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Mobility, diffusivity and charge density in polyelectrolytes, are generally determined from electrochemical impedance spectro-
scopy following the electrode polarization analysis, in which at a given temperature the peaks in tan δ are fitted based on a model.
These results can be different depending on the model used in the fitting of the curves. Generally, the models are based on a single
Debye model or on the existence of an overlap in relaxation times (Cole–Cole model). In this work, we propose the alternative use
of the distribution of the relaxation times by a distribution of the Debye length (LD), which allows the calculation of parameters
such as mobility, diffusivity, and charge density as a function of LD in a more concise approach.
© 2022 The Electrochemical Society (“ECS”). Published on behalf of ECS by IOP Publishing Limited. [DOI: 10.1149/1945-7111/
ac4bf9]
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The study of mobility, diffusivity and carrier charge density in
polymeric electrolytes and composite membranes is of utmost
importance to characterize polymeric composites with potential
applications as ionic conductors which can be used in energy
conversion, as super-capacitors, batteries, solar cells, polymer
electrolytes in fuel cells, among others.1,2 The determination of
these parameters has been addressed by several approaches in the
scientific literature focused. One of the most widely used alternatives
is based on measurements using electrochemical impedance spectro-
scopy (EIS) under an applied electric field.3–12 The use of EIS has
been widely stablished in the last years in polymer science and in
particular as powerful characterization method for fuel cells because
it is non-destructive and provides useful information about fuel cell
performance as demonstrated in our recent publications.13–17 The
experimentally obtained spectra can be modeled using the electrode
polarization (EP) model initially proposed by Coelho,18,19 where EP
is characterized by a single Debye relaxation. In this model, also
known as Coelho model, the dependence of the complex permittivity
on frequency is represented by a single Debye,6–8 following Eq. 1:
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where ΔεEP =εs,EP − εs, being εs,EP, the low frequency dielectric
constant in the presence of EP and is given by εs,EP = M·εs, and
τEP = M·τ, represents the electrode polarization relaxation time,
where M is the ratio of the sample thickness divided by twice the
Debye length (LD), M = L/2LD, and represents the number of rms
Debye lengths LD contained in the thickness L of the sample
sandwiched between the two electrodes. Finally, the diffusion
relaxation time τ is defined from Einstein-Poisson relations as
τ = =ε

σ
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σ
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dc

0 19–21 ω is the angular frequency, σdc represents the

total dc conductivity and j the imaginary unity.
From Eq. 1, the real and imaginary parts of the permittivity (ε′, ε′)

and the loss tangent (tan δ) can be obtained, and the values of the
parameters M, τEP, τ, ε ,s ε∆ EP and ε ,EP can be estimated by fitting the
experimental data. The plot of loss tan δ = (ε″/ε′) vs frequency, for
conductive systems, displays a peak with a shifting to higher
frequencies as a function of the temperature. From this plot, the
mobility, diffusivity, and free charge density of the sample can be

calculated. The analysis of experimental data in terms of Coelho
model analyzed EP by a Debye relaxation. Following the procedure
described by Klein et al.,3 when tan δ peak is not affected by
conductivity, the plot of tan δ vs frequency allows to obtain
information of the parameters M, τEP, τ, ε ,s ε∆ EP and ε ,EP and then
calculate the mobility, diffusivity, and the charge carrier density.
According to Klein et al.,3 the equation of tan δ can be modeled
by Eq. 2:
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where the maximum in tan δ satisfies Eq. 3:
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In this article, we propose the use of the distribution of the
relaxation times given by a more complex Debye length model (LD),
which allows the calculation of parameters such as mobility,
diffusivity, and charge density as a function of LD in a more concise
approach.

Results

A transparent film made of a supported ionic-liquid-like phase
(SILLP) doped with the ionic liquid 1-butyl-3-methylimidazolium
bis(trifluoromethylsulfonyl)imide (BMIM][NTf2]) was prepared by
polymerization of 60 wt% of 1-vinyl-3-butylimidazolium bis(tri-
fluoromethylsulfonyl)-imide ([VBIm][NTf2]), 40 wt% of trimethy-
lolpropane trimethacrylate (TMPTMA) and 1 wt% of azobisisobu-
tyronitrile (AIBN) as initiator (see Supporting Information for
further details).22 The film was sandwiched between two gold
circular electrodes coupled to the impedance spectrometer by co-
pressing film in a sandwich cell configuration. The assembly
membrane-electrode was annealed in the Novocontrol setup under
an inert dry nitrogen atmosphere before starting the measurement.
The temperature was gradually raised from 0 °C to 130 °C in steps of
10 °C, recording the dielectric spectra in each step. During the
conductivity measurements, the temperature was kept constant at
each measuring step controlled by a nitrogen jet with a temperature
error of 0.1 °C during every single sweep in frequency. Figure 1a
shows the tan δ as a function of the frequency for the SILLP sample
containing 60 wt% VBIm][NTf2] and 40 wt% of TMPTMA in all thezE-mail: vicommo@ter.upv.es
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range of temperatures. As shown a maximum in all curves at each
temperature is observed. This peak is associated to the plateau of the
real part of the conductivity observed in the Bode diagram of
Fig. 1b.

Figure 2 shows the variation of tan δ vs frequency at 80 °C for a
sample composed of a supported ionic-liquid-like phase (SILLP).
Black points correspond to the experimental data obtained by
electrochemical impedance spectroscopy measurements and the
blue line corresponds to the fitting data using a single Debye
relaxation by means of Eq. 2. From this fit, the parameters M and
τEP were obtained, being M = 780 and τEP = 3.06 × 10–5 s.
However, a closer inspection at Fig. 2, shows that the maximum of
the peak in tan δ represented by a single Debye relaxation time does
not correctly fit with the experimental data. In order to improve the
data fitting, it is necessary to consider a model that broadens the
function that describes the peak in tan δ, with a more appropriate
amplitude. For the complete range of temperatures studied we can
see the fits to experimental data in Supplementary Information,
Fig. SI1 (available online at stacks.iop.org/JES/169/013506/mmedia).

Accordingly, the peak in tan δ, should be modeled differently as
predicted by a single relaxation time according to a Debye model.
The classic approach to encircle this problem is the use of a slightly
more sophisticated model such as the Cole−Cole model, where the
dependence of the complex permittivity on frequency is represented
by Eq. 4.
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This model involves the introduction of an alpha exponent (α) to
Debye’s equation, whose physical meaning is to induce to a
distribution of relaxation times.23 In Eq. 4, the alpha exponent
(0 ⩽ α ⩽ 1) is the blockage coefficient of the electrode, assuming the
same value for the two electrodes where the sample is sandwiched.24

This exponent is an indication of accumulative process in the sample
because of the interactions among the charge carriers.8–10 A
comparison of Eqs. 1 and 4 shows the main difference between
the Cole−Cole and Debye descriptions is essentially, the alpha
exponent (α), which describes the manifestation of cumulative
processes in the system that are related to interactions among charge
carriers, when this exponent is α < 1 the process displays a sub-
diffusion. When α ≪ 1 these interactions are strong, and in contrast,
when α ≲ 1 the interactions do not dominate the transport process.
Therefore, a process with high conductivity will be associated to
values of α ≲ 1.8

The distribution time has been a matter of discussion along the
past decades because different researchers have suggested that this
should be explained in terms of a distribution of molecular
surroundings of charges instead of a time relaxation distribution.25

However, it is generally admitted that the existence of this
distribution time has a physical meaning, and therefore, the
substitution of distribution of times of relaxation instead of a single
relaxation time could be appropriate for some systems and,
particularly, for the system under study.26,27

Following a typical Cole−Cole relaxation, the tan δ can be
expressed, assuming that the contribution of the conductivity at low
frequencies can be generally omitted, and, when the Maxwell
−Wagner−Sillars (MWS) conditions are accomplished (i.e., when
the bulk conductivity dominates as for a pure ohmic conduction at
high frequencies),28 then ε′(ω,T) = σdc(ω,T)/ε0ω, and the loss
tangent, δ ε ε= ′ / ′′tan ,11,18 can be expressed in terms of Eq. 5:
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Figure 1. (a) Tan δ vs frequency for the SILLP sample containing 60 wt%
of [VBIm][NTf2]) and 40 wt% of TMPTMA in the range of 0 to 130 °C.
(b) Bode diagram for the sample in the same range of temperatures.

Figure 2. Tan δ vs frequency at 80 °C for a sample of a supported ionic-
liquid-like phase (SILLP). Points correspond to experimental data; the blue
line is the fitting using a single Debye relaxation (Eq. 2) and the fitting using
a Cole−Cole relaxation (Eq. 4) is shown in red. The calculated values for the
parameters are M = 780 and τEP = 3.06 × 10–5 s, for a Debye single
relaxation and M = 6600, τEP = 11 × 10−5 s and α = 0,965 for a Cole–Cole
model.
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whose maximum satisfies Eq. 6:
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Therefore, using a Cole−Cole distribution to fitting the experi-
mental values of tan δ vs frequency at 80 °C (see Supplementary
Information, Fig. IS2, for the other temperature,) gives a more
realistic fit as displayed in Fig. 2 (curve in red color). From this plot,
it can be concluded that the Cole−Cole distribution is more
appropriate for these systems, where the interaction between the
charge carriers is associated to the distribution of molecular
surroundings charges in the system that display a continuous
interaction among charge carriers and cross-linked charges with
the polymeric matrix. On the other hand, the use of a Cole−Cole
model allows a more appropriate estimation of the values of
mobility, diffusivity, and charge density. The error χ2, calculated
as the difference between the experimental and theoretical values,
obtained for Debye fit is higher than the obtained by Cole–Cole,
(175 vs 29). Further investigations carried out using the Debye
model, with the aim to study the influence of ion mobility and
mobile ion concentration of single-ion polymer electrolytes, have
provided more precise results for these parameters. However, there
are several systems, such as mixed salts based on CsH2PO4, ionic
liquids composite membranes or hexacyanocobaltates with divalent
transition metals, where the Debye model shows some
inconsistences.10 Under these circumstances, other models such as
Cole–Cole have shown that the calculated transport properties are
more consistent with the measured values for conductivity, mobility,
and diffusivity.9–11

From the peak in tan δ, the time at which the onset of EP is
produced into the system can be defined and represented by the

expression τ = =
ω πδ .m f

1 1

2max
tan

max
This onset represents a time con-

stant and is characteristic for each system at a constant temperature,
which is related with the electrode polarization time relaxation τEP

and the sample relaxation time τ, defined by τ = ε
σ

,
dc

at the same

temperature by means of Refs. 3, 9, 18

τ τ·τ= [ ]7m EP
2

The combination Eqs. 3 and 6 with Eq. 7, allows to obtain Eq. 8 for
the M parameter:
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where for the case of a single Debye model, and using the Cole
−Cole model, it can be expressed as given by Eq. 9:
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The electrode polarization model in case of charged polymers
with fixed cations along the polymeric matrix chains and anions as
mobile counterions, can be considered as a polymeric sample
charged of thickness L = 150 μm sandwiched between two
electrodes, where in the steady state, the system is practically
considered as a macroscopic dipole, and the relaxation time is
directly related to the diffusion time of the charge carriers that
contribute to the macroscopic polarization. Therefore, it should be
related to the thickness of the sample, where the Debye length can be
associated to the average distance that the ion travels through hoping

in the sample with a relaxation time given by τ = ,L

D
D
2

being D the

diffusion coefficient. Consequently, all the above commented allows
us to assume that the distance between molecules in molecular
surroundings must be of the order of magnitude than Debye length,
LD. Then, considering the relationship between the thickness of the
sample, L, the relaxation times τEP and τ, respectively, together with
the Debye length, LD, the use of a Debye length distribution can be
used instead of a time relaxation distribution. Under this approxima-
tion, the differences observed between the experimental values and
the theoretical fit in Fig. 2 can be understood. Moreover, in the case
of lower values for the α−parameter (below 0.8), the differences in
the treatment of the experimental data could be even more striking.

It is well known that the Cole−Cole equation for a distribution of
relaxation times is a similar function to that of Debye, being also flared
and symmetrical respect to a central frequency or relaxation time.
Therefore, considering the above-mentioned treatment, the substitution
of the distribution of the relaxation times by a distribution of LD is
proposed according to Eq. 10, see Appendix for its derivative29–31

⎡
⎣⎢

⎤
⎦⎥( )π α

α π

α π
( ) =

· · ·
(( − )· )

− · (( − )· )
[ ]G L

L

1

2

sin 1

cosh ln cos 1
10D

D L

L
D

D,0

Figure 3 shows the distribution function for Debye length
associated with the Cole−Cole relaxation model calculated for the
same sample of supported ionic-liquid-like phase (SILLP) con-
taining ([VBIm][NTf2]) with a thickness of 150 μm. The parameters
obtained for this sample by fitting tan δ with the Cole−Cole
relaxation model are M = 6600, τEP = 11 × 10–5 s and α =
0.965. As can be seen that Debye length distribution function of a
Cole−Cole equation displays the same behavior that a single Debye
relaxation, being also flared and symmetrical respect to a central
frequency or relaxation time, in accordance with the electrode
polarization model proposed by Coelho where the EP is character-
ized with a single Debye relaxation. These results show that the
thickness of the Debye length (LD) can be a good alternative to
describe the behavior of a sample when analyzed from the electrode
polarization using a Cole−Cole relaxation model and can be of
interest in mobility, diffusivity, and charge carrier density, such as
we can see in advance.

In general, in polyelectrolytes considered as binary systems, both
cations and anions participate in the conduction process and then the
conductivity is the sum of the contributions of all the constituent
charge carriers, i.e., σ = σ+ + σ-, considering that both cations and
anions have the same valence. However, in case of composite
membranes such as PBI@BMIM−X (X = Cl−, NTf2

−, BF4
−) the

Figure 3. The distribution function G(LD) associated with the Cole−Cole
distribution relaxation Debye length for different values of α. Black (α =
0.99), red (α = 0.95), blue (α = 0.90) and green (α = 0.80) and LD,0 = 1.5
× 10–8 m.
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highest possible contribution to the total conductivity are the anions,
and therefore the anion conductivity can be estimated supposing that
anion transference number is practically equal to one. In this
approximation, the cations are practically immobile due to the
reduced mobility that BMIM cation because of its size in comparison
with the other counterpart. Therefore, the cation mobility is
negligible and then, the dominated mobility will be mainly restric-
tive to the anion contribution. In these cases, the ionic conductivity,
σ, corresponding to the anion can be described as

σ μ= [ ]nq 11dc

Where n is the equilibrium number density of free negative charges,
μ is the mobility of the anion and q the charge of anion. Then, the
effective ionic diffusivity, D, can be calculated considering the
Nernst-Einstein relationship

μ = [ ]qD

k T
12

B

where, kB is the Boltzmann constant and T the absolute temperature.
From Eqs. 11 and 12
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and
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0 then we also can determine the diffusivity as
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Being τ the relaxation time of the ionic conduction in the sample.
The anion mobility (μ) can be obtained from the diffusivity as

μ
τ
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Finally, the free charge carrier density by
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Equation shows the relationship between the parameter M, the
electrode polarization relaxation time τEP and the relaxation time of
ionic conduction, τ, when the fit of tan δ have been modeled using
the single Debye model, then

τ
τ

= = [ ]M
L
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D

where L is the sample thickness sandwiched between the two
electrodes. From Eq. 17, the Debye length can be expressed as

= [ ]L
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And in terms of the function of electrode polarization relaxation
time as

τ
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Considering the Cole–Cole relaxation model, then the M parameter
can be expressed as
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Where τEP and τ. are determined from experimental results. τEP from
the fitting curves in tan δ vs frequency or also directly from the peak
of ε′ (log ε′ vs log f) when these peaks are present in the plot of ε′ vs
log f. Finally, τ can be obtained from the frequency at the peak in
tan δ.

As can be seen from Eqs. 19 and 20, the value taken by the alpha
parameter will mark the difference between the values of LD and
therefore the differences found in the mobility, diffusivity, and free
charge density, according to Eqs. 12–14. When α =1, both Eqs. 20
and 21 are the same, while if α < 1 then the Debye thickness will be
different, being more different for values of α smaller than the unity.

Discussion

The calculated results obtained in terms of the parameters M, τEP,
τ and α, for the film composed of supported ionic-liquid-like phase,
using the Debye relaxation model and the Cole–Cole relaxation
model as a function of the temperature from the fits in tan δ are
shown in Table I.

Figure 4 shows the variations with the temperature of the
different parameters namely τ, τEP and Debye length (LD) calculated

Table I. Calculated values for M, τEP, τ and α using the Eqs. 2 and 3 for Debye relaxation model and Eqs. 5 and 6 for Cole–ole relaxation model.

Debye model Cole–Cole model

T (°C) M τEP × 103 (s) τ × 105 (s) α M τEP × 103 (s) τ × 105 (s) α

10 570 9.86 1.730 1 4500 30.8 0.50 0.962
20 604 2.53 0.419 1 4700 8.6 0.14 0.966
30 626 0.55 0.088 1 5000 3.0 0.0445 0.966
40 645 0.36 0.056 1 5500 1.3 0.0175 0.966
50 666 0.157 0.024 1 5800 0.67 0.0085 0.966
60 696 0.085 0.012 1 6100 0.32 0.0039 0.966
70 730 0.046 0.0063 1 6300 0.19 0.0022 0.967
80 780 0.0306 0.004 1 6600 0.11 0.0012 0.965
90 830 0.0196 0.0024 1 6800 0.065 0.00073 0.970
100 890 0.0140 0.0016 1 7100 0.043 0.00047 0.970
110 970 0.0096 0.00098 1 7300 0.030 0.00032 0.970
120 1100 0.0070 0.00064 1 7500 0.022 0.00023 0.970
130 1230 0.0055 0.00045 1 7600 0.015 0.00016 0.970
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from the values obtained in the fits for τ, τEP and M, considering
Eqs. 19 and 20, respectively. A closer inspection at Fig. 4 allows the
observation that experimental data fit using a single Debye to

electrode polarization model to analyze the conductivity results
from the fits in loss tangent gives an underestimation of the electrode
polarization relaxation time respect to the value obtained following
the Cole–Cole model. This underestimation is observed for all the
temperatures under study with a similar behavior. This has produced
a similar increase in the Debye length for all temperatures, this
increase being an order of magnitude higher for all of them. This is a
consequence of the relaxation time associated with the conduction
process obtained from the adjustments in tan δ. Notice that Eqs. 8
and 9 are different for α≠1 and therefore the values of τ and τEP
obtained in each fit, Debye and Cole–Cole, are different.
Considering Eqs. 19 and 21, the Debye length from the values
obtained in the fit of tan δ, for τEP, M and τ can be calculated and the
obtained values are plotted in Fig. 4c. In this figure, we can observe
that the Debye length obtained by Cole–Cole model are around ten
times smaller than those obtained using the Debye model and quite
similar to the values obtained following the experimental values

calculated from = κ ε ε∞L ,D
T

nq
B 0

2 where kB is the Boltzmann constant,

T the temperature, ε0 the vacuum permittivity, ε∞ the static
permittivity, q the is the charge quantity of the ion and n the ionic
charge density imbibed into the polymeric matrix of the sample. The
differences agree with the value of the parameter α used in the fit of
tan δ to experimental data by means of the Cole–Cole model.

As displayed in Fig. 5, the results from both models are similar
for several temperatures when correlating the two values of the
Debye length and considering the value of α = 0.965 for the film of
supported ionic-liquid-like phase. In this figure the value of Debye
length raised to 1/α (i.e. α/LD

1 ) and is practically identical to the
Debye length determined from the Cole–Cole model to the same
experimental data, despite small differences can be appreciated at
high temperatures.

From the calculated values of the parameters plotted in Fig. 4 we
have calculate the mobility, diffusivity, free charge density and
Debye length, following the equations discussed above (Eqs. 14–16)
and the results are shown in Fig. 6.

A comparison between Debye and Cole–Cole models with other
reported models based on the generalization of the theory of
Trukhan32 following the Nernst-Planck electrodiffusion equations
linearized for the dielectric dispersion caused by the electrodiffusion
of ions in a polymeric membrane charged and confined between two
electrodes33–37 has been done. The Trukhan model has recently used
to estimate ion transport parameters in solid polymer
electrolytes.38,39 In these studies, the diffusion coefficient of the
ionic charge, the mobility, the ionic charge density and the Debye

Figure 4. Values of (a) τ, and (b) τEP obtained for the sample of supported
ionic-liquid-like phase (SILLP) following a Debye model (black) a
Cole–Cole relaxation model (red). (c) Values of Debye length calculated
from Eq. 19, using the Debye model ((black) and Eq. 21 for Cole–Cole
model (red). For comparison the values of Debye length obtained following
the Trukhan model (green) and from experimental values of εs and ionic
charge density, n, as = κ ε ε∞LD

T

nq
B 0

2 are also given (blue).

Figure 5. Correlation between the Debye length calculated from Debye
model and Cole–Cole model using the value of parameter α determined from
experimental fits.
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length LD can be estimated in samples where the peak in loss tangent
is clearly observed. In this kind of analysis, the shape of loss tangent
plots is correlated to both the capacitive and resistive component of
the solid electrolytes. Furthermore, it is rationalized that the shifting
of tan δ peaks towards the high frequency side is associated with the
thermally activated anions.6,40–43 Therefore, following the Trukhan
model the diffusion coefficient of the charge mobile is given as

ω
δ

=
·

( )
· [ ]

δ

ω
D

L

32 tan
22max

tan 2

3
max ,

where ω δ
max
tan is the angular frequency corresponding to the peak in

loss tangent and (tan δ)max,ω its value at this frequency, and L the
sample thickness. From values of D, it is easy to calculate the
mobility by means of Eq. 12 and the carrier charge density from
Eq. 11 considering the conductivity values obtained from Bode
diagram displayed in Fig. 1b. On the other hand, the Debye length
can be estimated from the maximum in loss tangent tan δmax

33,34 as

δ= · ( ) [ ]L
L

8 tan
23D

max
2

Then, from the experimental values where the detection of the
maximum in tan δ is given at moderate or high frequencies, as
observed in the sample under study, we have obtained the Debye
length, LD, and the results are plotted in Fig. 6, and compared with
the values calculated from Debye and Cole–Cole models.

From these plots, it can be concluded that mobility and
diffusivity have the same behavior (Figs. 6a and 6b), as both
parameters increase with temperature being higher in the case of
the Debye single model, where both parameters decrease one order
of magnitude for each temperature if we apply the Cole–Cole model
instead of Debye or Trukhan. For the free charge density (Fig. 6c),
an increase of the charge density can be observed when using the
Cole–Cole model, as expected according to Eq. 16, being the free
charge density for each temperature higher when applying the
Cole–Cole model instead of the Debye model or Trukhan model.
The values shown in Fig. 6c were obtained using the τEP, M and τ
parameters obtained for each one of the two models, i.e. Debye and
Cole–Cole, fitting the experimental values in tan δ and calculating
the Debye length for each model and substituting these values
together with the conductivities obtained from Bode diagram for
each temperature in agreement with Fig. 1b in Eq. 16.

In summary, the analysis of experimental data using electro-
chemical impedance spectroscopy under an applied electric field in
terms of Coelho model analyzed EP by a Debye relaxation or by a
Cole–Cole relaxation model leads to the obtention of different values
for the parameters related to mobility, diffusivity, and charge carrier
density. Such determination comes from the determination of the
other parameters such as τ, τEP, M and α from fitting the
experimental results in tan δ. Therefore, considering the above-
mentioned treatment, the substitution of the distribution of the
relaxation times by a distribution of LD can be very useful when
using the Cole–Cole model to better fit experimental data, as shown
in the case of high alpha values (0.9 < α < 1). However, in cases
where the values of α may be minor than 0.9 the differences would
still be more pronounced. As can be seen, there is an overestimation
in obtaining the diffusivity and consequently an underestimation of
the mobile carrier density when using the single Debye model
respect, the Cole–Cole relaxation model.

Conclusions

In conclusion, we propose the substitution of the distribution of
the relaxation time given by a distribution of LD which allows to
calculate the parameters mobility, diffusivity and carriers charge
density as a function of the Debye length. From the electrode
polarization analysis used to analyze the ionic transport from
experimental measurements of electrochemical impedance spectro-
scopy, we have shown a correlation between the Debye length with
the diffusivity, mobility, and charge carriers’ density. This approach
allowed us to obtain these parameters with a closer approximation
than using the single Debye model. With our approach based on the
use of a Cole–Cole relaxation model, the fitting curves of tan δ are
more precise than these obtained by the single Debye model and the

Figure 6. Values of the mobility, diffusion coefficient and free charge
density obtained for the sample of supported ionic-liquid-like phase (SILLP)
following a Debye model (black), a Cole–Cole relaxation model (red) and
Trukhan model (green).
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values of the obtained parameters will allow the obtention of more
realistic values of the transport parameters than those obtained
following the Debye model.

As can be seen, there is an overestimation in obtaining the diffusivity
and consequently an underestimation of the mobile carrier density when
using the single Debye model respect, the Cole–Cole relaxation model.
All of them are correlated with the Debye length calculated from both
models. Our study allows to analyze in detail the charge transport
mechanism at the ion-metal interfaces from the Debye length variations.
The difference found between the use of a single Debye instead of a
Cole–Cole model is attributed with the value of the α parameter, as
shown by means of Eqs. 19 and 21.

Appendix

Taking into account Eq. 9, the expression for τ can be obtained

⎡
⎣⎢

⎤
⎦⎥

⎡
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2 2
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D
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whose derivative is given by

⎡
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⎦⎥τ τ

α
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substituting the distribution function for the time constant16
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we have for a distribution of LD
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