation of chirality
as a consequence of the fact that, in two-dimensions, the
axial current j§ = yy'ydy is related by duality to the
electric current (j,) e, = g€, (/%) en- Hence, the result (58)
implies the axial anomaly [24],

8/4 (J?)ren = _ieﬂuF . (59)
2r s

In fact, one can also interpret the breaking of the
adiabatic invariance as a natural and necessary consequence
required by the axial anomaly. We remark that the loss of
the adiabatic invariance of the particle number for a scalar
field in two-dimensions, which coincides quantitatively
with the result for fermions, can also be naturally inter-
preted in the language of anomalies. In two-dimensions, a
massless scalar field inherits a classical chiral-type sym-
metry, in the sense that the classical wave equation splits
into two disconnected sectors: right and left-moving
degrees of freedom, as the fermionic two-dimensional
field. The corresponding right and left electric currents
are, in the adiabatic limit, separately conserved in the
classical theory. However, in the quantum theory these

currents also cease to be conserved. The creation of right
and left electric currents in the quantum theory is exactly
the same for massless scalar and Dirac fields in the
adiabatic limit, as can be easily observed from (58)
and (30).

V. GENERALIZATION OF PREVIOUS
RESULTS TO 4D

In the previous sections we have shown that the particle
number operator is not an adiabatic invariant for two-
dimensional massless fields. Here, we extend our analysis
to four dimensions for both scalar and fermionic fields. We
briefly study whether the breaking of the adiabatic invari-
ance could also happen in electric and magnetic back-
grounds.

A. Scalar field

Consider now a charged scalar field obeying the wave
equation (D,D* + m*)¢ = 0, where we assume an homo-
geneous electric pulse defined by the vector potential A, =
(0,0,0,—A(t)) with A(r) given again by (12). The Fourier
expansion of the quantized field is

P(1.3) = r[Aze (1) + Ble ™ h (1)),

Wl

(60)

The mode functions #h;(f) satisfty the normalization

condition h,;iz% - h]i;h,; = 2i, and their time evolution is

given by

he(t) + (m* + k3 + K3 + (ks — gA(1))})hz(t) = 0. (61)

This equation is very similar to the one found in the two-
dimensional case (10). It allows us to partially reduce the
four-dimensional problem to a two-dimensional one, by
introducing an effective mass m2; = m* + k3 + k3.
Therefore, the beta coefficients can be obtained from
Eq. (22) replacing k by k3 and m by mg.

According to our previous results for scalar fields, only
for m = 0 and k; = 0 = k, one can have a nonvanishing
|Bx|? in the adiabatic limit. However, since k; and k, are
continuous quantum numbers characterizing the modes, the
amount of created particles (N) ~ [ d®k(||* + |B_i|?) is
diluted into the infinite- Volume of the unbounded three-
dimensional space. Therefore, the total number density of
produced particles turns out to be an adiabatic invariant.

This result cannot be altered by the introduction of a
magnetic field. Adding a constant magnetic field B in the
z-direction and choosing A, = (0,0, —Bx',—A(r)), the
Fourier expansion for the scalar field is
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= 1 f (ko 4y i : «
$(t.%) ZWZ/ / dkydks[A, 1, 1, €D, (xR (1) + B foky© <kzxz+k“3)q)n‘—kz(xl)hn,_zq(t)}, (62)

where

q)n,kz (xl) = (ﬁ) " 1 ! e_I:Z/an (f)7 (63)

T 22\/}5

&= /qB(x"' —k,/qB), and H, (&) are the Hermite poly-
nomials with n =0, 1,2, .... For simplicity, and without
loss of generality, we have assumed gB > 0. The time
evolution is given by

By + (m* + (2n + 1)gB + (ks — gA(1))?) i (1) = 0.

(64)

From the two-dimensional viewpoint, the effective value of
the mass, given now by mZ; = m*>+ (2n+ 1)gB, is a
positive quantity, even for m = 0 and n = 0. Using again
the result of Sec. IIl we can similarly conclude that the
particle number, defined now as

/ dk% n.ks
n=0 *

/ k(1B + Bucss ). (65)

nO

is also an adiabatic invariant for a scalar field in four
dimensions, regardless of the value of the mass, given that
|ﬂ,,‘k3|2 — 0. This is in sharp contrast with the result
obtained for a massless scalar field in two dimensions.
Note that for a scalar field in four dimensions there is no
analog of the axial anomaly.

B. Dirac field

We can repeat the analysis for Dirac fermions. For
massive fermions adiabatic invariance is preserved.
Therefore we will focus on the massless case. In the latter,
one can split the Dirac spinor in two independent chiral
parts y = (5;) For the left sector the Weyl equation reads

Ooowr — GD y;, = 0. Considering an homogeneous electric
pulse with vector potential A, = (0,0,0, —A(r)) given by
(12), the Fourier expansion of the quantized field is

v (1,F) = / KB (1. %) + Divg(t D). (66)

The two independent and normalized spinor solutions
can be expressed as

up (1, %) =

o5 g (k= ikg)hL(r)
(27r)3/2kL< ko hY (1) > ©7)

— iky) bl
vglt.3) = kZ)h"‘(l)), (68)

o ikx (k
(22)7%k,, ( kLR (1)
where k; = \/k? + k3. The equations for the modes are

h = i(ks + gA)ht
I+ i(ks + qA)hl! —

ikj_h%l = O
ik kL = 0. (69)

These equations are similar to the ones found in the two-
dimensional case (41) and (42), with an effective mass
me = k. Hence, the beta coefficients are given by
Eq. (51) with the obvious replacements. As in the scalar
case, only for k; = k, = 0 one can have a nonvanishing
beta coefficient in the adiabatic limit; therefore the amount
of created particles is diluted and the total number density
of produced particles is an adiabatic invariant. However,
this is no longer true in the presence of a magnetic field.
Adding a constant magnetic field B in the z-direction and
choosing A, = (0,0, Bx!, —A(1)), the generic form of the
modes for a massless field is

(ko +hs3c) n k3(l)q)n 1\7( )
T (—mz,kx poaet)

eilkaX k) ( e (D@, g, (x1) )
2n lhi:—k}(t)q)n*l,fkg(xl) '
(71)

Uy iy (1, X)

Uty sy (1. X) =

where @, ;. is defined as in the scalar case (63). The time
evolution of the modes is given by

—iy/2ngB hfllkZ =0
i\/2ngBh! i = 0. (72)

In this case, we can identify the effective mass as
m2y; = 2ngB, which vanishes at n = 0. Therefore, in the
adiabatic limit, the beta coefficients |f,, 4, |* [we recall they
can also be obtained from the two-dimensional analog (51)]
vanish for any value of n except for n=0. Since
N) ~>, [dks(|B 1, |* + |Bu-,]?), the particle number
tends to a nonzero value because the discrete state n = 0

h, & —i(ks + qA)h, &
iln k; (k% + qA hftlk
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survives after summation. This contrasts with the previous
case in which the mode k; = k, = 0 was diluted after
integration. Hence, the particle number (N) is no longer
adiabatic invariant.

This result is also linked to the axial anomaly, as happens
in two dimensions. Note that in four dimensions the
anomaly is only nonzero when both electric and magnetic
fields are present. As in the two-dimensional case, the
adiabatic anomaly must be reflected in the electric current
(j*) = —q{@y*w) and also in the chiral charge density
(j%) = (py°r w). Repeating the previous analysis for the
right part y; and computing the formal vacuum expectation

value (j*) one finds

>
o q4B [
(j5) = s / dks (il [P = |hi,?)

2 00
9B o
P9 [ P 03)

From this result one can easily see the special role of the
n = 0 modes, which are the only ones contributing to the
breaking of the adiabatic invariance. Although in the most
general case all the modes contribute to the electric current,
in the adiabatic limit the contribution of the modes with
n > 0, for which my # 0, will vanish, as happens in the
two-dimensional case. This gives us a lower bound for the
current. On the other hand, by looking at the chiral charge,

o0 _ 9B [ I 2 o
(J3) = a2 dks(1hg 11> = 1o 1%) (74)
one realizes that only the mode with n = 0 creates chirality,
even in a nonadiabatic regime. Furthermore, it is immediate

to see that the lower bound of the electric current is given
by <jz>min = _q<Jg>

Note that (74) can be renormalized using the adiabatic
prescription in two dimensions [see Eq. (56)] and the
result is compatible with the axial anomaly (j2),,(1) =

—% ' df'E(¢')B. Tt can be easily argued that a similar
result can also be obtained for a time-dependent mag-
netic field.

VI. CONCLUSIONS

We have reexamined the adiabatic invariance of the
particle number operator of quantized fields in two dimen-
sions coupled to a background electric field with bounded
vector potential. We have pointed out that, for massless
fields, the expected adiabatic invariance fails. This fact is
accompanied by the emergence of the axial anomaly in two
dimensions. In other words, the breaking of the adiabatic
invariance (pair creation even in the limit p — 0) is required
to keep physical consistency with the axial anomaly. We
have also shown that the breaking of the adiabatic invari-
ance is also reproduced for a massless Dirac field in four
dimensions, but requiring the presence of electric and
magnetic fields, showing up again a deep connection with
the axial anomaly.
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The adiabatic regularization method was originally proposed by Parker and Fulling to renormalize the
energy-momentum tensor of scalar fields in expanding universes. It can be extended to renormalize the
electric current induced by quantized scalar fields in a time-varying electric background. This can be done
in a way consistent with gravity if the vector potential is considered as a variable of adiabatic order one.
Assuming this, we further extend the method to deal with Dirac fields in four spacetime dimensions. This
requires a self-consistent ansatz for the adiabatic expansion, in presence of a prescribed time-dependent
electric field, which is different from the conventional expansion used for scalar fields. Our proposal is
consistent, in the massless limit, with the conformal anomaly. We also provide evidence that our proposed
adiabatic expansion for the fermionic modes parallels the Schwinger-DeWitt adiabatic expansion of the
two-point function. We give the renormalized expression of the electric current and analyze, using
numerical and analytical tools, the pair production induced by a Sauter-type electric pulse. We also analyze
the scaling properties of the current for a large field strength.

DOI: 10.1103/PhysRevD.101.105014

I. INTRODUCTION

The landmark work of Heisenberg and Euler [1], moti-
vated by earlier work of Sauter [2], established the instability
of the quantum vacuum under the influence of a prescribed
(slowly varying) electric field. If the field is sufficiently
strong, real electron-positron pairs can be created. This
result was reobtained by Schwinger in the modern language
of quantum electrodynamics by finding a positive imaginary
contribution to the effective action W. The quantity e=>"W
represents then the probability that no actual pair creation
occurs during the history of the field [3].

The quantum mechanism driving the spontaneous cre-
ation of particles by a gravitational field was discovered by
Parker in the early sixties by studying quantized fields in an
expanding universe. The crucial fact is as follows [4]:
creation and annihilation operators evolve, under the
influence of the expansion of the universe (or a generic
time-varying gravitational field), into a superposition of
creation and annihilation operators. During a cosmic period
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when the expansion factor is almost constant one can
interpret the effect of the gravitational field on the particle
number and unambiguously establish the spontaneous
creation of real particles by the evolving gravitational field.
Major applications of this remarkable phenomena occurs
in the very early universe [5,6] and in the vicinity of a
collapsing star forming a black hole [7]. These pioneer
works on particle creation launched the theory of quantum
fields in curved spacetime, as a first step to merge gravity
and quantum mechanics within a self-consistent and
successful framework [8—11]. The underlying machinery
was also employed to study time-varying electromagnetic
fields [12,13]. In the limit of a slowly varying electric field
the Schwinger result can be recovered.

In the gravitational scenario, the most relevant physical
observable is the energy-momentum tensor. Its vacuum
expectation value (7,,) possesses ultraviolet (UV) diver-
gences and has to be regularized and renormalized. In the
seventies many methods were proposed to this end, as
explained in the monographs [8—11]. For homogeneous,
time-dependent spacetimes a generic expression for (7,,)
was obtained for scalar fields within the so-called adiabatic
regularization scheme [ 14—18]. The adiabatic method uses a
mode by mode subtraction process, naturally suggested by
the definition of a single-particle state in an expanding
universe, and in such a way that preserves the basic
symmetries of the theory. Furthermore, the adiabatic method
has been proved to be equivalent to the point-splitting
Schwinger-DeWitt renormalization scheme [15,16,18].

Published by the American Physical Society
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The adiabatic expansion of the field modes parallels the
Schwinger-DeWitt adiabatic expansion of the Feynman
propagator in  Friedmann-Lemaitre-Robertson-Walker
(FLRW) spacetimes. The advantage of the adiabatic regu-
larization method is that it very efficient to implement
numerical computations, and it is widely used in cosmology.
It has been recently extended to spin-1/2 fields in FLRW
universes [19,20].

As mentioned above, the analysis of particle creation by
time-varying electric fields can be carried out using the
techniques first proposed to treat curved backgrounds. The
electromagnetic field is considered as an external, unquan-
tized background, while the created particles are excitations
of the quantized matter field. From the experimental side,
this particle production effect is also of special interest
since it may not be far from being experimentally detected
in high intensity lasers [21], and in beam-beam collisions
[22]. This effect is also very important in astrophysical
[23,24] and cosmological scenarios [25-27], and in non-
equilibrium processes induced by strong fields [28]. In this
context, the most important physical local expectation
value is the electric current (j,), which also possesses
ultraviolet divergences and has to be renormalized in a
proper way. Recent discussions on foundational issues
related to the particle number density of the created
particles, adiabatic invariance, and unitary evolution can
be seen in [29-31].

Due to the similarities with the gravitational case, it is a
good strategy to readapt the adiabatic regularization scheme
to the case in which the external background is an electric
field. This program was initiated in [32,33] to study back-
reaction problems when the matter field is a charged scalar
field. It was further extended to treat charged Dirac fermions
[34]. It was assumed that the adiabatic order of the vector
potential A, is 0. The problem was reconsidered for a
charged scalar field in [35] by assuming that the adiabatic
orderof A, is 1, instead of zero. This new reassignment of the
adiabatic order for A, is an unavoidable requirement in
presence of a gravitational background. The argument was
reinforced in [36,37] on the basis of the covariant con-
servation of the energy-momentum tensor. The adiabatic
regularization of two-dimensional fermions incorporating
the adiabatic order assignment 1 for A, has been further
reanalyzed in [31,35,38]. Other renormalization methods
have been generalized to incorporate an electromagnetic
background, as for instance the Hadamard point-splitting
method for complex scalar fields [39,40], with results in
agreement with [35].

Within the above context, it seems natural to extend the
adiabatic regularization/renormalization method, with the
assumption that A, is of adiabatic order 1, to Dirac fields in
presence of an electric field background in four spacetime
dimensions. This is the main aim of this work. As stressed
above, previous studies in the literature on this problem
[34] assumed that A, is of adiabatic order 0. This extension

requires a self-consistent ansatz for the adiabatic expansion
of the field modes. We give a proper ansatz, which cannot
be fitted within the Wentzel-Kramers-Brillouin (WKB)-
type expansion used for scalar fields [8,10,11]. Our
extension of the adiabatic method is in agreement with
the trace anomaly. Even more, we provide strong evidence
that our adiabatic expansion of the field modes parallels the
adiabatic Schwinger-DeWitt expansion of the propagator.
In addition to the trace anomaly, our adiabatic expansion
also reproduces the DeWitt coefficient E3, at sixth adiabatic
order. We carry out the adiabatic renormalization and
provide a general expression for the renormalized electric
current. We illustrate the power of the method by studying
with detail a Sauter-type electric pulse.

The paper is organized as follows. In Sec. II we will
describe the status of adiabatic regularization when a time-
varying electric field is part of the background. We will give
strong reasons for adopting a new viewpoint and reprehend
the problem of the adiabatic regularization of charged 4d
fermions in time-dependent electric fields. In Sec. III we
introduce the basic ingredients of our ansatz to construct
the adiabatic expansion of the four-dimensional fermionic
modes coupled to a prescribed time-dependent electric
field. Section IV is devoted to explain the details of the
adiabatic renormalization procedure in this context. In
particular, we give a generic and explicit expression of
the renormalized electric current. We also test the consis-
tency of the method and discuss some intrinsic renormal-
ization ambiguities. In Sec. V we study the particular case
in which the background field is a Sauter-type electric
pulse. We analyze the particle production phenomena in
terms of the renormalized electric current. We also discuss
the scaling properties of the created current. In Sec. VI we
state our main conclusions. Our work is complemented
with a series of appendices where we give technical details.
‘We also discuss in the Appendix B the connection between
the adiabatic method and the Hadamard renormalization
scheme for charged scalar fields.

II. BACKGROUND AND MOTIVATION

To motivate the main idea of this work it is very
convenient to present the status of the adiabatic regulari-
zation method for a charged 4-dimensional scalar field
interacting with a classical, homogeneous, time-dependent
electric background. We will assume that the electric
field is of the form E = (0,0, E(r)) with potential vector
A, =(0.0,0,-A(r)). We will also assume that the
spacetime is described by a FLRW metric of the form
ds?> = dr* — a®(t)dx*. The Klein Gordon equation reads

(D,D" +m> + £R)¢p = 0, (1)

where D,¢ = (V, +iqA,)¢ and R is the Ricci scalar.
Since the potential vector A, is homogeneous, one
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can expand the scalar field in modes as ¢ =
1 3 iK% —ik % g
\/mfd k(Age™ hy + Bre™ *h*.), where the mode

functions h;(t) satisfy

b+ (a72(ks + qA)? + a2k} + m* + o)h; =0, (2)

with 6= (66-3/4)d/a*+ (6£—-3/2)d/a. Once we have
obtained the mode equation (2), we can make an adiabatic
expansion of the field modes. To this end, one can propose
the usual WKB ansatz

1 i Q-
he — e—IjQA(t)dt’ (3)

IV

where W, can be expanded adiabatically, in powers of
derivatives of a(t) and A(r), as Q; = > % o,

The choice of the leading terms »©) is a crucial ingredient
to define the adiabatic expansion. For A = 0 the proper

choice for @ is @) = @ = \/k*/a* + m?. This defines the

conventional adiabatic expansion for a scalar field, as first
introduced in the pioneer works [14]. When the background
spacetime is Minkowski a = 1, the choice proposed in [32]

(k = gA)? + m?. This choice assumes that
A(r) should be treated as a variable of zero adiabatic order,
like a(r). As noted in [35,36], this choice runs into
difficulties in presence of a gravitational background. It
was proposed in [35,36] that the leading term should be
0)

wasw® = @ =

maintained as »®) = w = /k*/a® + m?, even in the pres-
ence of an electromagnetic field. This means that A(7) must
be considered as a variable of adiabatic order 1, like &. Hence
A is of adiabatic order 2, etc.

Next to leading order terms can be obtained recursively
from (2). The adiabatic expansion allows us to regularize
the observables performing adiabatic subtractions. Since
the first terms of the adiabatic expansion capture all
potential ultraviolet divergences, one can subtract them,
obtaining finite and meaningful results. With this method,
we obtain the following vacuum expectation value of the

two point function

W Prn = 5z | S = @O @

2(2za(t))?

5 0-2 —1\(n
where (7)™ = Y72 (@),

As stressed in the introduction, the adiabatic expansion
of the field modes translates into an adiabatic expansion of
the two-point function. The latter turns out to be equivalent
to the Schwinger-DeWitt expansion of the Feynman
propagator (T¢"(x)¢(x')). We will show this explicitly
at the coincident limit X' — x at fourth and sixth adiabatic
orders. At fourth adiabatic order the corresponding momen-
tum integral is finite and we get

3 4
A e R
1 36a2&%d  17a%¢d  294%d
~1622m? ( PO 154°
. 18£2¢* _ﬁ 3d®  18a*&? _&45
a’ a*> 104’ at a*
a®e @t a® A2q2 3a®ag 3a¥a
a 2d* 54 642 d* 542 )

(5)

It is not difficult to check that the above result can be
reexpressed in the following covariant form

R (©
where E, matches exactly the DeWitt coefficient [41]
E, = —iIZIR +iR2 —LR“”R v+ LR“”””R o
30 72 180 7180 i
—?—;F””FW+%Q2—%RQ+éDQ. (7)

In the above expression Q is given by Q = £R. We note
that, to obtain equivalence with the Schwinger-DeWitt
proper-time method it has been essential to assume that
A, is of adiabatic order 1, F w of adiabatic order 2, etc.
With the zero adiabatic order assignment for A, one obtains
a noncovariant and ill-defined expression for (¢%¢)®.

With our proposed leading order choice for 0 = @ =

\/K*/a* +m?* we find equivalence with the Schwinger-

DeWitt expansion at very nontrivial higher orders. For
instance, our calculation for (¢¢)© gives
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W = 5grar [ FHO D

159426 A’eqRi

B 108a4§3a+96a4<§2a 27a¢a 1974%a 108428

15288 221288
> - - +

a’ a’ 10a® 140a° a* a 10a* 70a* a
aAgta 23A%Pa 368d 24a®afa 12824 133a®aca 3ead 103a®aa 14 gra?
0d s | & @ & 104 5a°  60a® 4543 20a®
_6a¥@a 17a%ea 43aWa  36a°8 N 645¢2 N ¢ a9¢ i . 30 PAP 31PAG
a? 1042 4204 a® a®  10a  6a®  140a a* 1804*
AA® G 24948 3484 643 6aWare? 7a®dde 31aWare 13a¥a 23aW a2
I T T T R R T 140a* 604’
(3))2£2 (3))2 (3)\2
B 3(aa2) : + 7(i10ag : B (ZZal ’ ®)

where a refers to d"a/dr". The result turns out to be
proportional to the corresponding DeWitt coefficient of
sixth adiabatic order E; [42,43]. The covariant expression
is given in the Appendix A.

We stress again that it has been crucial for obtaining the

above results the choice ®© =w=1/k>/a®+m?, instead
of ) = w = 1/(k — gA)?/a® + m>. For completeness, a

comparison of the above formulation of the adiabatic
regularization with the Hadamard renormalization scheme
is given in the Appendix B.

A. Adiabatic regularization for fermions
in two-dimensions

To reinforce the previous analysis, and prior to face the
adiabatic regularization of charged fermions in four space-
time dimensions, it is also convenient to consider the
problem for a charged Dirac field in two-dimensions.
We will follow [35,36] and compare the results with the
pioneer analysis in [34]. The comparison will allow us to
understand why it has been necessary to reprehend the
problem, as already stressed above.

The quantum field satisfies the Dirac equation
(iyD, —m)y =0, where D, =V, —T, —iqA, and T,
is the spin connection. The curved space Dirac matrices
satisfy the anticommutation relations {y,y*} = 2¢".
We assume a homogeneous, time-dependent electric
background E(r), with associated potential vector A, =
(0, —A(1)). The metric is also assumed of the FLRW form
ds*> = dr* — a*(t)dx*. One can expand the Dirac field as
w = [ dk[B.u(t,x) + D v;(x,1)], where the two inde-
pendent spinor solutions can be written as

(hm
V2za \—hl (1)

u(t,x) =

), k(zx)m;(iujﬁ )
(9)

I

The classical electric field satisfies the semiclassical
Maxwell equations V,F* =—q(ry"y)en = (J*)ren» Which
in our system turns out to be a single equation
E = —(j"),p. In this scenario the adiabatic rules are
univocally fixed: a(z) has to be considered of adiabatic
order 0, the energy-momentum tensor must be regularized
up to the second adiabatic order and the electric current
must to be regularized up to the first adiabatic order. The
adiabatic subtractions required to regularize the electric
current (j*) will be different depending on the adiabatic
order that we choose for the background field A(?), i.e.,

S\ A~O(0 " dk
G = [ (1P - i
k+gA )

A~ " dk k  m?qA
s = [ —(\h,i'P—w—ﬂ : ) (1)

2ra aw  aw

(10)

where @ = \/k?/a* + m?. In (10) we have considered A of
adiabatic order zero, while in (11) we have considered it of
adiabatic order one. One can check that the subtractions
obtained in the first case are the same to the ones obtained
in [34] for a = 1. Although it can be proven [37] that these
two choices are equivalent when a = 1, in the sense that
DG oy = ()00 _ "‘)ANO(I) = 0, they are in general
J" Jren J" Jren J" )ren s Yy g

nonequivalent. We can see how gravity breaks this equiv-
alence. In the second case we can easily see that the energy
density is covariantly conserved

V#<T”O>

+V, T = E(E+ () =0. (12)

ren
But, when we consider A(z) of adiabatic order 0, the
conservation does not hold any more, and one finds

Vo (TH), 0 + YV, T ~ E() ()@, where (7)) is the

ren 1 elec

105014-4



ADIABATIC REGULARIZATION FOR DIRAC FIELDS IN ...

PHYS. REV. D 101, 105014 (2020)

subtraction term of adiabatic order two, which cannot be
properly absorbed into the definition of the electric current.

Moreover, only when A is considered of adiabatic order
1 the adiabatic expansion of the field modes turns out to be
equivalent to the Schwinger-DeWitt expansion of the two-
point function. For instance, the adiabatic expansion of the
two-point function at coincidence is found to be (at second
and fourth adiabatic order)

1 a trE
) = — (2} ==L 13
) 4zm (3(1) “dnm’ (13)
)@ = 1 a’i n a2 a® 2422 a®a
T dam? \ T304 T 1547 30a | 3 30d7
trE,
=- , 14
dzm? (14)

where E| and E, are the corresponding DeWitt coefficients.
They are given, in the covariant form, by [8,42,43]

1
Ey =ZRI-0Q.

; (15)

1 1 1 1
Ey=(=2-0R+ - R* = R“R,, +—R""R,,,, |1
2 ( 30 % TR0 AT ””/’")

1 1
ww 1 2_7 Z
+12W w, +2Q 6RQ+6DQ,

(16)
where Q=1RI—iqF, r"y" and W, =—iqF ,,I=1R,,,,7"7".

The above arguments make it necessary to reconsider the
problem of adiabatic regularization for fermions in time-
varying electric backgrounds in four dimensions. We will
adopt the view of considering A, of adiabatic order 1, as
advocated in [31,35,36,38], and in contrast to the view
adopted in [34]. The main reasons, as exposed above, are
(i) expected agreement with the Schwinger-DeWitt adia-
batic expansion of the two-point function at coincidence;
(i1) consistency with the covariant conservation of the
energy-momentum tensor when gravity is turned on. We
think these are convincing arguments to go further with our
proposed approach. For simplicity we will restrict our
analysis to Minkowski spacetime.

II1. 4D DIRAC FIELDS: MODE EQUATIONS,
ANSATZ AND ADIABATIC EXPANSION

Let us consider a massive 4-dimensional spinor field y
interacting with a prescribed electric field. The correspond-
ing Dirac equation reads

(iy"D, — my =0, (17)
where D, =0, —iqA, and y* are the (flat-space) Dirac
matrices satisfying the anticommutation relations {y*, y*} =
2n. We consider y as a quantized Dirac field, while the

electromagnetic field is assumed to be a classical and
spatially homogeneous field I_f(t) =(0,0,E(1)). It is very
convenient to choose a gauge such that only the z-component
of the vector potential is nonvanishing: A, = (0,0,0,—A(1)),
where E(1) = —A(r).

To prepare things to propose a consistent ansatz for
the adiabatic expansion of the field modes it is very
important to transform the Dirac field as y' = Uy, where
U is the unitary operator U = \%yo(l —73), which verifies
U=U"=U"". This transformation will allow us to
express the Dirac field in terms of only two time-dependent
functions [see (20)]. The field y’ obeys the Dirac equation
for the transformed matrices y* = Uy*U", namely: y° =
]/3]/0’ yll — —]/3]/1, }/2 — _},37/2’ yIS — _},3. Substituting
them in the Dirac equation we easily get
[°0y = v'0y = 1?0, — 95 — iqA(1) — (18)
V(E) =
, we obtain the following equation

imy3y’ = 0.

the field
tk)c

Expanding in Fourier modes,

f (2”)1/2 W

(00— iy (k7' +kay? +my®) —i(ks +qA (1)) lw'(1) =0
(19)
where k = (k;. k. k3). The form of the above equation

allows us to reexpress the field in terms of two-component
spinors as follows

-,

( B0, () )
v (1) = .
' W (1) ()

where 7, with 4 = 41 form an orthonormal basis of

(20)

-sDi =8, » ifying ko' thdltme®
two-spinors (17,17 =8, y) verifying W e n, = An,.
Their explicit expressions are

> 1 K+m
 ——)
2k(k + m) \ ky + ik,
. 1 —ky + ik,
n-1(k) =7( : (21)
2k(Kk + m) K+m
where k = \/k? + k3 + m?. Substituting (20) in (19) and

using the Dirac representation for the matrices y*, one
obtains the following differential equations for the func-
tions AL and Al
k k
_—
h]: — l(k3 + qA)h]'; -

ikhi! =0, (22)

he! + i(ks + gA)hl! — ikhl = 0. (23)
These equations are exactly the same as those obtained in

the two-dimensional case [35], where k plays here the role
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of the mass. With the solutions of these equations we can
construct the u-type field modes (assumed to be of positive
frequency at early times) as follows

GiE (IO (R) "
)2\ hl (1yany (%) )
Similarly, one can construct the orthogonal v-type field
modes (of negative frequency at early times) as

o-ik5 [ —h"(1)_y(=K)
o o)

_hl_*,;(T)/lﬂ—/l(_
The normalization conditions for this set of spinors

(MEA’UP,A’):O’ (”}Zjv k;J) (1}]\1’ ky) 5 (k k)EM’
where (,) is the Dirac inner product, are ensured with
the normalization condition

ug, (x) =

v, (x) =

=1
N

AP+ [P = 1, (26)

which will be preserved on time. With this set of basic
spinor solutions one can construct the Fourier expansion of
the Dirac field operator

9= % [ Pilb )+ D, @7

where Bj, and Dy, are the annihilation operators for
particles and antiparticles respectively. The normalization
condition (26) guaranties the usual anticommutation rela-

tions for these operators: {By , BE 1’} = {DIE,A‘D/L(’W} =

SEk-K )8,.»» and all other combinations are 0.

A. Adiabatic expansion

Armed with the above results we can determine a
consistent adiabatic expansion of the four dimensional
Dirac field modes interacting with the prescribed electric
background. Based on the two dimensional expansion
given in [35], and taking into account that the positive-
frequency solution with vanishing electric field, in the
representation associated to v/, is given by

lw — k .
hllz(O) — wzw 3e—lmz" (28)
11(0 o+ k —zw
h/;( = V2w 0 ¢ (29)

with @ = \/____Ki we propose the following ansatz for
the field modes:

h{ _ = kiF( ) —lf Q(r )dt
k _
h” w;’;} 3 I Q(l (30)

where the complex functions F(z) and G(f) and the real
function Q(r) are expanded adiabatically

)

Q) => "),  Ft)=Y Fu(),
n=0 n=0
=G (31)
n=0
Here, Q" F(") and G are functions of adiabatic order n.

The adiabatic order of a given function will be determined
by its dependence on the potential vector A(7) and its
derivatives. In order to recover at leading order the exact
solution with vanishing electric field A(¢) = 0 we demand
FO = GO =1 and »® = . With this condition we are
implicitly fixing the adiabatic order of the potential vector
A(f) to 1, hence, A(r) and A(r)? will be of order 2, A(z),
A(1)A(t) and A(1)® of order three and so on. For a detailed
discussion on the adiabatic order assignment see [36].

Plugging the ansatz (30) in the mode equations (22)
and (23) and also in the normalization condition (26)
we get a system of equations for the functions F(t), G(r)
and Q(1)

(0 = k3)(F = iQF — i(ks + gA)F) + ik*G = 0, (32)

(0+k3)(G—iQG +i(ks +qA)G) +ix*’F =0,  (33)
Cl)—k3 2 w+k; 2
g FP+— =16 =1 (34)

In order to obtain the expressions of the adiabatic terms
o™, F and G™, we introduce the expansion (31) into
Eqgs. (32), (33) and (34) and solve them recursively, order
by order. Note that G(ks, gA) satisfies the same equations
as F(—k3, —qA), hence we take G(k3, gA) = F(—k3, —qA).
The system can be solved algebraically by iteration and the
general solution is given by

ks) = _
w(,,) (602 3 |: nl wn ,)F(l qAFE;n 1):|
i=1
k
+(w+ 3) |:G(n 1) an i )—|—qAG(" 1)]
2w —
(35)
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k Lo n—1
o _ (@1 k) {Fﬁv" DS - FD — gARE

4w? p
i=1

n—1
_ G'E)n—l) + Z w(,,l_,‘)GECt) _ C]AGSCH_I)]

(@ —k3) < FOF0=) 4 0 plo=D
- Fy Fy
4w ;( + )
k n—1 . ; . »
_(w;;) 3)Z(Gi’)G§" )4 GG, (36)

i=1

n—1
) ) (@=k3) [+ -n) (i) (1) (n—1)
=Gy ———2|F} Fy AFy s
y y P +;w v T aAky

(37)

where we have parametrized F and G in terms of real
functions as F = F + iF, and G = G, + iG,. Note that
there is an ambiguity in the imaginary part (37). However, it
disappears when computing physical observables. Further
discussions on this issue are given in [20]. For simplicity
we choose

H =~

—k L n—1 ) . B
_ _(wZKzs) [Fﬁ" Dy S w01 4 gary).
p

(38)

With the initial conditions Fy o _ Gio) =1, Ffvo) = GSO ) — 0
and @® = @ and by fixing the ambiguity according to
(38), the solutions for the adiabatic functions F' () G and
™ are univocally determined. In Appendix C we give the
four first terms of the adiabatic expansion.

IV. 4D DIRAC FIELDS: ADIABATIC
REGULARIZATION/RENORMALIZATION

In this section we will carry out the detailed renormal-
ization of the vacuum expectation value of the electric
current (j#) = —q{wy*w), which constitutes the most
important physical quantity in the context of strong
electrodynamics [44]. The only non-vanishing component
of the electric current is the one parallel to the electric field.
With the results of Sec. Il A we can obtain the formal
expression of the z-component of the mean electric current

)= s [ R 10)

ot [Tk [ s (w - ap). 39)

- 272

where k; = \/k? + k3. This expression is UV divergent
and we have to renormalize it. The current has scaling
dimension 3, meaning that the divergences could appear up
to third adiabatic order, so we have to perform adiabatic
subtractions until and including the third order (note that
the energy-momentum tensor requires adiabatic subtrac-
tions of order 4) [8]. Therefore, the renormalized form of
the electric current is

: q " 00 ) . 3
Phen = | "o [ aisnitp = P = ()8,
(40)

with (j3>(n) _ (|h”|2 _ |h11:|2)(n) _ —“’z’f" Z;}ZOF(i)F*(n—i)_,’_
othis™n (GWOG*0). These subtraction terms contain all
the divergences of the electric current, giving us a finite and
meaningful result for (j3),.,. The other components give a
vanishing result. After computing the subtraction terms, we
finally obtain

i q o © k3
Phen=gs [ "o [~ |(np—lnp) =22
K2gA n 3K%ky g2 A2 . (K= 4P PAS  KPqA
®’ 20° 20" 4P

(41)

A. Conformal anomaly

An important test of any proposed renormalization
method is the necessary agreement with the conformal
anomaly. Here we compute the trace anomaly with our
proposed extended adiabatic method. The trace of the
energy-momentum tensor is proportional to the mass of
the field (T%) = m(py). Although the two point function
has to be renormalized until the third adiabatic order, the
trace of the energy momentum tensor must be regularized
up to fourth order, i.e.,

(Th)een = m (W )en — () ). (42)

In the massless limit the first term vanishes, so the
anomaly should appear in the subtractions of adiabatic
order 4, that is

—lim m () ). (43)

m—0

(Ti)en =

The vacuum expectation value of the two-point function
(pw) is given by

— 1 & *© m * *
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By using the adiabatic regularization method, one can find
the 4th order subtraction terms. Hence, in the massless limit
we get

. m? fe o 1 :
<Tz>ren:}n1%ﬁ(/o kj_dkl (/’_oo dk};(h[k‘ hg+h%[ hi—)(4)
242
g A
=——. 45
1272 (43)
One can easily rewrite this result in a covariant way,
obtaining the result

2
q
<TZ>ren = Tﬂ_zFﬂbF‘w‘ (46)
It fully agrees with the well-known result for the trace
anomaly induced by an electromagnetic field for a Dirac
field [45].

B. Relation with the DeWitt coefficients

‘We will briefly see that the proposed adiabatic expansion
for the fermionic modes agrees with the Schwinger-DeWitt
adiabatic expansion for the Feynman propagator. We
have proved this for the adiabatic expansion of the two-
dimensional theory in Sec. I In the previous subsection we
have implicitly obtained the 4th adiabatic order, given by

_ 1 2 v tI'EZ
(py) @ = “T62m (ngF,,,,F” ) = T 162m (47)

where E, coincides with the corresponding DeWitt coef-
ficient at coincidence. Note that the numerical coefficient in
the denominator is (47)%/2, where d is the spacetime
dimension. Moreover, at 6th adiabatic order we obtain

1 [2¢°4% 24°AB)A
- 48
167°m ( 154° + 5a* (48)

() =

We can rewrite the above expression in a covariant form.
It can be checked that it also fits with the DeWitt
coefficient E5

trE3
167°m?

The general expression for E5 is given in Appendix A. Here
only the flat space terms are relevant

() © = (49)

_b

360
— 12W,,W#W F + 60,1 ¥ + 6000.* +300.,0*
+600° + 300W,, W) (50)

E; = (8W,,,, W +2W,, *W 10 4 12W,,,. P WH

where Qz—%qF W'y’ and W, = —igF,, I. We reinforce
that the adiabatic order assignment 1 for A, is a basic
ingredient for achieving the above equivalence.

C. Introduction of a mass scale and
renormalization ambiguities
A crucial point in the adiabatic regularization method is to
fix the leading order of the adiabatic expansion, namely o(©).
It seems very natural to define it as ©©) = o = VK> + m?,
as we did in Sec. III A. However, there exist an inherent
ambiguity in the method [46]. It is possible to choose
a slightly different expression for the leading term

V=0, = \/ K> + u?, where s corresponds to an arbitrary
mass scale. In order to obtain the new adiabatic subtractions

with this new choice of the leading order, one has to rewrite
the mode equations as

ia,h% = —(ks + qA(t))h% = (K, + o')h%’

i0,h = (ks + qA(1))hi! = (x, + o)t (51)

where 6 =k —k, = /K + K +m? — /K3 + 13 + 42 is
assumed of adiabatic order 1. Note that we recover the
original adiabatic subtraction method by choosing y = m,
and hence ¢ = 0.

In this context, the ansatz of the adiabatic expansion will
take the form

;o —ks —i ["Qu()ar
M= 2, Fale Jouwar
m_ _ Dy + k3 —i ['Q,()dr
- L J , (52)

where the functions F,(f), G,(t) and Q,(7) are expanded
adiabatically as in (31). In order to recover at order O the
limit of vanishing electric field (and also the limit 6 — 0,
since o is now assumed of adiabatic order 1) we demand as

initial conditions F, ,(,0) =1, G,(,O) =1 and w,(lo) = w,. With
this new choice we can obtain the expressions of the

adiabatic terms ", F\" and G\" as before: introducing

the ansatz (52) in the mode equations (51) and in the
normalization condition (26), expanding the functions
F,(1), G,() and Q,(t) adiabatically, and finally, solving
them recursively, order by order. In Appendix D we give
the details of the computation and also the expression of the
adiabatic renormalization subtractions for the electric
current. We remark that the introduction of a mass scale
4 causes an unavoidable ambiguity in the renormalization
procedure: it allows us to perform different adiabatic
subtractions to render finite the physical observables,
depending on the scale ;4 we choose. For instance, con-
cerning the renormalized current (yy“y) one can compare
it at two different scales. Using the results given in the
Appendix D we easily obtain
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2
8700 = 07 o) ~ a5 ) 9. (5

This ambiguity can be absorbed in the renormalization
of the coupling constant. To this end it is convenient to
scale the field as AY = gAY and rewrite the semiclassical
Maxwell equations as

1 -
?vaFa/} = _<l/7yul//>ren' (54)

The above relation for the current (53), reexpressed in
terms of F%, translates into the well-known shift:
72 (u) — g2 (o) = —(122)7! ln/’j—; obtained within per-
0

turbative QED using minimal subtraction in dimensional
regularization [47]. The renormalized current given in (41)
should be understood as defined at the natural scale of the
problem, defined by the physical mass of the charged field,
i.e., u = m and hence ¢ = g(m).

V. PHYSICAL APPLICATION: THE
SAUTER ELECTRIC PULSE

As mentioned in the Introduction, one of the main
advantages of the adiabatic renormalization method is its
proficiency to perform numerical computations and ana-
lytical approximations. We will devote this section to study
the properties of the renormalized expression of the current
(41) for the case of a pulsed electric field in a 1 +3
dimensional setting.

Let us consider the well-known Sauter-type pulse E(f) =
Eycosh™2(¢/7) with 7 > 0, and its corresponding potential
A(t) = —Eyrtanh (¢/7), which is bounded at early and late
times, A(fo00) =F Eyr. This kind of pulse produces a

(a)
0.025
0.02}
—
B 00151 ’
=
——
=
i 001 /
0.005 -
0 —
10 5 0 5 10
mt
FIG. 1.

number of particles, and then also a current, which tends to
be constant when f — oco. In Fig. 1 we represent the
evolution of the current induced by this pulse for different
values of E, and 7. These figures have been obtained by
solving numerically the differential equations for the modes
and integrating the expression of the renormalized cur-
rent (41).

A. Late times behavior of the electric current

We can obtain an expression of the current at late times
for an electric background that vanishes at early and late
times. Let us consider a pulse such that in the early and late
time limits the potential is bounded as A(—o0) = —A,,
A(o0) = Ay, and its derivatives vanish. From Egs. (22) and
(23), one can see that at late times ¢ — +oo the modes
behave as [31]

o F (k3 + qA)

W () ~ +
k () 2wy

e~ Woul
(lke

+ (k A .
+ WDout ( 3+ ¢ O)ﬂzeiwoull’ (55)
2wou

where @iy /on = v/ (k3 F gAg)? + &%, and a; and f; are
the usual Bogoliubov coefficients satisfying the relation
laz|* + |B7|* = 1, that ensures the normalization condition
(26). The coefficient |$;|> gives the density number of

created particles at any value of k.

The renormalized electric current at late times induced
by an electric pulse in terms of the coefficient |$;|* can be
obtained by introducing the expression of the modes at late

(b) 0.07

E,=3E, N
— E =25E | -
0.06 £ -2E | |
0 c
| |
0.05 [
—~ 004 |
= If
g [
S I
= 003 |
0.02 i
|
0.01 |
0 —~ /
10 5 0 5 10

Evolution of the renormalized current induced by a Sauter-type electric pulse for different values of the parameters. In figure

(a) the field strength is fixed (E, = 2E,), where E, = m?/q is the critical electric field (or Schwinger limit), that is the scale above which
the electric field can produce particles. In figure (b) the width of the pulse is fixed (z = 1/m). We have used dimensionless variables, in

terms of the mass and the charge.
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times (55) in the expression of the current (41). We obtain,
for large ¢,

© ) k A
o= [Thadis [ a0

0 k Ay k
_|__2 kldkL/ dks {M_j
27 - Wout w
K qAO 3K2k3q2A2 (K> =432 A}
- : . (56
®° + 2w 20’ (56)

In Appendix E we prove that the second integral of this
expression vanishes, so the current at late times is given by
the simple expression

o= [Thsdts [ a2 ()

As expected, the final current is related to the number
density of particles. The analytic expression of |f;|>
depends on the form of the background.

B. Scaling behavior for large field strength
It is interesting to study the behavior of the current in the
limit of large field strength. To this end, we consider again
the example of the Sauter pulse, for which the coefficient
|ﬂ;|2 is given by (see [31] for more details)

cosh (2z2gE(7?) — cosh (n(@qy — ®iy)7)

B * =

2 sinh (zw;,7) sinh (7w 7) (58)
Plugging it into (57) we can obtain the current at late times
induced by the pulse. As a test, one can compare the results
given by (57) with the ones given by the exact expression
(41) for large ¢, which are represented in Fig. 1.

For this pulse, assuming gE, > 0, the large field strength
limit corresponds to gE( > 0. A numerical analysis of the
expression (58) shows that the relevant values of x and k3
are of the order of \/qE( and gEz, respectively. Therefore,
in order to study properly the limit of large E, it is
convenient to introduce the following set of dimensionless
variables

~ k'; ~ K )
=—, K= R x = qEy7°, 59
qEgt V4Ey ’ 9)

and study the limit x — co maintaining k5 and & constant.
Then, we rewrite |f;|* as

cosh (27x) — cosh (7 (@qy (X) — @i (x)))
2 sinh (7@y (X)) sinh (7@, (x)) ’

Bzl* = (60)

*2 (k3£ 1)2+x&2. In the limit x — oo
Pi

where &)in/out (X) =
the above expression for |f5;
given by

is independent of x, and it is

- -
Bi* ~ e TRO(1 = [ks])

2,2
e B
o\ | K32

e " O(gEor - ksl).  (61)

Substituting the expression (61) into (57) and taking
ky—qEyt

into account that ~ —1 for large E(, we obtain the

behavior of the current at late times created by a high
intensity pulse

i3
<J )ren ~ 2”3

32 1 w1
9 Eor / ds(1 - D) (62)
-1
Assuming now that gE, > m?, the above integral (62)
can be done exactly and we ﬁnally obtain

) 2
<J3>ren ~ ﬁq?’E(ZJT* (63)
which is the predicted expression of the current in the limit
of large field strength E,. We can also obtain the total
number density of created quanta for the Sauter pulse in this
limit

Z/“ B + 1) ~

It is interesting to compare the result (63) with the one
obtained for a scalar field. The coefficient || in this case
has a different expression, but it tends to the same limit for
large E,, (61). Therefore the scaling behavior of the current
at late times ((j?)3a™ ~ 555 ¢  Egr) will be the same as in
the fermionic case, except for the factor 2, on account of the
absence of the spin degree of freedom.

For completeness, it is worth to see how the above results
can also serve to describe the Schwinger limit, i.e, a
constant electric field. Note that the expression (61) has
been obtained for the limit EOT2 > 0, so it should also be
valid for the limit of large 7, keeping E( constant, which
describes a pulse with a large width. Bringing this limit to
2 kL+m
| 5 )
which is the well-known expression for the beta coeffi-
cients of a constant electric field [12] leading to the
Schwinger formula for the vacuum persistence amplitude.

q2E2 (64)

the extreme case 7 — oo, we get |f;|* ~exp (-z

VI. CONCLUSIONS

In this work we have extended the adiabatic regulari-
zation method for 4-dimensional Dirac fields interacting
with a time-varying electric background. Our approach
can be distinguished from previous analysis in the
literature in the adiabatic order assignment for the vector
potential, which is chosen to be of order 1. This choice is
required to fit it with the expected equivalence with the
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Schwinger-DeWitt adiabatic expansion. Our proposal
has required to introduce a nontrivial ansatz, Eq. (30),
to generate a self-consistent adiabatic expansion of the
fermionic modes. The given expansion turns out to
be different from the WKB-type expansion used for
scalar fields. With this extension we have obtained a
well-defined prediction, Eq. (41), for the renormalized
electric current induced by the created particles. Our
proposal is consistent, in the massless limit, with the
conformal anomaly. The expected equivalence with the
Schwinger-DeWitt expansion is explicitly realized. In
parallel we have also explored the physical consequen-
ces of the introduction of an arbitrary mass scale on
the adiabatic regularization scheme, finding consistency
with the behavior of the effective scaling of the elec-
tric coupling constant. To illustrate the power of the
method we have analyzed the pair production phenome-
non in the particular case of a Sauter-type electric pulse.
J

In particular, we have obtained the scaling behavior of
the current in the strong field regime [Eq. (63)].
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APPENDIX A: DEWITT COEFFICIENT Ej;

The expression for the DeWitt coefficient of sixth
adiabatic order is [42,43]

1 N 179 W vpo,a v
Ey=—c (—181@,/» + VTR, R* = 2Ry ) R¥P — 4R R + OR 0 R¥P7% + 28RR /' — 8R,,R™

. . 35 14
+ 24R, RV, 4 12R,,,, RIP7, 3
64 oo 16 upoa 44
- ? R;u/RpoR + ? R;l R Ry/nm - 3 R;wpa

b
360

3
- 3R + 5 RR, R" — ?RR
Rﬂua/}R/maﬂ _ % R

<8WW,,W/‘”?/’ F2W, W, 4 12W,,, P WR — 12W,, W W — 6R

14 o | 208 .
O G 7RWRMJR p

;wpaR#apﬁRuaﬂﬂ) 1

yups WHWP? + AR, W WY,

—SRW,, W +60.» " +6000.," +300,0% + 6003 + 300w, W —10RQ.} — 4R, O — 12R,, O*

—300°R — 120R,* +50R* = 20R,, R" + ZQRW,JR/‘”/"’>

where, for scalar fields Q = ¢R, W, = iqF,, and [ = 1,
while for Dirac fields Q ={RI—LqF,r"y", W, =
—iqF,,I —R,,,,y"y" and I is the identity matrix.

APPENDIX B: MATCHING HADAMARD
COEFFICIENTS WITH SCALAR
ADIABATIC REGULARIZATION

In this appendix, we relate the adiabatic regularization
method with Hadamard renormalization for charged
scalar fields. To simplify the comparison we will
restrict the analysis to Minkowski spacetime. In Sec. II
we have introduced the basics of the adiabatic regulariza-
tion method for 4-dimensional charged scalar fields
interacting with an electromagnetic background. The
renormalized vacuum expectation value on the two point
function was given in (4). For the electric current, defined
as j, = iql¢"D*¢p — (D*)* ], we obtain

(A1)

Flen = 5 / Pk - gA) g = ()], (BY)

with ()™ =323 oka (@) ") ~gA(p'9) ™. To com-

pute these subtraction terms, we usually fix the leading
order of the adiabatic expansion as 0® = & = VK> + m?.

As explained in the main text, the choice of the leading
term is crucial to define the adiabatic expansion. We have
argued that to properly fix the leading therm we have to
choose the vector potential A of adiabatic order 1. However,
the choice of the leading term »® is not yet completely
fixed, and one can make a more general choice defining

o) = w, =1/ o+ u?, where i is an arbitrary mass scale.
With this new choice the adiabatic expansion can be re-
calculated, giving us slightly different subtraction terms.

An exhaustive analysis of this ambiguity can be found in
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[46]. The ambiguity on the subtractions, leads to an
ambiguity on the physical observables. For the two point
function the ambiguity manifests as

R e G R
(B2)

where a = and for the electric current we find

1
2(27)?

a 2 ..
) = P hesli) =10 (15 ) 2. (B3)

Rewriting the equation above in a covariant way, we get

<jy>ren(.u) = <jp>ren(/"0) - %ln Q/j_(z)) VUFW' (B4)

1. Matching with Hadamard renormalization

We can compare the results summarized in Sec. II with
the results given by Hadamard renormalization, particular-
izing for the case in which A, = (0,0, 0, —A(t)). Adopting
the notation given in [39], the expectation value of the two
point function can be expressed as

(" )ren = awo(x). (B5)

and the electric current is given by
(u) = —2qa(qA,wo(x) + 3wy, (x)]).  (B6)
where a = 2(2—1”)2 and the functions wy and w, are the first

terms of the covariant Taylor series expansion of the
Hadamard biscalar W(x, x').
Comparing (B5) with (4) we immediately get

2

awy = ﬁ/ d3k|:‘hz‘2 _ Z(Qil)(n):| R (B7)

n=0

and hence, by using the previous result and Eqgs. (B1) and
(B6) we directly find

3

@) =5 /d~*k[kglh;|2—;k3<ﬂ,§‘><”>}. (83)

Hadamard renormalization scheme also presents a renorm-
alization ambiguity in even space-time dimensions, due to
the choice of the renormalization lenght scale #. The
ambiguity is manifested in the physical observables as

(B )en = (0 ) +5m*In% (B)

2
. . a
Ui = Udeen + = (VF,, ) In €2 (B10)

Note that the length scale ¢ is inversely proportional to
the mass scale . Comparing these results with the ones
obtained with adiabatic regularization [Eqgs. (B2) and (B4)]
we find that the logarithmic part of the ambiguity is exactly
the same. However, with adiabatic regularization we also
find a quadratic term in the ambiguity of the two point
function.

APPENDIX C: SUBTRACTION TERMS

In this appendix we give the explicit expressions of
the adiabatic expansion of the fermionic field modes up to
and including the fourth adiabatic order. We remind that
G (ks, gA) = FU) (—ks, —qA).

Order 0
0¥ =0, F"'=c"=1, F=c"=0. (C1)
Order 1
p 9k oy _dAletk) o o
@ ’ X 2a)2 b y y .
(c2)
Order 2
o —TAK  poy SPAN | @A+ k)
20* Sw* 20° ’
2) @ _ 9A
FY =-6y =12, C3
y y 40)2 ( )
Order 3
3A3KCk Ak
@ = _T2KH_ 975 c4
¢ 208 4o (C4)
3) 11PAN?  FA> 154343k,
By = st
16w 2w’ 16w
343 i
@Ak gA(w + k3)
- 2w4 + 8&)4 ’ (CS)
0 h
G) _ _ 0 _ _ 597 AAks
Fy’ = -Gy =T e (C6)
Order 4
@ _ 5¢°A%Y g*AYE 3K2qRAA
0] = — —
8w’ 20° 407
5¢PAA  5KAqRA?
e (c7)
8w’ 8w
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p __VTACkqt | Atksgt | 195A%!qt 314%Cqt
* 160’ 20° 128w® 160°
Atgt AkygPA 5A2k3q2+9AK2q2A
2wt 20° 16w 160°

5A2 2 APA 1A
6 q4 - ;] s (C8)
16w 2w 32w
SA?A(340? — 45k%)  gAD)
R = g - TR 5C)_al% g
32w 16w

APPENDIX D: y-PARAMETER
ADIABATIC EXPANSION

(n)

The general solution for F\", G\ and w\" is given by

n n OK n—1 n—1
wl(‘ "= o (@K, Fyi. G) +(,T”[(GM)§‘ '+ (Fu)-(k' )]
i

(n-2) (n-2)
+2w; (G + (F ), (D1)
F) =F F,.G
(u)x = I'x (w/,{’Klls w ,,)
1 [w,+ks (n-1) (n-2)
— 20%,(G G
4a)§{wﬂ—k3[ k(G o*(Gu)x'
— 20k, (F,)"™" n2(Fﬂ)i"‘2>}, (D2)
(F)Y = F{(@,.%,. F,. G,)
1 n—1 n—2
+ =205, (G +02(G)V ). (D3)
-

where o™ /F"/G"(w,.x,.F,.G,) are given by the
expressions (35), (36) and (37) with the changes
(w,K,F,G)e(w”,K”,F”,G”). Note again that Gﬂ(k3,qA)
satisfies the same equations than F,(—k3;, —gA), and hence
G\ (k3. gA) = F\" (=ks. —qA). We also find an ambiguity
in the imaginary part (D1). For simplicity we choose

(F)3" =~(G,)\"

@k [ o) S
== #ZKI% (F;l)/(\‘n )+Zw/<l1 1)(FM)§‘A)
+qA(Fu)§fl_])
n—1 n—2
e L R A ] Y
u

With the initial conditions (F,)\ = (G,)\" =1,

(F)Y =(G)Y =0 and o) = o

. and by fixing the

ambiguity (D4), the solutions for the adiabatic functions

F f,”>, Gf,") and m}(,") are univocally determined.
The renormalized electric current for an arbitrary mass
scale is given by

. q © "0
(13>rcn = Z—HZA k,dk, '/_m dks[(\hglz _ ‘h%‘z)

3, (0-3
= GO ), (DS)
with
31 (0 ks
<Jz>§; )(/4) = w—g, (D6)
"
2
3\ (1) KyqA  2ksk,0
g W= 5T . D7
(P W) o a (D7)
(3D () = kAT 24AK,0(35; — 20)
k 20); (1);
3k30°% (2% — w?
L) (D8)
Wy
0 — B0 =55
k ZwZ
B 2k30'3(101<ﬁ - 9K,2,w/24 + wﬁ)
K,
3k3q 2ok, (5¢2 — 207)
P
y

N 3gAc*(10& — 11K w? + 207) Kf,qA
aJZ 4w§ ’

(D9)

APPENDIX E: SIMPLIFICATION OF THE
EXPRESSION OF THE CURRENT
AT LATE TIMES

In this appendix we prove that the second integral in the
expression of the current at late times [see Eq. (56)],

% o ka4 qhy k3 KPgA
1:/ dekl/ dk3{3+q°_j_Kq30
0 —00

@yt w @

thS}

32k g2 A2 (K2 — 4K3)K?
n 3q5 0 +( 3)7
2w 2w

, (El)

vanishes. Taking into account the property (1 + 2xy +
)2 =5"%  P,(=x)y", where P, (x) are the Legendre
polynomials, we can expand the first term of the integral
around Ay = 0 as follows
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k3 +qAg
Wout

= > cu®)(qAo)",
n=0
where

- k
Co(k)zi’

P 1
cy(k)=—; {Pn,l (—E> +EP" (—E>} forn>0. (E2)
® o) o ®

One can see that the first four terms of this expansion give
exactly the rest of the terms of the integral (E1) (the
subtraction terms) with a global change of sign. Therefore
they are cancelled and the integral can be written as

1= [k, i (@ [ dtseu®]. (6)

Under the change of variable x = —k3;/w, the integral in k3
can be rewritten as

/_oo dksc, (k) = Kl*—' (/_1 dx(1 = )P, (x)

0 1

- /_ : dxx(1 —XZ)%Pn(x)). (E4)

The Legendre polynomials satisfy the property P, (—x) =
(=1)"P,(x), so it is trivial to see that for any even
n these integrals vanish. For odd values of n and n > 3
the function (1 —x2)"T" is a polynomial of order n — 3.
Using the property [!, dxPol,(x)P,(x) =0 for a < b,
where Pol,(x) is a polynomial of order a, we get that
the integrals in (E4) vanish for n > 3. This last property can
be easily proven taking into account that P,(x) form a
basis, and any function can be expanded as f(x)=
S g cpPy(x) where ¢, = (b+1/2) [1, dxf(x)Py(x),
and if the function is a polynomial f(x) = Pol,(x),
for consistency ¢, = 0 for any b > a. Therefore, for all
values of n involved in (E3) the integral vanishes, and then
I =0, as we wanted to prove.
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The point-splitting renormalization method offers a prescription to calculate finite expectation values of
quadratic operators constructed from quantum fields in a general curved spacetime. It has been recently
shown by Levi and Ori that when the background metric possesses an isometry, like stationary or
spherically symmetric black holes, the method can be upgraded into a pragmatic procedure of
renormalization that produces efficient numerical calculations. In this paper we show that when the
background enjoys three-dimensional spatial symmetries, like homogeneous expanding universes, the
above pragmatic regularization technique reduces to the well-established adiabatic regularization method.

DOI: 10.1103/PhysRevD.103.105002

I. INTRODUCTION

Obtaining accurate theoretical predictions from quantum
field theory has become a topic of great interest nowadays
for studies of the early universe and black holes. The naive
calculation of physical observables associated with a
quantum field ¢, such as (¢*(x)) or (T, (x)), typically
leads to divergent sums or integrals of field modes, thereby
requiring the study of renormalization. While the system-
atics of renormalization in a general curved spacetime has
been known for several decades now [1-5], the imple-
mentation of the standard prescription to get specific results
is still difficult to put in practice even for the most simple
spacetime backgrounds. This is because the regularization
of ultraviolet divergences in a covariant way, and the
construction of the subtraction terms, are based on the
point-splitting technique [6-8], a purely analytical pro-
cedure that involves taking limits of points along geodesics.
However, getting the field modes in a given spacetime
background requires solving complicated differential equa-
tions, which can only be addressed numerically but in
exceptional cases. A procedure to transform the covariant
point-splitting technique into a numerically implementable
method is thus almost mandatory if quantum field theory
aims to produce results of practical interest for most
gravitational scenarios.

The numerical implementation of the point-splitting
regularization method is however a nontrivial task,
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“'sergi.nadal @uv.es

Yjnavarro@ific.uv.es

2470-0010/2021/103(10)/105002(9)

105002-1

specially for black hole backgrounds. In a Schwarzschild