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explicar-me conceptes bàsics de magnetisme quan apareixia esporàdicament al seu
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Carlos, no hi ha moltes persones al món que sàpiguen de les penúries del Re(IV).
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ĤZ Zeeman operator. ĤZ,∥ and ĤZ,⊥ represent the parallel and perpendicular
components, respectively
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ABSTRACT

In the present summary, it is described the scope and main goals of this Thesis
work together with its methodology. At the same time, the reader is guided through
the main results. To begin with, the full structure of this Thesis is basically divided
into four Chapters, namely, an introduction which provides an overview where the
general basic theoretical concepts about Molecular Magnetism are reviewed, followed
by three subsequent Chapters. Two are dedicated to compounds based on 5d metal
ions, specifically Re(IV), Ir(III) and Ir(IV), while the next focuses on the Ho(III), a
4f metal ion. Finally, there is a last remark Chapter that serves as a conclusion of
the results that can be extracted from previous ones together with some perspectives
for future works.

Chapter 1 delves into the fundamental knowledge related to the Molecular Mag-
netism field from a quantum view approach, where the orbital and spin angular
momentum give rise to magnetic moments, whose relation with statistical ther-
modynamics leads to the magnetic behaviour of macroscopic samples. However,
the deduced expression depends on the knowledge of the energy function of every
thermally populated states. As they are most likely unknown for a specific system,
it is rather common to rely on a few approximations. The Van Vleck formula is able
to reproduce the magnetic susceptibility of a sample as long as the magnetic field
can be considered a small perturbation of the initial system. Moreover, it is show
how the approximation only holds at high temperature, where the externally applied
magnetic field energy is lower than the thermal available energy. Besides, the de-
duced Van Vleck formula is only valid for paramagnetic systems, whereM = 0 when
H = 0. In this way, the paramagnetic behaviour of simple systems is explained.

In a second introductory part, it is presented the interaction between the orbital
and spin angular momentum within an atom, and how it gives rise to the spin-
orbit coupling of the magnetic moments, which is introduced through two different
energies schemes. The first one known as L-S model for lighter elements and j-
j model for heavier atoms. The so-called ZFS effect may arise by the combined
effect of the spin-orbit coupling and the symmetry of the system, leading to the
splitting of the different energy levels without the application of an external field.
Those systems become then magnetically anisotropic. Another magnetic interaction
appears relevant based on the distance between the different metallic centres and the
temperature of the system. Those interactions can be mainly through ferromagnetic
or antiferromagnetic arrangements, where at enough low temperature may not be
neglected for any paramagnetic system. For weak interactions, they can be easily
accounted by the Weiss parameter (θ). Besides, for systems where there is no orbital
angular momentum associated to the ground state of the interacting metal ions, the
interactions can be treated with an isotropic spin-spin exchange Hamiltonian, which
includes the correlation between the chosen metallic centres by means of a magnetic
exchange constant (J).

At the end of Chapter 1, it is considered the dynamic measurements of the
magnetic susceptibility, and how the redistribution of the magnetic dipoles requires
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of a certain amount of time that depends on the frequency of the externally applied
magnetic field and the temperature. Systems with only one relaxation time or a
distribution of them through the generalised Debye model, are briefly reviewed,
along with the more common relaxation mechanisms that could take place. To this
regard, the first system reported to have its spin dynamics studied is introduced, and
how it leads to interesting magnetic hysteresis loops of a molecular level compared
to the classic ferromagnetic ones.

The magnetic properties of species containing 4f and specially 5dmetal ions have
been relatively less explored compared to 3d based systems. This stems from the
difficulty dealing with the stronger spin-orbit couplings that heavier atoms present,
which becomes a direct influence factor on the magnetic anisotropy that character-
ises them. As consequence, while the knowledge of detailed exchange mechanisms
related to 3d ions is considerably advanced, there is less understanding of the mag-
netic correlation in 4f and 5d systems. In this way, the following Chapters are
mainly focused on the coordination chemistry and characterisation of systems based
on Re(IV), Ir(III), Ir(IV) and Ho(III) metal ions. The scope of this research seeks
to study either the magnetic behaviour of mononuclear complexes and enhance our
comprehension of the magnetic exchange of species containing these metal ions,
while exploring potential new applications for these systems. For achieving that
goal, all these lines of work aim to share a methodology from a synthetic point
of view within the Molecular Magnetism field, where the obtained compounds are
mostly characterised by a preliminary infrared spectrum followed by an elemental
analysis of C, N, and H percentages together with the heavy elements proportions.
Afterwards, their structures are solved by means of single-crystal X-ray diffraction,
and their pattern compared to the bulk by powder X-ray diffraction in order to
confirm their homogeneity. In addition, for magnetically active samples the meas-
urement of their magnetic properties on powder samples is conducted, and together
with the structural data a correlation with the magnetic behaviour is performed.

Chapter 2 is dedicated to the study of systems based on Re(IV) metal ion, which
is selected due to its high ZFS effects and effective spin value. Moreover, the lack of
orbital contribution for octahedral Re(IV) complexes constitutes an advantage over
other elements, where first and second spin-orbit effects take place. Thus, Re(IV)
systems are relatively easier to fit through theoretical models. A lot of interest-
ing results can be obtained from Re(IV) complexes. In the literature can be found
compounds with remarkable properties, as SIM behaviour, expected to be exhibited
for isolated Re(IV) entities, whilst polynuclear compounds contribute to a better
knowledge of the magnetic exchange between different metal centres, where SMM
phenomena may also arise. Besides, another singular magnetic phenomena, such as
spin-canting, anti-, ferro-, ferri- or metamagnetism have been observed previously
in systems containing the Re(IV) metal ion.

The published works within this Chapter can be divided into two parts. The
first one is dedicated to study the magnetic properties of anionic mononuclear
[ReX6]

−2 species (X = F, Cl, Br, I), whilst a second part is dedicated to the neutral
[ReCl4(bpym)] (bpym = 2,2’-bipyrimidine) compound.

As part of a collaboration with the University of Nevada (Las Vegas), the presen-
ted work, Article 1, describes the ammonium salt of the [ReF6]

−2 anionic entity. This
system exhibits two magnetic behaviours, metamagnetism and slow relaxation of the
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magnetisation coexisting together, an attribute unusual in molecular systems based
on 5d metal ions reported so far. It crystallises in the trigonal space group P 3̄m1.
The hydrogen atoms from the ammonium cation are not considered during the re-
finement procedure, however, their most favourable positions are calculated by DFT
methods, showing that oriental disorder can occur in ammonium salts. These dis-
tortions shorten some H···F distances emphasising hydrogen bonding. DFT bonding
calculations of the [ReF6]

−2 anion in its experimental geometry shows the presence
of Re-F σ bonds, they being nearly ionic. Its comparison with the gas phase anion
gives longer average Re-F bond lengths, so the difference is due to packing forces.
The salt is also characterised by Raman spectroscopy, where the splitting of the
Raman peaks are correlated with the site symmetries of the [ReF6]

−2 anion.

On the other hand, the study of the magnetic properties by DC methods reveals
an antiferromagnetic ordering of the spin carriers through weak intermolecular F···F
(via Re-F···F-Re) and N···F interactions (via Re-F···N···F-Re) with a maximum in
the χM vs. T plot. As the maximum wanes when higher magnetic fields are applied, it
suggests the occurrence of a field-induced antiferromagnetic-to-paramagnetic order-
ing transition typical of metamagnetic systems. The magnetisation curve measured
at 2 K support the occurrence of this behaviour, where the M values increase with
the applied field and a smooth inflexion point is reached at a critical field. To study
further the magnetic properties of the (NH4)2[ReF6] salt, AC magnetic susceptib-
ility measurements have been performed, showing incipient out-of-phase signals at
very low temperature, which is indicative of a system with slow relaxation of the
magnetisation.

Regarding this particular work, which I am signing as the forth coauthor with
an equal participation as the second and third ones, my personal contribution has
focused mainly on the purification of the (NH4)2[ReF6] sample proportioned by our
colleges and its characterisation by means of infrared spectroscopy, together with the
preparation, measurement and treatment of the experimental data obtained through
SQUID and PPMS devices.

The (PPh4)2[ReX6] [PPh
+
4 = tetraphenylphosphonium cation, X = Br or I] salts,

fully described in Article 2 in a paper made in collaboration with the Universidad
de la República (Uruguay), are one of the few examples of mononuclear compounds
based on the Re(IV) metal ion that display field-induced slow magnetic relaxation
described in the literature. The salts crystallise in the triclinic system with space
group P 1̄, and their structures are made up of bulky (PPh4)

+ cations that keep well
separated the hexahalorhenate(IV) anions from each other.

Variable-temperature DC magnetic susceptibility measurements show a very sim-
ilar behaviour for both compounds, typical of magnetically isolated Re(IV) systems.
The decrease of the χMT values at low temperature mainly due to the high ZFS
effects that the Re(IV) metal ion possess. On the other hand, AC magnetic meas-
urements reveal the presence of out-of-phase signals for both compounds in the low
temperature range, when an external magnetic field of 1000 or 5000 G is applied.
However, the relaxation dynamics that the two compounds exhibit is not equally
affected by the external fields, being 5000 G the optimal for the bromo derivative as
suggested by the presence of more χ′′ maxima that shifts towards higher frequen-
cies, whilst its number decrease for the iodo derivative complex at that field. The
obtained values of the α parameter by Cole-Cole representations suggest a narrow
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distribution of the relaxation times for these mononuclear Re(IV) complexes. Thus,
ln τ vs. 1/T data are fitted considering that the relaxation of the magnetisation is
driven by a sole Orbach mechanism. For a more accurate description of the whole
curve in the bromo derivative case, a set of four spin-lattice relaxation mechanism
of the magnetisation, namely, Orbach, Direct, Raman and QTM is considered. Re-
markably, the bromo derivative complex exhibits the higher energy barrier of the
[ReX6]

−2 family.

My contribution to this work, where I appear as the second coauthor, has been
centred on the practical aspects of synthesising, and properly crystallising the repor-
ted compounds in an appropriate manner for single-crystal X-ray diffraction studies.
I have also been involved in the measurement and resolution of the structural data
together with the X-ray powder characterization, as well as in the interpretation
and processing of the experimental data obtained through the SQUID and PPMS
magnetometers.

The last systems related to the hexahalorhenate(IV) species of this disserta-
tion aim to keep the interesting magnetic properties displayed by Re(IV) metal
ion, while adding new functionalities to the final material by the use of [ReX6]

−2

(X = Cl, Br) anionic entities along with a cation with potentially biological in-
terest. Thus, two novel Re(IV) compounds, of formula [H2cip][Hcip][ReCl6]Cl · H2O
and [Hcip]2[ReBr6] (cip = ciprofloxacin) described in Article 3, constitute the first
magnetoestructural study performed on salts based on protonated ciprofloxacin an-
tibiotic containing a paramagnetic 5d ion.

The chloro derivative crystallises in the P21/c space group, whilst the bromo
derivative in the Pbca. Non-interacting Re(IV) mononuclear systems are possible
to be obtained thanks to the bulky protonated ciprofloxacin cations. For a better
understanding of the electrostatic forces that held together the crystal packing of
both salts computed Hirshfeld surfaces are calculated and analysed, reflecting the
variety of interactions that take place in their crystal lattices.

DC magnetic susceptibility measurements display a very similar behaviour for
both compounds, typical of mononuclear systems containing a magnetically isolated
Re(IV) ion. No maximum of the magnetic susceptibility is detected in the χM vs.
T plot at low temperature, indicating the absence of significant antiferromagnetic
interactions. Thus, the decrease detected in χMT vs. T plots would be mainly due
to ZFS effects, which are very significant in mononuclear Re(IV) based systems.
AC magnetic susceptibility measurements at low temperature reveal field-induced
out-of-signals for both salts systems, where ln τ vs. 1/T plots are obtained at an
optimal 5000 G external field. The data can be firstly fitted considering that the
magnetization relaxation only involves an Orbach process, but a more accurate fit-
ting of the whole experimental data curve is possible considering Direct and Raman
mechanisms.

In the next part, it is explored the direct substitution of two chloride ligands
from the [ReCl6]

−2 entity by a bpym ligand, as a different approach for synthesising
new systems using the complex as a ligand. Nevertheless, in Article 4, it is reported
the effect of the crystallization solvent on the [ReCl4(bpym)] compound, and how
its magnetic properties change in contrast with the unsolvated system.

[ReCl4(bpym)] ·MeCN and [ReCl4(bpym)] · CH3COOH · H2O crystallise in the
monoclinic system with space groups P21/n and P21/c, respectively. Both sys-
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tems present short Re-Cl···Cl-Re contacts displaying a corrugated crystal frame-
work, which host the solvent molecules. Moreover, intermolecular interactions also
occur between [ReCl4(bpym)] entities and their crystallisation solvents. To assess all
these contacts, Hirshfeld surfaces have been calculated and their fingerprint plots
analysed.

Regarding the magnetic properties of both compounds, the significant antiferro-
magnetic through-space interactions between different Re(IV) entities preclude the
occurrence of the slow relaxation of the magnetisation phenomenon. Both systems
exhibit a similar magnetic behaviour with a reduction in the χMT values with the
decreasing temperature, as a result of the antiferromagnetic interactions between
Re(IV) ions as well of the ZFS effect. No maximum of the magnetic susceptibility is
detected for either compound. In contrast, the magnetic properties of the unsolvated
system are very different, exhibiting magnetic ordering through spin-canting. Thus,
it is possible to tune the magnetic behaviour in this type of Re(IV) complexes by
changing the crystallisation solvent.

The use of [ReCl4(bpym)] metalloligand towards a paramagnetic metal ion as
Cu(II) is reported in Article 5 with our collaborators from the Università della
Calabria (Italy). The paper discusses two one-dimensional coordination polymers
with the general formula {[ReCl4(µ-bpym)CuX2] · Solv}n, which exhibit different
crystal structures depending on X and Solv. Specifically, when X = Cl and Solv =
H2O, the system crystallizes in the P21/c space group, whereas when X = Br and
Solv = CHCl3, it crystallizes in the P21/n space group. Both systems are made up
of dinuclear [ReCl4(µ-bpym)CuX2] units, which are linked together through double
Cu-X-Cu halide bridges generating chains with solvent molecules present in their
respective crystal lattices. In this way, these compounds constitute the first reported
examples of doubly halogen-bridged and bipyrimidine-based Cu(II) chains including
a paramagnetic 5d metal ion.

Intermolecular interactions of the type Re-Cl···Cl-Re and X···π are present for
both compounds, together with hydrogen bonds that connect terminal chlorine
atoms of the dinuclear units in the chloro derivative compound. Thus, several mag-
netic exchanges can occur through intermolecular interactions, but mainly via Re-
Cl···Cl-Re contacts. Intramolecular interactions also take place between Re(IV) and
Cu(II) ions through the bpym ligand and between Cu(II) ions mediated by halogen
atoms. The magnetic susceptibility data obtained by DC measurements show how
the χMT values decrease as the temperature is lowered, chiefly due to antiferromag-
netic molecular interactions and ZFS effects. The presence of maxima in the χM

vs. T plots unambiguously supports the occurrence of antiferromagnetic exchange
between the involved metal ions.

Due to the complexity of the systems presenting a highly anisotropic metal ion as
Re(IV) and different magnetic exchanges, there is a lack of an adequate theoretical
model to fully evaluate the experimental magnetic susceptibility curve. Nevertheless,
two types of treatments are made in the temperature range 20-300 K, where there
is a good lineal behavior of the χM

−1 vs. T plot. In the first one, the data is fitted
to the Curie-Weiss expression, where the negative Weiss constant and magnitude
supports the fact that significant antiferromagnetic interactions occurs in both sys-
tems. In the second one, an isotropic simulation of the experimental data with
two different exchange coupling constants for the Cu(II)-Cu(II) and Re(IV)-Cu(II)
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interaction is also performed. The computed value of the Cu(II)-Cu(II) exchange
indicates a relatively strong antiferromagnetic coupling, whereas a much less intense
antiferromagnetic coupling would take place between Re(IV) and Cu(II) ions in both
compounds.

In this collaborative work, which I am signing as the second coauthor, my per-
sonal contribution has been the practical aspects of synthesising and appropriately
crystallising the {[ReCl4(µ-bpym)CuBr2] · CHCl3}n compound for its structural res-
olution. I have also been involved in its characterisation through X-ray powder dif-
fraction, infrared spectrum and elemental analysis of C, H, N percentages together
with the preparation, measurement, interpretation, and processing of experimental
data obtained through the SQUID magnetometer.

On the other hand, the works dealing with iridium-based compounds are collec-
ted in Chapter 3. While Ir(III) systems have been intensively researched because
of their potential technological applications in areas such as catalysis, imaging and
sensing, Ir(IV) complexes have remained largely unexplored. Thus, this Thesis work
is focused on the developing of new Ir(IV) compounds in an aim of better under-
standing its chemistry and properties. In contrast to Ir(III) species, it is a paramag-
netic metal ion under octahedral and distorted octahedral symmetry, with promising
potential magnetic properties due to its high ZFS effects, that confers Ir(IV)-based
compounds with magnetic anisotropy. Moreover, as a 5d metal ion with a significant
delocalisation of its electronic density over the ligands, it causes an enhancement on
the magnetic properties in polynuclear compounds when compared to its 3d ana-
logues. Nevertheless, its 2T2 fundamental term combined with its high spin-orbit
coupling make these systems very difficult to be analysed.

In this dissertation, commercially available alkaline hexahaloiridate(IV) salts are
employed as starting reagents for ligand and cation exchange. Bulky counter-cations
as (NBu4)

+ not only confer practical properties to the final compound, as solubility
in a wide variety of solvents, they also lead to interesting systems that can display
slow relaxation of the magnetisation. Moreover, this new formed salts are present
in the preparation of novel polynuclear Ir(IV) systems, by employing [IrX6]

2− units
(X = Cl, Br) as building blocks towards other 3d paramagnetic metal ions, as for
instance, Cu(II), where imidazole derivatives are also used as auxiliary ligands to
block its equatorial coordination positions.

On the other hand, ligand exchange in these systems become a challenge from
a synthetic point of view, mainly due to the easy reduction that Ir(IV) species un-
dergoes to their more stable Ir(III) analogues. To this regard, Article 6 deals with
the substitution of two bromide ligands with a bpym and the study of three new
crystal structures based on Ir(III) metal ion and bpym, where polymorphism is also
observed when different crystallisation solvents are used. Just a few works deal with
the crystal polymorphism phenomenon within Ir(III) chemistry. Moreover, only a few
crystal structures of mononuclear bpym-based Ir(III) have been reported up to date.
Thus, NBu4[IrBr4(bpym)] crystallising in the P21/c, and [IrBr3(bpym)(MeCN)], in
the P21/n and P212121 space group, have been investigated. Intermolecular inter-
actions of the type C-H···N and weak C-H···Br are present in the salt system. In
contrast, the polymorphs display π···Br, C-H···Br and Br···Br contacts for stabilising
their 3D supramolecular framework. Further analysis of their crystal structure have
also being performed through SHAPE and CrystalExplorer programs.
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The oxidation of these new Ir(III) compounds to Ir(IV) through chemical pro-
cedures is preliminary studied with stoichiometric mixtures of different oxidants in
acidic aqueous solution, but the Ir(III) complexes demonstrated to be stable against
oxidation. Furthermore, the electrochemical properties of these compounds were
carefully investigated. Cyclic voltammetry experiments performed on these systems
show the reversible behaviour of the Ir(III)-Ir(IV) pair in the 10-500 mV s−1 scanned
range for the NBu4[IrBr4(bpym)] salt, whereas no reversible peaks are observed for
the other systems.

A novel and rational strategy to prepare new and interesting mixed magnetic
materials based on Ir(IV) and paramagnetic 3d metal ion has been followed, which
explored the use of [IrX6]

−2 units (X = Cl, Br) as metalloligands towards Cu(II). In
Article 7, the results regarding the chloro species are presented, where the starting
Ir(IV) reagent (NBu4)2[IrCl6] used in the synthesis of the Ir(IV)-Cu(II) chains is
structurally and magnetically characterised together with the heterobimetallic chain
of formula {IrCl5(µ-Cl)Cu(Viim)4}n (Viim = 1-vinylimidazole), which constitutes
the first reported system based on Ir(IV) and Cu(II). Both complexes crystallise in
the C2/c space group. However, due to the bulky counter-cations in the mononuclear
salt, [IrCl6]

−2 units are well isolated between them. On the other hand, the crystal
packing of the one-dimensional compound connect the different chains to each other
through π···π stacking interactions, adopting perpendicular arrangements between
them.

The χMT vs. T plot for the mononuclear compound is fitted to Curie-Weiss
equation down to ca. 50 K, and some more remarks are made outside the publication
in the theoretical model proposed in this Thesis work, where the χMT curve is fitted
for the whole temperature range. On the other hand, the same plot for the one-
dimensional system is roughly fitted considering an isotropic effective spin chain of
S = 1/2, exhibiting a ferromagnetic exchange coupling between Cu(II) and Ir(IV).
In this way, it is the first time that an evaluation of the magnetic interaction between
this 3d-5d couple of metal ions linked together through the chloride ligand has been
performed. Besides, AC magnetic susceptibility measurements are carried on the
mononuclear compound to assess its induced-field out-of-phase signals. Its relaxation
process is fitted through an Orbach mechanism for the lineal part of the ln τ vs. 1/T
plot. However, a whole description of the curve is reproduced when a Direct and
Raman mechanism are considered.

On the other hand, Article 8 compiles the results obtained with the [IrBr6]
−2

unit, this Article being the last published work on Chapter 3. The (NBu4)2[IrBr6]
crystal structure was previously published elsewhere, whereas its experimental χMT
values are presented in this Thesis work and fitted with the magnetic treatment
introduced in this dissertation. Slow relaxation of the magnetisation behaviour has
been confirmed by means of AC magnetic susceptibility measurements for the isol-
ated hexabromoiridate(IV) entities, becoming the fifth reported Ir(IV)-based SIM.
As in the case of the mononuclear chloro derivative compound, the ln τ vs. 1/T plot
shows a lineal range well reproduced through an Orbach mechanism for a process
with just one relaxation time, whilst the whole curve is better reproduced by means
of a Direct and Raman mechanisms.

The use of the mononuclear entity towards Cu(II) together with auxiliary lig-
ands is also explored with the bromo derivative compound. Thus, three novel one-
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dimensional complexes of formula {IrBr5(µ-Br)Cu(L)4}n (L = Meim, Viim or Buim,
being Meim = 1-methylimidazole and Buim = 1-butylimidazole) have been also
structurally and magnetically studied. They crystallise in the P 1̄, C2/c and Pccn
space groups, respectively. In the Meim and Viim derivatives there are significant
Ir-Br···Br-Ir contacts and π···Br interactions between chains. In contrast, the bulk-
iness of the butyl groups of the Buim ligands keep fully separated the chains from
each other.

As in the case of the chloro species, DC magnetic susceptibility data are roughly
treated considering an isotropic effective spin chain of S = 1/2. The χMT vs. T
plots feature an antiferromagnetic exchange coupling between Cu(II) and Ir(IV)
metal ions at low temperature for the Meim and Viim derivatives, whilst a dominant
ferromagnetic coupling is observed for the Buiim derivative.

The rare-earth element series have garnered significant interest due to their
unique electronic, magnetic, and optical properties. For example, mononuclear com-
plexes of Ln(III) ions exhibiting slow relaxation of the magnetisation, the so-called
lanthanide SIMs, have attracted much attention in diverse areas of nanoscience and
nanotechnology. Moreover, due to their well-known magnetothermal and quantum
coherence properties, mononuclear Gd(III), Dy(III) and Ho(III) derivatives are rep-
resentative examples of promising applications of Ln SIMs as both molecular cryo-
magnetic coolants and quantum information processing technologies. Consequently,
Chapter 4 explores the properties and potential applications of the Ho(III) metal
ion from the lanthanides metal-block.

Moreover, when searching for molecular materials with diverse physical prop-
erties that can be utilised in different technological applications, a recommended
approach is to select a starting molecule possessing one of them. For this reason,
our attention has been directed towards the extensively researched group of mono-
nuclear complexes containing Ln(III) ions (Ln = Gd, Dy, Ho) and linear or cyclic
polyaminocarboxylate ligands, which are commonly employed as contrast agents
in magnetic resonance imaging. In Article 9, our first results regarding the syn-
thesis, structural and general physicochemical characterisation of a novel Ho(III)
complex of formula Na2[Ho(DPTA)(H2O)] · 8H2O (DPTA = Diethylenetriamine-
N,N,N ′, N ′′, N ′′-pentaacetate) as well as a preliminary investigation of the magnetic
field dependence through DC and AC magnetic measurements are presented. The
compound crystallises in the P21/n space group and consists of two crystallographic
independent nine-coordinate Ho(III) metal ions with similar distorted geometries,
between a tricapped trigonal prism and a monocapped square antiprism, according
to the SHAPE program calculations. The diholmium entities are further connec-
ted through Na+ ions to give a three-dimensional network, where in their small
rectangular pores are most of the crystallisation water molecules.

DC magnetic measurements show how the χMT values continuously decrease
upon cooling, being mainly attributed to LF effects that cause the splitting of the
differentMJ on the 5I8 ground state. This fact is further supported by the no super-
position of the isothermal magnetisation curves. On the other hand, the dynamic
magnetic properties are also studied, revealing out-of-phase signals with and without
an externally applied magnetic field. The analysis of χ′ and χ′′ vs. ν plots in a 1-
10 kHz range of frequencies is performed through the generalised Debye equation,
showing a wide relaxation times distribution. The ln τ vs. 1/T curve is fitted to a sole
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Orbach mechanism with values within the range of other few examples of Ho(III)
SIMs. Besides, despite its limited cryogenic magnetic refrigeration performance, the
magnetothermal results illustrate the potential of magnetically anisotropic Ho(III)-
based SIMs as prototypes of molecular cryomagnetic coolants operating near the
strategically relevant hydrogen liquefaction temperature.

My contribution to this work, which I am signing as the fourth coauthor, has been
centred on a fundamentally crystallographic aspect, focusing on the development of
a measurement strategy and the collection of X-ray diffraction data on a single-
crystal of the holmium compound, as well as refining the crystallographic data for
its structural resolution.
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CHAPTER 1

INTRODUCTION

The fascinating attraction between two materials like iron and lodestone always
have wondered humankind. Thus, magnetism became a topic of scientific study in
order to unravel such a mystery. Nevertheless, the first investigations were mainly
based on minerals and inorganic materials, but with time, it was found that more
complex molecules could exhibit interesting magnetic properties as to be weakly
attract or repelled by magnetic fields. More recently, the understanding, control,
and design of magnetic molecules has driven to the development of a new field of
research known as Molecular Magnetism.1–10

This field deals with the magnetic properties of isolated molecules and assem-
blies of paramagnetic molecules. These molecules may contain one or more magnetic
centres, which are not only restricted to the coordination chemistry of metal ions,
organic radicals represent another good example in this area. On the other hand,
assemblies of molecules are most often found in crystalline solids with very weak
interactions between these basic entities. However, they can also be found in exten-
ded systems, built in a way that maximizes the interactions between the different
entities, which hopefully would yield to bulk magnetic properties.

The scope of Molecular Magnetism is broad as it is a discipline that involves
different fields of knowledge. For instance, synthetic chemistry in order to develop
procedures to design molecule-based systems that exhibit predictable magnetic prop-
erties based on the symmetry and orthogonality of the magnetic orbitals. In this
regard, a lot of different compounds have been reported containing several kinds of
metallic ions, organic radicals, and novel bridging ligands. It also uses ideas from
theoretical chemistry, which derive directly from the basic concepts developed by
quantum mechanics, bringing the theoretical models used in other fields to their
limits. In particular, the molecular orbital model obtained by self-consistent field
methods, where the real wave-function of a system is too complex to be found
directly and is simplified assuming that electrons behave independently from each
other. Thus, an approximated wave-function is found after an iterative process, but
as a result, the interaction between magnetic centres cannot be properly understood
within this framework level because it lacks the correlation. Consequently, there
are different interpretations of how the interaction between magnetic centres occurs
with several models that compete, each of them with their advantages and disad-
vantages. For this reason, Molecular Magnetism is far from being a closed field from
a theoretical viewpoint.

This research field also plays an important role in the use of molecular systems
in the engineering of electronic circuits and devices, where the spin transition phe-
nomenon that occurs in some transition metal complexes represents one of the most
spectacular examples of molecular bistability. Furthermore, the spin-based electron-
ics using the quantum effects of the electron spin for information processing allowed
the study towards quantum computing. On the other hand, the slow relaxation of
the magnetisation that certain systems presents, opened the opportunity to store
magnetic information in the size of a molecule.
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Lastly, the Molecular Magnetism field also make scene in areas that would not
seem close to the material science study, for example in the interaction between the
magnetic centres of a metalloenzyme within the field of biological processes involving
active sites that contain metal ions.

At this stage, the introduction within this Thesis, even sometimes too basic
or simplistic within the rich and vast area of Molecular Magnetism, it is a small
summary of the basic concepts that I learned and subjectively assumed were of
enough importance to understand, at least, most of the articles that constitute this
dissertation.

1.1 Basic concepts of Molecular Magnetism

In classical mechanics, Ampère or Biot-Savart laws describe how a magnetic field,
B⃗, arises from the movement of charged particles through a conductor as depicted
in Figure 1.1a. Often it is convenient to represent the magnitude and direction of a
magnetic field vector by imaginary lines called magnetic field lines as shown in Figure
1.1b, whereas a small arrow points its direction in the vicinity of the field source,
while its density (number of lines per unit of area) determine their magnitude.

On the other hand, ordinary matter is composed of atoms, which are made of
subatomic particles ordered in a nucleus where protons and neutrons dwell, and
orbiting around them are the electrons, being the latter negatively charge. Thus, if
an electron of mass, me, with charge, −e, is rotating in a circle as in Figure 1.1c, this
movement that can be described as an angular momentum, L⃗, has associated then a
magnetic dipole moment, µ⃗, as given by equation (1.1). Note that the direction of the
angular momentum of the electron and its magnetic dipole moment have opposite
directions due to the negative charge of the electron. From now on for short, the
magnetic dipole moment will be just called magnetic moment, and to point its origin
they will be referred as orbital angular momentum and orbital magnetic moment.

µ⃗ =
−e
2me

L⃗ (1.1)

Before proceeding any further, the classical mechanics developed through the
centuries are not able to correctly predict the results from the experiments at a
subatomic level. This is manly due to the wave-like nature of particles. As de Broglie
suggested, every mass in movement has associated a wavelength, thus all matter
exhibits properties of both particles and waves. In macroscopic bodies their mass
is so greater in comparison to their speed, that its wavelengths are undetectably
small, and the wave-like properties cannot be observed. This undetectability is why
classical mechanics can be used to explain the behaviour of macroscopic bodies. On
the other hand, at microscopic scale, in which masses are small and wave properties
are noticeable, it is necessary to apply a different approach and quantum mechanics
are used.

In quantum mechanics, the state of a system is describe by wave-functions, and
the only way to measure a parameter of such system without changing its state
is through certain mathematical operators. However, it is impossible to know two
different parameters of a system simultaneously if their operators do not commute.
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(a) (b) (c)

Figure 1.1: (a) A loop carrying a current of intensity I, which generates a magnetic field
B⃗ (b) The magnetic field distribution as indicated by some field lines are shown for a
current loop. (c) Simplified view of the orbit of an electron revolving around a nucleus.
Note that the direction of I is by convention the opposite to the flow of electrons. The
direction of the magnetic field is also known through the right-hand mnemonic rule.

In other words, when operators commute they have a set of functions in common.
Therefore, before and after applying those operators the wave-function describing
the state of the system is exactly the same. Moreover, the wave-functions found
as a result of applying one or more operators have their values restricted to a set
of discrete numbers (quantisation), instead of being able to present a continuous
spectrum as in classical mechanics.

In the case of the angular momentum of any body in quantum mechanics, the
operators that commute, and therefore are known simultaneously, are the square of
the magnitude and one component of the angular momentum vector. Commonly the
z-component is chosen by convention, because it leads to more simple expressions
when polar coordinates are used. The result of applying those operators to a wave-
function is described by equations (1.2) and (1.3), where the functions in common
are known as spherical harmonics, Y l

ml
. Furthermore, both the magnitude and the

z-component of the angular momentum have restricted their values by the quantum
numbers l and ml. The allowed values of l are positive integers lying between 0
and ∞, while for ml are integers between l and −l. A representation of the orbital
angular momentum, L⃗, is shown in Figure 1.2.

L̂2 Y l
ml

= L2 Y l
ml
; L2 = l(l + 1)ℏ2 (1.2)

L̂z Y
l
ml

= Lz Y
l
ml
; Lz = mlℏ (1.3)

The magnitude of the magnetic moment of an electron due to the orbit can
be calculated through the classical expression (1.1) and the quantum value of the
angular momentum, leading to equation (1.4), where µB represents a fundamental
quantity in Molecular Magnetism. It is the intrinsic magnetic moment of an electron
called Bohr magneton.

|µ⃗| = e

2me

|L⃗| = eℏ

2me

√
l(l + 1) = µB

√
l(l + 1); µB =

eℏ

2me

(1.4)
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(a) (b)

Figure 1.2: (a) Magnitude and z-component of the orbital angular momentum, L⃗. Due to
the uncertainty of the x- and y-component, an angular momentum is usually depicted as
a vector precession around all possibilities which lead to a cone shape. (b) Representation
of the different orientations of ml for an orbital angular moment vector with l = 2.

Likewise, the z-component of the orbital magnetic moment is deduced from equa-
tion (1.1) and the value of Lz, as follows

µz =
−e
2me

Lz =
−eℏ
2me

ml = −µBml (1.5)

Furthermore, all elemental particles have intrinsically associated to its existence
a spin, S⃗, as if it was another fundamental property like its mass or charge. This
spin can be treated as an angular momentum and it has associated a magnetic
moment. For distinguishing from their orbital counterparts they are classically called
spin angular momentum and spin magnetic moment. The quantification of this new
angular momentum is analogous to the orbital already made. Thus, equations (1.2)
and (1.3), can be written as (1.6) and (1.7).

Ŝ2 ψs
ms

= S2 ψs
ms

; S2 = s(s+ 1)ℏ2 (1.6)

Ŝz ψ
s
ms

= Sz ψ
s
ms

; Sz = msℏ (1.7)

All known fermions, such as neutrons, protons and electrons, have quantify their
spin angular momentum with the spin quantum number, s, to a unique value of
1/2, hence the values of ms are restricted to 1/2 or −1/2 as depicted in Figure
1.3. Since the s value is the same in both cases they are usually referred only by
their ms number. Therefore, there are only two wave-function for describing the spin
state of the electrons, ψ 1

2
and ψ- 1

2
, for short they are commonly referred as α and β,

respectively. Moreover, chemists often use the symbols ↑ and ↓ for representing them
in energy diagrams. In contrast with the spherical harmonics where the functions are
known, the spin functions α and β have not specified forms and can be considered
to rely of some sort on hypothetical internal coordinate inside the particle.

Although the orbital and spin angular momenta are analogous, an important dis-
tinction between their magnetic moments should be made. It was demonstrated that
fermions are relativistic and their magnetic moments are multiply by a dimension-
less quantity, g, called Landé g-factor. In the case of the orbital magnetic moment
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(a) (b)

Figure 1.3: The z-component of the spin angular momentum of an electron for (a)ms =
1
2

and (b) ms = -12 .

of the electron the factor is equal to 1, but for their spin magnetic moment its value
is ca. 2. Thus, equations (1.1) and (1.5), are written as (1.8) and (1.9).

µ⃗ = g
−e
2me

S⃗ (1.8)

µz = −gµBms (1.9)

Indeed, in every neutral atom there is the exact same amount of protons and
electrons with a wide variation of neutrons setting different isotopes, so the total
magnetic moment of an atom should be the combination of the intrinsic magnetic
moments due to the spin of all particles, plus the orbital contributions of the elec-
trons. Nevertheless, the combination of all the magnetic moments of the particles
at the nucleus, known as Nuclear magneton, µN is ca. 1800 times lower than the
Bohr magneton. This high difference between values means that electrons are more
strong magnets than protons and neutrons, and consequently, the magnetic prop-
erties of matter relies on their electronic configuration rather than their nuclear
states. Nonetheless, the intrinsic magnetic moments of certain nuclei is a feature ex-
ploited in Nuclear Magnetic Resonance (NMR) experiments, but for most purposes
nuclear-magnetic effects will be neglected.

The electronic configuration of an atom determines where is more probable to
localise an electron. They are distributed throughout the atomic orbitals in a specific
way by the aufbau principle used in conjunction with the Hund’s rule and the Pauli
exclusion principle. To begin with, an atomic orbital is a wave-function that appears
as solution after applying the energy operator, also known as Hamiltonian denoted
by Ĥ, to a one-electron system. The equation (1.10) is known as the Schrödinger
equation, where an atomic orbital is defined by a set of three quantum numbers, n,
l, and ml.

Ĥψn,l,ml
= E ψn,l,ml

(1.10)

The wave-function of an atomic orbital can be factorised between its radial and
angular part as ψn,l,ml

= Rn Y
l
ml
, where Y l

ml
, is the one discussed previously, but now

the allowed values of l are positive integers lying between 0 and n − 1, while n, is
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a positive integer with values lying between limits 1 and ∞. Besides, ml keeps its
values as integers between +l and −l.

In summary, n values determine the size of the orbit in which the electron is
moving and defines its energy, while l values provide detailed information about the
region of space in which an electron may move, describing the shape of the orbital,
and last ml relates to the directionality of that orbital.

As Pauli exclusion principle states, two electrons in an atom cannot have the
same set of quantum numbers, so only two electrons can occupy the same orbital
due to the only two possible values of ms. This means that every electron in an
atom is uniquely defined by its set of four quantum numbers, n, l, ml and ms, so the
full wave-function that describes the state of an electron is that of equation (1.11).
It is worth mentioning that the orientation of the electronic spin does not affect
the energy of the system, because the Hamiltonian does not operate on the spin
coordinates.

ψn,l,ml,ms
= Rn Y

l
ml
ψms

(1.11)

Furthermore, the Hund’s rule states that if an orbital presents degeneracy (same
energy level), in its ground state, pairing of electrons cannot begin until each orbital
in the set contains one electron, those electrons that remain unpaired have all parallel
spins, in other words, they have all the same values of ms. In conjunction with the
other two rules, the aufbau principle organises the electrons into different orbitals
in increasing energy order.

Going one step further, it is time to denote how magnetic moments of matter
interact under an external magnetic field. In the first place, the externally applied
magnetic field, that can be created by means of a current or a permanent magnet,
will be indicated as H⃗, and distinguished from the measured magnetic field, B⃗, that
appears in a region after applying a H⃗-field. The problem of notation and units used
in magnetism deserves a few words, for being one of the few areas where the old cgs-
emu system is still in use, and the SI system has not been universally applied.11–13

Thus, the units of H⃗ are Ampère per metre (Am−1) in the SI and Øersted (Øe) in

the cgs-emu system, being 1 Øe = 103/(4π) Am−1. Likewise, B⃗ is usually expressed
as the derived unit Tesla (T) in the SI, while in the cgs-emu system Gauss (G) is
preferred. They are related by 1 G = 10−4 T.

The H⃗- and B⃗-field are related in vacuum by the permeability µ0 constant
through equation (1.12), where µ0 = 4π × 10−7 Henry per meter (Hm−1) in the
SI, but it is a dimensionless quantity equal to 1 in the cgs-emu system. The last
statement implies that in the cgs-emu system, under vacuum conditions with no
other object to interact with, the H⃗-field is equal to the B⃗-field, so the units of B⃗
and H⃗ have the same dimensions, although their units are given different names to
help identify the field under discussion. Nevertheless, it is quite common to find both
fields expressed in Gauss due to this treatment of units in the cgs-emu system. Both
H⃗ and B⃗ are magnetic field vectors characterised by their magnitude and direction,
as a result, they can be depicted by magnetic field lines (Figure 1.4a).

B⃗ = µ0H⃗ (1.12)

When an H⃗-field is applied to a sample, either of its individual magnetic mo-
ments, L⃗ or S⃗ of every atom, tend to align parallel to the direction of that H⃗-field.
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1.1. Basic concepts of Molecular Magnetism

If it is applied on the z-axis, because of the uncertainty on the x- and y-axis, those
vectors never became fully align with the external field, and its movement should
be seen as the precession of L⃗ and S⃗ vectors around the z-axis.

Indeed, as consequence of Pauli exclusion principle, two electrons in the same
orbit will cancel completely their spin angular momenta and consequently, their spin
magnetic moments. Therefore, the spin contribution to the total magnetic moment
of an atom for paired electrons will be null. On the other hand, if the electrons
of an atom became unpaired, and for now consider that its different spin magnetic
moments cannot interact with each other, like if every electron was isolated one from
the other, then, if such system is placed in vacuum conditions in the presence of a
H⃗-field, their spin magnetic moments tend to be aligned with the field reinforcing it,
and the result is an increase of the magnetic field in that area as depicted in Figure
1.4b. If the field is not homogeneous the result is an attraction to areas where
the field is more intense. This phenomenon receives the name of paramagnetism.
Certainly, the paramagnetism can also be due by orbital magnetic moments, but it
only arises on electronic configurations when ML ̸= 0 (being ML the sum of all ml).
On the other hand, the intrinsic magnetic moment of an electron due to the spin is
always present, and it can only be cancelled out by electron pairing.

On the contrary to the spin cancellation, the cancellation of the orbital magnetic
moments are not complete. In fact due to this factor, when the interaction with
the H⃗-field results in repulsion, the B⃗-field becomes less intense as consequence of
this quasi cancellation that appears and opposes the external magnetic field (Figure
1.4c). This phenomenon is called diamagnetism and is an underlying property of
matter due to the interaction of the magnetic field with the motion of the electrons in
their orbits. However, the magnetic moments that arises from this quasi cancellation
are very small compared to the permanent magnetic moments. Thus, even when
diamagnetism is always present, it is often masked by paramagnetism.

(a) (b) (c)

Figure 1.4: (a) Uniform magnetic field in vacuum created by means of two magnets
and related by equation (1.12). (b) A paramagnetic system interacting with an external
magnetic field, resulting in attraction. This is graphically depicted by a higher density
of field lines inside the object. (c) A diamagnetic system interacting with an external
magnetic field, resulting to be the opposite response of a paramagnetic system.

In order to quantify the degree in which a B⃗-field is different from a H⃗-field
due to the total magnetic moment of a sample, another magnetic quantity will
be introduced, M⃗ , called the volume magnetisation of a substance. It has units of
Am−1 in the SI. Alternatively, in the cgs-emu system is often expressed as emu cm−3.
Although B⃗, H⃗, and M⃗ are vectors, they are usually parallel, hence from now on they
will be written in scalar form. Both phenomenon, paramagnetism and diamagnetism,
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are only observable when the H-field is present and all the magnetisation becomes
zero when the field is removed. Undoubtedly, the magnetisation observed in a sample
is due to the sum of both phenomenon, but if M < 0 the sample is said to be a
diamagnetic substance. On the contrary, if M > 0 the sample should be referred as
a paramagnetic substance.

In paramagnetism, the M value depends on the strength of the H-field, because
increasing the field increases the amount of aligned magnetic moments. However, the
magnetisation is not unlimited, it reaches a maximum value when all the magnetic
moments are aligned with the field. At this point, the magnetization remains con-
stant as the field increases, and it is said that the sample has reached its saturation
value, Ms. Besides, M depends also on the temperature, because thermal energy
opposes the ordering effect of the magnetic field. Thus, the magnetisation is a com-
petition between the applied field and the temperature, where for lower temperatures
the value of Ms is more easily reached. In diamagnetism, likewise paramagnetism,
the value of M depends on the H intensity, but on the contrary, it never reaches a
saturation limit because it arises from the change in the orbital motion of electrons
that opposes the external field that created it. Moreover, random thermal motion
of atoms does not affect those orbital magnetic moments, hence diamagnetism is
temperature independent. Magnetisation curves can be seen in Figure 1.5 for both
systems at different temperatures.

Figure 1.5: Magnetisation curve at two different temperatures, where T1 << T2. The
saturation is reached sooner at low temperatures for a paramagnetic substance (solid line),
while diamagnetism (dashed line) is independent of the temperature and never saturates.

In addition, the magnetisation being function of the applied field is not a con-
venient parameter, thus a new magnetic parameter is defined called the magnetic
susceptibility, χ. Since M is a vector and H is an axial vector, the susceptibility
should be treated as a second rank tensor. However, if the sample is not a single
crystal, where the magnetisation may be different in different crystallographic dir-
ections, hence powder is used instead, M becomes independent of the orientation of
the sample. Consequently, it becomes magnetically isotropic and the susceptibility
is a scalar instead of a tensor. The value of the volume magnetic susceptibility, χV ,
is given in equation (1.13).

χV =
δM

δH
(1.13)

Furthermore, as long as the relationship between M and H remains lineal, a
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1.2. Fundamental equations in Molecular Magnetism

situation that is usually accomplished when the H-field is low enough to not reach
the Ms value of the sample, then equation (1.13) may be expressed as (1.14).

χV =
M

H
(1.14)

In this way, for a given temperature, the susceptibility indicates how responsive
a material is to an applied magnetic field. Besides, as it is independent of the H-field
intensity, this makes the susceptibility far more convenient than the magnetisation
to compare data between researchers. The volume susceptibility is a dimension-
less quantity in both unit systems. Nevertheless, it is rarely know the volume of a
sample, being more common to know its weight, so the susceptibility per unit mass
is more useful. It is obtained dividing it by the sample’s density. For chemists, the
susceptibility per mole is usually preferred, and it is obtained by multiplying the
mass susceptibility by its atomic or molecular weight. As a result, the susceptib-
ility depends now on the amount of the sample. They have units of m3 Kg−1 and
m3 mol−1 in the SI, respectively. Likewise, in the cgs-emu system is expressed as
cm3 g−1 and cm3 mol−1, respectively. Similarly to the magnetisation, if χ < 0 the
sample is referred as diamagnetic, and if χ > 0 as paramagnetic.

In order to determine the paramagnetic susceptibility of a sample it is important
to correct its intrinsic diamagnetism. Since the diamagnetism does not change its
value with the temperature, and the diamagnetic susceptibility is independent of the
field intensity, it may be treated as a constant. For this reason, Pascal proposed that
the diamagnetism of a molecule could be calculated in an additive fashion as seen in
equation (1.15), using values for the diamagnetic susceptibility of every atom, χDia

i ,
and bond, λDia

i , in the molecule. The empirical values of χDia
i and λDia

i became
known as Pascal’s constants.14

χDia =
∑

i

χDia
i +

∑

i

λDia
i (1.15)

Indeed, all the samples are placed inside some sort of sampler-holder as capsules
to carry out the magnetic measurements, so the diamagnetism corrections due to
the measuring system should also be made.

In general the cgs-emu system is preferred widely by most of the researchers
because of its convenience relating B and H in vacuum, and also because Tesla is
considered a large unit. The largest continuous field ever produced in a laboratory
is ca. 40 T and the field at the Earth’s surface is a few tens of µT.15,16 For this
dissertation, the cgs-emu system will be used following the common tendency.

1.2 Fundamental equations in Molecular Magnet-

ism

From a thermodynamic point of view, the macroscopic magnetisation of a sample,
M , is the variation of the internal energy of the system, E, with the applied magnetic
field, H, as described in equation (1.16). The negative sign is placed for keeping
the convention where a paramagnetic substance has a positive magnetisation, while
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diamagnetism has negative values.

M = − δE

δH
(1.16)

In statistical thermodynamics, if it is considered a system sorted by i different
energy levels, Ei, each one of them in presence of an external magnetic field will
have a different magnetisation, due to their characteristic electronic configuration.
The microscopic magnetic moment of a level, µi, has an analogous formulation as
the macroscopic one. It is written as equation (1.17) presents.

µi = −δEi

δH
(1.17)

In order to know the macroscopic magnetisation through their microscopic mag-
netic moments, it is necessary to weigh the magnetisation of each moment by its
contribution. The Maxwell-Boltzmann population, Pi, is able to describe the en-
ergy distribution for each level of a system based on the temperature parameter
as the population medium, as expressed in equation (1.18), where kB is Boltzmann
constant and T is the absolute temperature.

Pi =
exp

(
− Ei

kBT

)

∑
i

exp
(
− Ei

kBT

) (1.18)

Therefore, it is possible to know the macroscopic magnetisation of a system
knowing the energy of every microscopic moment and its population. In addition,
the macroscopic magnetisation can be defined per mole of a substance by multiplying
through Avogadro’s number, NA, which leads to expression (1.19). Thus, it may be
considered as the fundamental equation in Molecular Magnetism, and it does not
lean on any approximation.

M = NA

∑

i

µi Pi = NA

∑
i

− δEi

δH
exp

(
− Ei

kBT

)

∑
i

exp
(
− Ei

kBT

) (1.19)

In order to know the energy of the different levels of a system, it is necessary
the use of mathematical operators over their wave-functions. The orbital and spin
magnetic moment operators and its z-component can be constructed from the clas-
sical expressions as described in equations (1.20) and (1.21). Furthermore, as L̂, L̂z,

Ŝ and Ŝz, the ℏ value is always returned, the constant will be omitted from now on
for a more simple exposure and convenience.

µ̂ = −µBL̂; µ̂ = −gµBŜ (1.20)

µ̂z = −µBL̂z; µ̂z = −gµBŜz (1.21)

Classically, the energy of a magnetic moment under a magnetic field is the scalar
product of both magnitudes as written in equation (1.22), where the negative sign
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1.2. Fundamental equations in Molecular Magnetism

indicates that the interaction decreases the energy of a system when the two mag-
nitudes have the same direction, but increases when they have opposite directions.

E = −µ⃗ · H⃗ (1.22)

Likewise, in quantum mechanics the operator of the energy associated to the
magnetic interaction is called Zeeman, ĤZ , and it can be built from equation (1.22)
as follows

ĤZ = −µ̂ H = µBH
(
L̂+ gŜ

)
(1.23)

Moreover, if the system is considered isotropic (x = y = z) all directions are
going to give the same results, hence, it is enough to apply the Hamiltonian in one
direction for knowing the total magnetic moment. Thus, expression (1.23) becomes
(1.24), z being for practical reasons the chosen axis.

ĤZ = µBH
(
L̂z + gŜz

)
(1.24)

In order to illustrate how to use expression (1.19) and calculate the energy
through the Zeeman Hamiltonian, it will be helpful to consider a simple system
and study its characteristics. For example, a system made only of electrons without
a nucleus and treated as isotropic. Therefore, the single magnetic moment is due to
the spin, and also no diamagnetism is found. Consequently, expression (1.24) can be
simplified to (1.25).

ĤZ = gµBHŜz (1.25)

Thus, the wave-functions that defined the states of a system composed only of
electrons are α and β. In absence of a H-field the two states are equal in energy,
but in presence of a field the degeneracy is broken. Expressions (1.26) and (1.27)
indicates the energy and magnetic moment for a ms =

1
2
, respectively, while (1.28)

and (1.29) for ms = -1
2
. As α and β functions are normalised, the integrals ⟨α|α⟩

and ⟨β|β⟩ are equal to 1. The energy difference between levels is as state in equation
(1.30). 〈

α
∣∣∣ĤZ

∣∣∣α
〉
= Eα ⟨α|α⟩ =

1

2
gµBH (1.26)

⟨α|µ̂z|α⟩ = µz,α ⟨α|α⟩ = −1

2
gµB (1.27)

〈
β
∣∣∣ĤZ

∣∣∣β
〉
= Eβ ⟨β|β⟩ =

1

2
gµBH (1.28)

⟨β|µ̂z|β⟩ = µz,β ⟨β|β⟩ = −1

2
gµB (1.29)

∆E = gµBH (1.30)

In summary, the state with ms =
1
2
opposes the field and rises its energy, while

the ms = -1
2
becomes parallel and decreases its energy. In Figure 1.6a can be seen

how is the interaction of both spin magnetic moments with an external field, whereas
in Figure 1.6b the energy diagram of the system.
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(a) (b)

Figure 1.6: (a) Under a H-field, the spin magnetic moment experiences a force that tends
to align it with the direction of that field. As the magnetic moment is spinning, the force
causes the system to precess around the direction of the external field. Note how ms = -12
is the one that become parallel with the field, while ms = 1

2 opposes to the field. (b)
Before applying a magnetic field for an unpaired electron both values of ms are possible
and equal in energy. Under an external magnetic field, both energy levels are function of
the H-field intensity.

Thus, the magnetisation of a mole of electrons can be deduced from equation
(1.19) as expression (1.31), where the partial derivative of the energy respect to the
field are trivial calculations for both energy levels.

M =
NAgµB

2
tanh x; x =

gµBH

2kBT
; tanh x =

exp(x)− exp(−x)
exp(x) + exp(−x) (1.31)

The expression (1.31) includes the hyperbolic tangent of x, whose values are
compressed between +1 and −1 horizontal asymptotes (Figure 1.7a). Likewise, the
magnetisation for a mole of electrons will be the tanh function multiplied by a con-
stant. The value at Ms is reach at high H, where for a value of g ≈ 2 the saturation
will be equal to NAµB. Thus,Ms is the maximum value of the paramagnetic moment
of a mole of electrons (Figure 1.7b). For this reason, it is very common to find the
magnetisation of samples represented in NAµB units.

(a) (b)

Figure 1.7: (a) Variation of the hyperbolic tangent function with x. (b) Variation of the
magnetisation function with the field, where Ms represents the saturation value of a mole
of electrons.

Classically for paramagnetic systems, the spin magnetic moment of an atom
is represented by an arrow randomly oriented before applying an external field.
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1.2. Fundamental equations in Molecular Magnetism

Thus, as the field increases more and more spins become align with it until the
saturation point at a given temperature is reached (Figure 1.8). This representation,
even though intuitive and simple, is not suitable in the quantum mechanics context,
where the spin can only have two possible orientations. Therefore, a more accurate
description should be made in terms of population. At H = 0 both states are equally
in energy and find themselves equally populated and consequently M = 0. As the
field increases the state that becomes more stable increases its population, whereas
the opposite is depleted. Nevertheless, the thermal energy at room temperature will
have a value of ca. 200 cm−1, while the magnetic energy separation between levels
will be no more than ca. 1 cm−1 for a 1 T field, as it can be deduced from equation
(1.30). Indeed, it is possible to increase the field to increase the separation, but
it is more suitable to decrease the temperature. At liquid Helium temperature the
thermal energy will be ca. 3 cm−1, being easier to highly populate the ground state
to reach the saturation value.

Figure 1.8: Classical representation of the spin magnetic moment for different paramag-
netic centres. These are randomly oriented due to the thermal energy and overall the
M = 0. After applying an external field strong enough to align all magnetic moments, the
saturation value is reached.

In a more general case, equation (1.19) is often difficult to apply. Clearly, it
requires knowledge on the energy function for all thermally populated states in order
to calculate their derivatives. For this reason, Van Vleck proposed a simplification
based on a few approximations.

First, in order to find expressions for the energy of every level, the perturbation
theory was applied. In this method, the problem to solve is considered from the
point of view of a problem which has already been solved. For example, a transition
metal in an octahedral field would be treated as a perturbation of the free ion by the
potential of the ligands. Thus, the treatment will start with the free ion determined
wave-functions and energy levels, and then the changes on the energy and wave-
functions due to the ligand field will be calculated. This theory works well as an
approximation as long as the perturbation have not more energy than the initially
possessed by the system. Actually, the magnetic interaction is no more energetic
than ca. 1 cm−1 for a H-field of 1 T. On the other hand, the energy of a free atom in
the first row transition metals are of ca. 104 cm−1, while the ligand field have values
of ca. 104 to 102 cm−1. Therefore, the magnetic interaction can always be seen as a
perturbation of the initial system under this conditions.

In the mathematical evaluation from the perturbation theory perspective, the
Hamiltonian is divided into two parts. The first Hamiltonian is applied to the sys-
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tem before the perturbation and determines for each level of the system the wave-
functions, ψi, with their energies, E

(0)
i . They are called initial functions and energies

of zero-order. Indeed, a set of ψi functions can be found per level if degeneracy is
present. The second one is the perturbation Hamiltonian, Ĥ′. All wave-functions
that interact with it change their state to a new set of wave-functions, ϕi, with
their respective energies, E

(1)
i . These are called perturbed functions and energies of

first-order. Thus, it is possible to break the degeneracy of the initial system by first-
order effects. Furthermore, the new calculated functions from one level may interact
now with functions from other levels. In this way, second-order wave-functions and
energies may develop, and so on and so forth. However, with the second-order inter-
actions should be enough for most of the systems, after all if the problem is suitable
for the perturbation theory, the quantities E

(0)
i , E

(1)
i , E

(2)
i , . . . decrease as the order

of the perturbation correction increases.
The first-order energies corrections are calculated solving the system of equations

(1.32), where Hii and Hij are integrals as presented in (1.33), i and j being different
wave-functions of the system, and n the total number of them.





(
H11 − E(1)

)
c1 +H12 c2 + . . .+H1n cn = 0

H21 c1 +
(
H22 − E(1)

)
c2 + . . .+H2n cn = 0

· · ·
Hn1 c1 +Hn2 c2 + . . .+

(
Hnn − E(1)

)
cn = 0

(1.32)

Hii =
〈
ψi

∣∣∣Ĥ′
∣∣∣ψi

〉
; Hij =

〈
ψi

∣∣∣Ĥ′
∣∣∣ψj

〉
(1.33)

This system of equations can be expressed as a matrix and solved through a
determinant. One possible solution is the trivial one, where all the cn coefficients
are equal to zero. This is the only solution to the system unless the determinant
of the factors of the c’s is equal to zero. That determinant is known as the secular
determinant and is presented in (1.34), where each element of the matrix is given
by Hii − E(1) for diagonal elements, and Hij for off-diagonal elements. Moreover,
after applying the perturbation Hamiltonian, due to the orthonormality between
the functions all integrals of the type ⟨ψi|ψi⟩ will be equal to one and ⟨ψi|ψj⟩ will
be equal to zero.

|ψ1⟩ |ψ2⟩ · · · |ψn⟩
⟨ψ1| H11 − E(1) H12 · · · H1n

= 0
⟨ψ2| H21 H22 − E(1) · · · H2n

...
...

...
...

...

⟨ψn| Hn1 Hn2 · · · Hnn − E(1)

(1.34)

Only when all off-diagonal elements of the determinant or sub-determinants are
zero, the first-order energy is easily calculated as given by equation (1.35), and
first-order wave-function coincides with the zero-order one, ψi = ϕi.

E
(1)
i = Hii (1.35)
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On the other hand, when the secular determinant (or sub-determinants) contains
non-zero off-diagonal matrix elements, it means that the first-order perturbation
mixes those wave-functions. As a result, new energy levels are developed and a new
set of wave-functions must be calculated. In practice, it involves solving the secular
determinant by a process known as diagonalization of the determinant, where all
the elements are isolated in the diagonal by permuting rows and columns in order
to separate the problem into smaller determinants. Thus, a n× n determinant will
result in an equation of the nth degree in E(1), and therefore it has n roots, E

(1)
1 ,

E
(1)
2 , . . . , E

(1)
n , some of them will be equal if degeneracy is present. Afterwards, with

the obtained energy values it is possible to obtain the new wave-functions, which are
a lineal combination of the zero-order ones with the form described by (1.36). This
process involves the calculation of the different cn coefficients from (1.32) equations,
and the normalization constant, N , for accomplishing the ⟨ϕi|ϕi⟩ = 1 condition.

ϕj = N [c1ψ1 + c2ψ2 + . . .+ cnψn] = N

n∑

i=1

ciψi (1.36)

In this way, if the perturbation is applied at the first-order over the new calculated
set of wave-functions, it will produce a diagonalised matrix without non-zero off-
diagonal elements, and therefore the first-order energy correction will be as given in
(1.35).

Additionally, due to the interaction of the first-order functions with other ones
from excited terms, second-order corrections to the energy and functions can be
made as established in (1.37), and (1.38), respectively.

E
(2)
i =

n∑

i ̸=j

HijHji

E
(0)
i − E

(0)
j

(1.37)

ϕi = ψi +
n∑

i ̸=j

cij ψj; cij =
Hij

E
(0)
i − E

(0)
j

(1.38)

In the magnetic interaction viewed from the perturbation theory perspective, the
Zeeman Hamiltonian gives the first- and second-order energies as (1.39) and (1.40).
It is useful to define both energies as function of H, as the integral is not defined
for the magnetic field variables it can get out as a constant. Hence, it will be more
clear to perform its derivatives in the future. Moreover, this expressions are more
convenient because the external magnetic field is the only adjustable experimental
parameter.

E
(1)
i = H

〈
ψi

∣∣∣µB

(
L̂+ gŜ

)∣∣∣ψi

〉
= HEi

′ (1.39)

E
(2)
i = H2

∑

i ̸=j

〈
ψi

∣∣∣µB

(
L̂+ gŜ

)∣∣∣ψj

〉2

E
(0)
i − E

(0)
j

= H2Ei
′′ (1.40)

Then, the energy of an i level will be defined as Ei = E
(0)
i +HEi

′+H2Ei
′′, where

its magnetic moment can be deduced from expression (1.17) to µi = −Ei
′− 2HEi

′′.
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Thus, the first approximation of the general equation (1.19) is as follows:

M = NA

∑
i

(
−Ei

′− 2HEi
′′) exp

(
−E

(0)
i

kBT

)
exp

(
−HEi

′
kBT

)
exp

(
−H2Ei

′′
kBT

)

∑
i

exp

(
−E

(0)
i

kBT

)
exp

(
−HEi

′
kBT

)
exp

(
−H2Ei

′′
kBT

) (1.41)

Here is when Van Vleck made its second approximation. It is considered that
Ei

′H << kBT and Ei
′′H <<< kBT , a sensible situation due to that in most cases H

is certainly smaller than T . Thus, the second-order exponential term can be directly
simplified to 1, and the first-order exponential term can be approximated by the
limit of Taylor series, where exp(±x) = 1±x when x << 1. Therefore, the equation
(1.41) is simplified as

M = NA

∑
i

(
−Ei

′− 2HEi
′′) exp

(
−E

(0)
i

kBT

)(
1− HEi

′
kBT

)

∑
i

exp

(
−E

(0)
i

kBT

)(
1− HEi

′
kBT

) (1.42)

Furthermore, for a paramagnetic system M = 0 when H = 0, which leads to the
requisite presented in equation (1.43).

∑

i

(
−Ei

′) exp
(
−E

(0)
i

kBT

)
= 0 (1.43)

Thus, equation (1.42) is simplify to

M = NAH

∑
i

(
Ei

′2
kBT

− 2Ei
′′
)
exp

(
−E

(0)
i

kBT

)

∑
i

exp

(
−E

(0)
i

kBT

) (1.44)

Finally, the magnetic susceptibility can be calculated with the magnetisation as
previously introduced by equation (1.14). Thus, the equation (1.45) is known as Van
Vleck formula for paramagnetic systems.

χM = NA

∑
i

(
Ei

′2
kBT

− 2Ei
′′
)
exp

(
−E

(0)
i

kBT

)

∑
i

exp

(
−E

(0)
i

kBT

) (1.45)

As a noteworthy remark, it is possible to construct a secular determinant with all
the desired functions from the ground to excited states for diagonalization. Thus, the
energy obtained will incorporate the energy corrections to the desired order. Nev-
ertheless, the determinant will involve an equation of high order, which is normally
difficult to solve algebraically, and numerical methods will be required to express
the variation of the energy levels with the magnetic field. Moreover, even if there
is an algebraic expression of the energy, it will require to be expressed as a power
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series of H, because it needs to be in an appropriate form for its substitution into
Van Vleck’s formula.

It is convenient to define a couple of systems in order to understand the uses of
the Van Vleck formula. Indeed, the magnetic susceptibility derived via Van Vleck’s
formula is the result of changes in the molecular energy levels of an atom with the
magnetic field. However, the connection between this and the quantum numbers
which define the energy terms is not so readily appreciated. For the next two cases,
the zero of energy will begin at the ground state, so the zero-field energy will be
defined as E

(0)
i = 0.

In the first case, for a system where the only thermally populated state have
S = 0 and L = 0, where S and L represents the total spin and orbital angular
momentum, respectively, the paramagnetic susceptibility is intuitively expected to
be zero because of the lack of a magnetic moment to interact with. Thus, the sole
component of the ground level denoted from now on with a 0 sub-index, has no
first-order interaction with the field, E0

′ = 0. In other words, the ground state does
not change its energy when a magnetic field is applied. Nevertheless, this conclusion
is only correct for the first-order interaction. If under a magnetic field this system
has near excited states that can be populated, then the ground state becomes a
mixture of itself with a little contribution of the other excited states, that may have
a paramagnetic contribution, hence, second-order perturbations, E0

′′ < 0, and the
Van Vleck formula becomes as

χM = −2NAE0
′′ (1.46)

This paramagnetic contribution is called Temperature Independent Paramag-
netism (TIP), because of its characteristic lack of dependence with the temperature
parameter. The degree of TIP depends on how near in energy is the ground state
from the excited states. In general this contribution is rather small, often of the same
order of magnitude as the diamagnetism, but of opposite sign. Both contributions
are corrected from the measurements in order to quantify correctly the temperature
dependent paramagnetism.

In a more general second case, a system where S ̸= 0 and L ̸= 0 it consequently
have after applying a magnetic field a first-order perturbation, so Ei

′ ̸= 0. If second-
order interactions are omitted, hence Ei

′′ = 0, the Van Vleck formula (1.45) can be
demonstrated to be derived as (1.47). Furthermore, if there is no orbital contribution
L = 0, the Van Vleck formula is simplified as (1.48). The last equation receives the
name of Spin-only formula.

χM =
NAµB

2

3kBT

[
L(L+ 1) + g2S(S + 1)

]
(1.47)

χM =
NAµB

2g2

3kBT
S(S + 1) (1.48)

As a noteworthy remark, some authors prefers to redefine the χMT product as a
new parameter called effective magnetic moment, µeff , as shown in equation (1.49).
Its description of the magnetic moment is the same as χMT , and its units are denoted
as Bohr magnetons even when it is a dimensionless quantity in the SI and cgs-emu
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unit systems.17

µeff =

[
3kB

NAµB
2

]1/2
[χMT ]

1/2 (1.49)

Similarly, before the Van Vleck formula, Pierre Curie deduced a phenomeno-
logical law to explain the paramagnetic behaviour of certain substances with the
temperature (1.50), where C is known as the Curie constant and is characteristic of
each system. Nowadays, the origin of the Curie constant can be seen from a quantum
mechanics perspective deduced from the Van Vleck formula obtained above.

χM =
C

T
; C =

NAµB
2

3kB

[
L(L+ 1) + g2S(S + 1)

]
(1.50)

Both, Curie and the obtained Van Vleck equation, rely on the approximation
where Ei

′H << kBT and Ei
′′ = 0, for this reason whenever this conditions are not

met, the χM cannot be accurately obtained from those expressions. A representation
of different χM plots obtained through this equations in shown in Figure 1.9.

(a) (b) (c)

Figure 1.9: Different common representations of the molar magnetic susceptibility for a
paramagnetic system (a) χM vs. T (b) χMT vs. T (c) χM

−1
vs. T . Note how values of χM

from Curie (1.50) or Van Vleck (1.47) equations are not known at low temperatures with
high fields, where the approximation Ei

′H << kBT cannot be met.

For systems with L = 0, hence, all the magnetisation is due to the spin, it is
possible to assign a function for the energy that varies with the total spin value
and the field known as the Brillouin function (1.51). Taking into account the molar
magnetisation shown in expression (1.19) and the Brillouin function, after some
mathematical treatment, the magnetisation can be expressed as equation (1.52)
states. In Figure 1.10, it can be seen how when µBH < kBT the Curie and Van
Vleck formulas are a good approximation of the magnetisation, whilst at µBH > kBT
cannot effectively give its value where the saturation of the magnetisation occurs.
In these conditions, the Brillouin function tends to the unit and the magnetisation
to Ms = NAµBgS.

B(y) =
2S + 1

2S
coth

(
2S + 1

2S
y

)
− 1

2S
coth

(
1

2S
y

)
; y =

gµBS

kBT
H (1.51)

M = NAgµBSB(y) (1.52)
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1.3. Spin-orbit coupling and ZFS effect

Figure 1.10: Magnetisation in NAµB units vs. µBH/kBT plots for systems with only
spin contribution to paramagnetism. The g-factor is taken equal to 2.00. The solid line
depicts the magnetisation by equation (1.52) whilst the dashed line by spin-only formula
(1.48) multiply by H.

1.3 Spin-orbit coupling and ZFS effect

So far, it was considered that the magnetic moment due to the spin was inde-
pendent of the magnetic moment of the orbit, and so they were treated separately.
However, both magnetic moments interact with each other. The influence between
moments is given the name of spin-orbit coupling. Nevertheless, there are two models
for treating the interaction depending on how strong the spin-orbit coupling is.

The first one is for more lighter elements called L-S coupling, also known as
Russell-Saunders. In this case, the main energy terms are determined chiefly by the
electrostatic repulsion between electrons, and the spin-orbit coupling is considered
small in comparison and treated from the perturbation theory perspective. In this
way, the orbital and spin angular momenta of each electron are combined separately
for the i electrons of the system, leading to total values of L and S as shown in equa-
tion (1.53). Then, they are mixed by the spin-orbit interaction and the combination
leads to the total angular momentum of the system, J . This information is shown in
Figure 1.11a. Nevertheless, the spin and orbital angular momenta can be arrange in
a parallel or antiparallel fashion, so J presents a range of values compressed between
L+S and |L−S| jumping in integer steps, as summarised in expression (1.54). Thus,
the new energy terms are defined by their S, L and J values. Furthermore, each term
presents 2J + 1 degenerate energy levels characterised by the different orientations
of J on the z-axis, hence the different values of MJ , which are compressed between
J and −J jumping in integer steps.

S =
∑

i

si; L =
∑

i

li (1.53)

J = L+ S, L+ S − 1, ... , |L− S| (1.54)
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Thus, following the Russell-Saunders scheme, the spin-orbit Hamiltonian will be
treated as presented in equation (1.55), where L̂ and Ŝ are the total orbital and spin
angular momentum operators, and λ stands as the polyelectronic spin-orbit coupling
parameter. For the transition metals block and lanthanides, it can be calculated from
the free ion single-electron spin-orbit coupling constant, ξ, as equations (1.56) and
(1.57) present for dn and fn systems. The ξ values become higher as heavier becomes
the atom and further is its oxidation state.8,10 Moreover, its value only depends on
the radial part of the wave-function. Hence, ξ and λ are treated as a constant for
the angular part operators in single-electron or polyelectronic systems, respectively.
As the λ value is positive for dn systems with n < 5, the lowest energy level is the
one with the lowest J . On the other hand, when n > 5 the fundamental state is the
one with the highest value of J . Same deduction is made for fn systems. Indeed,
under this conditions for values of n where the orbital is empty, half-full or full, no
spin-orbit coupling can occur.

ĤSOC = λL̂Ŝ =
(
L̂xŜx + L̂yŜy + L̂zŜz

)
(1.55)

dn





n < 5; λ =
ξ

2S
; E|L−S| < ... < EL+S

n > 5; λ = − ξ

2S
; EL+S < ... < E|L−S|

(1.56)

fn





n < 7; λ =
ξ

2S
; E|L−S| < ... < EL+S

n > 7; λ = − ξ

2S
; EL+S < ... < E|L−S|

(1.57)

Moreover, the spin-orbit coupling not necessarily needs to be applied only to
the free ion. In octahedral transition metals coordination compounds, where the
energy terms are obtained after the ligand field perturbation, eg and t2g define their
electronic configurations. In the same way, when n > 2 in eng , or n > 3 in tn2g
electronic configurations, the polyelectronic spin-orbit constant becomes negative.
Nevertheless, in those electronic configurations which give a T fundamental term as
in d1, d2, low-spin d4, low-spin d5, high-spin d6, and high-spin d7 ions in octahedral
surroundings, due to the isomorphism between a T and a P term both with L = 1
(||T|| = −||P||) the energy order is the opposite to the one expected considering
their free ion configurations, that is when λ > 0, the lowest energy level is the one
with the highest J (EL+S), and when λ < 0, the ground level is the one with the
lowest J

(
E|L−S|

)
.

The spin-orbit coupling becomes more strong for atoms with a high value of the
atomic number, and the spin-orbit coupling energies become more important than
the bielectronic repulsion, and therefore it cannot be treated as a small perturbation
for these atoms any more. A better scheme called j-j coupling is used. Here, the
spin-orbit coupling is the most dominant energy of the system. Therefore, the orbital
and spin angular momenta of each electron are combined separately as expressed in
equation (1.58). Then, the weaker electrostatic repulsion effect may couple the total
angular momentum from each electron, ji, into the total angular momentum of the
system, J , as (1.59) states. This information is summarised in Figure 1.11b. And at
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1.3. Spin-orbit coupling and ZFS effect

last, if the atom is not isolated, the ligand field will split the energy terms according
to the symmetry.

ji = si + li (1.58)

J =
∑

i

ji (1.59)

(a) (b)

Figure 1.11: Classical vectorial representation of the spin and orbital angular momenta
of two electrons labelled as 1 and 2. (a) They are combined separately to form the total
spin and angular momenta. In this example S and L are added to form the total angular
momentum J . (b) The orbital and spin angular momentum for each electron are combined
by spin-orbit coupling, and then the total angular momentum of each electron combine to
form the total angular momentum of the system.

Overall, in a metal complex there are three main energy contributions, the in-
terelectronic repulsion, the ligand field splitting and the spin-orbit coupling. For
the first-row transition metals the L-S model works acceptably well as the electro-
static repulsion is much greater than the ligand field, and this latter is greater than
the spin-orbit coupling, so they are treated sequentially following the perturbation
theory perspective. For the second-row transition metals, the ligand field and spin-
orbit coupling start to catch up with the bielectronic repulsion, and for the three-row
transition metals, the three energies may become of the same order of magnitude,
and an intermediate coupling scheme would be more convenient. Besides, as the en-
ergy of the interactions are similar it could be necessary to treat them together and
not sequentially. For lanthanides, the bielectronic repulsion and spin-orbit coupling
are the most prominent energies with a weak ligand field interaction, whilst for ac-
tinides, the j-j coupling scheme is usually applied because the spin-orbit interaction
for each electron is the dominant energy. It must be considered that both models,
L-S and j-j, are extreme cases and its application may not always lead to reliable
results with physical meaning. Nevertheless, in order to be able to compare the
values for all transition metals and lanthanides between them, they will be treated
within the context of the Russell-Saunders approach, even when the values are not
really that equivalent and compatible.

In order to evaluate the spin-orbit coupling, only the L, S, ML and MS numbers
will be necessary. Thus, the integrals of the functions ψL,S,ML,MS

will be written with
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Dirac notation, as |L,ML, S,MS⟩, from now on for short. The L̂Ŝ expression can
be written in terms of raising and lowering operators, collectively known as ladder
operators, as in expression (1.60). Thus, it is possible to avoid the use of x and y
operators. Nevertheless, the ladder operators are no longer able to operate a function
without changing their MS and ML values as given in equations (1.61) and (1.62),
in contrast with the z operators found in expressions (1.3) and (1.7), adapted to
Dirac notation in (1.63) and (1.64), respectively.

ĤSOC = λL̂Ŝ = λL̂zŜz +
λ

2

(
L̂+Ŝ− + L̂−Ŝ+

)
(1.60)

L̂± |L,ML, S,MS⟩ = [L(L+ 1)−ML(ML ± 1)]1/2 |L,ML ± 1, S,MS⟩ (1.61)

Ŝ± |L,ML, S,MS⟩ = [S(S + 1)−MS(MS ± 1)]1/2 |L,ML, S,MS ± 1⟩ (1.62)

L̂z |L,ML, S,MS⟩ =ML |L,ML, S,MS⟩ (1.63)

Ŝz |L,ML, S,MS⟩ =MS |L,ML, S,MS⟩ (1.64)

The first- and second-order spin-coupling interactions may break the degeneracy
of the ground state, and split it into different levels breaking the isotropy of the sys-
tem. As a result, the magnetisation will no longer be independent of the direction of
the field, and different grades of magnetisations will be achieved in different direc-
tions. This is an important phenomenon in Molecular Magnetism, because without
the help of any field, via the spin-orbit coupling, several levels with different mag-
netic moments may rise. This phenomenon is known as Zero Field Splitting (ZFS).
As the population medium of those levels is the temperature, and different levels
may have different magnetic moments, the magnetisation of the system is strongly
dependent on the temperature. Moreover, the measurements are usually carried on
powder samples, so the total susceptibility can be approximated as an average made
of the value for each component as expressed in equation (1.65).

χ =
χx + χy + χz

3
(1.65)

Nevertheless, it is worth noting that the ZFS achieved when the metal center is
located in a rigorously cubic ligand field environment is not too high. For instance,
in the case of a high-spin d5 ion, it has a 6A1g ground state under octahedral en-
vironment. In zero field, the first-order spin-orbit coupling will give two degenerate
levels, a two-fold degenerate component, E′, and a four-fold degenerate component,
G′ (considering the double group, O′). Second-order effects with components from
another free ion terms, hence far from the ground state, will break their degeneracy
splitting the two levels, at most of ca. 10−2 cm−1 for first-row transition metals. Thus,
a very weak magnetic anisotropy will appear, but in principle as it is due to such
low energy difference, it does not create any magnetic anisotropy in practise. For
this reason, higher magnetic anisotropy usually appears by combination of the spin-
orbit coupling and the distortion of the cubic symmetry, either axial (z ̸= x = y) or
rhombic (z ̸= x ̸= y). Consequently, if the symmetry of the system is not too high,
the first- and second-order spin-orbit interactions can break the degeneracy of the
ground state, and split it into different levels removing the isotropy of the system.
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1.4. Intermolecular magnetic interactions and magnetic orders

In the former example of a high-spin d5 ion, any distortion will lower the symmetry
and break the degeneracy of the G′ into two two-fold degenerate states, and lead to
a more noticeable anisotropy of the magnetic susceptibility. Thus, the energy separ-
ation between levels or anisotropy depends on the value of λ and a parameter of the
symmetry distortion, where a noticeable ZFS will appear only when the symmetry
of the system is not too high regardless the λ value.

Interestingly, when for an energy term there is an odd number of electrons, hence
the total spin is a half-integer and the spin multiplicity calculated through 2S + 1
is even, the combined effect of the spin-orbit coupling and a ligand field of any low
symmetry, will always split as a result that energy multiplet at most into two-fold
degenerate components. These two-fold degenerate components are called Kramers
doublets. Thus, those systems with an even spin multiplicity energy term will always
have a Kramer doublet which degeneracy cannot be completely eliminated by ZFS
effects as a ground state.

On the other hand, for those energy terms with an even number of electrons,
the splitting effect from the combination of the spin-orbit coupling and an axial
distortion of the symmetry, results into one component with mj = 0 and the rest
of them will be Kramer doublets. Thus, the ground state could not always be a
Kramer doublet as in the previous case. As the magnetic properties of the ground
state become more relevant as the temperature is lowered, the fact of having a ground
state with or without degeneracy has a drastic impact on the magnetic behaviour
of a system. As there is a need of distinction between those two kind of systems,
they are classified in two groups. In those cases where the degeneracy of the ground
state multiplet cannot be completely removed by ZFS effects are known as Kramer
systems, whereas those where it can be removed are called non-Kramer systems.

Alternatively, the ZFS within a ground state L = 0 and S ̸= 0 can be treated with
the phenomenological Hamiltonian presented in equation (1.66), where D represents
the axial magnetic anisotropy parameter and E the rhombic parameter.

ĤZFS = D

[
Ŝ2
z −

1

3
S(S + 1)

]
+ E

(
Ŝ2
x − Ŝ2

y

)
(1.66)

1.4 Intermolecular magnetic interactions and mag-

netic orders

The phenomenon of diamagnetism and paramagnetism along with the interaction
between the spin and orbital magnetic moments within an atom have been properly
introduced. However, until now it was never considered the interaction between
magnetic moments belonging to different atoms. So far, the magnetism was described
for isolated paramagnetic centres, where each one was independent from the other
without any contacts between them. In this way, all of them together constitute
what is called a magnetically diluted system. Nonetheless, there is a large number of
system which are said to be magnetically concentrated, where long range magnetic
orders occur, being the different paramagnetic centres able to interact with each
other in two different ways.

The intermolecular interaction with neighbouring members can line up paral-
lel their magnetic moments or antiparallel in exactly opposite directions. They are
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called ferromagnetic or antiferromagnetic, respectively. Moreover, if a compound is
made up of paramagnetic centres with different effective magnetic moments, they
cannot completely cancel when are arranged in a antiferromagnetic fashion, hence a
net magnetic moment arises similar to ferromagnetic substances. These compounds
are said to be ferrimagnetic. Lastly, it is possible that in an antiferromagnetic ar-
rangement the magnetic moments are not completely align, and certain angle (α)
remains among the paramagnetic centres, which could be of the same or different
nature. This phenomenon is known as spin-canting and it leads to a small net mag-
netic moment, hence a very weak ferromagnetic-type behaviour. Indeed, in the same
way, the spin-canting phenomenon can be present when the magnetic moments are
arranged in parallel. A summary of these long range magnetic orders can be found
in Figure 1.12.

(a) (b) (c) (d)

Figure 1.12: Cooperative phenomenon of paramagnetism substances with classical spin
representation for a (a) Ferromagnetic interaction (b) Antiferromagnetic interaction (c)
Non-compensated antiferromagnetic interactions also called ferrimagnetic behaviour (d)
Antiferromagnetic spin-canting interaction. The angle of the canting is indicated by the α
parameter.

These kinds of interactions can be mainly found in polinuclear compounds, where
the different paramagnetic centres are bound by ligands acting as bridges with an es-
sential role mediating the different interactions. Nevertheless, they can also be found
in mononuclear entities with adjacent members in the crystal lattice. Every para-
magnetic system at enough low temperature, where the intermolecular interactions
may not be neglected, is expected to present long range magnetic order. That spe-
cific temperature is denoted as TC (Curie temperature) or TN (Néel temperature),
for ferromagnetic or antiferromagnetic behaviour, respectively. The temperature at
which the phenomenon arises depends on the intensity of the interactions. In gen-
eral, for molecules with Van der Waals interactions it is the order of ca. 10−2 K.
When the interactions are transmitted through hydrogen bonds the temperature
can reach values of ca. 1 K. Moreover, when the interactions are carried out through
the correct orbitals, it can be present at room temperature or even higher.

As a noteworthy remark, a classical magnet is characterised for having a high
TC well above room temperature. Thus, classical magnets exhibit strong long-range
ferro- or ferrimagnetic interactions. Moreover, one characteristic of classical magnets
is its ability to retain a certain amount of the magnetisation over long periods of time,
contrary to paramagnets or diamagnets, it will not relax back to zero magnetisation
when the imposed magnetising field is removed.

As a brief introduction, for ferro- and ferrimagnetic materials at a temperature
below TC , they are composed of small-volume regions in which there is a mutual
alignment in the same direction of all magnetic dipole moments, as illustrated in
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Figure 1.13a. Those regions are called domains, and each one is magnetised to its
saturation. Different domains are separated by domain boundaries or walls, where
the direction of magnetisation normally changes gradually from one to the other.
In general, domains are microscopic in size and for polycrystalline materials each
grain will consist of more than a single domain. Furthermore, for an unmagnetised
sample each domain is randomly oriented, where the sum of the magnetisations of
all domains equals zero. Under the application of an external field, it produces the
breaking of the boundaries and the creation of bigger domains. If the field is strong
enough it will produce a single domain where the saturation of the magnetisation is
reached. A scheme of this process is presented in Figure 1.13b.

(a) (b)

Figure 1.13: The arrows serves as classical spin representations (a) Schematic depiction
of domains in a ferri- and ferromagnetic material. Within each domain all magnetic dipoles
are aligned, whereas the direction of alignment varies from one domain to another. (b)
Magnetisation curve of an initially unmagnetised ferri- or ferromagnetic system. Domain
configurations during several stages of magnetisation are represented. The saturation of
the magnetisation is also indicated.

In this type of magnetically ordered systems, they will remain partially ordered
even after the removal of the external magnetic field. The parameter to measure
the degree of this magnitude is known as magnetic retentivity or remanence, Mr.
Additionally, the amount of reverse magnetic field that must be applied to the
system to reduce its magnetisation to zero is called coercivity or coercive field, Hc.
As a result of these two parameters, when a experiment is performed applying the
field in one direction and then it is reversed, the magnetisation does not retrace its
original path. This phenomenon is known as hysteresis effect and is represented by
hysteresis loops or curves (Figure 1.14).

These parameters are of great importance in the rational design of new materials,
where both ferri- and ferromagnetic materials can be classified as either soft or hard
on the basis of their hysteresis characteristics (Figure 1.14b). For example, in data
storage devices a weak coercive field will end on data corruption as is too easy to
demagnetised. On the other side, if it is too big, the energy required for modifying
the data (invert the magnetisation) will be of a large amount. For the retentivity,
small values could end up with the reading system incapable of detecting the data.
Thus, soft magnetic materials are generally used in devices that are subjected to
alternating magnetic fields and in which energy losses must be low, like in the
case of transformer cores, where a low coercivity for being easily magnetised and
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demagnetised is searched.

(a) (b)

Figure 1.14: (a) The solid line represents the hysteresis loop, whereas the dashed line the
initial magnetisation. Its singular points has been also indicated. (b) Types of hysteresis
loops for hard or soft magnetic materials.

In order to treat the magnitude of the exchange interaction in a isotropic way,
a simple approach can be done for temperatures above the TC or TN . Hence, in the
paramagnetic state, where the effect of the intermolecular interactions is weak. The
susceptibility data can be fitted modifying the Curie law adding a θ parameter called
Weiss temperature. This new equation is called Curie-Weiss law (1.67). In Figure
1.15, it can be found the representation of different intermolecular interactions,
where if θ = 0, the material is a paramagnet. If θ < 0 antiferromagnetic interactions
dominate the magnetic behaviour, and if θ > 0 ferromagnetic interactions prevail.

χM =
C

T − θ
(1.67)

(a) (b) (c)

Figure 1.15: Different representations of the molar magnetic susceptibility obtained
through the Curie-Weiss law for paramagnetic (solid line), ferromagnetic (dashed line)
and antiferromagnetic (point and dashed line) systems (a) χM vs. T (b) χMT vs. T (c)
χM

−1
vs. T .

For systems where, to a first approximation, there is no orbital angular mo-
mentum associated with the ground states of the interacting metal ions, and where
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the spin is treated under isotropic conditions, the magnitude of the spin-spin ex-
change interaction between an n number of neighbouring magnetic centres within a
molecule can be treated with a Hamiltonian expressed as a sum of terms involving
pairs of local spins as described in (1.68), where Jij represents the exchange coupling
constant between spins i and j. For J < 0 the interaction is said to be antiferromag-
netic, and ferromagnetic when J > 0. Therefore, it is necessary to add a negative
sign to the Hamiltonian expression for defining the ferromagnetic interactions as
the less energetic and the antiferromagnetic as the higher ones. Moreover, equation
(1.68) is written in a way that each interaction is counted only once, while in other
notation is preferred to count Jij and Jji as equals and give Jij twice the value
expressed here.

ĤJ = −
n∑

i>j

JijŜj · Ŝi (1.68)

Interestingly, the simplest case of a magnetic chain is provided by an array of
equally spaced metal ions as schematised in Figure 1.16, with an effective isotropic
spin of S = 1/2. Thus, the spin Hamiltonian in zero-field adapted to describe the
isotropic interaction between nearest neighbouring ions, where the addition runs
over the n sites of the chain is written as (1.69).

Figure 1.16: Scheme of a one-dimensional system with equally spaced metal centres and
one magnetic exchange coupling constant, J .

ĤJ = −J
n−1∑

i=1

ŜAi
· ŜAi+1

(1.69)

Nevertheless, when n tends to infinite, there is no analytical method that can be
used to determine the energies of the low-lying states and the magnetic susceptibility.
However, Bonner and Fisher solved the problem numerically by considering ring
chains of increasing size and extrapolating for the case where n becomes infinite.
The numerical expression result for J < 0 in presented in (1.70), where χM passes
through a rounded maximum at a temperature, TN , defined by (1.71).18

χM =
NAg

2µB
2

kBT

0.25 + 0.074975x+ 0.075235x2

1.0 + 0.9931x+ 0.172135x2 + 0.757825x3

x =
|J |
kBT

(1.70)

kBTN
|J | = 0.641 (1.71)

On the other hand, a high-temperature series expansion has been proposed by
Baker-Rushbrooke19, for a ferromagnetically coupled (J > 0) uniform chain of spin
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doublets as the following numerical expression

χM =
NAg

2µB
2

4kBT

[
1.0 + Ay +By2 + Cy3 +Dy4 + Ey5

1.0 + A′y +B′y2 + C ′y3 +D′y4

]2/3

y =
J

kBT
; A = 5.7979916; B = 16.902653; C = 29.376885;

D = 29.832959; E = 14.036918; A′ = 2.7979916; B′ = 7.0086780;

C ′ = 8.6538644; D′ = 4.5743114

(1.72)

1.5 Spin dynamics and relaxation times

Until now, all magnetic properties were related to systems under a static mag-
netic field produced by means of a direct current, thus they are referred as DC or
static magnetic properties. It was not yet covered the dynamic magnetic properties
of systems obtained via an oscillating magnetic field. That field is produced by an
alternating current (AC), so the magnetisation and susceptibility obtained are de-
noted as MAC and χAC, respectively. With AC is possible to measure the sensitivity
to change of the magnetisation with respect to a change in the applied field. In
other words, it provides information about the slope of the magnetisation curve, its
derivative. Indeed, in those parts where the relationship between M and H is lineal,
the susceptibilities obtained by DC or AC methods coincide, while in the saturation
χAC is equal to zero. This information is represented in Figure 1.17.

Figure 1.17: The derivative of the magnetisation curve at different points.

In AC measurements, the magnetic field varies with the time as indicated by
equation (1.73), where the oscillating or alternating magnetic field, H(t), it is a
function of ω = 2πν, ν being the frequency of the alternating current in Hertz units
and typically in the range of 0.1 to 104 Hz (s−1), t is in seconds, and HAC is the
amplitude of the field, which it is normally about 1 to 5 Øe, therefore HAC <<
HDC. Besides, the magnetisation due to the sample under this field follows a similar
pattern, as it is given by equation (1.74). One characteristic of the AC measurements
is that they can be performed in absence or presence of a DC magnetic field, so
HDC and MDC may be null. Either way, all experiments in this dissertation are
limited to the case where both magnetic fields are applied in parallel. Furthermore,
the AC susceptibility is calculated as the DC, but using the amplitude of the AC
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field as equation (1.75) states. As in the DC case, this equation assumes a lineal
response between field and magnetisation, and non-lineal regimes will be avoided by
performing experiments far from the saturation of the magnetisation.

H(t) = HDC +HAC cos(ωt) (1.73)

M(t) =MDC +MAC cos(ωt) (1.74)

χAC =
MAC

HAC

(1.75)

As an example, in a system formed by i paramagnetic ions with only two spin
states, MS = +1/2 and MS = −1/2 without ZFS, under the presence of a HDC the
two levels will break their degeneracy, and they will be populated by the temperature
as already explained in section 1.2. The presence of an oscillating field implies that
the magnetic field surrounding the i paramagnetic ions changes over time. In an AC
experiment it is possible to vary the frequency of the current, hence, the direction
of the HAC produced. In this way, it leads to transitions between the two levels as
depicted in Figure 1.18. The redistribution of the magnetic dipoles of the sample
over the two energy levels follows a relaxation process, which requires of a certain
time called relaxation time, τ . Thus, a relevant feature of an AC experiment is that
allows the possibility to ascertain the spin dynamics of the system under study by
determining the relaxation time of its magnetic moment.

Figure 1.18: Spin relaxation of a system between only two levels under a HDC in which
an oscillating field is applied, being HDC >> HAC. The diagram is not at scale.

Three different regimes can be defined depending on the relaxation time of the
magnetic moments of the sample. First, when the frequency of the alternating field
is slower than the relaxation rate of the system (ω << τ−1). In this case, the sys-
tem responds instantaneously to the variations of the HAC and the susceptibility
obtained is comparable with the susceptibility measured by DC methods. In other
words, the magnetic moments of the sample are always at equilibrium throughout
the measurement, being able to align parallel to the oscillating magnetic field to the
state of minimum energy. In these conditions, the AC susceptibility is also called
isothermal susceptibility, χT , to indicate the thermal equilibrium of the spin system
with its surroundings.
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Secondly, when the variation of the AC field oscillates much faster than the
relaxation rate of the system (ω >> τ−1). In this condition, the system cannot re-
spond quickly enough and is not able to achieve the minimum of energy aligning
all the magnetic moments. The system has blocked their magnetic moments and
they cannot be reoriented by HAC, they being isolated from its surroundings. Under
these circumstances, the susceptibility is usually called adiabatic susceptibility, χS,
and it depends on the intensity of the magnetic field. In general, for very strong
DC fields, χS << χT and in some approximations χS is neglected. After all, if the
magnetic moments are completely blocked and the oscillating field is not able to
realign them, the magnetisation is not going to undergo a noticeable change, and a
dynamic measure that asses its variation will have a low value.

Lastly, when both magnitudes are comparable (ω ≈ τ−1), the magnetic moments
of the system are not able to response instantaneously with the oscillating field
variation driven by the alternating current. The generated magnetisation delays after
the driving field by a shift indicated by the variable φ, which carries the phase lag
between the alternating current and the system. Thus, equation (1.74) is rewritten
as (1.76), where it was not considered the DC term. This phenomenon is known in
the Molecular Magnetism field as slow relaxation of the magnetisation.

M(t) =MAC cos(ωt− φ)

=MAC cosφ cos(ωt) +MAC sinφ sin(ωt)
(1.76)

Moreover, the magnetisations can be rearranged in two parts, as in-phase or real,
χ′, and out-of-phase or imaginary component, χ′′, as done in (1.77). The imaginary
component is also known as absorption susceptibility because it is a measure of the
energy absorbed or dissipated by the system under an AC field. On the other hand,
the real component is also called the dispersion susceptibility.

M(t) = χ′MAC cos(ωt) + χ′′MAC sin(ωt);

χ′ =
MAC

HAC

cosφ; χ′′ =
MAC

HAC

sinφ
(1.77)

At a certain temperature and for a given HDC, the AC susceptibility can be
expressed as (1.78), which yields to real (χ′) and imaginary (χ′′) parts to the values
given by equations (1.79) and (1.80), respectively. This model proposed by Casimir
and du Pré to interpret the slow relaxation of the magnetisation, in ferric am-
monium sulphate,20 is analogous to the dielectric relaxation described by the Debye
model.21 Actually, many of the treatments of AC susceptibility take expressions used
in dielectric relaxation.

In this case, the AC susceptibility may be written as a complex number as in
(1.81), where the sign of the imaginary part is a matter of convention that depends
on how the sign in the denominator of equation (1.78) is defined.22 Either way,
equations (1.79) and (1.80) remain independent of the sign convention chosen. It is
worth mentioning, that at low and high frequencies φ equals zero. Therefore, the
system is essentially fully in-phase and χ′′ ≈ 0. Thus, the susceptibility is just the
real component expressed as χT or χS.

χAC = χS +
χT − χS

1 + iωτ
(1.78)
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χ′ = χS +
χT − χS

1 + (ωτ)2
(1.79)

χ′′ =
(χT − χS)ωτ

1 + (ωτ)2
(1.80)

χAC = χ′− iχ′′ (1.81)

As it can be deduced from equation (1.80) and it is shown in Figure 1.19a, the
maximum value of χ′′ is achieved when ω = τ−1, and it corresponds to χT−χS

2
.

Moreover, for much higher or lower frequencies than the relaxation rate, the values
of χ′′ are negligible. In Figure 1.19b, it can be seen the effect of lower relaxation
rates for a given temperature, in which for greater relaxation times the maximum
is reached at lower frequencies.

In this way, a representation of χ′′ vs. ν in a range of temperatures allows to
characterise at which frequency the maximum is found, and therefore the relaxation
time of the system at different temperatures by equation (1.82). Indeed, τ values
will be determined with more exactitude fitting all the experimental data to the
function from equation (1.80), determining ∆χ = χT −χS along with τ rather than
establish the relaxation time only with the value at the maximum frequency.

τ(T ) =
1

2πνmax

(1.82)

(a) (b)

Figure 1.19: Representation of χ′′ vs. ν curves for a given temperature and (a) Different
values of ∆χ = χT − χS whilst the value of τ has been taken equal to 0.01 s (b) Different
values of τ with ∆χ constant to 2.00. The dashed lines represent the position of the
different maxima on the horizontal and vertical axis. The frequencies are depicted in a
logarithm scale.

On the other hand, it is also possible to determine the relaxation time from χ′ vs.
ν representations. In Figure 1.20a, it can be seen that the inflection point of the χ′

function appears when ω = τ−1 at χT+χS

2
which coincide with the maximum in χ′′.

Moreover, as it can be deduced from equation (1.79), when ν → ∞, χ′ → χS, whilst
ν → 0, χ′ → χT . In Figure 1.20b, it is presented the χ′ curves for several relaxation
times, where for higher τ values the inflection point appears at lower frequencies.
The same conclusion was made for χ′′.
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(a) (b)

Figure 1.20: (a) Representation of χAC vs. ν curves at a constant temperature for a τ
value of 0.01 s (b) Representation of χ′ vs. ν curves for a given temperature for different
relaxation times. The values of χT and χS of the in-phase susceptibility are taken as 2.00
and 0, respectively. The dashed lines represent the position of the different maxima on the
horizontal and vertical axis. The frequencies are depicted in a logarithm scale.

Indeed, both equations (1.79) and (1.80) are really helpful in order to establish
the relaxation time of a system. However, it is more convenient to use the expression
(1.80) and χ′′ representations since it is only necessary to determine two variables,
∆χ and τ , whilst there are three, χS, χT and τ for expression (1.79).

On the other hand, it is possible to represent the measured data in χ′′ vs. T plots
at different constant frequencies. Thus, it will be seen how the relaxation time varies
with the temperature at a given frequency. In this way, when ω = τ−1, a maximum
will appear in both the χ′′(T ) plot at different frequencies and in χ′′(ν) at different
temperatures. Nevertheless, among the two types of curves, χ′′(ν) data can be fitted
to the Debye model by equation (1.80).

Alternatively, it is possible to report χ′′ vs. χ′ resulting in a semicircle plot
known as the Argand diagram. These plots are equivalent in the field of magnetism
to the Cole–Cole plots for dielectrics.23 From equation (1.79) and (1.80) is deduced
expression (1.83), which resembles the equation of the circle (1.84), where the point
(a, b) indicates its center and r its radius.

[
χ′−

(
χT + χS

2

)]2
+ χ′′ 2 =

χT + χS

2
(1.83)

(x− a)2 + (y − b)2 = r2 (1.84)

A representation of the Argand diagram is shown in Figure 1.21, where the center
is located at

(
χT+χS

2
, 0
)
and the radius corresponds to χT−χS

2
. Furthermore, the top

satisfies the condition ω = τ−1. Hence, the relaxation time is deduced from the
frequency that gives the maximum value of the semicircle. The result of a single
perfect semicircle indicates the presence of only one relaxation time driven by a
single relaxation process, besides, the intersection of the circle on the χ′ axis gives the
values for χT and χS. It is possible to perform experiments at different temperatures
in order to verify the existence of a single relaxation time and, therefore, unique
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values of χT and χS with the temperature. Indeed, if the consistency is maintained
all diagrams should look the same regardless of the temperature.

Figure 1.21: An Argand diagram at a constant temperature with a single relaxation
time, showing their singular points. The values of χT and χS are taken as 6.00 and 0,
respectively.

Nevertheless, different values of χT can be obtained from the analysis performed
at different temperatures if the magnetisation has not reach its saturation, showing
how the relaxation time depends on the temperature. For a system with only one
relaxation time per temperature, and considering that τ varies with it following an
exponential relation of the Arrhenius type presented in equation (1.85), it is possible
to determine its energy barrier, U , and the pre-exponential factor, τ0. These two
parameters characterise the slow relaxation of the magnetisation in a compound.
Moreover, equation (1.85) determines that as temperature ascends the relaxation
time decreases.

τ = τ0 exp

(
U

kBT

)
(1.85)

In practice, natural logarithmic transformation is used on equation (1.85) to
convert it into a linear relationship (1.86). In this way, the data is fitted by linear
regression. A simulation of a system with different energy barriers and a fixed τ0
is shown in Figure 1.22. It can be seen how it is necessary of high U values in
order to increase the temperature at which the maxima in χ′′ will appear. As an
example, in order to detect out-of-phase signals at high temperature (T = 300 K)
for a system with τ0 = 10−8 s with a frequency of 1000 Hz, it will be necessary an
U of ca. 2000 cm−1. Moreover, it is important to take into account the limitations
due to the measuring device. In general, a SQUID magnetometer is able to measure
frequencies in the range from 0.1 to 1000 Hz, using values inferior to 0.1 Hz will
make the experiments to long. In the case of a PPMS device, it may work in a
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frequency range 100-10000 Hz.

ln τ = ln (τ0) +
U

kB

1

T
(1.86)

Figure 1.22: Ln τ vs. 1/T plots for systems with different energy barriers. The value of
τ0 is taken as 10−8 s. The range of frequencies for a SQUID and PPMS device is indicated.

Furthermore, deviations of the perfect semicircle from the Argand diagrams are
commonly found. In practice, very few cases completely agrees with Debye equation
(1.78). The model considers that the magnetisation decays or relax exponentially
with time, and it assumes that the different entities have spherical shape and can-
not interact with each other. Hence, all magnetic centres have the same relaxation
time. The limit of completely non-interacting magnetic moments is unlikely to be
encountered, due to the presence of cooperative effects that may raise neither at high
or low temperatures. In order to take into account these deviations into the Debye
model, for a given temperature a phenomenological parameter, α, is introduced for
measuring the distribution of relaxation times.

Thus, equation (1.87) is known as the generalised Debye model, which yields
to expressions (1.88) and (1.89) for χ′ and χ′′, respectively. The values of α are
compressed between 0 and 1, where α = 0 indicates that no distribution exist
because it is a line, hence the generalised Debye model reduces to the ideal Debye
model. For α = 1, it becomes parallel to the axis showing infinite times. Thus, a
distribution on the relaxation times lead to a distribution on the energy barriers.

χAC = χS +
χT − χS

1 + (iωτ)1−α
(1.87)

χ′ = χS + (χT − χS)
1 + (ωτ)1−α sin

(
πα
2

)

1 + 2(ωτ)1−α sin
(
πα
2

)
+ (ωτ)2(1−α)

= χS +
χT − χS

2

[
1− sinh [(1− α) ln(ωτ)]

cosh [(1− α) ln (ωτ)] + sin
(
πα
2

)
] (1.88)
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χ′′ = (χT − χS)
(ωτ)1−α cos

(
πα
2

)

1 + 2(ωτ)1−α sin
(
πα
2

)
+ (ωτ)2(1−α)

=
χT − χS

2

cos
(
απ
2

)

cosh [(1− α) ln (ωτ)] + sin
(
πα
2

)
(1.89)

The relaxation times distribution for the generalised Debye model behaves sym-
metrically in a logarithmic scale around an average relaxation time, τav, following
expression (1.90) and represented in Figure 1.23a for a constant temperature. As
the temperature descends, intermolecular interactions may become more important
and began to dominate incrementing the size of the entities along with the relaxa-
tion times, therefore a greater value of α would be expected. Moreover, the average
relaxation time may also increase as the temperature descends, as discussed earlier.
This information is shown in Figure 1.23b.

G(ln τ) =
1

2π


 sin(απ)

cosh
[
(1− α) ln

(
τ
τav

)]
− cos(απ)


 (1.90)

(a) (b)

Figure 1.23: Distribution of relaxation times following equation (1.90) for different α
values (a) At a constant temperature (b) At different temperatures. The x-axis are depicted
in a logarithm scale.

An alternative approach considering a logarithmically asymmetric distribution
of relaxation times on the frequency axis is possible with Cole-Davison or Hav-
riliak–Negami models,22 among others.24 Nevertheless, the published compounds
within this dissertation are considered to have a symmetric distribution and the
Debye generalised model will be the only one used.

It is possible to relate equation (1.88) and (1.89) to obtain expression (1.91),
which it is useful for an Argand representation. In Figure 1.24 is shown the effect of
α on different Argand diagrams, where for values different from zero, the semicircle
becomes flattened and an arc is obtained. This indicates that the relaxation process
is not characterised by a single relaxation time.

χ′′ = −F +

√
F 2 + (χ′− χS)(χT − χ′); F =

χT − χS

2
tan
(πα

2

)
(1.91)
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Figure 1.24: Argand diagrams at a constant temperature for different distributions of
relaxation times. The value of τav is taken as 0.01 s, whilst χT and χS are 6.00 and 0,
respectively.

In Figure 1.25, it can be seen the effect of the relaxation time distribution on χ′

and χ′′. It is interesting to note how the values of both susceptibilities decrease as
greater becomes the distribution. Furthermore, at the same frequency and temper-
ature, χ′′ values can be very small compared to χ′.

(a) (b)

Figure 1.25: Representation of (a) χ′ and (b) χ′′ vs. ν at a constant temperature. Note
how the inflection point in χ′ or the maximum in χ′′ match for all curves, due to the same
τav at 0.01 s. These plots assume χS = 0 and χT = 6. The frequencies are depicted in a
logarithm scale.

As a noteworthy remark, sometimes it is not possible to characterise the full
relaxation curve, and only incipient signals without a well establish maximum are
detected in the temperature and frequency window technically available, hence the
fit of the data to the Debye model is not possible. In those cases, a rough evaluation
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can be made assuming only one relaxation time and considering the system driven
by only one energy barrier (1.85). Neglecting the χS term from expressions (1.79)
and (1.80) the quotient χ′′/χ′ is equal to ωτ , thus U and τ0 are estimated through
equation (1.92).

ln

(
χ′′

χ′

)
= ln(ωτ0) +

U

kB

1

T
(1.92)

Until now only one relaxation process was considered, but it is possible to en-
counter systems with more than one. The Debye equation (1.78) can be extended
to a n-set Debye model (1.93), where each process may have its own relaxation time
distribution. Consequently, depending on where the maxima of the different pro-
cesses are located, it will be more or less easy to visualize them in χ′′, and a sum of
n-arcs will appear in the Cole-Cole plots.

χAC = χS +
χT1 − χS

1 + (iωτ1)1−α1
+

χT2 − χS

1 + (iωτ2)1−α2
+ ... (1.93)

Furthermore, each slow relaxation of the magnetisation process may take place
driven by different mechanisms or a set of them. Due to the wide range of different
spin relaxation interactions, several magnetic relaxations mechanisms are found in
the literature, and the origin of those interactions has been a reason of study for
years.10,25–29

As a brief introduction, the mechanisms considered relevant for the compounds
described in this Thesis work are those involving the interactions of spins from
the paramagnetic centres with the environment where they are place, which will
be referred from now on as the lattice. The spin-lattice relaxation mechanisms in-
volve transference of energy between the spin system and the vibrations of the
lattice through phonons. Therefore, these mechanisms are dependent of the temper-
ature, and it will be studied mainly three types, Orbach, Direct and Raman. On the
other hand, there is another important temperature independent mechanism called
Quantum Tunnelling of the Magnetisation abbreviated QTM. Thus, there is not a
single mechanism determining the relaxation dynamics of a compound. Nevertheless,
at the beginning of this research field, the relaxation process was only considered
to be driven by an Orbach mechanism, and as consequence, a lot of the compounds
magnetic behaviour is only related to it.

The main condition for a system to exhibit slow relaxation of the magnetisation
is the existence of an energy barrier that separates the states with positive and
negative magnetic moments with respect to a given axis or plane of magnetisation.
This is achieved by means of the spin anisotropy, where the applied magnetic field
will have different effects on the electronic spin depending of the chosen axis. A
relaxation mechanism connect the different levels in order to invert the direction of
the spin and regain the equilibrium. Thus, before applying any field both directions
of the electronic spin are equally possible describing a symmetric double well with
the same population. A potential energy diagram of the magnetic moment with an
energy barrier separating the up and down orientations is shown in Figure 1.26a.

Furthermore, in the simplest case of a system with an easy axis of magnetisa-
tion with respect the other two coordinates, there are two kinds of energy barriers
expressions according to the total spin of the system. For integer spins U = |D|S2

and U = |D|(S2 − 1/4) for half-integer spins, calculated through equation (1.66)
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neglecting the rhombic anisotropy. Nevertheless, in these systems after applying the
alternating field, the levels are almost align between them and the QTM mechanism
is the main pathway of relaxation. The QTM works shortening the relaxation path
through two levels close in energy, so it is the more likely mechanism to happen
in the vicinity of energy level crossings. Applying a static field, the double well be-
comes asymmetric and the QTM becomes less likely to happen as there is not a
match between different energy levels (Figure 1.26b). If the sweep of the static field
continues it can match again the two levels and the QTM becomes relevant again
(Figure 1.26c). Thus, QTM is strongly dependent on the magnetic field.

(a) (b) (c)

Figure 1.26: Drawing showing the potential energy of a integer spin system exhibiting
slow relaxation of the magnetisation under (a) HDC = 0 (b) HDC,1 ̸= 0 (c) HDC,2 > HDC,1.

On the other hand, in a Direct mechanism there is an exact match between the
spin transition energy and a phonon from the lattice. Thus, it can be a direct transfer
of energy from the spin system to the lattice. For Orbach and Raman mechanisms,
they use a two-phonon process, where the first phonon from the lattice is absorbed
to promote the spin system to an excited state for the Orbach, and through a virtual
state for the Raman mechanism. Lately, the second phonon is released returning the
system to the ground state but with the spin inverted. An schematic representation
of the different mechanism is depicted in Figure 1.27.

(a) (b) (c)

Figure 1.27: Schematic representation of the spin-lattice mechanism that can occur in
a system (a) Direct (b) Orbach (c) Raman. The |c⟩ represents a real excited state in the
Orbach mechanism and a virtual state in the Raman diagram.

As there is a low density of low-energy phonons that match exactly the energy
for the transition, the Direct mechanism is not too efficient at high temperatures. In
contrast, the Orbach and Raman mechanisms involve the abortion of high-energy
phonons which are more abundant at higher temperatures, and therefore more ef-
ficient. Nevertheless, as the temperature decreases the availability of high-energy
phonons is severed and the Orbach and Raman mechanisms become less relevant,
whilst the Direct mechanism turns into the main pathway.
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In this way, the overall relaxation rate (τ−1) is normally fitted to a mixture of the
different mechanisms that may be available for a system as expressed in equation
(1.94)

τ−1 = τ−1
Orbach + τ−1

Raman + τ−1
Direct + τ−1

QTM (1.94)

The Orbach term has already been introduced, τ−1
Orbach = τ−1

0 exp
(
− U

kBT

)
, show-

ing its exponential dependence with the temperature. The Raman term has the form
of τ−1

Raman = CT n, where n is treated as an adjustable parameter that can strongly
deviate from its theoretical temperature dependence, which is n = 7 for non-Kramer
(integer total spin) and n = 9 for Kramer systems (half-integer total spin). This is
mainly due to the availably of the phonons. The Direct term τ−1

Direct = AT depends
on the temperature and its constant on the applied magnetic field. Lastly, the QTM
is treated as a constant that is independent on the temperature, and strongly de-
pendent on the field. The terms on equation (1.94) have been ordered to adopt
significance on cooling from left to right. Each mechanism has different dependence
with the temperature or none, and the different availability windows may make
them coexist all together. In general, the QTM and Direct mechanisms normally
operate at low temperatures, Orbach at highest and Raman has been seen in the
whole temperature range.

As a noteworthy remark, if a relaxation process is only driven by a QTM mech-
anism, it being the only one which is temperature independent, the maxima in χ′′(T )
will be located at the same temperature. This could also be detected in the χ′′(ν)
representations where the position of the maxima do not shift when increasing the
temperature.

Although relaxation times are generally fitted to several mechanisms, and the
inclusion of many of them within a model could lead to a better representation of
the experimental data, it could also lead to an overparametrization situation where
the values obtained for each mechanism may probably lose their physical meaning.
In those cases, it may be recommended to fit the available data to less mechanisms
in order to allow more reliable parameters for each one.

1.6 From classical magnets to molecular magnets

The strength of ferro- or ferrimagnetic interactions in a compound defines its TC .
Above that temperature, the material will lose its property of being capable to retain
the magnetisation when the field is removed. Nevertheless, classical magnets have a
TC well above the room temperature. Thus, magnetism was a property traditionally
associated with metallic and ionic lattices. For example, magnets were exclusively
metals such as Fe, Co, Ni, Gd, some alloys or oxides like magnetite (Fe3O4), Fe2O3

or CrO2. One of the most common uses of magnetic materials is indeed its charac-
teristic to partially retain the applied magnetic field, which has been used to store
information. However, because of the need to allocate larger amounts of data in the
same space size, a challenge in the design of new magnets is their miniaturisation.
To attain this purpose there are two different approaches. The first one is known as
top-down, and consists on reducing the size of the material with physical procedures.
The second approach is known as bottom-up, which begins with small entities and
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ends with larger systems with the use of metal ions and ligands bond by chemical
processes.

As a brief summary on the historical background of the bottom-up perspective,
it is characterised by the rational synthesis of new polynuclear coordination com-
pounds. In this approach, it is necessary to choose the nature, size, shape, reactivity,
magnetic properties, and connectivity of the different building blocks. The problem
at hand is to succeed choosing the conditions to favouring the ferromagnetic order-
ing, which is not a trivial matter. Achieving an intramolecular ferromagnetic interac-
tion can be problematic, but achieving an intermolecular long-range ferromagnetic
interaction is even more problematic, mainly due to the factors that governs the
crystal packing, which are extremely subtle and hard to control.

For example, one of the first molecular-based ferromagnets driven by this rational
design was the compound {MnCu(pbaOH)(H2O)3}n shown in Figure 1.28. It is made
up of an alternating arrangement of Mn(II) and Cu(II) metal ions connected through
the pbaOH ligand [pbaOH = 2-hydroxy-1,3-propylenebis(oxamato)] to constitute
a ferrimagnetic chain. This is possible due to the antiferromagnetic interactions
between the S = 5/2 and S = 1/2 spins from Mn(II) and Cu(II), respectively. This
chains are assembled within the crystal lattice in a way that ferromagnetic fashion
is favoured at TC = 4.1 K and thus a soft hysteresis loop can be measured. However,
it is remarkable how a similar compound, {MnCu(pba)(H2O)3 · 2H2O}n [pba = 1,3-
propylenebis(oxamato)], undergoes antiferromagnetic interactions between chains
with such small modification on the starting material (Figure 1.28). The contrast
between the magnetic behaviours is explained with the differences in the crystal
packing that both compounds present.30

Figure 1.28: Schematic structural representation of {MnCu(pbaX)(H2O)3}n (X = H in
pba and X = OH in pbaOH) chain. The pbaX structure has been highlighted.

With time, this area of new magnets design from its molecular perspective be-
came relevant, and thus this new field of research named Molecular Magnetism was
born, where the structural and magnetic properties of a great number of magnet-
ically ordered molecular systems were described. All this research lead to a better
comprehension of the mechanisms involved in the magnetic exchange between metal
centres, together with the origins of the magnetism from the chemical nature of
molecules. Nonetheless, the data was mainly related to the use of 3d metal ions.1,7

Nowadays, the use of 4d, 5d and specially 4f metal ions are being more explored.10

Nevertheless, the size reduction of a system to a molecular point may have im-
portant consequences on the hysteresis loop. In general terms, the size of the domains
are at a nanoscale, therefore molecules below that size will not form domain walls and
the magnetisation in each particle will become of a single magnetic domain. These
types of systems are called superparamagnets. Furthermore, if the supermagnetic en-
tities are isolated no hysteresis effect is possible by long-range interactions. However,
in those supermagnets that present a slow enough relaxation of the magnetisation
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an hysteresis effect emerges. This is reminiscent of the ferro- and ferrimagnetic be-
haviour, but this time without long-range interactions between the spin carriers,
this hysteresis is purely at a molecular level. Nonetheless, the magnetic hysteresis
exhibited by those systems have a particular characteristic, in those critical values of
the field where the quantum tunnelling mechanism is favoured, the relaxation of the
magnetisation is faster, and as consequence, the hysteresis loop presents a distinct
staircase shape instead of being a smooth curve. A graphic example of an hysteresis
loop of this type of systems is shown in Figure 1.29a.

As a result, those molecules that present a slow enough relaxation of the magnet-
isation to behave as magnets are called Single-Molecular Magnets (SMMs). The first
SMM reported was the [Mn12O12(O2CCH3)16(H2O)4] · 4H2O · 2CH3COOH shown in
Figure 1.29b. It consists of an inner centre made up of four MnIV ions with S = 3/2,
arranged in antiparallel fashion to the external eight MnIII ions with S = 2. The
ferrimagnetic exchange results in a ground state of collective spins with S = 10.31–33

(a) (b)

Figure 1.29: (a) Magnetisation vs. applied magnetic field of a superparamagnet ex-
hibiting an hysteresis effect. The vertical parts between the ‘steps’ correspond to the
values of the field where the QTM is favoured and the relaxation faster than the
measuring time. (b) Schematic drawing of the

[
MnIV4 MnIII8 (µ-O)12

]16+
entity within

the [Mn12O12(O2CCH3)16(H2O)4] · 4H2O · 2CH3COOH complex. The relative positions of
MnIV are indicated by solid coloured circles, MnIII by shade coloured circles, and µ3-O

2−

bridges by white circles.

Nevertheless, the slow relaxation of the magnetisation is not a behaviour exclus-
ively exhibited by SMMs, systems that consist only of one paramagnetic centre or
one-dimensional systems may also present this characteristic behaviour, hence they
are called Single-Ion Magnets (SIMs) and Single-Chain Magnets (SCMs), respect-
ively.
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CHAPTER 2

RHENIUM

2.1 Theoretical magnetic model for a d
3 ion sys-

tem

A free transition metal ion completely isolated in space presents five degenerate
d orbitals. The first Hund’s rule states that the lowest energy level has the maximum
spin multiplicity. Following the second Hund’s rule, the term with the largest value of
L has the lowest energy, for a given spin multiplicity. Therefore, the energy term for
the ground state of an atom is defined first by the highest values of S and secondly
by the highest value of L. For a d3 system as Re(IV), three unpaired electrons will
give rise to a MS = 3/2, hence, a S = 3/2 and spin multiplicity of 4. On the other
hand, the highest value of L for this spin multiplicity is achieved when the electrons
are distributed as shown in Figure 2.1, where a value of ML equal to 3 implies
the existence of a total angular momentum of 3. Therefore, the fundamental term
defined as 2S+1L, for a d3 free ion must be 4F from a Russell-Saunders perspective.

Figure 2.1: Ground state for a d3 electronic configuration following the Hund’s rules. As
the total value of the z-component of the angular momentum for all atoms is ML = 3, it
must exist a L = 3 with ML = 3, 2, 1, 0,−1,−2,−3 components. Same reasoning for the
total spin value. Note how the notation in lowercase letters, ml, is used for single-electrons
and capital letters for polyelectronic terms, ML.

To this model of a free metal ion absolutely isolated, the perturbation due to
the ligands will be the next energy to consider, and after it, the effect of the spin-
orbit coupling will be evaluated. Under an octahedral (Oh) symmetry as depicted
in Figure 2.2a, the group theory suggests that the 4F term will split as presented in
Figure 2.2b.

Nevertheless, in order to know the energy order between the different levels it is
necessary to conduct theoretical calculations. To this regard, the energy calculation
over the d orbitals under an Oh symmetry can be demonstrated to result into two
levels, t2g and eg, separated by an energy gap of 10Dq as shown in Figure 2.3a.
In this way, it is possible to relate the energy of each strong ligand field electronic
configuration (Figure 2.3b to 2.3d) with its corresponding energy level in weaker
ligand fields.

The ground term 4F has associated 28 wave-functions, but in order to evaluate
the spin-orbit coupling and later the Zeeman, only the L, S, ML and MS numbers
will be necessary. Nevertheless, the values of L and S remain constant for every
wave-function inside a term, thus they can be abbreviated as |ML,MS⟩. The only
wave-functions to consider are the corresponding to the ground state 4A2g and the
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(a) (b)

Figure 2.2: (a) Octahedral environment with the transition metal placed at the centre
and the ligands at the vertex of the octahedron that they form. (b) Energy diagram for a
4F term in a Oh symmetry. The numbers in parenthesis indicate the total degeneracy.

(a)

(b)

(c)

(d)

Figure 2.3: (a) Energy diagram of the d orbitals under an Oh symmetry. ∆Oh
stands for

energy value between the two levels. Different electronic configurations for a d3 under an
Oh symmetry for (b) ground state with a 4A2g term, (c) first exited with a 4T2g and 4T1g

term, and (d) Second exited state with a 4T1g term.

most near exited state 4T2g, summarised in Table 2.1. The other exited states are
considered to be too high in energy and their levels immensely depopulated, thus
their contribution will be neglected. All wave-functions have been calculated to
be linear combinations adapted to the symmetry of the system, hence they are
orthogonal between them. Furthermore, the functions are also normalised.

The next step is to calculate the first-order spin-orbit coupling energies for the
ground state. From the perturbation theory perspective, all the elements belonging
to the secular determinant must be evaluated with the spin-orbit operator introduced
previously in (1.60). The resulting secular determinant is presented in (2.1). As all
the elements outside the diagonal are zero, the first-order energies for each level
are easily match by (1.35). However, the first-order energy corrections for all the
components of the level are equal to zero. As an example, the evaluation of one of
the elements of the matrix for ψ1 is shown in (2.2), being the result zero. This was
the expected outcome because the 4A2g term has no orbit contribution, L = 0, and
therefore there is nothing to coupling the spin with. The same conclusion is made
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Table 2.1: Oh symmetry adapted wave-functions for 4A2g and 4T2g terms from a d3

system.

Term ψi

4A2g

1 1√
2
{|2, 3/2⟩ − |−2, 3/2⟩}

2 1√
2
{|2, 1/2⟩ − |−2, 1/2⟩}

3 1√
2
{|2,−1/2⟩ − |−2,−1/2⟩}

4 1√
2
{|2,−3/2⟩ − |−2,−3/2⟩}

4T2g

5 − 1√
8

{√
3 |−3, 3/2⟩ −

√
5 |1, 3/2⟩

}

6 − 1√
8

{√
3 |−3, 1/2⟩ −

√
5 |1, 1/2⟩

}

7 − 1√
8

{√
3 |−3,−1/2⟩ −

√
5 |1,−1/2⟩

}

8 − 1√
8

{√
3 |−3,−3/2⟩ −

√
5 |1,−3/2⟩

}

9 − 1√
8

{√
3 |3, 3/2⟩ −

√
5 |−1, 3/2⟩

}

10 − 1√
8

{√
3 |3, 1/2⟩ −

√
5 |−1, 1/2⟩

}

11 − 1√
8

{√
3 |3,−1/2⟩ −

√
5 |−1,−1/2⟩

}

12 − 1√
8

{√
3 |3,−3/2⟩ −

√
5 |−1,−3/2⟩

}

13 1√
2
{|2, 3/2⟩+ |−2, 3/2⟩}

14 1√
2
{|2, 1/2⟩+ |−2, 1/2⟩}

15 1√
2
{|2,−1/2⟩+ |−2,−1/2⟩}

16 1√
2
{|2,−3/2⟩+ |−2,−3/2⟩}

for the diagonal elements from ψ2, ψ3 and ψ4 wave-functions. This fact proves that
a d3 ion placed in an octahedral environment has not first-order spin-orbit coupling.

ĤSOC |ψ1⟩ |ψ2⟩ |ψ3⟩ |ψ4⟩
⟨ψ1| 0− E 0 0 0

= 0
⟨ψ2| 0 0− E 0 0

⟨ψ3| 0 0 0− E 0

⟨ψ4| 0 0 0 0− E

(2.1)

E
(1)
1 = H11 =

〈
ψ1

∣∣∣λL̂Ŝ
∣∣∣ψ1

〉
= 3λ ⟨ψ1|ψ13⟩ − λ

√
6 ⟨ψ1|ψ10⟩ = 0 (2.2)

Nevertheless, the first-order spin-orbit calculation for ψ1 revealed two functions
belonging to the first exited 4T2g term (ψ13 and ψ10), which means that there must
exist a little percentage of mixing of these functions with ψ1 by second-order spin-
orbit coupling. The second-order energy is calculated through expression (1.37).
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Following the former example, the energy of second-order perturbation for ψ1 is

E
(2)
1 =

〈
ψ13

∣∣∣λL̂Ŝ
∣∣∣ψ1

〉2

0− 10Dq
+

〈
ψ10

∣∣∣λL̂Ŝ
∣∣∣ψ1

〉2

0− 10Dq
=

−15λ2

10Dq
(2.3)

Similarly, the calculations for ψ2, ψ3 and ψ4 lend to the same results. Thus, after
mixing with the functions of the excited term, the ground state keeps degenerated
and there is no ZFS as is expected for a regular octahedron considered an isotropic
system. The effect of the spin-orbit coupling is as shown in Figure 2.4.

Figure 2.4: First- and second-order spin-orbit coupling for a d3 system under Oh sym-
metry. In order to simplify, only the ground state is properly indicated.

To conclude, the new wave-functions are calculated as linear combinations like
the perturbation theory suggest in equation (1.38). The functions corresponding to
the 4A2g term are presented in (2.4).





ϕ1 = ψ1 −
3λ

10Dq
ψ13 +

√
6λ

10Dq
ψ10

ϕ2 = ψ2 −
λ

10Dq
ψ14 +

√
8λ

10Dq
ψ11 −

√
6λ

10Dq
ψ5

ϕ3 = ψ3 +
λ

10Dq
ψ15 +

√
6λ

10Dq
ψ12 −

√
8λ

10Dq
ψ6

ϕ4 = ψ4 +
3λ

10Dq
ψ16 −

√
6λ

10Dq
ψ7

(2.4)

In order to study the magnetic properties, the Zeeman operator for isotropic
systems described in equation (1.24) must be applied to the new determined system,
where the g value was taken as 2 for simplifying the calculations. This is always
possible as long as the next perturbation is smaller than the previous one. As there
are only non-zero members in the diagonal of the secular determinant (2.5), the
first-order energy for each level is easy related by (1.35). As an example, the first-
order correction energy for ϕ1 can be found in (2.6), where as the ligand field is
greater than the spin-orbit coupling in this model, the a2 terms are approximated to

0. Moreover, it is convenient to define a new g as g = 2
(
1− 4λ

10Dq

)
. In this way, the

energy levels are defined by the possibleMS spin states of the metal ion, multiply by
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the magnetic moment of the electron, a constant g particular for each system, and
the applied magnetic field. These results clearly show how in presence of a magnetic
field, the ground state splits into four different energy levels by first-order Zeeman
effects.

ĤZ |ϕ1⟩ |ϕ2⟩ |ϕ3⟩ |ϕ4⟩
⟨ϕ1| 3

2
gµBH − E 0 0 0

= 0
⟨ϕ2| 0 1

2
gµBH − E 0 0

⟨ϕ3| 0 0 −1
2
gµBH − E 0

⟨ϕ4| 0 0 0 −3
2
gµBH − E

(2.5)

E
(1)
1 = H11 =

〈
ϕ1

∣∣∣ĤZ

∣∣∣ϕ1

〉
=

= µBH
[
3− 2a ⟨ψ1|ψ1⟩ − 2a+ 3a2 ⟨ψ13|ψ13⟩+ a2 ⟨ψ10|ψ10⟩

]
≈

≈ 3

2
gµBH; a =

3λ

10Dq
; g = 2

(
1− 4λ

10Dq

) (2.6)

In addition, in order to calculate the TIP, it is possible to determine the second-
order Zeeman energies as a result of the interaction between the components from
the ground state with the components from excited terms. Nevertheless, an approx-
imation will be made for simplification. Considering that the spin-orbit interaction is
much less energetic than the ligand field, the difference between the ground state and
the first exited term can be approximated to 10Dq. Moreover, the new set of wave-
functions of the ground state obtained after the second-order spin-orbit coupling
will be approximated to the zero-order ones, that is ϕi ≈ ψi. Thus, the second-order
Zeeman interaction will easily lead to (2.7) for ψ1, with same results for ψ2, ψ3 and
ψ4.

E
(2)
1 =

〈
ψ13

∣∣∣µBH
(
L̂z + gŜz

)∣∣∣ψ1

〉2

0− 10Dq
=

−4µB
2H2

10Dq
(2.7)

A summary of the magnetic energy corrections is found in Table 2.2, where the
zero was chosen for the previously determined second-order spin-orbit energy, which
it is shared by all the functions belonging to the ground state. Besides, the magnetic
interaction has been incorporated to the energy diagram in Figure 2.5.

Table 2.2: First and second Zeeman coefficients for a d3 ion under an octahedral sym-
metry.

ϕi E
(0)
i Ei

′/µB Ei
′′/µB

2

1 0 3
2
g − 4

10Dq

2 0 1
2
g − 4

10Dq

3 0 −1
2
g − 4

10Dq

4 0 −3
2
g − 4

10Dq
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Figure 2.5: The splitting diagram for a 4A2g ground term under the action of spin-orbit
coupling and a magnetic field. The first-order spin-orbit coupling was omitted as it has no
effect. The energy diagram is not at scale.

Finally, introducing the values from Table 2.2 into the Van Vleck formula (1.45),
it is found that the molar susceptibility is as expressed in equation (2.8). The sus-
ceptibility will be correct for either crystal or powder samples, due to the isotropy
of the system.

χM =
5NAµB

2g2

4kBT
+ TIP; TIP =

8NAµB
2

10Dq
(2.8)

Nevertheless, real systems often present distortions from the regular octahedral
geometry. Therefore, the former model has very restricted applications. In general,
the most common distortion involve tetragonal distortion in Re(IV) complexes. As
consequence, the symmetry is lowered from Oh to D4h if both axial ligands are of the
same nature, if not the C4v symmetry will be used instead. This change leads to a
new energy diagram represented in Figure 2.6. The wave-functions are redistributed
in the new terms, those belonging to the 4A2g are now under the 4B1g label. On the
other hand, ψ5 to ψ12 and ψ13 to ψ16 from Table 2.1 are now under the 4Eg and

4B2g

terms, respectively.

When the spin-orbit Hamiltonian is applied over the four wave-functions belong-
ing to the ground state, the first-order coupling energies are still zero. In fact, as
the four wave-functions for 4B1g are the same as for 4A2g term, the calculations are
identical to the previously performed, and the constructed secular determinant is as
in (2.1). Therefore, there is no effect by first-order coupling in a tetragonally distorted
octahedron either. Nonetheless, as the symmetry is now lowered, the second-order
coupling results in the splitting of the ground level of the system. Furthermore, as
the ground and exited terms have an even number of spin multiplicity, the axial
distortion combined with the spin-orbit effect will split all the levels into Kramer
doublets. The calculation of the second-order energies are found in equations (2.9)
and (2.10), for ψ1 and ψ2, respectively. Besides, this information is represented in
Figure 2.6.

E
(2)
1 =

〈
ψ13

∣∣∣λL̂Ŝ
∣∣∣ψ1

〉2

0−∆1

+

〈
ψ10

∣∣∣λL̂Ŝ
∣∣∣ψ1

〉2

0−∆2

= −9λ2

∆1

− 6λ2

∆2

(2.9)
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E
(2)
2 =

〈
ψ14

∣∣∣λL̂Ŝ
∣∣∣ψ2

〉2

0−∆1

+

〈
ψ11

∣∣∣λL̂Ŝ
∣∣∣ψ2

〉2

0−∆2

+

〈
ψ5

∣∣∣λL̂Ŝ
∣∣∣ψ2

〉2

0−∆2

= − λ2

∆1

− 14λ2

∆2

(2.10)

Figure 2.6: Energy diagram for a 4F term under Oh and D4h symmetries. The symbol of
parity ‘g’ will drop for the C4v symmetry.1 The first- and second-order spin-orbit couplings
are also depicted, and the ZFS confirmed for the second-order interaction.

The new wave-functions obtained for the ground state after applying the spin-
orbit Hamiltonian are calculated through (1.38) and are summarised in (2.11).





ϕ1 = ψ1 −
3λ

∆1

ψ13 +

√
6λ

∆2

ψ10

ϕ2 = ψ2 −
λ

∆1

ψ14 +

√
8λ

∆2

ψ11 −
√
6λ

∆2

ψ5

ϕ3 = ψ3 +
λ

∆1

ψ15 +

√
6λ

∆2

ψ12 −
√
8λ

∆2

ψ6

ϕ4 = ψ4 +
3λ

∆1

ψ16 −
√
6λ

∆2

ψ7

(2.11)

The Kramer doublets are formed by ϕ1 with ϕ4, and ϕ2 with ϕ3. Hence, E
(2)
1 =

E
(2)
4 and E

(2)
2 = E

(2)
3 . The energy difference between Kramer doublets gives the value

of the ZFS to beD = 8λ2
(

1
∆2

− 1
∆1

)
. From this result it can be deduced that if ∆1 =

∆2, there is no splitting and the system behave isotropically. Moreover, a higher
value of λ translates as a higher splitting between levels. In the present notation,
positive D values stabilize the ±1/2 states, whereas a negative value stabilizes the
±3/2 states.

The next step will be to apply the Zeeman operator. However, this time the
system is anisotropic with x = y ̸= z, which means that expression (1.23) is split
between the z-direction, from now on also called the ‘parallel component’ presented
in equation (2.12), and the x- and y-directions, from now on also named as the

‘perpendicular component’. As L̂x and L̂y are not defined, it is necessary to use
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again the ladders operators modifying the Zeeman operator as shown in equation
(2.13). To simplify the calculations the g values will be taken as 2.

ĤZ,∥ = µBH∥

(
L̂z + gŜz

)
(2.12)

ĤZ,⊥ = µBH⊥

(
L̂x + gŜx + L̂y + gŜy

)

=
µBH⊥

2

(
L̂+ + L̂− + gŜ− + gŜ+

) (2.13)

The secular determinants for the parallel component are presented in (2.14) and
(2.15) for the two Kramer doublets. As in the octahedral case, the terms with λ2/∆2

are approximated to 0, and a new g is defined as g∥ = 2
(
1− 4λ

∆1

)
. It can be seen

how both doublets break their degeneracy under a magnetic field in the z-direction,
but they do not mix between them. The first-order energy for ϕ1 is shown in (2.16)
as an example of calculation for the parallel component.

ĤZ,∥ |ϕ1⟩ |ϕ4⟩
⟨ϕ1| 3

2
g∥µBH∥ − E 0

= 0
⟨ϕ4| 0 −3

2
g∥µBH∥ − E

(2.14)

ĤZ,∥ |ϕ2⟩ |ϕ3⟩
⟨ϕ2| 1

2
g∥µBH∥ − E 0

= 0
⟨ϕ3| 0 −1

2
g∥µBH∥ − E

(2.15)

E
(1)
1 = H11 =

〈
ϕ1

∣∣∣ĤZ,∥

∣∣∣ϕ1

〉
=

= µBH∥
[
3− 2a ⟨ψ1|ψ1⟩ − 2a+ 3a2 ⟨ψ13|ψ13⟩+ b2 ⟨ψ10|ψ10⟩

]
≈

≈ 3

2
g∥µBH∥; a =

3λ

∆1

; b =
3λ

∆2

; g∥ = 2

(
1− 4λ

∆1

) (2.16)

Second-order energy corrections between doublets are in order since they are just
separated by an energy gap of D. Nevertheless, they can be easily predicted as zero
because after the application of the parallel Zeeman operator over the ψi functions
belonging to the ϕ1 and ϕ4 Kramer doublet, all wave-functions will remain the same,
and as any of them form part of ϕ2 and ϕ3, the calculated energies will result to be
zero in the case of the parallel component.

Further second-order corrections with components from excited terms can be
made. As in the octahedral case, some approximations will take place. This time,
the energy separation between the ground and excited state for the parallel compon-
ent will be ∆1, neglecting the second-order spin-orbit energy correction. Likewise,
ϕi ≈ ψi. Thus, calculations reveal that second-order Zeeman effects on the parallel
component of the magnetic field will have the same result on the four wave-functions

of the ground state, being E
(2)
i =

−4µB
2H2

∥

∆1
.

In order to determine the susceptibility, it is necessary to take into account the
previous energy values of the spin-orbit coupling. The zero of energy before applying
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the magnetic field is taken for the MS = ±1/2 Kramer doublet state (E
(0)
2,3 = 0),

while theMS = ±3/2 will be at a initial distance of D (E
(0)
1,4 = D). This information

along with the first- and second-order magnetic energy corrections is summarised in
Table 2.3.

Table 2.3: First and second Zeeman coefficients for a d3 ion under a tetragonal distorted
octahedral symmetry in the parallel component.

ϕi E
(0)
i Ei

′/µB
aEi

′′/µB
2

1 D 3
2
g∥ − 4

∆1

2 0 1
2
g∥ − 4

∆1

3 0 −1
2
g∥ − 4

∆1

4 D −3
2
g∥ − 4

∆1

a Approximated second-order
magnetic interactions arising
from functions belonging to
excited terms (see text).

Thus, the parallel component of the susceptibility calculated by Van Vleck for-
mula leads to (2.17).

χz = χ∥ =
NAg∥

2µB
2

4kBT

1 + 9 exp (−x)
1 + exp (−x) + TIP∥;

x =
D

kBT
; g∥ = 2

(
1− 4λ

∆1

)
; TIP∥ =

8NAµB
2

∆1

(2.17)

Similarly, the first- and second-order Zeeman interactions can be calculated for
the perpendicular component. This time, the first-order magnetic interaction has
no effect on MS = ±1/2 components, thus E

(1)
1 = E

(1)
4 = 0, whilst it mixes the

functions belonging to the MS = ±3/2 Kramer doublet. Their respective secular

determinants are found in (2.18). The new g is defined as g⊥ = 2
(
1− 4λ

∆2

)
. On

the other hand, after solving the determinant, E
(1)
2 and E

(1)
3 are easily calculated as

g⊥µBH⊥ and −g⊥µBH⊥, respectively.

ĤZ,⊥ |ϕ1⟩ |ϕ4⟩
⟨ϕ1| 0− E 0

= 0 ;
⟨ϕ4| 0 0− E

ĤZ,⊥ |ϕ2⟩ |ϕ3⟩
⟨ϕ2| 0− E g⊥µBH⊥

= 0
⟨ϕ3| g⊥µBH⊥ 0− E

(2.18)

The second-order corrections due to the interaction between the Kramer doublets
are found in (2.19) and (2.20) for ϕ1 and ϕ2, respectively. For ϕ3 and ϕ4 their second-

order energies are the same as E
(2)
2 and E

(2)
1 , respectively.

E
(2)
1 =

〈
ϕ2

∣∣∣ĤZ,⊥

∣∣∣ϕ1

〉2

0−D
= −3g2⊥µB

2

4D
H2

⊥ (2.19)
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E
(2)
2 =

〈
ϕ1

∣∣∣ĤZ,⊥

∣∣∣ϕ2

〉2

D − 0
=

3g2⊥µB
2

4D
H2

⊥ (2.20)

Further second-order corrections with excited terms can also be made with the
same criteria used before. The energy results for the wave-functions belonging to

the two Kramer doublets is the same and equal to E
(2)
i =

−4µB
2H2

⊥

∆2
. All the energy

corrections are summarised in Table 2.4. If these values are introduced into the Van
Vleck formula, it leads to the susceptibility expressed in (2.21).

Table 2.4: First and second Zeeman coefficients for a d3 ion under a tetragonal distorted
octahedral symmetry in the perpendicular component.

ϕi E
(0)
i Ei

′/µB Ei
′′/µB

2 aEi
′′/µB

2

1 D 0
3g2⊥
4D

− 4
∆2

2 0 g⊥ −3g2⊥
4D

− 4
∆2

3 0 −g⊥ −3g2⊥
4D

− 4
∆2

4 D 0
3g2⊥
4D

− 4
∆2

a Approximated second-order magnetic interac-
tions arising from functions belonging to ex-
cited terms (see text).

χx = χy = χ⊥ =
NAg⊥

2µB
2

kBT

1 + 3
2x

[1− exp (−x)]
1 + exp (−x) + TIP⊥;

x =
D

kBT
; g⊥ = 2

(
1− 4λ

∆2

)
; TIP⊥ =

8NAµB
2

∆2

(2.21)

The magnetic susceptibility of a powder sample must be calculated as an average
from the parallel and perpendicular components as described in (2.22). A repres-
entation of both components with the average susceptibility is shown in Figure 2.7,
where the TIP was removed. It is important to note that the variations of χT are
not very sensitive to the sign of D. Therefore, it is difficult, if not impossible, to de-
termine unambiguously the correct sign of D from a powder magnetic susceptibility
measurement.

χ =
χ∥ + 2χ⊥

3
(2.22)

At low temperatures, where kBT << |D|, the average powder magnetic suscept-
ibility can be approximated through (2.23), where it was considered g = g∥ = g⊥,
and the TIP removed. In this way, for g = 1.88, which is a common value for mag-
netically isolated mononuclear rhenium(IV) compounds with axial distortion, the
value of χMT will be of ca. 1.0 cm3 mol−1 K at very low temperatures.

χM ≈ 3NAµB
2g2

4kBT
(2.23)

Alternatively, the ZFS can be treated through the Hamiltonian described in
equation (1.66), where the value of E is taken as zero, given that the D4h symmetry
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(a) (b)

Figure 2.7: χT vs. kBT/|D| representations for a spin quartet term with an axial aniso-
tropy for (a) D > 0 (b) D < 0. Both g∥ and g⊥ are taken equal to 2.00, and the TIP have
been removed.

system keeps x = y. This calculation of the susceptibility through spin Hamiltonians
do not take into account the orbital part, hence, no spin-orbit coupling is considered.
Thus, the g parameter is the one modifying its value to adapt to the model. An
important remark when using the phenomenological spin Hamiltonian compared to
the treatment done herein is in order. Following the energy scheme as depicted in
Figure 2.6, the energy difference between Kramer doublets was considered D, whilst
is considered 2D when equation (1.66) is applied, as shown in (2.24).

D

[(
3

2

)2

− 15

12

]
−D

[(
1

2

)2

− 15

12

]
= 2D (2.24)

On the other hand, to fit the magnetisation curves of Re(IV) compounds with
tetragonal distortion through the Brillouin function presented in (1.52), it is neces-
sary to modify the expression to accommodate the new axial anisotropic factor D.2

Furthermore, as a noteworthy remark the [ReCl4(bpym)] complex presented on Art-
icle 4 exhibits an actual symmetry C2v, which is lower than D4h. For this point group
the orbital doublet 4Eg will split into two orbital singlets 4B1 and 4B2 at energies
∆x and ∆y from the ground state 4B1, respectively. This will introduce the rhombic
parameter of anisotropy, E, to the system followed by a modification on the energy
diagram due to the interaction between 4B1 singlets. Nevertheless, due to the strict
equivalence between the x and y axes in the six-coordinated entity, both singlets
remain mostly degenerated, that is, ∆x ≈ ∆y ≈ ∆2 and the value of E is considered
to have a low value compared to the axial anisotropy.3

2.2 Re(IV) coordination chemistry

Rhenium compounds can be present in a wide variety of oxidation states from I
to VII. Nevertheless, most of the works found in the literature deals with Re(III),
Re(V) or Re(VII) complexes. In comparison, Re(IV) has been more scarcely ex-
plored.4,5 This is manly due to the tendency of Re(IV) against redox processes. The
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principal side reaction is the hydrolysis that it undergoes in presence of water on
neutral or basic media, which leads the rhenium ion to further oxidation states. As
a result, this solvent is normally avoided in the preparation of Re(IV) compounds
or metalloligands, which are stable in acidulated aqueous solutions.

One of the advantages of using Re(IV) includes the lack of orbital angular mo-
mentum on the ground state, as it was introduced in the previous section. Thus, no
first spin-orbit coupling is possible and the magnetic behaviour of Re(IV) species can
be fitted with relative ease compared to other elements or oxidation states with first
and second spin-orbit effects, like Co(II) systems for instance. Furthermore, the high
value of λ, which is ca. 1000 cm−1, confers a large magnetic anisotropy by second-
order spin-orbit coupling (ZFS) compared to isoelectronic first-row transition metal
ions like Cr(III) with λ ca. 90 cm−1.6 Moreover, the magnetic coupling between dif-
ferent paramagnetic centres in polynuclear compounds can be understood due to the
larger diffuseness of the 5d orbitals, which would increase the overlap between the
ligand orbitals increasing the chance of finding the magnetic electron on the ligand
atoms. Hence, strengthening the magnetic interactions between different paramag-
netic centres compared with analogous first-row systems with more contracted 3d
orbitals. Thus, the Re(IV) species may have remarkable magnetic properties in both
mononuclear and polynuclear systems.

From a structural and synthetic point of view, the hexahalide derivatives [ReX6]
2−

(X = Cl and Br) are the simplest Re(IV) species. They are normally prepared by
reduction of the perrhenic acid by hypophosphorous acid in concentrated HX media,
illustrated by reaction (2.25), the yields being in a 85-90% range.7 Another analog-
ous synthesis can be carried away with ammonium or potassium [ReO4]

2− salts, but
the use of perrhenic acid allows to isolate the hexachloro- or hexabromorhenate(IV)
with the cation from the chosen (AX) salt.

4HReO4 + 8AX + 3H3PO2 + 16HX ⇋ 4A2[ReX6] + 3H3PO4 + 10H2O

A = NH4 or K and X = Cl or Br
(2.25)

In contrast, the hexafluoro and hexaiodo derivatives present more complicated
procedures. In the case of the hexafluorhenate(IV), it is required the use of strong
fluorinating agents as molten bifluoride salts, AHF2 (A = NH4 or K) over the previ-
ously prepared hexahalohenate(IV) derivatives, where the isolation of the A2[ReF6]
salt in water demonstrated to be challenging.8–10 On the other hand, the hexaiodo
derivative is prepared by direct reduction of perrhenic acid in concentrated HI media
(2.26).11,12 Nevertheless, hexaiodorhenate(IV) compounds tend to decomposition.
Violet vapours can be seen in closed containers where these salts are stored. As a
result, only K2ReI6 and (NH4)2[ReI6] structures have been determined by single-
crystal X-ray diffraction.11

2HReO4 + 4KI + 14HI ⇋ 2K2ReI6 + 3I2 + 8H2O (2.26)

From a magnetism point of view, the behaviours of mononuclear hexahalorhen-
ate(IV) complexes with different diamagnetic cations have been studied since the
60’s and it still is an active research field nowadays.6,10,11,13–21 As a general tend-
ency, the intermolecular interactions between different rhenium entities lead to an-
tiferromagnetic couplings transmitted by contacts between halogen ligands orbitals.
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Therefore, its intensity depends on the nature of the halogen ligand and the halogen-
halogen distance. However, ferromagnetic interactions can also be found.14,15 Thus,
the use of bulky countercations will increase the Re-X···X-Re distance and decrease
the degree of interaction to a point where the different [ReX6]

2− entities are isolated.
In this way, the system may display slow relaxation of the magnetisation which is
characteristic of the SIM behaviour.

As a representative example of how intermolecular halogen-halogen interactions
can change the magnetic properties of hexahalorhenate(IV) salts, (AsPh4)2[ReI6] and
(NH4)2[ReI6] are presented in Figures 2.8a and 2.8b, respectively. For (AsPh4)2[ReI6]
the χMT values remain nearly constant in a wide range of temperatures and only
decrease at low temperatures. In principle, this decrease could be attributed to ZFS
effects. On the other hand, (NH4)2[ReI6] exhibits a decrease on the χMT values
from room temperature, which is most likely caused by the antiferromagnetic inter-
molecular interactions as confirmed by the maximum in the χM vs. T plot at low
temperature. Besides, this compound exhibits ZFS effects.

(a) (b)

Figure 2.8: χMT vs. T curves for (a) (AsPh4)2[ReI6], where (◦) shows the experimental
data and (−) the best fit through equation (2.22). (b) (NH4)2[ReI6]. The inset shows χM

vs. T plot. Adapted from Ref.11

Indeed, it is also possible to prepare salts with paramagnetic cations.22–27 Fur-
thermore, the use of certain diamagnetic or paramagnetic cations may incorpor-
ate to the system new interesting physical properties like electric conductivity28–30

or luminescence,31 while conserving the intrinsic magnetic properties associated to
Re(IV) compounds. Thus, it can lead to a final product with multifunctional prop-
erties. Moreover, the [ReX6]

2− units have also been used as metalloligands towards
diamagnetic or paramagnetic transition metal ions. In this regard, only a few one-
dimensional and one two-dimensional polymeric structure (Figure 2.9) with their
magnetic behaviours described, have been reported.32–35

Lastly, hexahalorhenate(IV) species are often used as precursors to synthesise
new mononuclear complexes.5 Nonetheless, the low liability of a 5d3 metal ion to-
wards substitution due to the normally high crystal field stabilization energy, makes
it necessary to heat at high temperatures to favour the ligands exchange. Besides, be-
cause of the easy oxidation of Re(IV), the presence of even small amounts of water in
non-aqueous solvents at high temperatures will lead to rhenium species with higher
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(a) (b) (c)

Figure 2.9: Polyhedral views of the coordination polymer of formula [Ag2ReCl6]n (a)
Coordination mode of the [AgCl3]

2− units towards the rhenium atom (b) View along the
crystallographic z-axis and (c) x-axis of the two-dimensional motifs of [Ag2ReCl6]n.

oxidation states. In this respect, dioxygen-free non-aqueous previously dry solvents
such as DMF, MeCN, 1- or 2-PrOH are often used together with stoichiometric
excess of the incoming ligand to favour the substitutions.

These new compounds normally incorporate ligands with free coordination po-
sitions that serve as bridging points towards another metallic centres. Thus, the
complex can be used as a ligand to either diamagnetic or paramagnetic ions from
the d- or f -block. The nature of the chosen ligands that act as bridges connecting
the metallic centres becomes of great importance, as they are responsible to mediate
the magnetic interactions and modify the coordination spheres of the centres, which
connects. This new metalloligands often involve the substitution of two halogen
ions with ligands such as oxalate,13,36 2,2’-bipyrimidine,37 malonate,38 cyanide39 or
2-(2’-pyridyl)imidazole,40 among others, making them good building-blocks for the
preparation of new homo- or heteronuclear molecular-based materials. For example,
compound (NBu4)5[GdIII{ReIVBr4(µ-ox)}4(H2O)] · H2O stands as the first Re(IV)
system incorporating a 4f ion.41 On the other hand, it is also possible to achieve
slow relaxation of the magnetisation in one-dimensional systems. For instance, com-
pounds prepared with the [ReCl4(CN)2]

2− entity prove to be useful tools for building
SCM together with first-row transition metals (Figure 2.10).42

Figure 2.10: Schematic structural representation of the [ReCl4(µ-CN)2M(DMF)4] one-
dimensional compounds (M = Mn, Fe, Co, Ni). The [ReCl4(CN)2]

2− anionic unit has been
highlighted.
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(36) Chiozzone, R.; Cuevas, A.; González, R.; Kremer, C.; Armentano, D.; De
Munno, G.; Faus, J. Inorg. Chim. Acta 2006, 359, 2194–2200.
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compost {[ReCl4(bpym)CuBr2] · CHCl3}n reportat en forma de
monocristalls adequats per a la seua resolució estructural, aix́ı
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CHAPTER 3

IRIDIUM

3.1 Theoretical magnetic model for a d
5 ion sys-

tem

The fundamental term of a d5 free ion is 6S, in the same way it was deduced
for a d3 in the past section 2.1. Moreover, for 5d metal ions with a six coordinated
environment, it is well known that the octahedral ligand field is always strong, hence
it will have high ∆Oh

values. Thus, a d5 electronic configuration is defined by a low-
spin state term 2T2g

(
t52g
)
. For the following model, the coupling with higher excited

states and the thermally populated ground state is assumed to be negligible, so only
the 2T2g term will be considered. The wave-functions belonging to this term are
presented in Table 3.1.

Table 3.1: Oh symmetry adapted wave-functions for a 2T2g term from a d5 system.

ψi

1 |1,−1/2⟩
2 |−1, 1/2⟩
3 |1, 1/2⟩
4 |−1,−1/2⟩
5 1√

2
{|2, 1/2⟩ − |−2, 1/2⟩}

6 1√
2
{|2,−1/2⟩ − |−2,−1/2⟩}

In the previous Chapter it was confirmed that for a d3 metal ion no first-order
spin-orbit coupling was possible in an octahedron or a tetragonally distorted oc-
tahedral environment. Such a situation is observed when all the integrals of the

form
〈
ψi

∣∣∣L̂u

∣∣∣ψi

〉
and

〈
ψi

∣∣∣L̂u

∣∣∣ψj

〉
elements of the matrix are zero, ψi and ψj being

wave-functions associated with the ground state, L̂u the orbital angular momentum
operator with (u = x, y, z) indicating its three components. When this condition is
not fulfilled for at least one direction, x, y or z, the first-order spin-orbit coupling
cannot be ignored, and the matrix presents values different from zero. Thus, the
degeneracy of the ground state will be partially removed by first-order spin-coupling
effects. In the case of a d5 metal ion under octahedral symmetry without distortion,
the spin-orbit coupling splits the 2T2g term into the E′′ (J = 1/2) doublet and G′

(J = 3/2) quadruplet (considering the double group, O′), being the doublet the
ground state for λ < 0. This information is summarised in Figure 3.1.

The Hamiltonian to consider in order to quantitatively calculate the spin-orbit
energies of each level is presented in (3.1), where it is introduced a new factor, κ, to
equation (1.60). This term, generally called orbital reduction factor, is incorporated
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Chapter 3. Iridium

Figure 3.1: Energy diagram for a 6S term in an octahedral symmetry with first-order
spin-orbit coupling. The numbers in parenthesis show the total degeneracy.

to the operator for taking into account the delocalisation of the unpaired electrons
from the metal to the ligands, which reduces the role of the angular momentum.
Hence, the effect of the spin-orbit coupling and consequently the Zeeman effect in
the future. Its value is compressed between 1 and 0, where for κ = 1 the reduction of
the orbital angular momentum is neglected as there is no covalency with the ligands.
On the other hand, for values zero or close to zero, the two levels E′′ and G′ will
be accidentally degenerated (κλ = 0), and it is not longer legitimate to treat the
Zeeman as a perturbation with respect the spin-orbit coupling, as the last one has no
effect. Thus, too low values of κ have no physical sense on this model. Nevertheless,
the inclusion of κ in the spin-orbit Hamiltonian is considered a formalism from a
theoretical point of view, as it is always together with λ. So, if it was to be omitted
λ will modify its value to adapt it.

ĤSOC = κλL̂Ŝ (3.1)

The evaluation of all possible matrix elements of the 2T2g term gives the secular
determinant (3.2). In this case, there are some off-diagonal elements and it is neces-
sary to solve each sub-determinant, indicating that some functions are going to mix
by first-order effects. In fact, the first-order spin-orbit coupling lead to two possible
values for the energy, E = κλ for E′′ doublet, and E = −κλ

2
for G′ quadruplet.

No further second-order corrections from levels in an other excited terms will be
considered as it was pointed at the beginning. As an example, the evaluation of ψ3

is presented in (3.3), where it can be seen how after applying the spin-orbit oper-
ator over the function, it has a part which belongs to ψ6, so ψ3 and ψ6 will mix by
first-order effects.

ĤSOC |ψ1⟩ |ψ2⟩ |ψ4⟩ |ψ5⟩ |ψ3⟩ |ψ6⟩

⟨ψ1| −κλ
2
− E 0 0 0 0 0

= 0

⟨ψ2| 0 −κλ
2
− E 0 0 0 0

⟨ψ4| 0 0 κλ
2
− E − κλ√

2
0 0

⟨ψ5| 0 0 − κλ√
2

0− E 0 0

⟨ψ3| 0 0 0 0 κλ
2
− E κλ√

2

⟨ψ6| 0 0 0 0 κλ√
2

0− E

(3.2)
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3.1. Theoretical magnetic model for a d5 ion system

E
(1)
3 = H33 =

〈
ψ3

∣∣∣λL̂Ŝ
∣∣∣ψ3

〉
=
κλ

2
⟨ψ3|ψ3⟩+ κλ ⟨ψ3|2,−1/2⟩ = κλ

2
(3.3)

The calculation of the effects of the spin-orbit coupling are not yet complete, since it
is necessary to calculate all the new wave-functions associated to G′ and E′′ levels.
The functions are determined as lineal combinations of the zero-order ones with
their respective mixing coefficients. These are obtained by substituting each of the
energies into the set of equations, which gave rise to the secular determinant. As
an example, the equation system that will give ϕ3 and ϕ6 after mixing ψ3 and ψ6,
is presented in (3.4). The substitution of the two energy values gives the relation
between the mixing coefficients. Actually, the substitution of E = κλ will give the
coefficient relation for the function from the E′′ level, and E = −κλ

2
the coefficients

relation for the one that belongs to G′. Indeed, exactly the same results will be
obtained regardless of the equation used.





(
κλ

2
− E(1)

)
c3 +

κλ√
2
c6 = 0

E(1)=κλ
=====⇒ c6

c3
=

1√
2

κλ√
2
c3 + (0− E(1)) c6 = 0

E(1)=κλ
=====⇒ c6

c3
=

1√
2

(3.4)

Afterwards, the wave-functions are normalised, so that ⟨ϕi|ϕi⟩ equals one. For
instance, ϕ6, which is a wave-function corresponding to energy E = κλ, has its
normalization constant calculated in (3.5)

⟨ϕ6|ϕ6⟩ = N

[
⟨ψ3|+

1√
2
⟨ψ6|

]
·N
[
|ψ3⟩+

1√
2
|ψ6⟩

]
= 1 ⇒ N =

√
2

3
(3.5)

Employing this methodology for the rest of equations all wave-functions are
calculated and grouped as presented in (3.6) and (3.7) for the two levels. In this way,
the new set of functions will give a secular determinant that has been diagonalised,
where the energy of each one is easily obtained by (1.35).

G′
(
E = −κλ

2

)





ϕ1 = ψ1

ϕ2 = ψ2

ϕ3 =
1√
3

{
ψ3 −

√
2ψ6

}

ϕ4 =
1√
3

{
ψ4 +

√
2ψ5

}
(3.6)

E′′

(E = κλ)





ϕ5 =

√
2

3

{
ψ4 −

1√
2
ψ5

}

ϕ6 =

√
2

3

{
ψ3 +

1√
2
ψ6

} (3.7)

The magnetic interaction will be treated as a perturbation of the wave-functions
and energies obtained by the spin-orbit coupling. Thus, in the case of the octahedral
symmetry, it is necessary to apply the isotropic Zeeman Hamiltonian (1.24) in order
to determine quantitatively how the two levels will interact with the magnetic field.
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Nevertheless, the introduction of the κ factor modifies the orbital angular momentum
term as expressed in (3.8).

ĤZ = µBH
(
κL̂z + gŜz

)
(3.8)

The treatment of the two set of wave-functions with (3.8) Hamiltonian, leads to
(3.9) and (3.10) secular determinants for G′ and E′′ levels, respectively. Certainly,
as there is no mixing by first-order Zeeman effects the first-order energies are easily
obtained and the functions remain the same. Moreover, when κ = 1 there is not
first-order interaction on the quadruplet level, otherwise some splitting is expected.
On the other hand, the doublet breaks its degeneracy regardless the κ value. It is
worth noting that the g value was approximated to 2 in the calculations.

ĤZ |ϕ1⟩ |ϕ2⟩ |ϕ3⟩ |ϕ4⟩
⟨ϕ1| −(1−κ)µBH − E 0 0 0

= 0
⟨ϕ2| 0 (1−κ)µBH − E 0 0

⟨ϕ3| 0 0 − (1−κ)µBH

3
− E 0

⟨ϕ4| 0 0 0 (1−κ)µBH

3
− E

(3.9)

ĤZ |ϕ5⟩ |ϕ6⟩
⟨ϕ5| − (1+2κ)µBH

3
− E 0

= 0
⟨ϕ6| 0 (1+2κ)µBH

3
− E

(3.10)

The second-order Zeeman energy corrections for each component of the two levels
take the form of (3.11) for G′ (i = 1 to 4), and (3.12) for E′′ (i = 5 and 6).

E
(2)
i =

6∑

j=5

〈
ϕj

∣∣∣ĤZ

∣∣∣ϕi

〉2

−κλ
2
− κλ

(3.11)

E
(2)
i =

4∑

j=1

〈
ϕj

∣∣∣ĤZ

∣∣∣ϕi

〉2

κλ+ κλ
2

(3.12)

Besides, how the Zeeman interaction modifies the energy diagram is presented
in Figure 3.2, and all calculated first- and second-order energies are summarised on
Table 3.2, where it was considered as the zero of energy the first-order spin-orbit
coupling for the ground state.

Introducing the zero-field energies and Zeeman coefficients into the Van Vleck
formula (1.45) leads to (3.13). The χMT vs. kBT/κ|λ| plot for κ = 1.0 and 0.6 is
shown in Figure 3.3, where it can be seen how the magnetic susceptibility deviates
from the Curie law, and how low κ values reflects as minor χMT values.

χM =
NAµB

2

27kBT

[30(1−κ)2x+ 8(2+κ)2] + [3(1+2κ)2x− 8(2+κ)2] exp
(−3x

2

)

x
[
2 + exp

(−3x
2

)]

x =
κλ

kBT

(3.13)
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3.1. Theoretical magnetic model for a d5 ion system

Figure 3.2: Energy diagram of a 2T2g term under an octahedral symmetry exhibiting
spin-orbit coupling and Zeeman effect. The diagram is not at scale.

Table 3.2: First and second Zeeman coefficients for a d5 ion under octahedral symmetry.

ϕi E
(0)
i Ei

′/µB Ei
′′/µB

2

1, 2 −3κλ
2

±(1− κ) 0

3, 4 −3κλ
2

± (1−κ)
3

−4(2+κ)2

27κλ

5, 6 0 ± (1+2κ)
3

4(2+κ)2

27κλ

As it was pointed in Chapter 2, perfectly octahedral environments are rather un-
likely being the tetragonal distortion the main cause, so equation (3.13), although
it is a pedagogically interesting exercise, few systems will have perfectly octahedral
environment to apply it. When the symmetry of the system is lowered to the D4h

group by a distortion along the z-axis, it will cause the 2T2g to split into an orbital
doublet, 2Eg, and an orbital singlet, 2Bg, terms. They will be separated by an energy
gap that from now on will be referred as ∆, which is defined as positive if the orbital
singlet is the lowest. Besides, if both axial ligands are different, C4v symmetry should
be used instead and the parity of the terms omitted.1 Due to the strong ligand field
potential and the spin-orbit coupling acting in 5d metal ions, the tetragonal distor-
tion of the octahedral symmetry and the spin-orbit coupling perturbations must be
taken into account simultaneously. The resulting energies and wave-functions will
be perturbed latter by the magnetic interaction as consequence of being it weaker
than the last two.

In Figure 3.4, it can be seen on the left side the energy diagram produced by
the ligand field, and on the right side, the one produced by the spin-orbit coupling.
The action of both perturbations converge at the centre part of the diagram, where
the resulting terms considering the double group, C ′

4v are two E′′ doublets that are
mixed together and another E′ doublet. Nevertheless, they were labelled as E′′ (2E)
and E′′ (2B2) to indicate their major components, indicating they are mixtures of
what 2E and 2B2 were before the spin-orbit coupling.

The lowering of symmetry is accounted by the effective operator V̂tetra. The wave-
functions are redistributed into the new terms, where ψ5 and ψ6 now belong to the
singlet ground state 2B2, and the rest to the doublet 2E. As it was pointed before, the
two levels are separated by a quantity named as ∆, which is positive when the zero of
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Chapter 3. Iridium

Figure 3.3: χMT vs. kBT/κ|λ| plot for a d5 ion in a perfect octahedral environment. The
curves are plotted for two values of the orbital reduction factor, namely κ = 1.0 and 0.6.

Figure 3.4: Energy diagram for a 6S term in an octahedral symmetry with a tetragonal
distortion and spin-orbit coupling.

energy is taken for the singlet ground state. Thus, after applying the V̂tetra operator
over a component of the orbital doublet, it will add a ∆ quantity to the energy,
whilst it will be zero for the components of the orbital singlet. The Hamiltonian that
takes into account the spin-orbit coupling and the tetragonal distortion is given in
equation (3.14).

Ĥ = κλL̂Ŝ + V̂tetra (3.14)

The secular determinant in (3.15) is equivalent to the one obtained for the oc-
tahedral symmetry, but this time with the axial distortion accounted by ∆ for the
functions belonging to the 2E level. One example of the evaluation of such matrix is
given in (3.16), where the first element of the Hamiltonian was treated previously
in the octahedral case in (3.3), and the second since it involves a component of the
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3.1. Theoretical magnetic model for a d5 ion system

orbital doublet, V̂tetra will add a ∆ quantity to the energy.

Ĥ |ψ1⟩ |ψ2⟩ |ψ4⟩ |ψ5⟩ |ψ3⟩ |ψ6⟩

⟨ψ1| −κλ
2
+∆−E 0 0 0 0 0

= 0

⟨ψ2| 0 −κλ
2
+∆−E 0 0 0 0

⟨ψ4| 0 0 κλ
2
+∆−E − κλ√

2
0 0

⟨ψ5| 0 0 − κλ√
2

0−E 0 0

⟨ψ3| 0 0 0 0 κλ
2
+∆−E κλ√

2

⟨ψ6| 0 0 0 0 κλ√
2

0−E

(3.15)

E
(1)
3 = H33 =

〈
ψ3

∣∣∣ĤSOC + V̂tetra

∣∣∣ψ3

〉

=
〈
ψ3

∣∣∣ĤSOC

∣∣∣ψ3

〉
+
〈
ψ3

∣∣∣V̂tetra
∣∣∣ψ3

〉
=
κλ

2
+ ∆

(3.16)

The sub-determinants are solved, and the energies of the combined effect of the
perturbation by spin-orbit and the tetragonal crystal field obtained. The originally
six-fold degenerate 2T2g term is split into three doubly degenerate levels. Their
calculated energies are summarised in (3.17), being ν a new defined convenient
parameter called the distortion parameter, which correlates ∆, κ and λ.

E1 = E2 = κλ

(
ν − 1

2

)
; E3 = E4 =

κλ√
2
a; E5 = E6 =

κλ√
2
b;

a =
1√
2

(
ν +

1

2
− Z

)
; b =

1√
2

(
ν +

1

2
+ Z

)
;

Z =

√
ν2 + ν +

9

4
; ν =

∆

κλ

(3.17)

A plot of the energy levels as function of the distortion parameter for systems
with λ < 0 is presented in Figure 3.5, where the ground state is always the E′′ doublet
at E5,6 for any value of ∆ including positive and negative integers. Furthermore, the
energy gap between this ground state and the first excited state, either E′′ or E′, is
larger than |λ|. Thus, it can be assumed that for systems with a strong spin-orbit
coupling parameter as Ir(IV) (λ ≈ −5000 cm−1), this ground Kramer’s doublet
is the only populated state in the whole temperature range. Hence, the magnetic
susceptibility of the compounds can be described taking into account the magnetic
properties of only the E′′ doublet considered as an effective-spin of 1/2.

The found energies (3.17) are substituted into the set of equations that gave
rise to the secular determinant, in order to get the mixing coefficient relations of
their corresponding wave-functions. For instance, ϕ3 presented herein in (3.18) was
obtained by substitution of E3 energy into the equation involving ψ3 and ψ6. Thus,
after normalisation, the wave-functions corresponding to each energy are established.
The resulting functions for the three levels are grouped and summarised in (3.19)
to (3.21).
(
κλ

2
+ ∆− E(1)

)
c3 +

κλ√
2
c6 = 0

E3=
κλ√
2
a

=====⇒ c6
c3

= a−
√
2

2
− ∆

√
2

κλ
= −b (3.18)
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Figure 3.5: Energy levels of the three Kramer’s doublets arising from the ground state
2T2 as a function of the tetragonal distortion parameter ν.

E′
[
E = κλ

(
ν − 1

2

)]



ϕ1 = ψ1

ϕ2 = ψ2

(3.19)

E′′
(
E =

κλ√
2
a

)





ϕ3 =
1√

1 + b2
{ψ3 − bψ6}

ϕ4 =
1√

1 + b2
{ψ4 + bψ5}

(3.20)

E′′
(
E =

κλ√
2
b

)





ϕ5 =
1√

1 + a2
{ψ4 + aψ5}

ϕ6 =
1√

1 + a2
{ψ3 − aψ6}

(3.21)

Now that the energies and wave-functions have been obtained, it is time to con-
sider the effect of the magnetic field over the system. As in the spin-orbit coupling,
any interaction with the magnetic field between functions from exited terms will be
neglected. Moreover, because of the axial symmetry of the system (D4h or C4v), the
x- and y-directions are identical. Thus, it is possible to split the Zeeman operator in
its parallel (z) and their perpendicular (x or y) components. Introducing κ to the
functions (2.12) and (2.13) used previously in Chapter 2, the new Hamiltonians are
as follows

ĤZ,∥ = µBH
(
κL̂z + gŜz

)
(3.22)

ĤZ,⊥ =
µBH

2

(
κL̂+ + κL̂− + gŜ− + gŜ+

)
(3.23)

As there are not mixing between functions by first-order Zeeman effect in the
parallel component at any of the three levels, all secular determinants are diagon-
alised and the first-order energies obtained directly equal to Hii integrals. As an
example, it is possible to take the secular determinant arising from the first-order
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3.1. Theoretical magnetic model for a d5 ion system

interaction in the parallel component for the E′ level, which is presented in (3.24).

ĤZ,∥ |ϕ1⟩ |ϕ2⟩
⟨ϕ1| −(1− κ)µBH − E 0

= 0
⟨ϕ2| 0 (1− κ)µBH − E

(3.24)

Besides, expression (3.25) will give the total second-order energy correction coef-

ficients per level. For the doublet at E
(0)
1,2 , i has the values 1 and 2, and j the values

from 3 to 6. At energy E
(0)
3,4 the appropriate expression is given by (3.25) when, i has

the values 3 and 4, and j the values 1, 2, 5, 6. Lastly, for the doublet at an energy
E

(0)
5,6 , i has the values 5 and 6, and j the values from 1 to 4.

∑

i

∑

j

〈
ϕj

∣∣∣µBH∥

(
κL̂z + gŜz

)∣∣∣ϕi

〉2

E
(0)
i − E

(0)
j

(3.25)

All Zeeman coefficients required to calculate the parallel magnetic susceptibility
are summarised in Table (3.3). Furthermore, the susceptibility expression is presen-
ted in (3.26).

Table 3.3: First and second Zeeman coefficients for a d5 ion under a tetragonal distorted
octahedral symmetry in the parallel component.

ϕi E
(0)
i Ei

′/µB Ei
′′/µ2

B

1, 2 κλ
(
ν − 1

2

)
±(κ− 1) 0

3, 4 κλ√
2
a ± (κ+1−b2)

1+b2
− 2(κ+1−ab)2

κλ(1+a2)(1+b2)Z

5, 6 κλ√
2
b ± (κ+1−a2)

1+a2
2(κ+1−ab)2

κλ(1+a2)(1+b2)Z

χz = χ∥ =
NAµB

2

kBT

Q∥

exp

(
−E

(0)
1

kBT

)
+ exp

(
−E

(0)
3

kBT

)
+ exp

(
−E

(0)
5

kBT

) ;

Q∥ =
[
E

(1)
1

]2
exp

(
−E

(0)
1

kBT

)
+

{[
E

(1)
3

]2
− kBTE

(2)
3

}
exp

(
−E

(0)
3

kBT

)
+

{[
E

(1)
5

]2
− kBTE

(2)
5

}
exp

(
−E

(0)
5

kBT

)

(3.26)

Following the same procedure, the energies corrections for the perpendicular
component are calculated. The first-order Zeeman coefficient for the doublet at en-
ergy E

(0)
1,2 give the secular determinant found in (3.27), where it can be seen how

the magnetic field does not remove the degeneracy of the level by first-order effects,
as there is not interaction. Interestingly, the secular determinant for the doublet at
energy E

(0)
5,6 contains non-zero diagonal elements, in contrast with the parallel direc-

tion. This means that not only the two-fold degeneracy of this level is removed, but

179



Chapter 3. Iridium

it also mixes the functions ϕ5 and ϕ6 by first-order effects. Its secular determinant
is presented in (3.28).

ĤZ,⊥ |ϕ1⟩ |ϕ2⟩
⟨ϕ1| 0− E 0

= 0
⟨ϕ2| 0 0− E

(3.27)

ĤZ,⊥ |ϕ5⟩ |ϕ6⟩

⟨ϕ5| 0− E
(
√
2κa−a2)µBH⊥

1+a2

= 0

⟨ϕ6| (
√
2κa−a2)µBH⊥

1+a2
0− E

(3.28)

The second-order Zeeman energy corrections are calculated using (3.25) with
the magnetic moment operator replaced by the perpendicular one (3.23). All Zee-
man coefficients required to calculate the perpendicular magnetic susceptibility are
summarised in Table (3.4), and its susceptibility expression is presented in (3.29).

Table 3.4: First and second Zeeman coefficients for a d5 ion under a tetragonal distorted
octahedral symmetry in the perpendicular component.

ϕi E
(0)
i Ei

′/µB Ei
′′/µ2

B

1, 2 κλ
(
ν − 1

2

)
0 2

κλ
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√
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√
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]

3, 4 κλ√
2
a ±

√
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− 2
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√
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√
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1+a2
2
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√
2]

2

2Z(1+a2)(1+b2)
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√
2−κa)2

(1+a2)(ν−1.5−Z)

]
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kBT
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+ exp
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−E

(0)
5

kBT

)

(3.29)

Nevertheless, as it was pointed previously with the discussion made in Figure 3.5,
for systems with a strong spin-orbit coupling, the susceptibility can be approximated
taking into account the magnetic properties of only the ground Kramer’s doublet
at energy E

(0)
5,6 . Thus, the magnetic susceptibility for the parallel and perpendicular

components becomes as (3.30), where u corresponds to the ∥ or ⊥ directions. The
total magnetic susceptibility of a powder sample is obtained through equation (2.22)
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as introduced in Chapter 2.

χu =
NAµB

2gu
2

4kBT
+ TIPu ;

g∥ =

∣∣∣∣2
(
κ+ 1− a2

1 + a2

)∣∣∣∣ ; g⊥ =

∣∣∣∣∣2
(√

2κa− a2

1 + a2

)∣∣∣∣∣ ;

TIP∥ = −2NAµB
2

κλ

(κ+ 1− ab)2

(1 + a2) (1 + b2)Z
;

TIP⊥ = −2NAµB
2

κλ

[[
κ(a+ b)− ab

√
2
]2

2Z(1 + a2)(1 + b2)
− (

√
2− κa)2

(1 + a2)(ν − 1.5− Z)

]

(3.30)

In this sense, the experimental thermal dependence of the χMT product on poly-
crystalline samples is expected to follow a straight line of the type, χMT = A+BT ,

with A being the Curie constant
(

NAµB
2gav

2

4kB

)
, where

(
gav =

g∥+2g⊥
3

)
, and B the

average TIP
(
TIPav =

TIP∥+2TIP⊥
3

)
.

Additionally, for a system with λ < 0 Figure 3.6a shows the calculated values
of the g-factors in the parallel and perpendicular components as a function of the
distortion parameter, and different values of the orbital reduction factor. It can be
seen how for ∆ = 0, gu becomes isotropic, that is

(
g∥ = g⊥ = 2

)
for κ = 1. When

ν > 0 (∆ < 0), with an increase of the tetragonal distortion, the values of g∥
increases whilst those of g⊥ decreases, so g∥ > g⊥. In the limit of highly negative
values of ∆ for κ = 1, g∥ becomes ca. 4 whereas g⊥ ≈ 0, so gav = 4/3. In the case
where ν < 0 (∆ > 0), g∥ first decreases, reaches a minimum and then increases. For
g⊥ the opposite situation occurs, first it increases until reaching a maximum and
then it slowly decreases, so g∥ < g⊥. In the limit of a strong positive distortion, the
g-factors become isotropic again being g∥ = g⊥ = 2. In both cases, the decrease of
κ implies an effective decrease of the g-value. In Figure 3.6b, the average g-values

obtained through
(
gav =

g∥+2g⊥
3

)
are shown for different κ factors.

Lastly, some aspects of the TIP deserve to be discussed. Figure 3.7 shows the
behaviour of TIP for different κ values as a function of ν with an estimated value of
λ ≈ −5000 cm−1. The maximum average TIP value is reached when ν = 0 (∆ = 0).
Moreover, for ∆ < 0, the TIPav is greater than that for ∆ > 0. As a noteworthy
remark, the values of TIP strongly increases with the decrease of κλ, that is with
the increase of the covalence or the decrease of spin-orbit coupling effects.

The one-dimensional compounds described in Article 7 and Article 8 have been
treated roughly considering a chain model with an effective isotropic spin of S = 1/2
for Ir(IV) and Cu(II) metal ions, with the spin Hamiltonian described in (1.69).
Moreover, for the magnetic study of these chain compounds, an isotropic Zeeman
operator as the one in (1.25) was considered, where g = gCu = gIr. Indeed, the
model simplifies the real system, where same g-values are assigned to both metal
ions ignoring the orbital contribution present in Ir(IV) along with the ZFS effects
that it exhibits. However, there is a lack of an adequate theoretical model that
enables to quantitative analyse in detail the magnetic exchange coupling between
both metal ions, that is a non-trivial problem. Besides, magnetic exchange coupling
between chains by short intermolecular interactions were also neglected, so isolated
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(a) (b)

Figure 3.6: Calculated g values (u = ∥ or ⊥) for a t52g electronic configuration (λ < 0),
as a function of a positive and negative tetragonal distortion (ν), and different values of
the orbital reduction factor (κ). For (a) the parallel and perpendicular components, and

(b) the average value, being gav =
g∥+2g⊥

3 .

chains were considered.

As a result of this considerations, the analysis of the magnetic susceptibility
was carried out by means of the Bonner–Fisher numerical expression (1.70) for an
antiferromagnetic interaction between Ir(IV) and Cu(II) centres, and through Baker-
Rushbrooke numerical expression (1.72) for ferromagnetic interactions between metal
ions.

3.2 Ir(IV) coordination chemistry

Iridium compounds can be found in a very wide variety of oxidation states, from
-III to IX.2–4 Although up to the date of this Thesis work, it has never been isolated
a stable Ir(-II) compound.5 Nevertheless, the most common oxidation states are
those involving Ir(I) and Ir(III). As a result, due to their unique physical properties
these complexes have been intensively studied, where several potential applications
in different fields of technological interest, such as catalysis, imaging, sensing or
medical therapies have been developed during the last decades.6–12

As Ir(I) compounds are generally square planar and Ir(III) octahedral, both ox-
idation states form complexes with a diamagnetic ground state. In contrast, Ir(IV)
in an octahedral or tetragonally distorted octahedral environment has an unpaired
electron with an important first-order spin-orbit contribution due to its 2T2 fun-
damental term, which indeed make its magnetic behaviour less easy to treat when
compared with other electronic configurations. Nonetheless, this non-Curie char-
acteristic behaviour that can be display even at room temperature is what makes
the Ir(IV) also interesting to explore. Thus, salts of [IrCl6]

2− anion were used in the
classic first Electronic Paramagnetic Resonance (EPR) experiments, to demonstrate
the delocalization of unpaired electrons onto the chloride ligand, where the unpaired
electron spends 30% or more of its time in the ligand orbitals.13

From a crystallographic point of view, the most simple structures containing the
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3.2. Ir(IV) coordination chemistry

(a) (b)

Figure 3.7: Calculated TIP values as a function of ν and κ, for a t52g electronic con-

figuration with λ ≈ −5000 cm−1, under a tetragonal distortion for (a) the parallel and

perpendicular components, and (b) the average value, being
(
TIPav =

TIP∥+2TIP⊥
3

)
.

Ir(IV) ion are the hexahalo complexes, [IrX6]
2− (X = F,Cl, and Br), which have

been known for a long time, except for the hexaiodo derivative, where the strongly
oxidising character of Ir4+ makes it difficult to coexist with the reducing I− anion.
Moreover, hexahaloiridate(IV) compounds are known for reducing into their analog-
ous Ir(III) complexes in acid aqueous media or with help of mild reducing agents,
such as oxalate, H2S or Fe2+. Thus, they are normally used in their preparations.14,15

The mainly factor responsible of the reduction is the increased stability of the Ir(III)
ion as consequence of the high stabilization of the low-spin d6 configuration in octa-
hedral environments. As generally happens with 5d transition metals, they are more
kinetically inert to undergo ligand substitution reactions, so it is commonly neces-
sary to perform their reactions heating together with a ligand excess. Nevertheless,
the ligand substitution of Ir(IV) complexes must be taken carefully as iodine or
ligands with phosphorus, arsenic, and sulphur donor atoms are not stable because
they reduce Ir(IV) to the Ir(III) state in aqueous and organic solvents.16–18 Despite
of that, it is possible to explore the re-oxidation of the formed Ir(III) complexes to
Ir(IV).19–22

Salts of hexachloroiridate(IV) are normally prepared by oxidation of metallic
iridium with Cl2, mixed with an alkali metal halide. On the other hand, bromo de-
rivatives are commonly obtained treating the previously prepared chloro analogues
with high concentrations of HBr acid.15,23 Nevertheless, hexachloro- and hexabrom-
oiridate(IV) salts and acids are commercially available and affordable. In contrast,
the hexafluoridoiridate(IV) salts are not commercially accessible and they require
the use of the chloro or bromo derivatives as starting materials along with BrF3 or
direct F2 as fluorinating agents.24,25

From a magnetism point of view, the susceptibility measurements of different
mononuclear hexahaloiridate(IV) salts with several alkali metals, and some organic
countercations, are known since more than 70 years ago. However, most of the stud-
ies were related only to [IrCl6]

2− species with measurements at room temperature
or only down to ca. 80 K, with a few exceptions for the (NH4)2 [IrCl6] and K2 [IrCl6]
salts, whose measurements were performed down to 2 K. Moreover, the magnetic
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behaviour of the hexabromo- and hexafluoroiridate(IV) complexes was rarely invest-
igated.23,26–28

More recent studies related to Na2[IrCl6]·xH2O species with different grades of
hydration (x = 0, 2 and 6) have revealed that for the anhydrous and x = 2 species,
the compounds behave as weak ferromagnets arising from a canted antiferromagnetic
disposition. Their ordering temperatures being 7.4 and 2.7 K, respectively, with
coercive fields below 1 kØe.29 Furthermore, when the sodium is replaced by a bulkier
cation, the different mononuclear Ir(IV) entities are more isolated and SIM behaviour
at low temperature is observed.25,30 On the other hand, the use of cations able to
display electric conductivity together with the hexahaloiridate(IV) entities, could
lead to semiconducting charge-transfer salts while keeping the magnetic properties
of the Ir(IV) metal ion, as in the case of the (BEDT-TTF)2[IrCl6] compound.31

As a noteworthy remark, the use of the [IrX6]
2− entities as metalloligands to-

wards other metallic ions, along with their utility as potential precursor to syn-
thesise new mononuclear complexes, has been scarcely explored. In this regard,
{IrF5(µ-F)Co3(dpa)4 · 2DMF}n (dpa = 2,2’-dipyridyl-amine) one-dimensional com-
pound, schematised in Figure 3.8, is one of the few examples found in the literature.32

Perhaps, part of the cause is due to the lack of an adequate theoretical model to
treat the magnetic behaviour of these Ir(IV)-based compounds. After all, an appro-
priate model needs to take into account the different ‘g’-values attributed to each
paramagnetic ion in heteropolynuclear compounds, along with the ZFS effects from
the Ir(IV) ion, besides of the intermolecular interactions that can occur. For these
reasons, the analysis in detail of the whole χMT curve is normally precluded in either
salts or coordination polymers.25,29–32

Figure 3.8: Schematic structural representation of the {IrF5(µ-F)Co3(dpa)4}n one-
dimensional compound. The [IrF6]

2− anionic unit has been highlighted.
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3.4 Additional information

Compounds (NBu4)2 [IrX6] (X = Cl and Br), presented in Article 7 and Article
8, respectively, have been fitted with the magnetic model provided in section 3.1. As
expected, a straight line is observed for these compounds, being the sharp decrease
at low temperatures in the chloro derivative mostly due to the occurrence of weak
intermolecular interactions through Cl···Cl contacts. For this reason, a more satis-
factory match of the experimental χMT curve is achieved through equation (3.30)
with the introduction of the Weiss constant as (T − θ), in order to take into account
the intermolecular magnetic interactions. The best least-squares fit of the data for
both compounds is shown in Figure 3.9, where the R values are 8.0 × 10−6 and
1.2 × 10−5 for chloro and bromo derivatives, respectively, being R the agreement

factor described as
∑

i

[
(χMT )calcdi − (χMT )obsi

]2
/
∑[

(χMT )obsi

]2
. Their fit values

are summarised in Table 3.5, where additionally, the previous Curie-Weiss fit para-
meters for the chloro derivative have also been included for comparison, which are in
agreement with those obtained herein. Unfortunately, due to the strong correlation

Figure 3.9: Thermal variation of the χMT product for (NBu4)2 [IrX6] (X = Cl and Br).
The solid red line represents the best-fit of the experimental data (see text), and the inset
shows on detail the low temperature domain.

Table 3.5: Best-fit magnetic parameters for (NBu4)2 [IrX6] (X = Cl and Br) compounds.

Compound C / cm3mol−1K gav θ /K TIP×10−6 / cm3mol−1

X = Cl 0.325 (0.335)a 1.87 (1.90)a −0.35 (−0.9)a 41.7 (-)a

X = Br 0.291 1.76 - 167.8
a In parenthesis previously reported values in Article 7.

between κ, λ and ∆ parameters acting in the whole χMT range describing a straight
line, it is hard to asses the parameters for validating the model. Moreover, because
of the large correlation existing between diamagnetism and TIP, the experimental
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magnetic susceptibility measurements must be carefully corrected for the diamag-
netism of the constituent atoms and also for the sample holder, in order to avoid
big errors in the κ, λ and ∆ determination.

As it was seen in Figure (3.6a), the sign of ∆ can be confirmed from the g-factors,
so it would be sensible to perform EPR experiments to the samples. Moreover, well
resolved signals in the EPR spectra will lead to unambiguous determination of the
values of the g-factors, so more information will be available and a better fit of all
parameters will be possible.
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HOLMIUM

4.1 Theoretical magnetic model for a f10 ion sys-

tem

Free rare earth ions can present partially occupied 4f orbitals and, hence, po-
tential magnetically active electrons. However, those electrons are very efficiently
shielded by inner fully occupied orbitals, chiefly the 5s2 and 5p6 orbitals that came
before in energy to the 4f . As consequence, these 4f orbitals are almost uninvolved
with bonds between a rare earth ion and its nearest neighbours. Therefore, the in-
fluence of the environment on the magnetic properties is much less pronounced for
a rare earth compound that for the previously seen 5d compounds. On the other
hand, it is important to take into account that the polyelectronic spin-orbit coupling
constant value, |λ|, is larger than for 3d ions. For this reason, the bielectronic re-
pulsion will be considered first, and thus the energy terms from a Russell-Saunders
approach will be obtained. Secondly, the spin-orbit coupling effects may partially
removed the degeneracy of the ground term into vary J states. In order to keep
track of S, L and J for every term in a lanthanide metal ion, they will be written
as (2S+1)LJ from now on. Lastly, the action of the ligand field potential when the
symmetry of the system is low enough, may split the several MJ components from
a (2S+1)LJ term into different levels and significant ZFS effects may arise. For this
reason, despite of being the ligand field less energetic than the interelectronic re-
pulsion and the spin-orbit coupling, the distortion of the symmetry of the system
is the ultimately responsible of splitting the (2S+1)LJ ground state required for the
magnetic anisotropy of the lanthanide metal ions.

Nevertheless, as consequence of the weak ligand field, it is possible to obtain a
good first approximation close to the real average value of χMT at room temperature,
where the ligand field effects can be neglected. Thus, from a free ion perspective with
spin-orbit effects, the magnetic susceptibility formula presented in (4.1) follows the
Curie law. Remarkably, its derivation is rigorously parallel to the derivation for
(1.47).

χM =
NAµB

2gJ
2

3kBT
J(J + 1); gJ =

3

2
+

S(S + 1)− L(L+ 1)

2J(J + 1)
(4.1)

The presence of excited states not too far in energy from the ground state would
add a significant TIP contribution to the magnetic susceptibility. This contribution
has been calculated as

TIP =
2NAµB

2(gJ − 1)(gJ − 2)

3λ
(4.2)

Besides, the molar magnetisation can also be described for a free ion with spin-
orbit coupling effects, in the same way it was deduced previously for a free ion
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without these effects in section 1.2. Its expression is shown in equation (4.3), where
B(y) represents the Brillouin function previously defined in (1.51), but with J in-
stead of S in this case.

M = NAgJµBJB(y); y =
gJµBS

kBT
H (4.3)

Although for most of the lanthanide ions the measured χMT at room temperature
are rather close to the calculated values with equation (4.1), the situation is quite
different when there are thermally populated excited states, like for example in
Sm(III) (4f 5), Sm(II) or Eu(III) (4f 6) systems. Nevertheless, that is not the case
for the Ho(III) metal ion, and is out of the scope of this dissertation. Moreover, it
does not mean that the free ion approximation allows to interpret all the details of
the magnetic properties for the rest of lanthanides. In most cases, the situation is
much more complex. Indeed, as the temperature is lowered the splitting effects on the
(2S+1)LJ ground state due to the ligand field potential will be of great importance.
If the ligand field has an axial distorted symmetry, which is the most likely for
molecular compounds, it will give rise to a number of components separated by a
difference of a few tens to few hundreds of wavenumbers, depending on the multiplet
width. When the width is small enough, all the components arising from the (2S+1)LJ

term are statically populated at room temperature and the free ion approximation
applies. However, as the temperature is lowered, the components of higher energy are
successively depopulated and the free ion approximation becomes less and less valid.
This may have two consequences. First, the magnetic susceptibility does not follow
the Curie law. Second, the system becomes more and more anisotropic on cooling.
Indeed, the magnetic anisotropy always increases as the temperature is lowered.
Moreover, when the multiplet width is larger, the higher in energy MJ components
are not statistically populated even at room temperature. Hence, the system may
present a significant magnetic anisotropy. In such cases, the fact that the average
value of χMT is close to the value predicted in the free ion approximation may be
somewhat fortuitous.

In the case of Ho(III) complexes, the energy term corresponding to a 4f 10 elec-
tronic configuration is 5I (S = 2 and L = 6), which was deduced in the same way
it was done for 5d metal ions in the past Chapters. Moreover, the polyelectronic
spin-orbit coupling constant has a negative value, hence, the lower energy state is
the one with the highest value of J . Thus, the ground state corresponds to the 5I8
term. The most near excited state, 5I7, is well separated from 5I8, to ca. 4300 cm−1.
As a result, the ground state can be considered the only one populated even at room
temperature. Any deviation of the calculated magnetic susceptibility by the free ion
approximation from the observed values in Ho(III) compounds are attributed to
the action of the ligand field potential on the 5I8 ground state. Indeed, as the spin
multiplicity (2S+1) is an odd number, the ground state will split into eight Kramer
doublets (MJ from ± 1 to ± 8) and one singlet MJ = 0 due to the combined effect
of the spin-orbit coupling and an axial distortion of the symmetry. In Figure 4.1 is
depicted the energy diagram of an Ho(III) with MJ = 0 as its ground state.

Following the free ion with spin-orbit coupling approximation, the gJ and χMT
values calculated at room temperature from equation (4.1) for Ho(III) compounds
are expected to be 5/4 and 14.07 cm3mol−1K, respectively.
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Figure 4.1: Energy diagram with sequential perturbations for Ho(III) compounds, where
it is considered a MJ = 0 as ground state. From left to right, e-e repulsion stands for
the bielectronic interaction, SOC for the spin-orbit coupling and LF for the ligand field
potential with an axial distortion. The Zeeman interaction splits every MJ component.
The diagram is not at scale.

On the other hand, the occurrence of magnetic anisotropy can also be demon-
strated from the magnetisation curves, where the saturation of the magnetisation
achieved will be different from the one expected by the free ion approximation,
as long as the several components of the ground state present different magnetic
moments, and as consequence, different contributions to the total magnetic beha-
viour of a system. Moreover, in order for the temperature to be able to change the
populations between components, the energy separation between them due to the
anisotropy must not be too high. Additionally, the M vs. H/T curves or isothermal
curves, show the magnetisation without the effect of the temperature. Thus, in aniso-
tropic systems different isothermal magnetisations curves do not superpose between
them, as consequence of being the various components, with different populations,
depending on the temperature before applying the external field. In contrast, in
isotropic systems all components share the same populated state before applying
the external field and, therefore, they are independent of the temperature and the
isothermal magnetisations curves do superpose.

Nevertheless, the simulation of the magnetic properties outside the free ion ap-
proximation is possible, but the first requirement is to describe the effect of the ligand
field in a satisfying fashion. For rare earth compounds the electrostatic model seems
to be suitable. Thus, the LF potential describes the effect of the electric field due to
the surrounding ligands acting on the lanthanide ion, splitting the electronic ground
state multiplet of the free ion, described by its total angular momentum, J , into
their MJ components depending on the symmetry. Following the Stevens formal-
ism, the Hamiltonian of this interaction is presented in (4.4), where the equivalent

operators Ôq
k are denoted as Stevens operators and expressed as polynomials of the

total angular momentum operators, k is the operator order restricted up to k ≤ 7 for
f -electrons with q going from −k to k, as a result, the ranges of k and q are limited
to a maximum of 27 parameters. ⟨rk⟩ are the radial part factors, Aq

k are numerical
parameters that depend on the nature of the ligand shell, being the products Aq

k⟨r
k⟩
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the parameters to be determined in the data fit, and θk are the Stevens coefficients
tabulated for the different fn configurations and for the different k values. The op-
erators with k even (0, 2, 4, 6) are responsible for the ligand field splitting, hence
the ones used for the magnetic description, whereas those with k odd (1, 3, 5, 7)
are responsible for the intensity of the induced electric dipole transitions in optical
spectroscopy.1–6

ĤLF =
∑

k,q

Aq
k⟨r

k⟩θkÔ
q
k (4.4)

Equation (4.4) is a convenient way of calculating the energies from the ground
state |J,MJ⟩ wave-functions, where the corresponding matrix elements can be eas-
ily computed if the mixing between different J multiplets, second-order interactions,
are neglected. Moreover, the magnetic perturbation is evaluated together with the
ligand field splitting through an anisotropic Zeeman operator over the |J,MJ⟩ func-
tions, similar to the one used in (2.12) and (2.13) for the parallel and perpendicular
component, respectively. Nevertheless, when the basis set is restricted to the ground
state multiplet, it provides a reasonable description of the magnetic properties, but
it fails in describing another interesting property of lanthanides as optical absorption
or luminescence, which have different multiplets as initial and final states. In this lig-
and field approach, however, the chemical intuition tends to vanish with parameters
that does not have, a priori, correlation with parameters with physical meaning.

Nonetheless, the ligand field Hamiltonian in (4.5) along with the Zeeman operator
was used for a full description of the magnetic susceptibility curve of the Ho(III)
compound described in Article 9, where the ligand field symmetry determines which
parameters of the 27 combinations of k and q are non-zero. For a D3h symmetry,
the only non-zero parameters responsible for the crystal field splitting are presented
in equation (4.5). A complete table of allowed parameters as a function of their
point-group symmetry is listed elsewhere.1,3

ĤLF = A0
2⟨r

2⟩θ2Ô
0
2 + A0

4⟨r
4⟩θ4Ô

0
4 + A0

6⟨r
6⟩θ6Ô

0
6 + A6

6⟨r
6⟩θ6Ô

6
6 (4.5)

Moreover, the relevant Stevens operators used for a D3h symmetry are gathered
in Table 4.1. A more complete table of Stevens operators can be found in the liter-
ature.2,3,5

Table 4.1: Relevant Stevens Ô
q
k operators for D3h symmetry expressed in terms of Ĵz,

Ĵ+ and Ĵ− polynomials.

k q Ôq
k

2 0 3Ĵ 2
z − J(J + 1)

4 0 35Ĵ 4
z − [30J(J + 1)− 25]Ĵ 2

z + 3J2(J + 1)2 − 6J(J + 1)

6 0

231Ĵ 6
z − [315J(J + 1)− 735]Ĵ 4

z

+[105J2(J + 1)2 − 525J(J + 1) + 294]Ĵ 2
z

−5J3(J + 1)3 + 40J2(J + 1)2 − 60J(J + 1)

6 6
Ĵ 6
+
+Ĵ 6

−

2
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4.2 Magneto-caloric effect and refrigeration

The Magneto-caloric effect (MCE) is the temperature variation of a material
subjected to a magnetic field variation under adiabatic conditions, produced by a
change on the magnetic entropy of the material.1,7–9

In order to explain the origin of the magneto-caloric effect, it is necessary to
relate the magnetic variables as magnetisation, M , and the external field, H, to
entropy, SE, and temperature, T , by the use of thermodynamics. To begin with,
the definition of entropy of a system in statistical thermodynamics is of the form
SE = kB ln (Ω), where Ω represents the accessible, and non-degenerate, states. Since
a magnetic moment of spin S has (2S + 1) magnetic levels, the entropy content
per mole of substance associated with the magnetic degrees of freedom between
T = 0 and T = ∞ becomes (4.6), where R is the gas constant, and S represents the
effective spin with (2S + 1) describing the multiplicity of the states taking part in
the magnetic process.

Sm = R ln (2S + 1); R = kBNA (4.6)

When a magnetic material is magnetised by the application of an external mag-
netic field, it changes its magnetic order, hence its magnetic entropy, Sm. However,
in adiabatic conditions the total entropy of the system must remain constant during
the magnetic field change, then ∆Sm must be compensated for by an equal but op-
posite variation of the entropy associated with the lattice, resulting in a change in
the temperature of the material, ∆Tad. As consequence, both ∆Sm and ∆Tad repres-
ent the characteristic parameters of the MCE. In Figure 4.2 there is a representation
of the process, where it is easy to see that if the magnetic change ∆H reduces the
magnetic entropy (∆Sm < 0), then ∆Tad is positive, whereas for ∆H > 0, (∆Sm > 0
and ∆Tad is negative.

Figure 4.2: Molar magnetic entropy as a function of temperature illustrating the existence
of the magneto-caloric effect for two different fields, being H1 < H2. The adiabatic process,
A → B, providing ∆Tad, and the isothermal magnetization, A → C, providing ∆Sm. The
maximum magnetic entropy is also indicated.

In order to establish the relationship between H, M and T to the MCE terms,
∆Tad and ∆Sm, the Maxwell equation (4.7) for the magnetic entropy is considered
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for the MCE evaluation.10

[
∂Sm(T,H)

∂H

]

T

=

[
∂M(T,H)

∂T

]

H

(4.7)

Integrating (4.7) for an isothermal process, it is obtained (4.8), which indicates
that ∆Sm is proportional to both the derivative of magnetisation with respect to
temperature at constant field and to the field variation. A numerical approach can
be used, but the accuracy of ∆Sm calculated from the magnetisation experiments
depends on the accuracy of the measured M , T and H parameters, replacing the
differentials by the measured variations (∆M , ∆T , ∆H).

∆Sm(T,∆H) =

∫ Hf

Hi

[
∂M(T,H)

∂T

]

H

dH (4.8)

An interesting application of the MCE is that they can be used for refrigerating
purposes through a process known as adiabatic demagnetisation. First, the magneto-
caloric material is placed in a thermally insulated (adiabatic) environment and the
magnetic field is applied to carry the adiabatic magnetisation. The material heats up
due to the above-mentioned MCE and the produced heat is extracted by a exchange
media, while the magnetic field is held constant. Once the material has cooled down
to the starting temperature, it is brought back to the adiabatic conditions and then
the magnetic field is removed. In this way, as the total entropy of the system must
not change, and the magnetic entropy of the system has increased, the lattice entropy
must decrease, and as a result, the material is cooled by adiabatic demagnetisation.
The material is then put in contact with whatever wants to be refrigerated, heating
itself. Thus, a cooling cycle can then be realised in an iterative process, as the one
depicted in Figure 4.3.

Figure 4.3: Illustration of a thermodynamic cycle with a magnetic refrigerator with
classical spin representation. The cycle consists of four steps. In step (I), the adiabatic
magnetisation is carried by an external field that orders the spin system under adiabatic
conditions heating the material. In step (II), the adiabatic conditions are broken for the
extraction of the heat. In step (III) the adiabatic conditions are back and the adiabatic
demagnetisation is performed by removing the external magnetic field, which leads to the
cooling of the material. Step (IV) closes the cycle by putting the cooled material again in
thermal contact, but this time with the media that is wanted to cool.
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4.2. Magneto-caloric effect and refrigeration

All magnetic systems intrinsically present MCE as they are able to align their
magnetic moments with the external field. However, the intensity of the effect de-
pends on the properties of each material. As for example, if they present intermolecu-
lar interactions. Ferromagnetic exchange coupling obtains better performance than
non-interacting coupling with a small magnetic field and in a high temperature re-
gime, whereas antiferromagnetic interactions result in the lowest ∆Sm values. For
paramagnetic systems, according to the relationship between temperature and mag-
netization, the MCE becomes effective in this type of compounds only at very low
temperatures.

On the other hand, the (4.6) relationship makes clear that a molecule should
exhibit a large total effective spin to be a good candidate for producing an efficient
cooling, because a high density of the low-lying spin states carries a large entropy
change. In the literature are reported spin values up to 83/2.11 However, even though
a high spin value is a relevant point, it is not enough by itself to determine a
significant MCE. A fundamental characteristic to have into account is the absence
of an anisotropy barrier. For this reason, isotropic Gd compounds constitutes good
candidates as cryogenic magnetic coolants.12

Nevertheless, in Figure 4.4 it is shown S, L and J values for all Ln(III), where
Ho(III) has the biggest J of all lanthanides after the spin-orbit coupling. In this
way, the effective available spin states is increased with a magnetic entropy up to
Sm = R ln (2J + 1) = 23.6 Jmol−1 K−1 for J = 8. However, because of the magnetic
anisotropy that the Ho(III) ground state presents the maximal magnetic entropy is
reduced, and as a result its magnetic cooling properties are limited.

Figure 4.4: S, L and J for 4fn ions according to Hund’s rules. In this plot, n is the number
of electrons in the 4fn orbital, where all the represented lanthanides were considered to
be in (III) oxidation state.
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CONCLUSIONS AND PERSPECTIVES

In the last part of this Thesis work, the conclusions and more important res-
ults that have been reached will be summarised for each Chapter, along with some
perspective for future works.

Chapter 2 is dedicated to the study of Re(IV)-based complexes. The synthesis,
crystal structures and magnetic properties of nine species have been studied and
reported across five publications, three of them were dedicated to the hexahalorhen-
ate(IV) family members, whilst the last two are focused on the [ReCl4(bpym)] com-
pound and its use as a metalloligand.

In the first set, the (NH4)2[ReF6] compound was characterised as a system that
exhibits metamagnetism and SIM behaviour in the same system, an attribute un-
usual in molecular compounds based on 5d metal ions reported so far. The meta-
magnetic phenomena is due to a field-induced antiferromagnetic-to-paramagnetic
ordering transition, being the antiferromagnetic interaction mainly via F···F con-
tacts. Further studies of the hexahalorhenate(IV) entities with bulky counter-cations
as (PPh4)

+ or protonated ciprofloxacin antibiotic as a potentially interesting biolo-
gical complex have been investigated. Because of the bulkiness of these cations, the
[ReX6]

2− (X = Cl, Br or I) anions are found to be isolated, and as consequence, fa-
vouring the slow relaxation of the magnetisation phenomena in all these salts. To this
regard, (PPh4)2[ReBr6] system exhibits the highest energy barrier of the [ReX6]

2−

family (U = 30.1 cm−1 at 5000 G). Furthermore, [H2cip][Hcip][ReCl6]Cl · H2O and
[Hcip]2[ReBr6] salts constitute the first magnetoestructural studies performed on
compounds based on protonated ciprofloxacin and a paramagnetic 5d ion.

In future works, it would be interesting to keep exploring the synthesis of new
salts combining the physical properties of the anionic [ReX6]

2− entities with poten-
tially interesting cations in one molecule. Thus, the final materials may be able to
perform multiple functions with an unusual combination of physical properties, or
even a mutual interplay-synergy-of the properties involved.

The study on the second set starts with the direct impact that the solvent of crys-
tallisation, MeCN or CH3COOH and H2O, has upon the final magnetic properties of
the known unsolvated [ReCl4(bpym)] complex. Short intermolecular Cl···Cl contacts
are present in both solvated compounds that preclude SIM behaviour. Besides, in
contrast with the unsolvated system, they do not exhibit magnetic ordering through
spin-canting phenomenon. Nevertheless, it was proven how it is possible to alter the
magnetic behaviour of this type of Re(IV) complexes by changing the crystallisation
solvent. On the other hand, the use of the [ReCl4(bpym)] system towards simple cop-
per salts resulted into two novel one-dimensional coordination polymers, in which
the dinuclear [ReCl4(µ-bpym)CuX2] units (X = Cl or Br) are linked through double
Cu-X-Cu halide bridges generating chains. In this way, these compounds constitute
the first reported examples of doubly halogen-bridged and bipyrimidine-based Cu(II)
chains including a paramagnetic 5d metal ion. Their magnetic studies revealed sev-
eral magnetic exchanges through intermolecular interactions, mainly via Re-Cl···Cl-
Re contacts. However, intramolecular interactions take place between Re(IV) and
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Cu(II) ions through the bpym ligand and between Cu(II) ions mediated by halogen
atoms, with the overall interaction being antiferromagnetic.

Following this research line, it would be interesting to expand the Re(IV) metallo-
ligand compounds family. To this regard, cis and trans isomers of the [ReCl2(ox)2]

2−

system have already been synthesised, and their use towards another metallic centres
is expected to generate new two- or three-dimensional networks connected through
the two bridging bis-bidentate oxalate ligands. Furthermore, a Re(IV) system com-
bining two different bridging ligands in one molecule, such as bpym and ox, could
lead to an interesting selective metalloligand due to the different nature of both
ligands.

Chapter 3 is focused on the investigation of iridium compounds in two different
oxidation states. One publication features three novel Ir(III) bpym-based systems,
whilst the other two are dedicated to six systems based on the magnetically active
Ir(IV) ion.

The obtained NBu4[IrBr4(bpym)] and the two [IrBr3(bpym)(MeCN)] polymorphs,
represent three of the few mononuclear bpym-based Ir(III) compounds that have
been reported up to date. Interestingly, the polymorphism phenomenon was en-
countered when different crystallisation solvents were employed. Moreover, the vi-
ability of oxidation of these systems to Ir(IV) was preliminary explored through
chemical methods with a robust stability of the Ir(III) oxidation state. The cyclic
voltammetry study performed on the salt complex shown a reversible Ir(III)-Ir(IV)
pair, whereas no reversible process was observed for the polymorphs in the studied
conditions.

The synthesis, crystal structure and magnetic properties of several Ir(IV)-based
compounds have been investigated. The first steps to treat the DC magnetic beha-
viour of the mononuclear (NBu4)2[IrX6] (X = Cl or Br) systems have been reported.
On the other hand, the study of the AC magnetic properties of these salts reveals
SIM behaviour, constituting two of the few reported examples based on the Ir(IV)
metal ion. Moreover, it was proven the suitability of the hexahaloiridates(IV) units
as building blocks in a synthetic processes to lead to new mixed magnetic systems.
To this regard, {IrCl5(µ-Cl)Cu(Viim)4}n constitutes the first reported system based
on Ir(IV) and Cu(II) and enables us to get for the first time the J value of the mag-
netic interaction between this 3d-5d couple. Three more one-dimensional coordin-
ation polymers of formula {IrBr5(µ-Br)Cu(L)4}n (L = Meim, Viim or Buim) were
obtained and magnetostructurally characterised. The compounds with the Meim
and Viim ligands displayed antiferromagnetic behaviour, whereas the one with Buim
displays a ferromagnetic coupling between Ir(IV) and Cu(II) metal ions across the
bromide bridges.

As a perspective to future works, a collaboration with the University of Angers
(France) is already underway to explore Ir(IV) multifunctional systems. Specifically,
the crystallisation of the chiral conductor (R,R,R,R)-TM-BEDT-TTF [(R,R,R,R)-
tetramethyl-bis(ethylenedithio)-tetrathiafulvalene] together with the anionic [IrX6]

2−

(X = Cl or Br) entities. On the other hand, the ligand substitution of the hexa-
haloiridates(IV) by bpym or ox could lead to novel Ir(IV) metalloligands as the ones
previously observed with the Re(IV) metal ion. Thus, new interesting magnetically
active systems could be formed with these bis-bidentate ligands acting as bridges
towards other metal ions and their properties studied.
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Chapter 4 is committed to the synthesis, crystal structure and magnetic proper-
ties of one compound based on the Ho(III) metal ion with the DTPA ligand. Thus,
the last work of this Thesis is dedicated to the novel Na2[Ho(DPTA)(H2O)] · 8H2O
system, which behaves as a SIM. It also exhibits a moderate MCE in a wide tem-
perature range, from ca. 2 to 20 K, with a strong field-dependent magnetic entropy
maxima between the liquid helium and hydrogen temperatures. Despite their limited
cryogenic magnetic refrigeration performance, the results illustrate the potential of
magnetically anisotropic Ho(III)-based SIMs as prototypes of molecular cryomag-
netic coolants operating near the strategically relevant hydrogen liquefaction tem-
perature.

Following the Ho(III) compound example, further investigations on cryogenic
magnetic refrigeration are being conducted on other members of the lanthanides
series. In this regard, we look towards Nd(III) and Er(III) metal ion based complexes,
which also presents high J values.
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APPENDIX A

RESUM

En el present resum es troba descrit l’abast i principals objectius d’aquesta Tesi
juntament amb la seua metodologia. Alhora, el lector es guiat a través dels principals
resultats. La Tesi es troba estructurada bàsicament en quatre Caṕıtols, els quals
són, una introducció que proporciona una visió general dels conceptes bàsics del
Magnetisme Molecular, seguit de tres Caṕıtols més, dos dels quals estan dedicats als
composts basats en ions metàl·lics 5d, en concret el Re(IV), Ir(III) i Ir(IV), mentre
que l’últim es centra en l’Ho(III), un ió metàl·lic de la sèrie 4f . Finalment, hi ha un
Caṕıtol final que serveix com a conclusió dels resultats que poden ser extrets dels
anteriors amb algunes propostes per a futures investigacions.

El Caṕıtol 1 aprofundeix en el coneixement fonamental relacionat amb el Magne-
tisme Molecular des del punt de vista de la mecànica quàntica, on el moment orbital i
d’esṕın donen lloc a moments magnètics, la relació dels quals amb la termodinàmica
estad́ıstica condueix al comportament magnètic de les mostres macroscòpiques. Tan-
mateix, l’expressió dedüıda dependeix del coneixement de la funció de l’energia per
a tots els estats tèrmicament poblats. Per a un determinat sistema aquestes poden
ser desconegudes, per aquest motiu és habitual dependre d’unes quantes aproxima-
cions. La fórmula de Van Vleck és capaç de reproduir la susceptibilitat magnètica
d’una mostra sempre i quan el camp magnètic es considere una petita pertorba-
ció del sistema inicial. També es mostra com l’aproximació tan sols es manté a
alta temperatura, on l’energia prodüıda pel camp magnètic extern és menor que la
tèrmicament disponible. A més a més, l’equació de Van Vleck és valida tan sols per
a sistemes paramagnètics on M = 0 quan H = 0. D’aquesta manera, s’explica el
comportament paramagnètic de sistemes simples.

En una segona part introductòria, es presenta la interacció entre el moment an-
gular orbital i d’esṕın que presenta un àtom, i com això dóna lloc a l’acoblament
esṕın-òrbita dels moments magnètics, el qual és interpretat a través de dos esquemes
energètics diferents. El primer es coneix com a model L-S i s’empra per a elements
lleugers, i el segon com a model j-j per a àtoms més pesats. L’anomenat efecte
de ZFS pot sorgir per la combinació de l’acoblament esṕın-òrbita i la simetria del
sistema, d’aquesta manera donant lloc al desdoblament dels diferents nivells d’e-
nergia sense cap aplicació d’un camp magèntic extern. Aquests sistemes esdevenen
magnèticament anisòtrops. Una altra interacció magnètica apareix rellevant depe-
nen de la distància entre els diferents centres metàl·lics i la temperatura del sistema.
Aquestes interaccions poden ser principalment per ordenaments ferromagnètics o
antiferromagnètics, les quals no poden ser ignorades per cap sistema paramagnètic
a suficient baixa temperatura. Les interaccions febles poden ser fàcilment preses en
compte amb el paràmetre de Weiss (θ). A més a més, per a sistemes on no hi ha
un moment angular orbital associat a l’estat fonamental dels ions metàl·lics que
interactuen, aquesta pot ser tractada amb un Hamiltonià d’intercanvi esṕın-esṕın,
que inclou la correlació entre els centres metàl·lics escollits mitjançant una constant
d’intercanvi magnètic (J).

Al final del Caṕıtol 1 es consideren les mesures dinàmiques de la susceptibilitat
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magnètica i com la redistribució dels dipols magnètics requereix una certa quantitat
de temps que depén de la freqüència del camp extern aplicat i la temperatura. Es
revisen breument els sistemes amb un sol temps de relaxació o una distribució d’ells
mitjançant el model de Debye generalitzat, juntament amb els mecanismes de rela-
xació més comuns que poden tenir lloc. Pel que fa a l’estudi de la dinàmica d’esṕın,
s’introdueix el primer sistema reportat en mostrar cicles d’histèresi magnètica in-
teressants a nivell molecular i aquests són comparats amb els clàssics obtinguts amb
compostos ferromagnètics.

Les propietats magnètiques de les espècies que contenen ions metàl·lics 4f , i es-
pecialment 5d, s’han explorat relativament menys en comparació amb els sistemes
3d. Això prové de la dificultat per fer front als acoblaments esṕın-òrbita més forts
que presenten els àtoms més pesats, que esdevé un factor d’influència directa en l’a-
nisotropia magnètica que els caracteritza. Com a conseqüència, si bé el coneixement
detallat dels mecanismes d’intercanvi relacionats amb els ions 3d està considerable-
ment avançat, hi ha menys comprensió de la correlació magnètica en sistemes 4f i
5d. D’aquesta manera, els Caṕıtols següents es centren principalment en la qúımica
de coordinació i caracterització de sistemes basats en els ions metàl·lics de Re(IV),
Ir(III), Ir(IV) i Ho(III). L’abast d’aquesta investigació pretén tant estudiar el com-
portament magnètic de complexos mononuclears, com millorar la nostra comprensió
de l’intercanvi magnètic d’espècies que contenen aquests ions metàl·lics, alhora que
s’explora noves aplicacions potencials per a aquests sistemes. Per assolir aquest ob-
jectiu, totes aquestes ĺınies de treball es centren a compartir una metodologia des
d’un punt de vista sintètic dins del camp del Magnetisme Molecular, on els composts
obtinguts es caracteritzen principalment per un espectre infraroig preliminar seguit
d’una anàlisi elemental dels percentatges de C, N i H juntament amb les proporcions
dels elements pesats. Posteriorment, les seues estructures es resolen mitjançant la
difracció de raigs-X sobre monocristall i els seus patrons són comparats amb la resta
de la mostra per difracció de raigs-X en pols, en tal de confirmar la seua homo-
genëıtat. A més a més, per a mostres magnèticament actives es realitza la mesura
de les seues propietats magnètiques sobre mostres molturades, i juntament amb les
dades estructurals es realitza una correlació amb el comportament magnètic.

El Caṕıtol 2 està dedicat a l’estudi de sistemes basats en ions metàl·lics de
Re(IV), el qual es escollit pel seu alt efecte de ZFS i el seu valor efectiu d’esṕın.
A més a més, la manca de contribució orbital per als complexos Re(IV) octaèdrics
constitueix un avantatge respecte a altres elements, on es produeixen efectes esṕın-
òrbita de primer i segon ordre. Per tant, els sistemes de Re(IV) són relativament
més fàcils d’ajustar mitjançant models teòrics. Es poden obtenir molts resultats in-
teressants dels complexos de Re(IV). A la literatura es poden trobar composts amb
propietats remarcables, com el comportament de SIM, que s’espera que presenten
entitats de Re(IV) äıllades, mentre que els composts polinuclears contribueixen a
un millor coneixement de l’intercanvi magnètic entre diferents centres metàl·lics, on
també poden sorgir fenòmens de SMM. D’altra banda, també s’han observat altres
fenòmens magnètics singulars, com spin-canting, anti-, ferro-, ferri- o metamagne-
tisme en sistemes que contenen aquest l’ió metàl·lic.

Els treballs publicats dins d’aquest Caṕıtol es poden dividir en dues parts. El
primer està dedicat a l’estudi de les propietats magnètiques de les espècies mono-
nuclears aniòniques [ReX6]

−2 (X = F, Cl, Br, I), mentre que una segona part està
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dedicada al compost neutre [ReCl4(bpym)] (bpym = 2,2’-bipirimidina).

Com a part d’una col·laboració amb la University of Nevada (Las Vegas), el
treball presentat, a l’Article 1, descriu la sal d’amoni de l’entitat aniònica [ReF6]

−2.
Aquest sistema presenta dos comportaments magnètics, metamagnetisme i relaxa-
ció lenta de la magnetització coexistint junts, un atribut inusual en els sistemes
moleculars basats en ions metàl·lics de la sèrie 5d reportats fins ara. Aquest siste-
ma cristal·litza en el grup espacial trigonal P 3̄m1. Els àtoms d’hidrogen del catió
amoni no es tenen en compte durant el procediment de refinament, tanmateix, les
seues posicions més favorables es calculen mitjançant mètodes de DFT, mostrant
que es pot produir un desordre en sals d’amoni. Aquestes distorsions escurcen al-
gunes distàncies H···F emfatitzant els enllaços d’hidrogen. Els càlculs d’enllaç per
DFT de l’anió [ReF6]

−2 en la seua geometria experimental mostren la presència
d’enllaços Re-F σ, que són gairebé iònics. La seua comparació amb l’anió en fase
gasosa proporciona unes longituds mitjanes d’enllaç Re-F més llargues, de manera
que la diferència es deu a les forces d’empaquetament. La sal també es caracteritza
per espectroscòpia Raman, on el desdoblament dels pics Raman es correlaciona amb
la simetria de l’anió [ReF6]

−2.

D’altra banda, l’estudi de les propietats magnètiques mitjançant mètodes DC
revela un ordenament antiferromagnètic dels portadors d’esṕın mitjançant interac-
cions intermoleculars febles F···F (via Re-F···F-Re) i N···F (via Re-F···N···F-Re)
amb un màxim en la representació χM vs. T . El màxim disminueix a mesura que
s’apliquen camps magnètics més alts, la qual cosa suggereix l’aparició d’una tran-
sició d’ordenació antiferromagnètica a paramagnètica indüıda pel camp, t́ıpica dels
sistemes metamagnètics. La corba de magnetització mesurada a 2 K dóna també su-
port a aquest comportament, ja que els valors de M augmenten amb el camp aplicat
amb un punt d’inflexió tènue a un camp cŕıtic. Per a estudiar més a fons les propi-
etats magnètiques de la sal (NH4)2[ReF6], s’han realitzat mesures de susceptibilitat
magnètica AC, que mostren senyals incipients fora de fase a molt baixa temperatura,
la qual cosa és indicativa d’un sistema amb relaxació lenta de la magnetització.

Pel que fa a aquest treball en concret, el qual firme com a quart coautor amb
igual participació que el segon i el tercer, la meua aportació personal s’ha centrat
principalment en la purificació de la mostra (NH4)2[ReF6] proporcionada pels nos-
tres col·laboradors, juntament amb la seua caracterització mitjançant espectroscòpia
infraroja, preparació, mesura i tractament de les dades experimentals obtingudes
mitjançant els dispositius SQUID i PPMS.

Les sals (PPh4)2[ReX6] [PPh
+

4 = tetrafenilfosfoni, X = Br o I], es descriuen a
l’Article 2, el qual està elaborat en col·laboració amb la Universidad de la República

(Uruguai), aquests són un dels pocs exemples descrits a la literatura de compostos
mononuclears basats en l’ió metàl·lic Re(IV) que mostren una relaxació lenta de la
magnetització indüıda pel camp. Les sals cristal·litzen en el sistema tricĺınic amb
el grup espacial P 1̄ i les seues estructures estan formades per cations voluminosos
(PPh4)

+ que mantenen ben separats els anions hexahalorenat(IV) entre ells.

Les mesures de susceptibilitat magnètica DC a diferents temperatures mostren un
comportament molt semblant per als dos compostos, t́ıpic dels sistemes de Re(IV)
que es troben äıllats magnèticament. La disminució dels valors de χMT a baixa
temperatura són principalment a causa dels alts efectes de ZFS que posseeix aquest
ió metàl·lic. D’altra banda, les mesures magnètiques AC revelen la presència de
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senyals fora de fase per als dos compostos en el rang de baixa temperatura quan
s’aplica un camp magnètic extern de 1000 o 5000 G. Tanmateix, la dinàmica de
relaxació que presenten els dos compostos no es veu igualment afectada pels camps
externs, essent 5000 G l’òptim per al bromo derivat, tal com suggereix la presència de
més màxims en χ′′ que apareixen a freqüències més altes, mentre que el seu nombre
disminueix per al iodo complex al mateix camp. Els valors obtinguts del paràmetre
α en les representacions Cole-Cole suggereixen una distribució estreta dels temps
de relaxació d’aquests complexos de Re(IV) mononuclears. Pel que fa a les dades
experimentals ln τ vs. 1/T , aquestes s’ajusten tenint en compte que la relaxació de
la magnetització és impulsada per un únic mecanisme Orbach. Per a una descripció
més precisa de tota la corba, en el cas del bromo derivat es considera un conjunt
de quatre mecanismes de relaxació entre l’esṕın i la xarxa cristal·lina, aquest són
Orbach, Direct, Raman i QTM. Notablement, el bromo complex presenta la barrera
energètica més alta de la famı́lia [ReX6]

−2.

La meua contribució a aquest treball, on aparec com a segon coautor, s’ha centrat
en els aspectes pràctics de la śıntesi i la cristal·lització adequada dels compostos
reportats per als posteriors estudis de difracció de raigs-X sobre monocristall. També
he participat en la mesura i resolució de les dades estructurals, juntament amb la
caracterització per raigs-X en pols, aix́ı com en la interpretació i processament de
les dades experimentals obtingudes mitjançant els magnetòmetres SQUID i PPMS.

Els últims sistemes relacionats amb les espècies d’hexahalorenat(IV) d’aques-
ta Tesi tenen com a objectiu mantenir les interessants propietats magnètiques que
mostra aquest ió metàl·lic, alhora que s’afegeixen noves funcionalitats al materi-
al final mitjançant l’ús d’un catió amb potencial interés biològic amb les entitats
aniòniques [ReX6]

−2 (X = Cl, Br). D’aquesta manera, dos nous compostos de Re(IV)
amb fórmula [H2cip][Hcip][ReCl6]Cl · H2O i [Hcip]2[ReBr6] (cip = ciprofloxacin) són
reportats a l’Article 3. Constituint aquests compostos el primer estudi magnetoes-
tructural realitzat sobre sistemes basats en l’antibiòtic protonat ciprofloxacin i un
ió paramagnètic de la sèrie 5d.

El cloro derivat cristal·litza al grup espacial P21/c, mentre que el bromo com-
plex al grup Pbca. A més, aquests sistemes mononuclears de Re(IV) äıllats són pos-
sibles gràcies als voluminosos cations protonats de ciprofloxacin. Per a una millor
comprensió de les forces electroestàtiques que mantenen l’empaquetament cristal·ĺı,
s’han calculat i analitzat les superf́ıcies d’Hirshfeld per ambdós sals, on es veuen
reflectides la varietat d’interaccions que tenen lloc a les seues xarxes cristal·lines.

Les mesures de susceptibilitat magnètica DC mostren un comportament molt
similar per als dos compostos, t́ıpic dels sistemes mononuclears que contenen un
ió de Re(IV) äıllat magnèticament. No es detecta cap màxim de la susceptibilitat
magnètica a la gràfica χM vs. T a baixa temperatura, cosa que indica l’absència
d’interaccions antiferromagnètiques significatives. Per tant, la disminució detectada
en les representacions χMT vs. T es deurà principalment als efectes de ZFS, que són
molt significatius en sistemes mononuclears de Re(IV). Les mesures de susceptibilitat
magnètica AC a baixa temperatura revelen senyals fora de fase indüıdes pel camp
per als dos sistemes de sals, on les representacions ln τ vs. 1/T s’obtenen a un
camp extern òptim de 5000 G. En primer lloc, es poden ajustar les dades tenint
en compte que la relaxació de la magnetització només implica un procés Orbach,
però és possible una reproducció més precisa de tota la corba experimental tenint
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en compte els mecanismes Direct i Raman.

En la següent part, s’explora la substitució directa de dos lligands clorur de la
entitat [ReCl6]

−2 per un lligand bpym, com una estratègia diferent per sintetitzar
nous sistemes emprant el complex com a lligand. Tanmateix, a l’Article 4, es repor-
ta l’efecte del dissolvent de cristal·lització sobre el compost [ReCl4(bpym)], i com
canvien les seues propietats magnètiques en contrast amb el sistema no solvatat.

[ReCl4(bpym)] ·MeCN i [ReCl4(bpym)] · CH3COOH · H2O cristal·litzen al siste-
ma monocĺınic amb els grups espacials P21/n i P21/c, respectivament. Tots dos
sistemes presenten contactes curts Re-Cl···Cl-Re formant una xarxa cristal·lina que
allotja les molècules de dissolvent. A més a més, també es produeixen interaccions
intermoleculars entre [ReCl4(bpym)] i els seus dissolvents de cristal·lització. Per ava-
luar tots aquests contactes s’han calculat les superf́ıcies d’Hirshfeld i s’han analitzat
les seues empremtes digitals.

Pel que fa a les propietats magnètiques d’ambdós compostos, les importants in-
teraccions antiferromagnètiques entre les diferents entitats de Re(IV) a través de
l’espai impedeixen que es prodüısca el fenomen de la relaxació lenta de la magne-
tització. Tots dos sistemes mostren un comportament magnètic similar amb una
reducció dels valors χMT amb la disminució de la temperatura com a resultat de les
interaccions antiferromagnètiques entre ions de Re(IV), aix́ı com a causa de l’efecte
de ZFS. No es detecta cap màxim de susceptibilitat magnètica per a cap dels dos
compostos. En canvi, les propietats magnètiques del sistema sense dissolvent de cris-
tal·lització són molt diferents, mostrant un ordre magnètic mitjançant spin-canting.
D’aquesta manera, és possible ajustar el comportament magnètic d’aquest tipus de
complexos de Re(IV) canviant el dissolvent de cristal·lització.

L’ús del metal·loligand [ReCl4(bpym)] cap a un ió metàl·lic paramagnètic com
el Cu(II) es reporta a l’Article 5, juntament amb els nostres col·laboradors de la
Università della Calabria (Itàlia). En ell es tracten dos poĺımers de coordinació uni-
dimensionals amb fórmula general {[ReCl4(µ-bpym)CuX2] · Solv}n, que presenten
diferents estructures cristal·lines depenent de X i Solv. Concretament, quan X = Cl
i Solv = H2O, el sistema cristal·litza en el grup espacial P21/c, mentre que quan
X = Br i Solv = CHCl3, cristal·litza en el P21/n grup espacial. Tots dos sistemes
estan formats per unitats dinuclears [ReCl4(µ-bpym)CuX2], que s’uneixen entre si
mitjançant ponts d’halogen Cu-X-Cu dobles, generant aix́ı cadenes amb molècules
de dissolvent presents en les seues respectives xarxes cristal·lines. D’aquesta mane-
ra, aquests compostos constitueixen els primers exemples reportats de cadenes de
Cu(II) basades en la bipirimidina i doble pont d’halogen que inclouen un ió metàl·lic
paramagnètic 5d.

Les interaccions intermoleculars del tipus Re-Cl···Cl-Re i X···π estan presents
per a tots dos compostos, però el cloro derivat també presenta enllaços d’hidrogen
connectant els àtoms terminals de clor de les unitats dinuclears. D’aquesta manera,
es poden produir diversos intercanvis magnètics mitjançant diferents interaccions
intermoleculars, però principalment mitjançant contactes via Re-Cl···Cl-Re. També
es produeixen interaccions intramoleculars entre els ions de Re(IV) i Cu(II) a través
del lligand bpym i entre ions de Cu(II) mediats per àtoms d’halogen. Les dades
de susceptibilitat magnètica obtingudes mitjançant mesures DC mostren com els
valors de χMT disminueixen a mesura que es redueix la temperatura, principalment
a causa de les interaccions moleculars antiferromagnètiques i els efectes de ZFS. La
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presència de màxims en les representacions χM vs. T donen suport ineqúıvocament
a l’ocurrència d’intercanvis antiferromagnètics entre els ions metàl·lics implicats.

A causa de la complexitat dels sistemes que presenten un ió metàl·lic altament
anisòtrop com el Re(IV) i a causa dels diferents intercanvis magnètics que tenen
lloc, hi ha una manca d’un model teòric adequat per avaluar completament la cor-
ba de susceptibilitat magnètica experimental. No obstant això, es fan dos tipus de
tractaments en el rang de temperatura de 20-300 K, on hi ha un bon comportament
lineal de la representació χM

−1 vs. T . En el primer, les dades s’ajusten a l’expres-
sió de Curie-Weiss, on la magnitud i signe negatiu de la constant de Weiss dóna
suport al fet que es produeixen interaccions antiferromagnètiques significatives en
ambdós sistemes. En el segon, es realitza una simulació isòtropa de les dades expe-
rimentals amb dos constants d’acoblament d’intercanvi diferents per a la interacció
Cu(II)-Cu(II) i Re(IV)-Cu(II). El valor calculat de l’intercanvi Cu(II)-Cu(II) indi-
ca un acoblament antiferromagnètic relativament fort, mentre que es produiria un
acoblament antiferromagnètic molt menys intens entre els ions de Re(IV) i Cu(II)
en ambdós compostos.

En aquesta col·laboració, que firme com a segon coautor, la meua contribució ha
estat centrada en els aspectes pràctics de sintetitzar i cristal·litzar adequadament
el compost {[ReCl4(µ-bpym)CuBr2] · CHCl3}n per a la seua resolució estructural.
També he participat en la seua caracterització mitjançant difracció de raigs-X en
pols, espectroscòpia infraroja i anàlisi elemental de percentatges C, H, N juntament
amb la preparació, mesura, interpretació i processament de dades experimentals
obtingudes mitjançant el magnetòmetre SQUID.

D’altra banda, els treballs que tracten sobre compostos basats en l’iridi es recu-
llen al Caṕıtol 3. Tot i que els sistemes d’Ir(III) s’han investigat intensament a causa
de les seues potencials aplicacions tecnològiques en àrees com la catàlisi, imatge i
sensors, els complexos d’Ir(IV) s’han mantingut en gran mesura sense explorar. Pel
que fa a aquesta Tesi es centrarà en el desenvolupament de nous compostos d’Ir(IV)
amb l’objectiu de conéixer millor la seua qúımica i propietats. A diferència de les
espècies d’Ir(III), l’Ir(IV) és un ió metàl·lic paramagnètic en simetria octaèdrica o
octaèdrica distorsionada, amb propietats magnètiques prometedores a causa del seu
alt efecte de ZFS, que confereix als compostos basats en l’Ir(IV) amb anisotropia
magnètica. A més a més, com és un ió metàl·lic de la sèrie 5d tindrà una deslocalit-
zació significativa de la seua densitat electrònica sobre els lligands, provocant aix́ı
una millora de les propietats magnètiques en compostos polinuclears en comparació
amb els seus anàlegs de la sèrie 3d. No obstant això, el seu terme fonamental 2T2

combinat amb el seu elevat acoblament esṕın-òrbita fan que aquests sistemes siguen
molt dif́ıcils de ser analitzats.

En aquesta Tesi s’han emprat les sals alcalines d’hexahaloiridat(IV) comerci-
alment disponibles com a reactius de partida per a l’intercanvi de lligands i cati-
ons. Els contracations voluminosos com (NBu4)

+ no només confereixen propietats
pràctiques al compost final, com solubilitat en una gran varietat de dissolvents, sinó
que també condueixen a sistemes interessants que poden presentar una relaxació
lenta de la magnetització. A més a més, aquestes noves sals sintetitzades són em-
prades en la preparació de nous sistemes polinuclears d’Ir(IV) mitjançant l’ús de les
unitats [IrX6]

2− (X = Cl, Br) com a components del compost final, juntament amb
altres ions paramagnètics de la sèrie 3d, com per exemple el Cu(II), on els derivats
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d’imidazol també s’empren com a lligands auxiliars per bloquejar les seues posicions
de coordinació equatorial.

D’altra banda, l’intercanvi de lligands en aquests sistemes esdevé un repte des del
punt de vista sintètic, principalment per la fàcil reducció que presenten les espècies
d’Ir(IV) cap als seus anàlegs d’Ir(III), els quals són més estables. Pel que fa a la
substitució de dos lligands bromur per una bpym, a l’Article 6, es tracta l’estudi
de tres noves estructures cristal·lines basades en l’Ir(III) i la bpym, on s’observa
el fenomen del polimorfisme quan s’utilitzen diferents dissolvents de cristal·lització.
Tan sols uns pocs treballs tracten sobre el polimorfisme cristal·ĺı dins de la qúımica
de l’Ir(III). A més a més, cal destacar que tan sols s’han reportat fins ara unes poques
estructures cristal·lines de compostos mononuclears d’Ir(III) amb bpym. El compost
NBu4[IrBr4(bpym)] cristal·litza al grup espacial P21/c, i [IrBr3(bpym)(MeCN)], als
grups espacials P21/n i P212121. Les interaccions intermoleculars del tipus C-H···N
i C-H···Br febles estan presents en la sal. En canvi, els polimorfs presenten contactes
π···Br, C-H···Br i Br···Br per estabilitzar les seues estructures supramoleculars. A
més a més, també s’han analitzat les seues estructures cristal·lines mitjançant els
programes SHAPE i CrystalExplorer.

L’oxidació d’aquests nous compostos d’Ir(III) a Ir(IV) emprant espècies qúımiques
s’ha estudiat preliminarment amb mescles estequiomètriques de diversos oxidants en
dissolucions aquoses àcides. Aix́ı i tot, els complexos d’Ir(III) van demostrar ser es-
tables contra aquest tipus d’oxidació. Per altra banda, es van investigar amb cura
les propietats electroqúımiques d’aquests compostos. La voltamperometria ćıclica
en aquests sistemes mostra el comportament reversible del parell Ir(III)-Ir(IV) en el
rang 10-500 mV s−1 per a la sal NBu4[IrBr4(bpym)], mentre que no s’observen pics
reversibles per als altres sistemes.

D’altra banda, també s’ha explorat una nova estratègia per a la preparació de
nous materials magnètics basats en l’Ir(IV) i ions metàl·lics paramagnètics de la
sèrie 3d mitjançant l’ús de les unitats [IrX6]

−2 (X = Cl, Br) com a metal·loligands
cap al Cu (II). A l’Article 7, es presenten els resultats pel que fa a les espècies
amb X = Cl, on s’han caracteritzat estructuralment i magnèticament el reactiu de
partida (NBu4)2[IrCl6] i la cadena heterobimetàl·lica d’Ir(IV) i Cu(II) de fórmula
{IrCl5(µ-Cl)Cu(Viim)4}n (Viim = 1-vinilimidazol ), la qual constitueix el primer
sistema reportat basat en els ions Ir(IV) i Cu(II). Tots dos complexos cristal·litzen
al grup espacial C2/c. Tanmateix, a causa dels voluminosos contracations en el sis-
tema mononuclear, les unitats [IrCl6]

−2 estan ben äıllades entre elles. D’altra banda,
l’empaquetament cristal·ĺı del compost unidimensional connecta les diferents cade-
nes entre si mitjançant interaccions π···π, les quals acaben adoptant una disposició
perpendicular entre elles.

La representació χMT vs. T per al compost mononuclear s’ajusta a l’equació
de Curie-Weiss fins a ca. 50 K. Addicionalment, fora d’aquesta publicació, la corba
de χMT s’ajusta a tot el rang de temperatures amb el model teòric proposat en
aquesta Tesi. D’altra banda, la mateixa representació per al sistema unidimensional
es reprodueix amb un model aproximat tenint en compte una cadena amb un esṕın
efectiu isotròpic de S = 1/2, on es presenta un acoblament ferromagnètic entre
els ions Cu(II) i Ir(IV). D’aquesta manera, és la primera vegada que s’avalua la
interacció magnètica entre aquest parell d’ions metàl·lics quan es troben units a
través d’un pont clorur. A més a més, per a avaluar les senyals fora de fase indüıdes
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per un camp magnètic extern, es realitzen mesures de susceptibilitat magnètica AC
sobre el compost mononuclear. El seu procés de relaxació s’ajusta mitjançant un
mecanisme Orbach en la part lineal de la representació ln τ vs. 1/T i tota la corba
es reprodueix quan es considera un mecanisme Direct i Raman.

D’altra banda, l’Article 8 recopila els resultats obtinguts amb la unitat [IrBr6]
−2,

essent aquesta publicació l’últim treball comprés en el Caṕıtol 3. L’estructura cris-
tal·lina del compost (NBu4)2[IrBr6] es troba prèviament publicada, mentre que la
seua corba experimental de χMT s’ajusta amb el model teòric introdüıt en aquesta
Tesi. El complex amb entitats d’hexabromoiridat(IV) äıllades presenta una relaxa-
ció lenta de la magnetització, confirmada a través de les mesures de susceptibilitat
magnètica AC. Aquest complex es converteix en el cinqué SIM reportat basat en
l’ió Ir(IV). Com en el cas del compost mononuclear (NBu4)2[IrCl6], la representació
ln τ vs. 1/T mostra un rang lineal ben reprodüıt mitjançant un mecanisme Orbach,
el qual considera un sol temps de relaxació. En canvi, tota la corba es reprodueix
quan es considera un mecanisme Direct i Raman.

L’ús de l’entitat mononuclear [IrBr6]
2− cap a ions Cu(II) juntament amb lligands

auxiliars, també és explorada per al bromo derivat. D’aquesta manera, s’han estudiat
estructuralment i magnèticament tres nous complexos unidimensionals de fórmula
{IrBr5(µ-Br)Cu(L)4}n (L = Meim, Viim o Buim, essent Meim = 1-metilimidazol i
Buim = 1-butilimidazol). Aquests cristal·litzen als grups espacials P 1̄, C2/c i Pccn,
respectivament. En els compostos obtinguts amb Meim i Viim, es troben importants
contactes Ir-Br···Br-Ir i interaccions π···Br entre cadenes. En canvi, el volum dels
grups butil dels lligands Buim manté les cadenes completament separades entre si.

Com en el cas del compost unidimensional obtingut amb el cloro derivat, les
dades de susceptibilitat magnètica DC es tracten de forma aproximada tenint en
compte el model d’una cadena amb un esṕın efectiu isotròpic de S = 1/2. Per als
complexos obtinguts amb els lligands Meiim i Viim, les representacions χMT vs. T
mostren un acoblament antiferromagnètic entre els ions metàl·lics Cu(II) i Ir(IV) a
baixa temperatura. En canvi, s’observa un acoblament ferromagnètic dominant per
al compost obtingut amb Buiim.

Els elements del bloc de les terres rares han obtingut un interés rellevant a causa
de les seues propietats electròniques, magnètiques i òptiques úniques. Per exemple,
els complexos mononuclears d’ions Ln(III) que presenten una relaxació lenta de la
magnetització, els anomenats SIM de lantànids, s’han donat a conéixer en diverses
àrees de la nanociència i la nanotecnologia. A més a més, a causa de les seues conegu-
des propietats de coherència magnetotèrmica i quàntica, els derivats mononuclears
de Gd(III), Dy(III) i Ho(III) són exemples representatius d’aplicacions prometedores
de SIMs basats en lantànids tant com a refrigerants criomagnètics moleculars, com
emprats en tecnologies de processament d’informació quàntica. En conseqüència, el
Caṕıtol 4 explora les propietats i les aplicacions potencials de l’Ho(III) del bloc de
les terres rares.

A més a més, quan es busquen materials moleculars amb diverses propietats
f́ısiques que es pugen utilitzar en diferents aplicacions tecnològiques, una bona es-
tratègia és seleccionar una molècula de partida que ja dispose d’una. Per aquest
motiu, la nostra atenció s’ha dirigit cap al grup de complexos mononuclears que
contenen ions Ln(III) (Ln = Gd, Dy, Ho) i lligands poliaminocarboxilats lineals o
ćıclics, els quals s’utilitzen habitualment com a agents de contrast en la ressonància
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magnètica.
A l’Article 9, es mostren els nostres primers resultats sobre la śıntesi, caracterit-

zació estructural i propietats fisicoqúımiques generals d’un nou complex d’Ho(III) de
fórmula Na2[Ho(DPTA)(H2O)] · 8H2O (DPTA = Dietiletriamina-N,N,N ′, N ′′, N ′′-
pentaacetat), aix́ı com una investigació preliminar de la dependència del compor-
tament magnètic sota un camp magnètic DC i AC. El compost cristal·litza al grup
espacial P21/n i consta de dos ions d’Ho(III) cristal·logràficament independents,
ambdós amb un ı́ndex de coordinació de nou i geometries distorsionades similars,
segons els càlculs del programa SHAPE entre un prisma trigonal triapicat i un anti-
prisma quadrat monopicat. Les entitats dinuclears es connecten entre si mitjançant
ions Na+ donant una estructura tridimensional, on en els seus petits porus rectan-
gulars hi ha la majoria de les molècules d’aigua de cristal·lització.

Les mesures de susceptibilitat magnètica DC mostren com els valors de χMT
disminueixen cont́ınuament al baixar la temperatura, essent una caracteŕıstica prin-
cipalment atribüıda als efectes del LF que provoca la divisió dels diferents MJ de
l’estat fonamental 5I8. Aquest fet es troba recolzat per la no superposició de les
corbes de magnetització isotèrmiques. D’altra banda, també s’han estudiat les pro-
pietats magnètiques dinàmiques, revelant senyals fora de fase amb i sense aplicar un
camp magnètic extern. L’anàlisi de les representacions χ′ i χ′′ vs. ν en un rang de
freqüències d’1-10 kHz es realitza mitjançant l’equació de Debye generalitzada, mos-
trant una ampla distribució dels temps de relaxació. La representació ln τ vs. 1/T és
reprodüıda amb un sol mecanisme Orbach amb valors dins del rang dels pocs exem-
ples de SIM d’Ho(III) reportats. A més a més, malgrat el seu limitat rendiment en
la refrigeració magnètica criogènica, els resultats magnetotèrmics il·lustren el poten-
cial estratègicament rellevant dels SIM basats en ions magnèticament anisotròpics
com l’Ho(III), en qualitat de prototips de refrigerants criomagnètics moleculars que
operen prop de la temperatura de liqüefacció de l’hidrogen.

La meua contribució a aquest treball, la qual firme com a quart coautor, s’ha
centrat des d’un punt de vista fonamentalment de caràcter cristal·logràfic, portant
a cap el desenvolupament de l’estratègia de mesura i la recol·lecció de les dades de
difracció de raigs-X sobre monocristall, aix́ı com el refinament de les dades cris-
tal·logràfiques per a la seua resolució estructural.
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