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Resumen

Introducción

En esta tesis encontraremos una extensa variedad de escenarios fí-
sicos con aplicación desde las ciencias de la salud hasta la astrofísica.
La dinámica de todos ellos vendrá descrita por un sistema de ecuaciones
hiperbólico como el siguiente:

∂U

∂t
+

d∑
i=1

∂F i(U)

∂xi
= r(U), x ∈ Rd, t ∈ R+, (1)

donde U = (U1, . . . , Um)T : Rd × R+ −→ Rm es el vector de las variables
conservadas y F i : Rm −→ Rm son los flujos. Este sistema, así escrito, se
denomina ley de balance. Si no hay término fuente, r = 0, hablamos de
ley de conservación. Existen varias estrategias para resolver este tipo de
ecuaciones, las cuales dependen del problema a resolver.

Por un lado, abordaremos el tema de la simulación del flujo sanguí-
neo en la aorta, enmarcado, por supuesto, dentro de la mecánica clásica.
Aquí usaremos las Ecuaciones de Navier-Stokes. Nuestro objetivo es con-
seguir establecer relaciones entre la presión de cizalla arterial y aspectos
geométricos de la aorta. Debido a la complejidad de la geometría usare-
mos el Método de los Volúmenes Finitos.

Por otro lado, nos iremos a situaciones contextualizadas en la Teo-
ría de la Relatividad. Veremos la Ecuación de Euler, deducida de ignorar
los efectos de viscosidad en las Ecuaciones de Navier-Stokes, primero en
gravedad de Newton y luego en Relatividad General. Hallaremos resul-
tados teóricos sobre estabilidad y curvas características que ayudarán a
desarrollar métodos numéricos para su resolución.
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Después, resolveremos las Ecuaciones de Einstein, las ecuaciones de
la Relatividad General. Usaremos una nueva versión de la llamada For-
mulación Completamente Ligada (FCF, siglas en inglés) de las mismas.
Esto es, una particular descomposición de las Ecuaciones de Einstein,
de tal manera que se puedan escribir como una ley de balance para los
grados de libertad físicos asociados a la propagación de información (ra-
diación gravitatoria en forma de ondas gravitatorias), acompañado de un
sistema de restricciones modeladas por ecuaciones elípticas. El nuevo
esquema conservará propiedades matemáticas interesantes similares a
las que tenía la versión anterior, como unicidad local y estructura jerár-
quica, y sumaremos otras ventajas desde el punto de vista de la precisión
numérica.

A continuación, trataremos con leyes de balance con términos duros.
Estos términos tienen la característica de estar asociados a fenómenos
de escalas temporales muy diferentes, y en donde los términos fuente
asociados presentan factores que potencialmente pueden ser de varios
órdenes de magnitud más grandes que el resto de las fuentes. Para ello,
es necesaria la utilización de métodos numéricos implícitos para su inte-
gración temporal, o de algún otro tipo de técnica específica para resolver
este problema.

Afrontaremos dos contextos con motivación astrofísica: Magnetohi-
drodinámica Relativista Resistiva e Hidrodinámica Radiativa. En el pri-
mer caso, el comportamiento duro se observa en las Ecuaciones de Max-
well cuando la conductividad es alta, y, en el segundo caso, en las ecua-
ciones del transporte radiativo cuando las opacidades de dispersión y
transporte adquieren valores significativos.

Para la resolución numérica de estas ecuaciones con términos duros
propondremos un nuevo esquema de integración numérico. Mantendrá
las ventajas de los métodos implícitos para el manejo de términos duros,
pero además con el coste computacional de un método explícito.

El último proyecto del que hablaremos en esta tesis doctoral no es-
tará relacionado con las leyes de balance. Diseñaremos un algoritmo
para llevar a cabo regresión polinómica en varias variables. Lo haremos
para resolver un problema que aparece en simulaciones de estrellas de
neutrones con ecuaciones de estado realistas para la materia nuclear.
Ocurre que los datos tabulados realistas para ecuaciones de estado aña-
den ruido a las simulaciones de tal manera que éstas pueden volverse
inestables. Usaremos un ajuste polinómico multivariable para suavizar
estos datos, teniendo en cuenta un polinomio de varias variables de gra-
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do determinado en su forma más general.

Dinámica de fluidos computacional

La dinámica de fluidos computacional se encarga de resolver numéri-
camente las ecuaciones que rigen la evolución de los fluidos, las famosas
ecuaciones de Navier-Stokes:

∂ρ

∂t
+ ∇⃗ · (ρV ) = 0, (2a)

∂(ρV )

∂t
+ ∇⃗ · (ρV ⊗ V ) = −∇⃗p+ ∇⃗ ·Σ. (2b)

Éstas relacionan la densidad de masa ρ, la velocidad euleriana del fluido
V y la presión p. El campo tensorial Σ es el tensor de esfuerzos viscosos.
Si el fluido es incompresible tenemos que ρ es constante y las ecuaciones
se simplifican. En este caso y para fluidos Newtonianos, Σ se calcula
como

Σ = υ(∇⃗V + ∇⃗V T ), (3)

con υ una constante característica del fluido llamada viscosidad.
Es habitual tener flujos contenidos en geometrías tubulares donde se

tiene una frontera constituida por una entrada, una salida y unas pa-
redes, que engloban la región interior donde se desarrolla el problema.
Para la obtención de una solución única de estas ecuaciones es necesario
considerar unos datos iniciales en la región interna, y unas condiciones
de frontera, tipo Dirichlet o Neumann, en cada uno de los parches (en-
trada, salida y paredes).

Distinguimos dos tipos de flujo. Por un lado, en un flujo laminar, las
líneas de corriente del fluido no se cruzan entre sí mismas y presentan
estabilidad. Por otro lado, los flujos turbulentos son caóticos, difusivos
(sus perfiles tienden a suavizarse) y presentan una vorticidad, Ω = ∇⃗×V ,
variable con escalas temporales y espaciales muy diferentes. La vortici-
dad es una magnitud que cuantifica la rotación del fluido. Es habitual
en estos casos considerar la descomposición de Reynolds en las varia-
bles del fluido ϕ, basada en una componente promediada en el tiempo ϕ̄
y otra fluctuante ϕ′. Aplicando estas descomposiciones acabamos en un
nuevo sistema de ecuaciones donde las nuevas variables conservadas se-
rán la velocidad y presión promediadas, V̄ , p̄, y las variables turbulentas
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definidas como

k :=
V ′ · V ′

2
, ϵ :=

1

2

υ

ρ
(∇⃗V ′ + ∇⃗V ′T ) : (∇⃗V ′ + ∇⃗V ′T ), ω :=

ϵ

Cυk
,

donde V ′ es la componente fluctuante de la velocidad y Cυ = 0,09 es
una constante semiempírica. La operación : representa el doble producto
escalar de tensores, A : B =

∑
i,j

AijBij. Podemos escoger k y ϵ para cerrar

el sistema o k y ω. En el primer caso, tendremos el modelo de turbulencia
k − ϵ y en el segundo caso el modelo k − ω.

Ambos tienen ventajas y desventajas. En el modelo k − ϵ el flujo in-
terno se calcula con mayor precisión, pero en zonas de altos gradientes
de presión (como cerca de las paredes) se tiene el efecto contrario. No
obstante, el modelo k − ω es muy sensible a las condiciones de contorno
de la entrada, aunque funciona bien cerca de las paredes. Existe una
combinación de ambos modelos llamada SST k − ω, la cual será la elec-
ción más adecuada para estudios de la presión de cizalla en la pared.

Los sistemas de leyes de balance descritos serán resueltos numéri-
camente con el Método de los Volúmenes Finitos, que se adapta bien
a geometrías complejas, donde se tienen superficies rugosas, con cur-
vatura y torsión no nulas. Además, por cómo se construyen, tienen la
propiedad de cumplir con precisión las leyes de conservación sobre la
masa, momento y energía.

El primer paso es cubrir la región interna con poliedros genéricos
encajados o volúmenes. La solución numérica estará constituida por los
valores de las variables del fluido en los centroides de cada volumen. En
segundo lugar, calcularemos la integración del sistema en cada volumen,
aplicando el teorema de Gauss en los términos con divergencias. Las
aproximaciones numéricas llevadas a cabo al calcular las derivadas y
las integraciones constituyen las ecuaciones del método. Por ejemplo,
emplear los volúmenes vecinos y la regla de integración del punto medio,
nos conduce a ecuaciones algebraicas del tipo:

Nm∑
i

aiVMi +

Nc+1∑
j

bjpCj = c, (4)

donde Nm es el número de caras del volumen y Nc el número de vo-
lúmenes vecinos. Los coeficientes ai, bi, c dependerán de los esquemas
empleados en las aproximaciones y la resolución de la malla. Los sub-
índices Mi y Ci se refieren a los centroides de las caras y los volúmenes



RESUMEN XVII

de la malla, respectivamente. En el caso de las Ecuaciones de Navier-
Stokes se utiliza el algoritmo iterativo SIMPLE, basado en suponer un
valor inicial para la presión p∗, resolver una ecuación algebraica para la
velocidad y finalmente obtener unas correcciones p′ y V ′ mediante otras
ecuaciones algebraicas.

El paso final para obtener la solución numérica es resolver el conjunto
de ecuaciones lineales algebraicas del tipo (4). El número de volúmenes
en un problema realista de dinámica de fluidos computacional puede
llegar a 106, por lo que necesitaremos métodos iterativos como Gauss-
Seidel o Jacobi. En la práctica se combinan estos junto con los métodos
multimalla, basados en obtener una malla más gruesa a partir de la ya
construida y resolver un sistema menor, para luego volver a la malla ori-
ginal. Se ha demostrado que la combinación de cambios de malla junto
con métodos iterativos es más eficiente computacionalmente que aplicar
solo métodos iterativos (véase [128]).

Simulación del flujo sanguíneo en la
aorta

En esta sección aplicaremos todos los detalles introducidos en diná-
mica de fluidos computacional para el caso del flujo sanguíneo en la
aorta, teniendo en mente como motivación las aplicaciones en ciencias
de la salud. Tendremos dos objetivos principales.

En primer lugar, queremos establecer relaciones entre aspectos geomé-
tricos de la superficie aórtica con valores anómalos de la presión de ciza-
lla en la pared, y que puedan ser responsables de enfermedades cardio-
vasculares. Para ello es conveniente disponer de una muestra de aortas
cuanto más grande mejor. Estas se adquieren por Tomografía Compu-
tarizada, por lo que la obtención de una muestra de tal magnitud es
complicada. Un algoritmo para generar aortas sintéticas realistas es con-
veniente. Con este problema en mente, se ha desarrollado un método
de reconstrucción a partir de parámetros geométricos clave de aortas
reales [108]. Este método permitirá identificar aquellos parámetros so-
bre la geometría de la superficie aórtica a partir de los cuales poder gene-
rar aortas sintéticas. En nuestro primer objetivo, la simulación del flujo
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sanguíneo se llevará a cabo en la aorta real y la aorta reconstruida para
validar este método de reconstrucción; en el sentido de ver si los perfiles
de presión y flujo son reproducidos fielmente en las aortas reconstruidas.

En segundo lugar, queremos ver la forma en la que afectan las con-
diciones de frontera en la entrada de la aorta a los perfiles de la presión
de cizalla, con el objetivo de simular el efecto de varias válvulas aórticas,
naturales y protésicas.

Usaremos el modelo descrito por las Ecuaciones de Navier-Stokes (2)
para la validación del método de reconstrucción y el modelo SST k − ω
para el análisis de válvula aórtica, considerando en todos los casos un
flujo incompresible y estacionario. Este esquema supone una primera
aproximación, y en futuros trabajos se tendrá en cuenta el ciclo cardíaco
completo. Las condiciones de contorno tratarán de reproducir aquellas
del flujo sanguíneo en la fase de sístole, cuando la velocidad de entrada
es máxima.

Para las simulaciones usaremos un resolvedor de Volúmenes Finitos
llamado OpenFOAM. Esta herramienta permitirá cubrir con una malla
la región aórtica, seleccionar el modelo y las condiciones de contorno,
así como diferentes parámetros de la resolución numérica. En concreto,
partiremos de una malla preliminar de hexaedros regulares de 2 mm de
lado, a partir de la cual aplicaremos un proceso de refinamiento. Se apli-
cará el algoritmo SIMPLE y se usará un método multimalla geométrico
junto con el método iterativo de Gauss-Seidel para resolver las ecuacio-
nes lineales de la discretización.

Para validar el método de reconstrucción se ha usado un perfil pa-
rabólico para el flujo sanguíneo en la entrada. Además, en el proceso de
refinamiento, hemos reducido la resolución espacial gradualmente desde
la zona interna de la aorta hasta alcanzar 0.1 mm en la pared aórtica.
Se han utilizado hasta 8 aortas con las que se han comparado líneas de
corrientes y perfiles de presión de cizalla arterial en la aorta real y re-
construida. En la Figura 1 se muestran los perfiles de presión de cizalla
en el caso de dos aortas. En general, se puede apreciar como los patrones
de la versión reconstruida se tienen también en la original.

Una mejora del método de reconstrucción, añadiendo más paráme-
tros geométricos característicos, ayudará al objetivo de final de estable-
cer relaciones entre geometría y perfiles de presión de cizalla con méto-
dos de Aprendizaje de Máquina (Machine Learning en inglés).

A continuación, describimos el análisis realizado sobre la influencia
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Figura 1: Resultados de los perfiles WSS generados a partir de simulaciones, comparan-
do la aorta original (izquierda) y la aorta reconstruida (derecha). Se muestran las aortas
de dos pacientes diferentes.

de la válvula aórtica con los valores de presión de cizalla. Se han usado
condiciones de contorno en la entrada reproduciendo una válvula sana
tricúspide y dos protésicas (válvula bidisco y disco pivotante). En este
caso, la resolución espacial alcanzada en la pared ha sido de 50 µm.

Para el análisis se ha establecido un valor crítico de presión de ciza-
lla de 0.5 Pa, por debajo del cual hay riesgo de arteriosclerosis, ver [83].
Nos hemos centrado en la aorta ascendente, la primera parte de la aor-
ta donde los resultados son más fiables. Después, la geometría ha sido
simplificada considerablemente, eliminando ramificaciones importantes.

Atendiendo a los resultados obtenidos, el comportamiento general es
que la válvula tricúspide proporciona una zona de riesgo menor que con
las válvulas protésicas. Por otro lado, la válvula bidisco induce una zona
de riesgo mayor que con la válvula de disco pivotante.

Relatividad y gravitación

A partir de ahora dejaremos de lado la mecánica clásica y todos los
proyectos estarán enmarcados en la Teoría de la Relatividad. En ausen-
cia de gravitación, cuando las velocidades están cerca de la velocidad de
la luz c, la teoría del espacio y el tiempo es la de la Relatividad Espe-
cial. La medición de tiempos y distancias se basa en el tensor métrico de
Minkowski, el cual en componentes cartesianas se escribe como

ηαβ = diag(−1, 1, 1, 1). (5)
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Este tensor métrico induce un producto escalar en el espacio afín forma-
do por los puntos que designan los eventos del espacio-tiempo.

Por otro lado, la teoría aceptada del espacio-tiempo en presencia de
gravedad es la Relatividad General. A partir del Principio de Equivalen-
cia de Einstein se deduce que gravedad y curvatura del espacio-tiempo,
entendido como una variedad diferencial pseudoriemaniana de 4 dimen-
siones, son lo mismo. El tensor métrico gαβ se obtiene de resolver las
Ecuaciones de Einstein:

Rαβ − 1

2
gαβR =

8πG

c4
Tαβ, (6)

donde R = Rα
α, Rαβ = Rγ

αγβ, Rγ
αδβ es el tensor de Riemann, G es la

constante de la gravitación universal y Tαβ es el tensor energía-momento.
El tensor de Riemann contiene toda la información de la curvatura del
espacio-tiempo y se calcula a partir de derivadas segundas de la métrica.
El tensor energía-momento proporciona una descripción completa de la
densidad de energía, momento y tensiones de la materia presente en el
entorno estudiado.

Las Ecuaciones de Einstein tienen solución analítica en muy pocas
situaciones, en la mayoría de las ocasiones en condiciones de alto grado
de simetría. Por ejemplo, en simetría esférica y vacío, tenemos la solución
de Schwarzschild, cuyo tensor métrico está definido por el elemento de
línea

ds2 = −
(
1− RS

r

)
d(ct)2 +

(
1− RS

r

)−1

dr2 + r2(dθ2 + sin2 θdϕ2), (7)

donde RS = GM/c2 es el radio de Schwarzschild. Aquí, tenemos una sin-
gularidad coordenada en el horizonte de sucesos r = RS, que se puede
evitar con un cambio de coordenadas, y otra singularidad de curvatura
en r = 0. Otras soluciones analíticas en simetría axial son las del espacio-
tiempo de Kerr.

En la mayoría de las situaciones astrofísicas relevantes, las Ecuacio-
nes de Einstein deben resolverse numéricamente. Para ello, es conve-
niente expresarlas como un problema de Cauchy, o en este caso, como
un sistema de leyes de balance con condiciones iniciales y de contorno.
A continuación, explicaremos brevemente el procedimiento para tal co-
metido.
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En primer lugar, se utiliza una foliación del espacio-tiempo por hiper-
superficies espaciales, definidas a partir de la fijación de una coordenada
temporal t. A partir de aquí, la proyección de las Ecuaciones de Einstein
sobre cada hipersuperficie generará un conjunto de ecuaciones elípticas,
en donde no aparecen derivadas temporales, y las proyecciones que invo-
lucran la dirección normal a las hipersuperficies generará un sistema de
ecuaciones hiperbólicas. Al final, la métrica del espacio-tiempo se podrá
expresar como

ds2 = −(N2 − βiβi)dt
2 + 2βidx

idt+ γijdx
idxj , (8)

donde N :=
√

−1/(∇µt∇µt) es la función lapso, ∇ la conexión de Levi-
Civita, β = ∂t − Nn es el vector desplazamiento, n es el vector unitario
normal a las hipersuperficies y γij la métrica espacial de cada hipersu-
perficie. La primera expresión de las Ecuaciones de Einstein separando
espacio y tiempo fue el sistema 3+1 [77, 46, 7, 135]. Este tiene dos ecua-
ciones de evolución

∂tKij = −DiDjN +N(R̄ij +KKij − 2KikK
k
j)− 4πN(γij(S − E)− 2Sij) + LβKij ,

(9)

∂tγij = −2NKij + Lβγij , (10)

y dos ecuaciones de ligadura o restricciones

R̄+K2 −KijK
ij − 16πE = 0, (11)

DjK
j
i −DiK − 8πpi = 0, (12)

donde Lβ es la derivada de Lie respecto de β, Kij es la curvatura extrín-
seca de cada hipersuperficie, K = γijKij, S = Sµ

µ, con Sµν = γρµγσνTρσ,
E = nµnνTµν y pi = −γiµnνTµν. Se ha usado c = G = 1. Las ecuaciones de
ligadura deben cumplirse en cada hipersuperficie.

En la práctica, los esquemas de resolución numérica se dividen en-
tre los que resuelven las ligaduras solo inicialmente, llamados esquemas
evolutivos, y los que las resuelven cada cierto número de pasos de tiem-
po, llamados esquemas ligados. Se puede demostrar que si las ligaduras
se satisfacen inicialmente de manera analítica, también lo harán en pos-
teriores hipersuperficies. Pese a esto, las ligaduras pueden no cumplirse
numéricamente.

Para acabar esta sección, remarcamos el hecho de que el sistema 3+1
es débilmente hiperbólico y se deberán introducir transformaciones adi-
cionales de las ecuaciones para obtener un sistema fuertemente hiper-
bólico que nos garantice la estabilidad de las simulaciones numéricas.
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Ecuación de Euler con gravedad

En esta sección estudiaremos la Ecuación de Euler en presencia de
gravedad en simetría esférica. Lo haremos desde el punto de vista clási-
co, en gravedad de Newton, y desde la Relatividad General.

En su versión clásica se obtiene de la Ecuación (2b) imponiendo
Σ = 0, y si queremos añadir interacción gravitatoria introduciríamos el
término fuente −ρ ∇⃗Φ, con Φ el potencial gravitatorio de Newton. Consi-
deremos un fluido auto-gravitante formando un objeto compacto esférico
de radio R. Sea, además, un fluido politrópico cumpliendo la ecuación de
estado p = κρΓ1. Hemos deducido que las velocidades características del
sistema en la superficie son

λ± = ±
√
Γ1κ

R
(ρs)

Γ1−1
2 , (13)

donde ρs es la densidad en la superficie. Normalmente, esta densidad es
cero o muy baja, lo cual vendría a indicar que las curvas características
se mantienen en la superficie, donde el sistema es linealmente degene-
rado. Desde el punto de vista de la resolución numérica del sistema nos
evitaría tener que imponer una condición de contorno en esta región.

Pasemos a Relatividad General. Esta vez consideraremos un fluido en
un espacio-tiempo de Schwarzschild. La Ecuación de Euler en su versión
relativista se obtiene de imponer la conservación de energía y momento
∇αT

αβ = 0, siendo
Tαβ = (µ+ p)vαvβ + pgαβ,

el tensor energía-momento de un fluido perfecto, con µ la densidad de
energía, p la presión y vβ la cuadrivelocidad del fluido. Asumiremos que
la descripción del fluido se completa con una ecuación de estado p = p(µ).

En [73] se usan coordenadas de Schwarzschild (7) para estudiar es-
ta ecuación, aunque, como hemos visto, este sistema de coordenadas
tiene una singularidad en el horizonte de sucesos r = RS. Haciendo la
transformación de la coordenada temporal

cT = ct+ 2RS

{√
r

RS
+

1

2
log

(√
r/RS − 1√
r/RS + 1

)}
, (14)

nos deshacemos de este problema, y las nuevas coordenadas se deno-
minan de Gullstrand-Painlevé. La Ecuación de Euler se puede escribir
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como una ley de balance cuyas soluciones estacionarias son

r2(1−Bγ)(µ+ p)
γ −B

1− γ2
= C0, (15a)

log(1−Bγ)− 1

2
log(1− γ2) + l(µ) = D0, (15b)

con B =
√
RS/r, γ = v1/v0 + B, l(µ) es una primitiva de p′(µ)/(µ + p(µ))

y C0, D0 son constantes que dependen de condiciones de contorno. Se
puede demostrar que no existen soluciones estacionarias salientes de
la región de agujero negro r < RS y que las curvas entrantes atravie-
san el horizonte de sucesos. La obtención de estas soluciones permite el
desarrollo de métodos bien balanceados [22] para la Ecuación de Euler
relativista en coordenadas de Gullstrand-Painlevé de manera análoga a
cómo se hizo en [72] en coordenadas de Schwarzschild.

Formulación completamente ligada de
las Ecuaciones de Einstein

En esta sección extendemos la formulación FCF de las Ecuaciones de
Einstein presentada en [31]. Esta se basa en hacer una transformación
conforme de la métrica espacial γij y una descomposición de la curva-
tura extrínseca Kij en parte con y sin traza. Trataremos con las nuevas
variables ψ, γ̃ij y Aij, definidas como

ψ :=

(
γ

f

)1/12

, γ̃ij := ψ−4γij , Aij := Kij −
1

3
Kγij , (16)

donde γ = det γij y f = det fij, con fij una métrica plana de fondo inde-
pendiente del tiempo. Notemos que γ̃ = det γ̃ij = f . A partir de la métrica
plana definimos el tensor

hij = γ̃ij − f ij . (17)

Usaremos las condiciones gauge K = 0 y Dkγ̃
kj = 0. A continuación,

definimos Âij := ψ−10Aij y consideramos su descomposición en parte
longitudinal y transversal, basada en la introducción de un nuevo campo
vectorial Xi,

Âij = (LX)ij + Âij
TT , (18)
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donde L es el operador lineal diferencial de Killing. Por razones de preci-
sión numérica introduciremos el campo vectorial

V i = 2Nψ−6Xi − βi, (19)

y cerraremos el sistema con la inclusión de la variable auxiliar Ẋi = ∂tX
i.

Al final, el nuevo sistema estará formado por dos ecuaciones de evolución
hiperbólicas para hij y Âij

TT ,

∂th
ij = βkDkh

ij − hikDkβ
j − hkjDkβ

i +
2

3
hijDkβ

k + 2Nψ−6Âij
TT + (LV )ij

−XjDi(2Nψ−6)−XiDj(2Nψ−6) +
2

3
f ijXkDk(2Nψ

−6). (20)

∂tÂ
ij
TT = βkDkÂ

ij − ÂkjDkβ
i − ÂikDkβ

j +
5

3
ÂijDkβ

k + 2Nψ−6γ̃klÂ
ikÂjl

+
3

4
Nψ−6γ̃ij γ̃lkγ̃nmÂ

kmÂln +Nψ2R̃ij
∗ − 1

4
Nψ2R̃γ̃ij

+
1

2
(γ̃klDkh

ij − γ̃ikDkh
lj − γ̃kjDkh

il)Dl(Nψ
2)

+4ψ−1γ̃ikγ̃jlDkψDl(Nψ
2) + 4ψ−1γ̃ikγ̃jlDlψDk(Nψ

2)− 2ψ−1γ̃ij γ̃klDkψDl(Nψ
2)

+
Nψ2

2
γ̃klDk

(
Dlh

ij
)
− 8Nγ̃ikγ̃jlDlψDkψ + 2Nγ̃ij γ̃klDkψDlψ − γ̃ikγ̃jlDkDl(Nψ

2)

−(LẊ)ij − 8πNψ10Sij + 4πNS∗γ̃ij , (21)

y ecuaciones de ligadura elípticas para Xi, ψ, Nψ2, V i, Ẋi. El sector de
evolución del nuevo sistema será fuertemente hiperbólico, el sector elíp-
tico tendrá unicidad local y se podrá resolver de forma jerárquica, pro-
piedades ya presentes en su anterior versión. En este nuevo esquema
resolveremos, además, las ecuaciones para las variables V i, (Nψ2 − 1) y
Âij

TT , cuya expansión postnewtoniana es de orden O(c−5), O(c−4) y O(c−5),
respectivamente, en contraposición con las de las variables βi, (Nψ−1) y
Âij, cuya expansión es de orden O(c−3), O(c−2) y O(c−3), respectivamente.

Como primer test de la nueva formulación se ha escogido un mode-
lo de estrella de neutrones en rotación, considerando un espacio-tiempo
estacionario. Las dos ecuaciones de evolución se transforman en una
ecuación elíptica para hij y otra algebraica para Âij

TT . Mostramos algu-
nos resultados en la Figura 2, donde vemos que las nuevas variables
introducidas V i y (Nψ2 − 1) tienen órdenes de magnitud hasta dos veces
por debajo de las anteriores βi, Xi, (N − 1) y (ψ − 1).

En la resolución de hij no se han impuesto directamente las condicio-
nes Dkγ̃

kj = 0 y γ̃ = f . En el primer caso, un análisis numérico determinó
que es necesaria una estrategia de resolución de hij donde se tenga en
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Figura 2: Perfiles radiales en θ = π/2 en escala log-log. La línea vertical continua indica el
radio de la estrella. Izquierda: (N−1) (línea azul continua), (ψ−1) (línea roja discontinua)
y (Nψ2 − 1) (línea amarilla punteada-discontinua). Derecha: βi (línea azul continua), Xi

(línea roja discontinua) y V i (línea amarilla punteada-discontinua).

cuenta esta condición. Aun así, al alejarse del centro de la estrella ob-
tenemos un error relativo de menos del 10 % cuando comparamos la
divergencia Dkγ̃

kj con la mayor de las derivadas involucradas. En cuanto
a la condición del determinante, obtenemos que se satisface al nivel del
error numérico.

Se planea aplicar el nuevo sistema en simulaciones numéricas de es-
cenarios astrofísicos más complejos y dinámicos, y extraer la correspon-
diente radiación gravitatoria del sistema. Esta reformulación también
puede usarse para calcular datos iniciales mediante diferencias finitas
más allá de la condición de métrica espacial conformemente plana. Otra
potencial aplicación de este trabajo es usar una versión simplificada del
esquema en el contexto de simulaciones cosmológicas, considerando úni-
camente los términos principales en la expansión postnewtoniana.

Ecuaciones de la magnetohidrodinámica
relativista con resistividad

En esta sección explicaremos los resultados del artículo publicado
[29], donde se tratan las ecuaciones de la Magnetohidrodinámica Relati-
vista con Resistividad. Por un lado, tenemos el sector de la electrodiná-
mica, que determina la evolución del campo magnético B y eléctrico E, y
por otro el sector de la hidrodinámica, involucrando densidad de masa,
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energía y presión. La ecuación de evolución del campo eléctrico E tiene
un término potencialmente duro debido a que la conductividad σ puede
ser alta o muy alta. En trabajos anteriores como [37] y [96] se han usado
métodos Implícitos-Explícitos (IMEX) de Runge-Kutta para la integración
temporal de estas ecuaciones, los cuales tratan el comportamiento duro
en leyes de balance obteniendo simulaciones estables. Aquí usaremos
un método alternativo que conservará las propiedades de estabilidad y
tendrá un coste computacional similar al de un método explícito.

Usaremos c = ϵ0 = µ0 = 1, donde ϵ0, µ0 son, respectivamente, la per-
mitividad y la permeabilidad del vacío. El sistema de ecuaciones de evo-
lución tiene la forma

∂tE
j = Sj

E − σ Γ
(
Ej + (V ×B)j − (VlE

l)V j
)
, (22)

∂tB
j = Sj

B, (23)

∂tY = SY , (24)

donde V i es la velocidad del fluido, Γ = (1−V 2)−1/2 es el factor de Lorentz
e Y representa el resto de variables, incluyendo las variables conserva-
das del sector de la hidrodinámica y la densidad de carga. Los términos
etiquetados con S son términos fuente a tratar de forma explícita en la
resolución numérica.

El nuevo esquema para la integración temporal se basará en lo si-
guiente. Sea el sistema de leyes de balance

∂tU + ∂iF
i(U) = S(U),

donde U es el vector de variables conservadas. Supongamos que la fuente
se puede separar en un término de magnitud controlada SE y otro po-
tencialmente duro σSI tal que S(U) = SE(U) + σSI(U). Un método IMEX
evaluaría de forma implícita todo el término σSI(U). Supongamos que
podemos escribir Si

I(U) = H i +
∑n

j=1G
i
j(U)U j, donde H i no depende de

las variables conservadas. Nuestro nuevo enfoque consistirá en evaluar
implícitamente solo las variables conservadas U i que multiplican a los
factores Gi

j(U), y el resto de cantidades se evaluarán explícitamente. Nos
referiremos a esta nueva estrategia como método Runge- Kutta Mínima-
mente Implícito (MIRK, por sus siglas en inglés).

Con esto, la ecuación del método a primer orden para (22) se puede
escribir como:

Ei|n+1 = Ei|n +
∆t

1 + ∆t σ̄|n
(
Si
E |n + σ̄|nEl|n(V i|nVl|n − δil )− σ̄|n(V |n ×B|n+1)

i
)
. (25)
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Tiene la misma forma que la de un método explícito de primer orden con
un paso de tiempo efectivo ∆t/(1+∆t σ̄|n), donde σ̄ = Γσ. Hemos escogido
los valores de los coeficientes del método de tal manera que se preser-
ve la estabilidad y se reproduzcan correctamente los comportamientos
ondulatorios y de la magnetohidrodinámica ideal o también límite duro
(σ → ∞). De manera análoga, podemos hallar las ecuaciones del método
a segundo orden obteniendo unas expresiones que recuerdan a las de
un método explícito de segundo orden con un tiempo efectivo.

Se han llevado a cabo simulaciones para poner a prueba el método en
dos tests simples en una dimensión espacial. El primero es el llamado
test de la corriente auto-similar donde no hay evolución de la parte hi-
drodinámica, y el segundo es el de las ondas Alfven polarizadas circular-
mente. En este último es necesaria la evolución del sector hidrodinámico
y es necesaria una recuperación de variables primitivas. No obstante,
esta recuperación se ha realizado de manera directa gracias a las eva-
luaciones explícitas en el término duro. Se han completado simulaciones
estables y realizado análisis de convergencia en todos los test a primer y
segundo orden.

Ecuaciones del transporte radiativo

La interacción entre neutrinos y materia juega un papel determinan-
te en las simulaciones de explosiones de supernova [88, 89] y colapso
de binarias de estrellas de neutrones [104]. Esta interacción debe te-
ner en cuenta las ecuaciones de la Hidrodinámica Radiativa; esto es, la
evolución de las ecuaciones del sector hidrodinámico acopladas con las
ecuaciones de transporte radiativo de neutrinos. Estas últimas se obtie-
nen al resolver la Ecuación de Boltzmann para la función de distribución
de las partículas radiativas, los neutrinos en nuestro caso. La función de
distribución depende del tiempo, la posición y el momento de las partí-
culas, dificultando la resolución directa de la Ecuación de Boltzmann.

El Método de los Momentos es una estrategia para resolver la Ecua-
ción de Boltzmann basada en la definición de nuevas variables construi-
das a partir de integrales de la función de distribución en el espacio de
momentos. Dentro de cada integral, la función de distribución es multi-
plicada por productos tensoriales del vector unitario N = K/K, con K
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el vector de onda, indicando la dirección de propagación de la radiación.
El número de veces n que se multiplica tensorialmente N por sí mismo
determina el orden n de la nueva variable, designada momento de orden
n. La idea del método consiste en truncar la serie de momentos a cierto
orden n y determinar los de orden superior a partir de relaciones alge-
braicas. De esta manera queda definida la familia de métodos Mn. Más
detalles pueden consultarse en [63].

En los métodos M1 se consideran como variables la densidad de ener-
gía radiativa E y la densidad de momento F i, y constituyen un buen
compromiso entre coste y precisión para resolver la Ecuación de Boltz-
mann. Así pues, las ecuaciones del transporte radiativo en la clausura
M1 tienen la forma

∂tE = SE + c κa(Eeq − E), (26a)

∂tF
i = Si

F − c κtraF
i, (26b)

donde κa, κtra son las opacidades de absorción y de transporte, respecti-
vamente, Eeq es una densidad de energía de equilibrio y los términos con
S son términos fuente de magnitud controlada. Las opacidades son esca-
lares que pueden alcanzar valores altos o muy altos, haciendo que el sis-
tema anterior tenga un comportamiento duro. Por tanto, el método MIRK
explicado en la sección anterior es de vital importancia. Métodos IMEX
se han usado recientemente para integrar temporalmente estas ecuacio-
nes [57]. Aquí, aplicaremos el método MIRK para la resolución numérica
del sistema (26) en simulaciones de colapso de supernova. Usaremos la
misma estrategia que en [63] para el tratamiento numérico del resto de
variables involucradas.

De la misma manera que en la sección anterior, podemos hacer un
análisis lineal de estabilidad y en límite duro κa, κtra → ∞ para fijar los
coeficientes del método. Igualmente, las evaluaciones explícitas nos per-
miten escribir las ecuaciones del método en una forma que recuerde a
las de un método explícito. A primer orden se pueden escribir como

En+1 = En +
∆t

1 + ∆t κn
(
Sn
E + κn(En

eq − En)
)
, (27a)

(F i)n+1 = (F i)n +
∆t

1 + ∆t κ′n
(
(Si

F )
n − κ′n(F i)n

)
, (27b)

donde κ = cκa y κ′ = cκtra. Efectivamente, el esquema es similar al de un
método explícito con un paso de tiempo efectivo ∆t/(1 +∆t κn) en (27a) y
∆t/(1 + ∆t κ′n) en (27b). De la misma forma, a segundo orden, podemos
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obtener expresiones parecidas a las de un método explícito.

En todos los casos se han obtenido regiones de estabilidad para los
coeficientes haciendo un análisis lineal. Con el método MIRK de primer y
segundo orden hemos sido capaces de realizar simulaciones estables de
colapso de supernova usando valores de los coeficientes dentro de estas
regiones de estabilidad. Por otro lado, otras elecciones han producido
simulaciones estables pero convergentes hacia valores de las variables
incorrectos en el límite duro, y otras simulaciones han sido inestables en
el régimen duro. Encontramos una relación directa entre la clasificación
de cada caso y nuestro análisis teórico.

Ecuaciones de estado realista para
materia nuclear

Se ha visto que los datos tabulados de ecuaciones de estado realista
para materia nuclear pueden provocar que simulaciones con estrellas de
neutrones sean inestables. Esto es debido a que estos datos, calculados
a partir de física nuclear y de partículas, tienen demasiado ruido. Por
tanto, es conveniente una estrategia para suavizarlos.

En esta sección describiremos brevemente un algoritmo desarrollado
para llevar a cabo regresión polinómica en varias variables. Dicha regre-
sión nos ayudará al suavizado de los datos anteriores. En general, las
ecuaciones de estado realistas para materia nuclear dependen de tres
variables independientes. En las tablas de la base CompOSE [1] se usan
densidad del número bariónico nb, fracción del número de electrones Ye y
temperatura T . El ajuste se realizará sobre el índice adiabático, a partir
del cual se pueden hallar el resto de variables termodinámicas. Todos los
cálculos se han realizado con la librería LORENE [2], que utiliza expan-
siones espectrales para las funciones en términos de los polinomios de
Chebyshev.

En una variable, el método de mínimos cuadrados se puede usar para
ajustar los n datos (x,y) = (xi, yi)

i=n
i=1 al polinomio de grado N

pN (x) = a0 + a1x+ ...aNx
N . (28)

Para ello es útil la matriz de Vandermonde Ax
ij = (xi)

j, a partir de la
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cual se pueden hallar los coeficientes a = (aj)
j=N
j=0 mediante la operación

a = βα−1, donde β = yAx y α = (Ax)TAx. A continuación describiremos
un algoritmo para ajustar por el método de mínimos cuadrados los datos
(x, y, z) = (xi, yi, zi)

i=n
i=1 al polinomio más general que depende de dos

variables

pN (x, y) =a0 + a1x+ a2x
2 + ...+ aNx

N + aN+1y + aN+2xy + ...

+ak(i,j)x
iyj + ...+ aMy

N ,
(29)

donde M = (N+2)(N+1)/2. El procedimiento es similar al caso de una va-
riable; solo que construiremos una matriz de Vandermonde generalizada
Axy a partir de la cual, mediante expresiones análogas a las anteriores,
hallaremos los coeficientes a = (aj)

j=M
j=0 . La matriz Axy se construirá a

partir de las matrices de Vandermonde para los datos x, Ax, e y, Ay,
mediante la expresión

Axy
ij = Ax

imj
Ay

ilj
(30)

donde lj es el único entero cumpliendo fN (lj − 1) < j ≤ fN (lj), con

fN (lj) :=

(
N + 2
N

)
−
(
N − lj + 2
N − lj

)
, (31)

y mj = j mód fN (lj−1), asignando j mód 0 := j. El proceso también se ha
extendido a tres variables construyendo una matriz Axyz

ij a partir de las
tres matrices de Vandormonde de cada una de las variables independien-
tes. Esta estrategia ha permitido la obtención de datos suaves realistas
de ecuaciones de estado para simulaciones de estrellas de neutrones.

Conclusiones y trabajo futuro

En primer lugar, hemos usado simulaciones del flujo sanguíneo en la
aorta para validar el método de reconstrucción presentado en [108], el
cual se espera mejorar en el futuro para que sea capaz de reproducir la
morfología de la aorta de forma más precisa. Por ejemplo, teniendo en
cuenta los senos de Valsalva o las arterias supraórticas. El objetivo es
identificar qué parámetros de la geometría son claves para la generación
de aortas sintéticas. Finalmente, esperamos que la generación de aortas
sintéticas nos provea de una muestra grande y realista para llevar a cabo
simulación del flujo sanguíneo, con el objetivo de establecer relaciones
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entre aspectos geométricos y valores anómalos de la presión de cizalla.
Por otro lado, hemos hecho un estudio preliminar de la influencia de tipo
de válvula aórtica en los valores de la presión de cizalla, obteniendo que
la válvula tricúspide era la que proporcionaba valores más sanos. Todas
las simulaciones se han hecho en flujo estacionario como primera apro-
ximación. Esperamos que la simulación transitoria teniendo en cuenta
todo el ciclo cardíaco y la interacción fluido-estructura nos aporte resul-
tados más realistas, así como calcular otras magnitudes dependientes
del tiempo de interés médico.

Posteriormente, estudiamos la Ecuación de Euler con gravedad, pri-
mero de forma clásica y después relativista, en simetría esférica. En el
estudio clásico, hicimos un estudio a primer orden expandiendo la so-
lución en torno a un valor fijo, viendo que el sistema era linealmente
degenerado en la superficie, es decir, la superficie es una discontinuidad
de contacto. Por otro lado, analizamos la versión en Relatividad General
en un espacio-tiempo de Schwarzschild y en coordenadas de Gullstrand-
Painlevé. Escribimos la ecuación como una ley de balance y hallamos las
soluciones estacionarias. La obtención de estas soluciones estacionarias
permitirá el desarrollo de métodos bien balanceados [22] para la resolu-
ción numérica de la ecuación en ausencia de estacionariedad, de manera
análoga a como se hizo en [72] en coordenadas de Schwarzschild, tenien-
do en cuenta que en este caso el dominio 0 < r <∞ está disponible.

Ampliamos la formulación FCF de las Ecuaciones de Einstein [31] in-
troduciendo las variables V i y Ẋi. La nueva versión conserva las buenas
propiedades de unicidad local y estructura jerárquica y posee ventajas de
precisión numérica. Hemos realizado las primeras pruebas preliminares
con una estrella de neutrones en rotación. Calculamos los datos iniciales
resolviendo numéricamente el nuevo sector elíptico. Está previsto para el
futuro aplicar la nueva formulación a escenarios astrofísicos más com-
plejos y contextos cosmológicos.

A continuación, hemos introducido el método Runge-Kutta Mínima-
mente Implícito (MIRK, de sus siglas en inglés) para leyes de balance con
términos potencialmente duros. En este nuevo enfoque solo las varia-
bles conservadas son evaluadas implícitamente de forma mínima en el
término duro. Esto permitió que las ecuaciones del método hayan podido
escribirse de manera similar a las de un método explícito. Por tanto, pre-
servamos las buenas propiedades de los métodos implícitos manejando
términos duros con un coste computacional propio de un método explíci-
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to. Aplicamos el método en dos test simples de la Magnetohidrodinámica
Relativista Resistiva (corriente auto-similar y ondas Alfven) y las ecua-
ciones del Transporte Radiativo de neutrinos en simulaciones de colapso
de supernova. En todos los casos se obtuvieron simulaciones estables
aplicando el método MIRK a primer y segundo orden.

Otras aplicaciones de esta nueva estrategia son posibles en otras le-
yes de balance con términos duros como en Electrodinámica libre de
fuerzas [82], gases enrarecidos [66] y ecuaciones de aguas poco profun-
das [66]. Además, puede ser interesante una combinación con métodos
bien balanceados [22] para recuperar soluciones cerca de una solución
estacionaria.

El último trabajo del que hablamos en este manuscrito era sobre re-
gresión polinómica en varias variables con el que objetivo de suavizar
datos tabulados de la base CompOSE [1] para modelizar ecuaciones de
estado realistas para materia nuclear. Desarrollamos un algoritmo para
llevar a cabo dicha tarea teniendo en cuenta la expresión más gene-
ral de un polinomio con dos y tres variables independientes. Planeamos
para el futuro acoplar estos ajustes con simulaciones con estrellas de
neutrones con la librería LORENE [2]. Esta librería se basa en métodos
espectrales, donde cada variable se trata como una expansión truncada
en polinomios de Chebyshev Ti(x). Un proyecto futuro es implementar
expansiones de funciones de varias variables (xj) en términos de pro-
ductos de polinomios de Chebyshev

∏
j Tij (xj). Esto ayudaría a tratar

de forma analítica las variables termodinámicas calculadas a partir del
ajuste polinómico en varias variables.



Abstract

In this work we face hyperbolic and elliptic systems of partial differ-
ential equations with applications from health sciences to astrophysics.
Some will be framed in the context of classical mechanics and other in
the Theory of Relativity.

Concerning the classical sector we will solve Navier-Stokes Equations
to model the blood flow in aorta trying to get some relations between ge-
ometrical features and physiological magnitudes of interest. We will also
discuss the Euler Equation from both Newtonian and general relativistic
approach. We will derive some theoretical results with applications in
the development of numerical methods for this balance law.

We will propose an improved version of a Fully Constrained Formula-
tion of the Einstein Equations. It will preserve the local uniqueness from
previous versions and posses accuracy improvements with the introduc-
tion of new variables. Some preliminary test will be carried out.

On the other hand, we will introduce a new numerical method to per-
form the time integration of stiff balance laws. The new approach present
stability properties of implicit methods dealing with stiffness but with a
computation cost similar to that of an explicit method. First tests in the
context of Resistive Relativistic Magnetohydrodynamics and Radiation
Hydrodynamics were performed.

We will finish with a new algorithm to polynomial regression in several
variables with applications in simulations of neutron stars.





1
Introduction

1.1
Motivation

Throughout the manuscript we will encounter an academically broad
set of physical scenarios with motivations from health sciences to astro-
physics. Some come from classical mechanics and other will be framed
in the Theory of Relativity. Either classical or relativistic its dynamics
will be model by a hyperbolic system of partial differential equations of
the form

∂tU +
d∑

i=1

∂iF
i(U) = r(U), x ∈ Rd, t ∈ R+, (1.1)

where U = (U1, . . . , Um)T : Rd × R+ −→ Rm is the vector of conserved vari-
ables and the functions F i : Rm −→ Rm, are called fluxes. We will say
that a system like (1.1) is a balance law, and when r = 0 we will refer
to it as a conservation law. Many strategies are available to tackle each
problem and we will choose the most suitable one in each case.
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On the one hand, a classical fluid mechanics scenario will be studied:
blood flow in aorta. It has been proved that a hemodynamic flow depen-
dent quantity, called wall shear stress, is related to the genesis of many
cardiovascular diseases, see [83]. It is known that anomalous values of
this magnitude in the aorta can induce atherosclerosis, that at the same
time produces stenosis, a shrinking of the arteries. Computational Fluid
Dynamics is believed to help in the task to establish the genesis of such
undesired values. The equations involved in this context are the Navier-
Stokes Equations in its classical form.

On the other hand, we will study the dynamical behaviour of a fluid
in astrophysical scenarios from a fundamental point of view. Viscous
effects will be neglected, so we work with the Euler Equation. First, a
self-gravity fluid is considered, which constitutes the model of a star.
Then, a fluid moving in a black hole environment is addressed. In order
to get some insight about the numerical resolution of theses systems is
important to have information about the characteristic curves and the
stationary solutions. Classical and modern gravity approaches are con-
sidered.

General Relativity is the accepted theory to describe gravitation. It is
ruled by the Einstein Equations, a highly non-linear and coupled system
of partial differential equations. Relevant astrophysical scenarios require
the numerical resolution of these equations, and to do so, a formulation
of the Einstein Equations as a Cauchy problem is convenient. The area
that encompass all the aspects involved in the numerical resolution of
the Einstein Equations is called Numerical Relativity. Some advances
from the accuracy point of view in this topic will be exposed here.

Another contexts where we will be interested in are astrophysical en-
vironments with a stiff behaviour. Stiffness arise in some conservation
laws when one of the source terms becomes much higher than the rest.
Electrodynamics with interacting media can become stiff when the con-
ductivity of the media is high. This is the case in accretion disks, active
galactic nuclei, relativistic jets, quasars, or compact objects. Here, the
electromagnetic field interacts with a charged fluid which at the same
time is relativistic. The topic that addresses this kind of phenomena is
called Resistive Relativistic Magnetohydrodynamics.

Another scenario where we find stiff conservation laws is core-collapse
supernovae, where neutrino radiation interact with nuclear matter. Ra-
diation Hydrodynamics is the area that describes such scenario. Here,
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the stiff behaviour is determined by the scattering and transport opaci-
ties present in the Radiation Transport equations for neutrinos.

Implicit methods are necessary in conservation laws with stiff terms.
One example are the Implicit-Explicit Runge-Kutta Methods. It turns out
that the management of the stiff terms in systems that model relevant
astrophysical scenarios is a very time-consuming process, and it is the
main contributor to burden the numerical resolution.

We will also address a numerical issue that arise in the context of
realistic equations of state for nuclear matter. It has been seen that
tabulated data from particle and nuclear physics to model the nuclear
matter present in neutron stars are too noisy to be used in numerical
simulations. A smoother strategy is convenient, and here, we will choose
polynomial regression of these data. Realistic equations of state depend
on three independent thermodynamic variables in general. Then, a strat-
egy to carry out polynomial regression in several variables is needed.

1.2
Previous work

We outline different studies about the contexts previously described.

Many studies about blood flow with health purposes have been pub-
lished, see [61, 21] as examples. Different type of vessels and models
have been used with different health goals. The work [21] includes an
analysis of the wall shear stress values in aorta. A complete study of
the blood flow in arteries requires Fluid Structure Interaction models
[122, 131]. These models describe the interaction between the fluid and
the walls of the recipient it flows through. But only a few groups have
started applying Machine Learning techniques to relate geometrical as-
pects of aorta with blood flood behaviour. The work [76] has provided
good results in this goal but with a high simplification of the geometry
involved. A strategy that encompasses realistic descriptions of the aorta
geometry and realistic models for the blood flow is believed to improve
such studies.

The Euler Equation in presence of gravity was studied in the works



4 1.2. Previous work

[73, 72] with the aim of the development of well-balanced methods. Sta-
bility analysis and derivation of stationary solutions were performed in
spherical symmetry and in Schwarzschild coordinates. However, these
coordinates precise a particular treatment of the event horizon in the
presence of a black hole. This technical issue constrains the spatial do-
main not to cover the desired spatial region.

Concerning Numerical Relativity, several studies have been carried
out since the 40s. The first ones [77, 46, 7, 135] rewrote the Einstein
Equations splitting space and time in the so-called 3+1 system. They
split in a set of hyperbolic equations (evolution equations) and elliptic
equations (constraint equations). Strong hyperbolic formulations are
necessary to carry out numerical simulations. Some examples are the
BSSNOK (see [13, 90, 117]) or the Fully Constrained Formalism (FCF)
[18] formulations. The first is framed in the so-called free evolution
schemes, where the constraints are solved only initially and then mon-
itored to check the accuracy of the numerical solution through the evo-
lution. The latter is framed in the so-called constrained schemes, where
the constraints are solved every certain number of time steps. We will
focus on constrained schemes. Here, some numerical simulations have
been performed using the Conformal Flatness Condition [31], which as-
sumes that the metric is conformally flat, and other works using the FCF
for solving a stationary spacetime [79] or dealing with dynamical space-
times [27].

Conservation laws with stiff terms have been addressed with the em-
ployment of implicit schemes in many works. Examples with the Re-
sistive Relativistic Magnetohydrodynamics equations can be found in
[67, 37, 96], to cite a few ones. In [67] the ideal Magnetohydrodynamic
equations were tackled with Godunov schemes. In [37, 96] Implicit-
Explicit Runge-Kutta methods were employed for the time integration.
In Radiation Hydrodynamics also implicit methods have been used in
[92, 70, 62] to treat Radiation Transport sector to model neutrino-matter
interactions.

Polynomial regression in several variables has been possible by means
of the Kronecker product of Vandermonde matrices, see [35] for an ex-
ample. This provides an easy extension of the method of least squares
for the polynomial regression in one variable. The expression of the poly-
nomial fitted is not the most general one though, as it does not contain
all possible monomials.



1. Introduction 5

1.3

Scope of the work

Simulations of blood flow in aorta are to be carried out to validate the
reconstruction method [108] which supposes the first steps of a generat-
ing method of synthetic aortas. This method will allow applying Machine
Learning techniques to relate geometrical aspects of aortas and anoma-
lous behaviour of walls shear stress values. We also perform a prelimi-
nary analysis about the dependence of the wall shear stress values with
different inlet boundary conditions reproducing different types of aortic
valves. The complexity of the geometry involved will take us to the em-
ployment of the Finite Volume Method.

We will write the general relativistic Euler Equation in Gullstrand-
Painlevé coordinates. Doing so, the spatial domain without including
the central curvature singularity will be available, as the coordinate sin-
gularity of the event horizon will have been removed. We will establish
some stability results and the stationary solutions in the new coordi-
nates, which will ease the development of well-balanced methods for the
Euler Equation in this context.

Moreover, we will propose a modification of the FCF equations. The
system will present local uniqueness, a hierarchical structure and some
accuracy improvements with respect to previous formulation. The nu-
merical implementation of the formulation was completed and some pre-
liminary tests concerning a rotating neutron star were carried out.

We also present a new numerical integration scheme to conserva-
tion laws with stiff terms, the so-called Minimally Implicit Runge-Kutta
(MIRK) methods. Our new approach will keep the good properties of im-
plicit methods but with a much smaller computational cost. In our opin-
ion, this method will be very useful in many astrophysical contexts where
stiff behaviours arise. In this work, we will apply it to the two afore-
mentioned scenarios: the Resistive Relativistic Magnetohydrodynamics
equations and the Radiation Transport equations for neutrino dynamics.

Finally, we will explain a strategy to numerically treat realistic equa-
tions of state for nuclear matter present in neutron stars. An algorithm
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to apply polynomial regression in several variables will be outlined. The
strategy followed will be different from the one using Kronecker products
in the sense that we will consider the most generic form of the polyno-
mial.

1.4
Organization of the manuscript

The manuscrpt is organized as follows:

In the Chapter 2 we will introduce basic concepts about Computa-
tional Fluid Dynamics, including Navier-Stokes Equations, the concept
of turbulence and different turbulent models. The Finite Volume Method
will also be briefly described. All these concepts are applied in the Chap-
ter 3 where we face the simulation of blood flow in aorta. The physical
model to describe the scenario will be detailed and we will also outline
basic features about OpenFOAM, the Finite Volume solver used. There,
results about the validation of the reconstruction method and a wall
shear stress analysis is performed. With these chapters we finish with
classical mechanics and we start addressing problems contextualized in
the Theory of Relativity.

In the Chapter 4 we overview some basic ideas about Special Rela-
tivity and General Relativity. We will present the equations describing
fluid dynamics and electrodynamics in its relativistic version and some
analytical solutions of the Einstein Equations. We will also introduce fo-
liations of spacetime and the 3+1 decomposition of Einstein Equations,
commonly used in Numerical Relativity. In the Chapter 5 we will study
the Euler Equations with gravity. Firstly, in the context of Newtonian
gravity and, secondly, in General Relativity. In the Chapter 6 we present
a reformulation of the FCF of the Einstein Equations and we will use it
to numerically solve a stationary spacetime.

On the other hand, in the Chapters 7 and 8 we will apply the MIRK
methods to integrate the evolution equations of the Resistive Relativis-
tic Magnetohydrodynamics and the Radiation Transport, respectively. In
the first case, we will present the self-similar current sheet and the Cir-



1. Introduction 7

cular Polarized Alfven Waves tests. In the second case, we will deal with
the transport equations for neutrino radiation in the M1 closure.

Finally, in the Chapter 9 we will describe the numerical problem that
arises in the context of simulations with neutron stars when realistic
equations of state are used. There, we will show the proposed algorithm
to carry out polynomial regression in several variables using the most
general expression of the polynomial.

We summarize the whole work in the Chapter 10, where some con-
clusions and perspectives are mentioned.

1.5
Notations and conventions

We will follow the next notations and conventions:

Greek indices (µ, ν, α, β, . . . ) are used for the four-vectors and
four-tensors and run from 0 to 3.

Latin indices (i, j, k, l, . . . ) are used for the spatial vectors and
tensors and run from 1 to 3.

We use Einstein’s summation convention over repeated indices.

The abbreviations ∂t = ∂
∂t and ∂α = ∂

∂xα will be followed.

The four-vector fields will be denoted by bold lowercase letters,
meanwhile three-vector fields in bold uppercase letters.

All components of the vectors in some basis are written with the
indices placed above, for instance v = vαeα.

The metric tensor gαβ of a vector space is used to lower the upper
(contravariant) indices of vectors and tensors, while the inverse of
the metric tensor, denoted gαβ, raise the lower (covariant) indices.





2
Overview about

Computation Fluid
Dynamics

In this Chapter we introduce the Navier-Stokes Equations. They are a
system of partial differential equations to describe the fluid dynamics in
classical mechanics. We will define concepts as wall shear stress or tur-
bulence that will be used in the Chapter 3 where we address the blood
flow problem in aorta. There exist several formulations of the Navier-
Stokes Equations that fit worse or better depending on the type of fluid
flow. For instance, a turbulent model will be useful in turbulent flows.
They are also used in complex scenarios with complex geometries, where
a numerical method is to be applied. The area concerning the numeri-
cal resolution of fluid problems is called Computational Fluid Dynamics
(CFD). The Finite Volume Method (FVM) is one the most widely used to
solve the Navier-Stokes Equations and we will briefly illustrate the main
concepts of it. Moreover, other numerical aspects and strategies will
be outlined. All the figures have been generated by the author of this
manuscript using LaTeXDraw.
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2.1

Navier-Stokes Equations

The Navier-Stokes Equations are a set of partial differential equa-
tions that describe the dynamics of a fluid. They are used to model a
wide range of fluid flow phenomena, included in health sciences, aero-
dynamics, meteorology, and oceanography. The equations involve fluid
variables such as pressure, density, velocity or temperature. Several ref-
erences [71, 128, 33] show a vast description of the Navier-Stokes Equa-
tions in all these areas. They embrace three blocks, each one coming
from mass, momentum and energy conservation, respectively. Through-
out this text we will not need the energy equation and the first two blocks,
leaving aside gravity, take the form:

∂tρ+ ∇⃗ · (ρV ) = 0, (2.1a)

∂t(ρV ) + ∇⃗ · (ρV ⊗ V ) = −∇⃗p+ ∇⃗ ·Σ, (2.1b)

where ρ is the density of the fluid, V is the Eulerian velocity and p the
pressure. The sign ⊗ stands for the tensor product and Σ is the viscous
stress tensor field. If viscous stresses are neglected (Σ → 0) the Equa-
tion (2.1b) is called Euler Equation. Usually, one needs two constitutive
equations to close the system: an equation of state p = p(ρ) and another
one for Σ.

In compressible flows, there are few well-established theoretical re-
sults for determining the permissible boundary conditions. Consequently,
CFD practice often relies on physical arguments and the success of its
simulations. Our focus is on tubular problems, which involve a bound-
ary constituted by an inlet, outlet and wall, as it is illustrated in the
Figure 2.1. The inlet is the patch through which the fluid flows into the
enclosed volume, and the outlet patch through which the fluid exits. The
remaining portions of the boundary are referred to as walls. Let V be the
domain of the tubular volume in R3, where our mechanical fluid problem
takes place, and ∂V its boundary. Then ∂V = Γin ∪Γout ∪Γwall is the parti-
tion of the boundary in the inlet, outlet and wall, respectively. The most
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used type of boundary conditions [128] are the following ones:{
ρ(x, 0) = fρ(x)

V (x, 0) = fV (x)
if x ∈ V

{
ρ(x, t) = gρ(x)

V (x, t) = gV (x)
if x ∈ Γin

V (x) = c if x ∈ Γwall{
p(x, t) = gp(x)

∂Vn/∂n(x) = 0
if x ∈ Γout

(2.2)

where letters f and g stand for functions, either scalar or vector, c is
a constant vector and the n-direction is the the normal direction to the
corresponding point in the boundary. The boundary condition for the
velocity in the outlet is referred as fully-developed flow condition and if
c = 0 we speak of non-slip condition.

R
z

̟

VmaxΓin

L

Γwall

Γout

Figure 2.1: Poiseuille flow in a tubular surface.

From now on, we restrict ourselves to incompressible flows. In incom-
pressible flows the density ρ is a constant. Then, a equation of state for
p is no longer needed. On the other hand, we will take into account the
Stokes’s constitutive equation for Σ in the case of incompressible flows:

Σ = υ(∇⃗V + ∇⃗V T ), (2.3)
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where υ is a constant called viscosity. Fluids that accomplish this law are
called Newtonian fluids. Therefore, the incompressible Navier-Stokes
Equations read

∇⃗ · V = 0, (2.4a)

∂tV + V · ∇⃗V = −1

ρ
∇⃗p+ ν∇⃗2V , (2.4b)

where we have defined the kinematic viscosity ν = υ/ρ. If all variables
are time-independent we have a steady-state flow. Boundary conditions
in incompressible flows can be the same as the ones in (2.2) but just
ignoring ρ.

We are now in position to give a mathematical definition of wall shear
stress, denoted τw. Consider a fluid flowing in contact with some surface
S. Be x ∈ S, the wall shear stress (WSS) in that point is

τw := −Σ(x)(N ,T ). (2.5)

Let us explain this formula. Σ is a 2-tensor field, so the evaluation in x
gives a tensor, the shear stress tensor, that acts over the vector N and
T . N is the normal vector to the surface in x, and T is the tangential
vector to the surface in x defined as

T = lim
y→x

V

∥V ∥(y),

when the limit exists. This definition only makes sense when the vectors
N and T can be defined unequivocally, at least near the surface.

To give some insight, we take a simple case: Poiseuille flow (see Figure
2.1). This is an incompressible viscous fluid flowing through a finite
cylindrical pipe induced by a pressure difference ∆p between the ends.
Let us suppose cylindrical coordinates (ϖ,ϕ, z) and the axis of the pipe
aligned with z axis. A simple analytical solution can be found for the
velocity:

V z =
∆p

4υL
(R2 −ϖ2), (2.6)

with R the radius of the pipe and L the length. The flow is unidirectional
in the z direction, so T = ez, and N = eϖ. The only non-zero compo-
nents of Σ are Σrz = Σzr = υ∂Vz/∂ϖ, which is a definition used in many
manuals of fluid mechanics for the WSS. Poiseuille walls shear stress
rests:

τP
w = −υ∂V

z

∂ϖ
=

∆pR

2L
=

2 υ Vmax

R
, (2.7)
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where Vmax =
∆pR2

4υL
is the maximum velocity of the fluid, at the center of

the pipe.

2.2
Turbulence

In this Section we define the concept of turbulent flow, following the
steps of [71]. Let us assume that we have a steady solution (p0,V0) of
the incompressible Navier-Stokes Equations (2.4), this is ∂tV0 = 0, and
we superpose a perturbation (δp, δV ). Then, V = V0 + δV and p = p0 + δp
must satisfy (2.4). Substituting V and p, and keeping first order terms
in δV and δp, we end up with the equation

∇⃗ · δV = 0,

∂tδV + V0 · ∇⃗δV = −1

ρ
∇⃗δp+ ν∇⃗2δV .

(2.8)

Let us consider the scenario of a flow across a cylinder of diameter D. If
the flow velocity is U far away form the cylinder, we define the Reynolds
number as Re = UD/ν. After a stability analysis of the Equation (2.8), it
is found that a critical Reynolds number, denoted as R̄e, exists at which
the perturbation δV begins to grow exponentially for Re > R̄e, and re-
mains bounded for Re < R̄e. Theoretically, one can determine R̄e ∼ 10.
However, it is important to note that the critical Reynolds number is not a
universal constant, as it varies depending on the type of flow. For exam-
ple, in plane Poiseuille flow (flow between two fixed planes), the critical
Reynolds number is approximately 6000, as confirmed experimentally.
To define the critical Reynolds number in this scenario, we use the ex-
pression Re = U(h/2)/ν, where U is the maximum velocity and (h/2) is
half of the distance between the two planes. In cylindrical Poiseuille flow
the definition is similar. We will consider blood flow in aorta in the Chap-
ter 3, so we deal with a tubular geometry with torsion and non-constant
section. This complex geometry makes the stability analysis theoretically
difficult. Here, it makes sense to define the Reynolds number as

Re =
V̄ R

ν
,
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where V̄ is a mean velocity in the center line, and R a mean radius of
the aortic section. We observe values of Re ∼ 104, so according to the
two previous analysis in simple cases, one would think that we are in
the instability region. It turns out that WSS is inversely proportional
to the Reynolds number; see (2.7) for the case of Poiseuille flow. More
information on this phenomenon can be found in the reference [71].

Flows that satisfy Re < R̄e are said to be laminar flows, where the
streamlines of the fluid particles does not cross each other; on the con-
trary turbulent flows satisfy Re > R̄e. Blood flow in aorta is one of the
latter in most of the cases. Notice that the Euler Equation, i.e. inviscid
flow, is recovered in the limit Re→ ∞.

Laminar flows are stable, while turbulent flows are chaotic, diffusive,
and characterized by vorticity fluctuations across a wide range of time
and length scales. The vorticity is defined as Ω = ∇⃗ × V and quantifies
the rotation of the fluid. The numerical resolution of the Navier-Stokes
Equations for turbulent flows is computationally demanding, requiring a
small time step and a extremely fine mesh. This approach is known as
Direct Numerical Simulation (DNS). To reduce computational cost, sta-
tistical techniques can be used to simplify the resolution of turbulent
flows. These techniques take into account the time-dependent nature
of turbulence and its wide range of time scales, approximating random
fluctuations through statistical averaging. These methods are computa-
tionally less intensive than DNS.

The most widely used method for addressing turbulent flow problems
is the Reynolds Averaged Navier-Stokes (RANS) approach, which uses
statistical averaging in time. This method involves decomposing the flow
variables into a time-mean value component and a fluctuating compo-
nent. If ϕ is any fluid variable, this decomposition reads

ϕ = ϕ̄+ ϕ′,

where ϕ′ is the fluctuating component and

ϕ̄(x, t) = lim
T→∞

1

T

∫ t+T

t
ϕ(x, t′)dt′,

is the time-averaged variable. Making this decomposition for all variables
in the Equations (2.4), and time-averaging the resulting equations we get
the RANS equations:

∇⃗ · V̄ = 0,

∂tV̄ + V̄ · ∇⃗V̄ = −1

ρ
∇⃗p̄+ ν∇⃗2V̄ +

1

ρ
∇⃗ ·Σ′,

(2.9)
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where V̄ and p̄ are the averaged velocity and pressure, respectively, and

Σ′ := ρV ′ ⊗ V ′

is the Reynolds stress tensor field, where V ′ is the fluctuating component
of the velocity. The bar notation denotes time-average. Note that the
concept of steady is different when dealing with time-averaged variables.
V̄ may not depend on time while V does. We will talk about turbulent
steady-state flow when the time-averaged variables are non-dependant
on time.

The inclusion of unknown stresses, which are the components of the
Reynolds stress tensor, indicates that the system is not closed. One
approach to do so is trying to use the original Navier-Stokes Equations
but there are some problems involving stability issues [33]. A better
approach is modeling Σ′ by the so-called Boussinesq hypothesis, which
reads:

Σ′ = υt

(
∇⃗V̄ + ∇⃗V̄ T

)
− 2

3
ρkI,

where we have introduced the turbulent viscosity υt, I is the identity
tensor and we have defined the turbulent kinetic energy

k :=
V ′ · V ′

2
.

Boussinesq hypothesis tries to resemble Stoke’s law for Newtonian flu-
ids and the reasons of its particular form are motivated in the reference
[128]. Notice that, with this closure, the Reynolds stress tensor term
adds an extra advection and diffusive term, not present in the original
Navier-Stokes Equations (2.1). From now, several strategies are possible
to close the system. We will see some of them in next subsections.

2.2.1
k − ϵ turbulence model

In this model, turbulence is stored in the variables k and ϵ, the kinetic
energy and the rate of dissipation of kinetic energy, respectively. This last
magnitude is computed as:

ϵ =
1

2

υ

ρ
(∇⃗V ′ + ∇⃗V ′T ) : (∇⃗V ′ + ∇⃗V ′T ),
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where : stands for the double scalar product for tensors, A : B =∑
i,j

AijBij. By using these two variables, the turbulent viscosity can be

modeled as υt = ρCυk
2/ϵ. The system is closed with the inclusion of

two evolution equations for the newly introduced turbulent variables.
These equations are obtained after an algebraic exercise using the origi-
nal Navier-Stokes Equations and the RANS equations, more details can
be consulted in [128]. They take the form

∂tk + V̄ · ∇⃗k =
1

ρ
∇⃗ ·
(
υk∇⃗k

)
+
υt
ρ

(
Σ′ : ∇⃗V̄

)
− ϵ, (2.10)

∂tϵ+ V̄ · ∇⃗ϵ = 1

ρ
∇⃗ ·
(
υϵ∇⃗ϵ

)
+ Cϵ1

ϵ

ρk

(
Σ′ : ∇⃗V̄

)
− Cϵ2

ϵ2

k
, (2.11)

where υk = υ + υt/σk and υϵ = υ + υt/σϵ are effective viscosities, and
Cυ = 0.09, Cϵ1 = 1.44,Cϵ2 = 1.92, σk = 1.0 and σϵ = 1.3 are constants whose
values have been established experimentally [128].

2.2.2
k − ω turbulence model

Another strategy is the k − ω model. Here we replace ϵ by a new
variable denoted ω that is the rate at which turbulence kinetic energy is
converted into internal thermal energy per unit volume and time, defined
as

ω =
ϵ

Cυk
,

for which an equation can be derived from (2.11). The new set of equa-
tions for the turbulent variables rest

∂tk + V̄ · ∇⃗k =
1

ρ
∇⃗ ·
(
υk∇⃗k

)
+
υt
ρ

(
Σ′ : ∇⃗V̄

)
− Ckkω, (2.12)

∂tω + V̄ · ∇⃗ω =
1

ρ
∇⃗ ·
(
υω∇⃗ω

)
+ Cω1

ω

ρk

(
Σ′ : ∇⃗V̄

)
− Cω2ω

2, (2.13)

where υω = υ + υt/σω is an effective viscosity, and Ck = 0.09, Cω1 = 5/9,
Cω2 = 0.075, σk = 2.0 and σω = 2.0 are empirical constants .
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The k − ω model has the advantage of being more precise near the
walls than k − ϵ model, meanwhile the latter is more precise in the free
stream. There exist a model that combine both features and it is called
Shear Stress Transport (SST) k − ω model. Some details about how the
model is built can be found in [33]; due to its length, we do not include a
detailed derivation of the method. Roughly speaking, it mixes both mod-
els through blending functions, which somehow activates one model or
the other depending on the region.

Sometimes the quantity we are interested in can be equally obtained
from the averaged variables, and here is where turbulent models become
appealing, as they are computationally cheaper than DNS. It turns out
that this is the case of the WSS. The turbulent kinetic energy k decays
to zero as one approaches the wall, see [123]. Then, the fluctuating
component of the velocity goes to zero, and the WSS is the same either
computed with the viscous stress tensor or the time-averaged one.

2.3

Finite Volume Method

The Finite Volume Method (FVM) will be used to numerically solve
the balance laws of the Chapter 3. It has a high flexibility as far as
the discretization of the equations is concerned and it is suitable for
solving flows in complex geometries, as it is the case of airflow around
an airplane wing, analysing the aerodynamics of car body or blood flow
in aorta. Another interesting characteristic of the FVM is that it mirrors
physical properties of the problem modeled: it is based on the fulfillment
of the integral form of the balance laws, volume per volume. All these
features make the FVM very appealing in CFD. Vast descriptions of this
methods can be found in [33] and [128]. Here, we just summarize the
main ideas.
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2.3.1
Equations of the method

Let us consider a balance law of a scalar field ϕ of the form:

∂t(ρϕ) + ∇⃗ · (ρV ϕ) = ∇⃗ · (υ∇⃗ϕ) + S, (2.14)

where ρ is the mass density, V the velocity, υ a diffusion coefficient
and S is a source term. The first and second terms in the left-hand
side are called transient and advection terms, respectively, meanwhile
the first term in the right-hand side is called diffusion term. The scalar
field ϕ represents any fluid scalar variable as temperature, pressure or
a component of the velocity. For the sake of simplicity the method is
explained in 2-dimensional geometries. The extension to 3 dimensions
can be developed easily.

Let us suppose we want to solve the Equation (2.14) in the region V
shown in the Figure 2.2 given some boundary conditions defined on the
boundary ∂V. We have distinguished three patches at the boundary: a
solid line Γwall, a dotted line Γin and a dashed line Γout in such a way
∂V = Γin

⋃
Γwall

⋃
Γout.

Before applying the FVM, we need to mesh the region with polygons,
as shown in the Figure 2.2, in the case of two dimensions, or polyhedra
in 3 dimensions. One can guess that the more density of polygons there
is, the more exact will be the numerical solution of (2.14). For instance,
the region closer to Γin will provide better results than the one close to
Γout. As the polygons or polyhedra do not need to be regular or have
a fixed number of vertices, the mesh can have a high flexibility and be
well-adapted to the geometry of the problem. Once we have fixed the
mesh there comes the discretization procedure that will end with the
equations of the FVM. We refer to each polygon of the Figure 2.2 as
element or volume. Let N be the total number of elements in the mesh.
A numerical solution for ϕ of (2.14) will be a set of values {ϕi}i=N

i=1 that
try to approximate ϕ at the centroids of the elements. The first step is
integrating numerically the whole Equation (2.14) in each volume, and
then in time from t to t+∆t, once we have fixed a time step ∆t:∫ t+∆t

t

∫
V
∂t(ρϕ)dVdt+

∫ t+∆t

t

∫
V
∇⃗ · (ρV ϕ)dVdt =∫ t+∆t

t

∫
V
∇⃗ · (υ∇⃗ϕ)dVdt+

∫ t+∆t

t

∫
V
SdVdt,

(2.15)
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Figure 2.2: Example of region V (left) where a FVM is to be applied and the same region
after being meshed (right).

where V is the region occupied by a specific element. We focus our atten-
tion on a specific element whose centroid point is P (see Figure 2.3), but
the same procedure applies to all elements. The strategy applied carrying
out these integrations characterizes the first step of the discretization of
(2.14).

The volume integration of the transient and source term is done di-
rectly applying a numerical integration rule. Using the value of the inte-
grand in the centroid of the element provides a second order approxima-
tion in the same way mid-point rule does [33]. Doing so, these integrals
rest: ∫

VP

∂t(ρϕ)dV ≈ ∂t(ρPϕP ) VP , (2.16)∫
VP

SdV ≈ SPVP . (2.17)

VP is the volume of the element we are focused on. Of course, increasing
the number of points used inside VP to approximate these integrals im-
proves the accuracy of the approximation. Advection and diffusion terms
integrals are computed using Gauss theorem:

∫
VP

∇⃗ · (ρV ϕ)dV =

∫
∂VP

ρV ϕ · dS =

Ne∑
i=1

∫
Ai

ρV ϕ · dS, (2.18)

∫
VP

∇⃗ · (υ∇⃗ϕ)dV =

∫
∂VP

υ∇⃗ϕ · dS =

Ne∑
i=1

∫
Ai

υ∇⃗ϕ · dS. (2.19)

In the last equality it has been taken into account that the element P
has Ne edges (faces in 3 dimensions) Ai with i = 1, ..., Ne. In the Figure
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Figure 2.3: Application of the first discretization of a conservation law in a selected
volume.

2.3 we have Ne = 5. Again, using the centroid Mi of each edge provides a
second order approximation for each surface (line) integral:∫

Ai

ρV ϕ · dS ≈ (ρV ϕ ·Ni)|Mi
Ai, (2.20)∫

Ai

υ∇⃗ϕ · dS ≈
(
υ∇⃗ϕ ·Ni

)∣∣∣
Mi

Ai, (2.21)

where Ni stands for the unit vector normal to the edge Ai and pointing
outwards the element P . Expressions (2.20) and (2.21) represent the
fluxes of the vector fields ρV ϕ and υ∇⃗ϕ, respectively. Now, considering a
fixed mesh in time, the integral of the transient term reads∫ t+∆t

t

∫
V
∂t(ρϕ)dVdt ≈ (ρ∗Pϕ

∗
P − ρPϕP )VP , (2.22)

where the asterisk stands for an evaluation of a function in time t + ∆t,
f∗ = f(t + ∆t), and no asterisk means evaluation at t. Concerning the
other terms we have to make a choice for the time integral. Usually,
implicit and explicit evaluations are taken. For instance, in the case of
the source term, the approximation of the integral would rest∫ t+∆t

t

∫
V
SdVdt ≈

(
fsS

∗
P − (1− fs)SP

)
VP∆t, (2.23)
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where a choice for fs has to be made. The source term is said to evolve
explicitly in the method for fs = 0 and implicitly for fs = 1. The same
applies for the advection and diffusion terms. Finally, the equation of
the FVM will result after substituting the former approximations of the
integrals:

(ρ∗Pϕ
∗
P − ρPϕP )VP +

∑
i

(
fa (ρV ϕ · ni)

∗|Mi
+ (1− fa) (ρV ϕ · ni)|Mi

)
Ai

−
∑
i

(
fd

(
υ∇⃗ϕ · ni

)∗∣∣∣
Mi

+ (1− fd)
(
υ∇⃗ϕ · ni

)∣∣∣
Mi

)
Ai

=
(
fsS

∗
P − (1− fs)SP

)
VP∆t.

(2.24)

In addition to fix the coefficients fa, fd and fs, we need to settle how
to manage the value of the variables at Mi. This is because, as stated,
the unknowns to be determined are the values of the variables at the
centroids of the elements. In the case of known variables this is not a
very complicated problem, but regarding the variable under resolution ϕ,
it is an issue. The main idea is taking the variable in the centroids of
that elements surrounding the corresponding edge. We will do that for
the values of ϕ in the edges but also for the derivatives. In the case of the
Figure 2.3, a simple choice is

ϕMi = aiϕCi + biϕP , (2.25)

∂jϕ|Mi
= ciϕCi + diϕP . (2.26)

Coefficients ai, bi, ci and di must be such that the fluxes between the
elements of the mesh are consistent. This is, the flux entering a specific
element through a specific face from another element must be the same
than the outgoing flux through that face. A possible choice in (2.25) is
ai = 1, bi = 0 if the velocity points to Ci in Mi and ai = 0 and bi = 1 if it is
the other way around. This is the so-called upwind scheme.

If an edge point M belongs to a boundary patch Γ, we have addi-
tional information because of the boundary conditions. For instance, if
a Dirichlet boundary condition is settled,

ϕ(x) = f(x), x ∈ Γ,

we just assign ϕM = f(M). However, when this type of condition is pro-
vided the values of the derivative in the edge points are to be assigned
as in (2.26). It goes the other way around in the case of a Neumann
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boundary condition. In that case, we know the derivative and we need a
strategy to assign a value to ϕM .

The procedure was explained focusing our attention to one volume.
Similar equations are to be derived for all volumes to finally get N alge-
braic linear equations with N variables. Realistic CFD scenarios require
an order of 105-106 volumes, so a strategy will be needed to solve such a
huge system. We will turn to this matter.

2.3.2

Case of Navier-Stokes equations

The equation (2.14) becomes the component i of the momentum con-
servation equation (2.1b) if one substitutes ϕ by V i and S = ∂p/∂xi. In
principle, the content of the last Subsection is valid to apply it to Navier-
Stokes equations, but sometimes not directly.

When one deals with compressible flows, we normally have an equa-
tion of state that relates density ρ and pressure p. Then, the mass con-
servation equation (2.1a) becomes an evolution equation for ρ and the
momentum conservation equation (2.1b) constitutes an evolution equa-
tion for the velocity V . Finally, p comes from the equation of state.

It turns out that incompressible flows are more complicated to solve
numerically than compressible flows. In incompressible flows the value
of ρ is known and one demands an equation for p. Let us suppose steady
flow to clarify the next explanation. If we discretize (2.4) we end up with
a linear system of equations of the form(

F BT

B 0

)(
Ū
p̄

)
=

(
0
0

)
(2.27)

where p̄ and Ū are the arrays forming the numerical solution of pressure
and velocity, respectively. F and B are known matrices. The last equa-
tion exhibits a zero diagonal block in the system, meaning that it cannot
support being solved through iterative methods. As a result, an equation
for pressure must be obtained.
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Figure 2.4: Oscillations of V and p to illustrate the checkerboard problem.

Checkerboard problem

Besides, there is an extra problem with the discretization of (2.4). To
address this clearer let us consider the one dimensional version of the
Navier-Stokes Equations to be solved numerically in a Cartesian grid,
equally spaced. We add artificially an extra dimension, one cell wide,
such that the surface integral makes sense. The physical dimension is
x and the artificial one y. Let us consider the approximations of the
integrals for the velocity V = V x and pressure p. We focus on the element
P of the Figure 2.4 and make the assignment

VM =
VL + VP

2
, VN =

VR + VP
2

, (2.28)

pM =
pL + pP

2
, pN =

pR + pP
2

, (2.29)

which is perfectly valid given the symmetry of the situation. Now, sup-
pose, that some oscillations arise in such a way we have the exaggerated
behaviour shown in the Figure 2.4, where p oscillates between 1 and 10
from cell to cell and V from 20 to 100. Then, the integrals rest:

∫
VP

dV

dx
dV =

∫
∂VP

V dS ≈ (VM − VN )∆y =
VL − VR

2
∆y = 0, (2.30)∫

VP

dp

dx
dV =

∫
∂VP

pdS ≈ (pM − pN )∆y =
pL − pR

2
∆y = 0 (2.31)

So, we observe that the continuity equation is satisfied automatically
and no pressure gradient is observed. This non-physical behaviour also
arises in more dimensions, but it is harder to visualize.
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Staggered grid and SIMPLE algorithm

One strategy that solves the Checkerboard problem is to consider the
mid points of the edges as members of the grid, forming the so-called
Staggered grid. But only the velocity is taken in those new points. The
remaining variables are still in the centroid points, the original grid.

In the end, the integration of the momentum conservation equation
(taking a component) of an element will rest

Ne∑
i

aiVMi +

Nc∑
j

bjpCj = c, (2.32)

where Mi refers to the Ne mid points of edges surrounding the element,
Cj to the Nc centroids around the element and ai, bi, c are constants that
depend on the scheme of the discretization process and the mesh reso-
lution.

Let us guess a preliminary value for the pressure and denote it p∗.
Then, the velocity that comes from the Equation (2.32) with this pressure
does not satisfy the mass conservation equation. Let us call this velocity
V ∗. Of course, p and V precise a correction such that they satisfy both
Navier-Stokes Equations (2.4). Let us denote these corrections p′ and V ′

such that
p = p∗ + p′, V = V ∗ + V ′.

Both corrected and asterisk variables satisfy the Equation (2.32). Using
this, we derive an equation for the corrected components of the form

Ne∑
i

aiV
′
Mi

+

Nc∑
j

bjp
′
Cj

= 0. (2.33)

Now, by considering that V fulfills the mass conservation equation and
making use of the Equation (2.33), we derive another equation for pres-
sure correction:

Nc∑
j

cjp
′
Cj

= b, (2.34)

where the coefficients cj depend on grid parameters and V ∗.

The strategy to get velocity and pressure is based in the previous
equations and it is called Semi-Implicit Method for Pressure Linked Equa-
tions (SIMPLE), proposed by Patankar and Spalding [98]. It consists in
the following steps:
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1. Guess a value for the pressure p∗.

2. Solve the Equations (2.32) with the asterisk pressure p∗ to get an
asterisk velocity V ∗

3. Solve the Equations (2.34) to get the pressure correction p′, and
then the corrected pressure p = p∗ + p′.

4. Solve the Equations (2.33) to get the velocity correction V ′, and then
the corrected velocity V = V ∗ + V ′.

5. Go back to step 2 replacing p∗ by p.

The algorithm is repeated until mass conservation is fulfilled up to some
level of tolerance ϵ.

2.3.3
Solving discretized equations

In the previous analysis we focused on one unique element, but the
same applies to each element of the mesh of our geometry. Then, having
a set of linear algebraic equations presumptively large.

Usual methods

There are many techniques to solve the algebraic linear equations
that come up when discretizing partial differential equations. Normally,
one have the same number of equations than variables and it is fully
determined. In matrix form they are written as

Ax = b,

where x is the numerical solution. Let N be the dimension of the sys-
tem. We distinguish two principal blocks of solvers: direct methods and
iterative methods. Examples of the first kind are Cramer’s rule or Gaus-
sian elimination which need around N3 operations. However, in iterative
methods as Gauss-Seidel or Jacobi methods only around N operations
per iteration are needed. N can reach values around 106 in realistic CFD
problems. So, as human lives and computational storage is limited, it-
erative methods are not only appealing but necessary. The intention of
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this manuscript is not to give a extended description of these methods
and we address the reader to specialized books [33, 128] on this subject.

Multigrid methods

Among iterative methods multigrid methods are widely used in CFD.
They analyze the CFD problem using multiple grids that are coarser than
the original, and in each one a selected iterative method proceeds. The
convergence rate is significantly improved when using this technique
compared to using the iterative method alone. The reasons of this fact
are explained hereunder.

Suppose we want to solve the algebraic linear equation

Ahxh = bh

that comes from the discretization of a conservation law, and denote h as
the spatial resolution of a simple Cartesian equally-spaced grid, estab-
lished to solve the CFD problem. After n iterations of a selected iterative
method we get an approximation of xh, called yh. Let us call the error
of the approximation by eh = xh − yh. It turns out that purely iterative
methods are sensitive to errors that vary with a scale of h or below, and
they reduce them. This type of errors are called high frequency errors.
On the contrary, they have difficulties to reduce low frequency errors,
whose values vary with a scale higher than h, i.e. they are barely noted
from one volume to the next one.

Multigrid methods consist in creating one or several coarser grids
from the original one, so the low frequency errors are perceived as high
frequency errors by the selected iterative method. The algebraic linear
equations are transferred to the new grid with some technique, that has
to be established, giving another system

Ah′
xh′

= bh
′
,

with h′ > h. Applying the iterative method to the new system will reduce
the high frequency component of the error eh

′
. Finally we go back to the

the original and finest grid with some other technique. The iterations
made in coarser grids are usually much less costly than in the finest, in
such a way the total path is worthwhile. Improvements of one order of
magnitude in the number of iterations to reach the same accuracy are
observed when comparing multigrid methods and Gauss-Seidel method
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alone [128].

A simple case of grid formation is to join every pair of volumes to form
a unique one, coarsening the scale of the grid from h to h′ = 2h. Then,
the simplest multigrid method with these two grids proceeds as follows.

First, we get an approximation in the finest grid with an iterative
method, yh. The high frequency part of eh is then reduced.

Secondly, we transfer the system to the coarse grid, where we use
the iterative method again to reduce the low frequency errors, which
in the new grid are high frequency.

Then, we carry the system back to the original grid in such a way
the initial approximation is corrected

A few final iterations may be convenient to minimize possible errors
in the grid tour. When an iterative method proceed in this way it is
called smoother, which makes sense as it tries to shrink potential
spikes that can appear in the error.

These steps are repeated in cycle until getting the desired accuracy.

The technique followed when transferring the system between meshes
can be based in geometric arguments. In that case, the multigrid method
is said to be a geometric multigrid method. On the other hand, if we
just use the coefficients of the original system to form the new one (with-
out taking care of geometrical aspects) we say that it is an algebraic
multigrid method. The latter ones are more suitable when the complex-
ity of the mesh is high but we may lose some insight about what is going
on geometrically.

Other strategies with more grids and paths are possible. The one
described is called V-cycle because we "go down" to the coarser grid and
then "go up" to the original one. Other strategies are W-cycles, in which
we deal with three grids: first going down two steps; second, going up
one step and to go down again, to finally go up two steps.

Note that multigrid methods are much more complex than using a
single iterative method, but once they are implemented, the convergence
velocity is higher. Here, we described the method briefly, and further
details can be consulted in [128].
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To end this section, we mention a useful tool to solve linear systems:
Preconditioners. A preconditioner is an invertible matrix M such that
the system

M−1Ax = M−1b

has a higher rate of convergence than the original when applying the
corresponding iterative solver. The matrix product of the preconditioner
and A should be cheap not to increase much the computational cost.
In the previous equation M was a left preconditioner, but left or central
preconditioners are also possible.

2.4
Final remarks

We have introduced important concepts and tools to be applied in the
Chapter 3. We began introducing the Navier-Stokes Equations and de-
fined the WSS and the concept of turbulence. Different turbulent models
of the Navier-Stokes Equations were described. These are computation-
ally cheaper than applying DNS in turbulent flows, which are very fre-
quent in nature.

All these systems of partial differential equations precise a numeri-
cal method in realistic flows. Therefore, we also outlined the main ideas
of the FVM which are very useful for conservation and balance laws in
complex geometries. Moreover, the SIMPLE algorithm was exposed which
is needed for incompressible Navier-Stokes equations. We finalized the
Chapter by briefly presenting the different techniques to solve the lin-
ear algebraic equation that arise when partial differential equations are
discretized. Therein, we justified that multigrid methods seemed to be
a suitable choice which combined iterative methods with a coarsening
process of the mesh.
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Blood flow in aorta

In this Chapter we face the numerical resolution of a classical fluid
dynamics problem: blood flow in aorta. The partial differential equa-
tions that model this scenario are the Navier-Stokes Equations (2.1). Al-
though the equations are very well known and can be solved analytically
in many situations, the complexity of the geometry here demands the
employment of advanced numerical tools. We will use the FVM to solve
the Navier-Stokes Equations inside the aorta artery. Many applications
can be derived from blood flow simulation in health sciences. In par-
ticular, some physiological quantities are only measurable by numerical
simulation due to the high difficulty of doing it by clinical diagnosis.

We are specially interested in the computation of the WSS (2.5). The
ultimate goal is relating geometrical aspects of the aorta with potential
developments of cardiovascular diseases derived from anomalous val-
ues of WSS. To do so, it is very convenient having a big sample of re-
alistic aortas, but in practice, the availability of such a sample can be
complicated. However, the creation of realistic synthetic aortas can eas-
ily increase the sample. For this purpose, a reconstruction algorithm
has been developed in the group CoMMLAB from Universitat de Valencia
[108], which allows us to identify key geometrical parameters. In this
Chapter, we will carry out CFD simulations of blood flow in aorta with
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the intention of giving credit to the reconstruction algorithm. Besides,
we will make a preliminary analysis about which type of aorta valve is
more appropriate to soften the anomalous behaviour of the blood flow.
Moreover, we will properly choose a turbulence model to carry out the nu-
merical simulations. Some results herein have been published in [107]
and [110].

3.1
The cardiovascular system

Cardiovascular diseases are the most common cause of death in the
world, see [91, 42, 40]. The work described in this Chapter aims to study
a physiological quantity that is related with diseases such atherosclero-
sis, stenosis and aneurysm in aorta: the WSS, defined in (2.5), which is
the tangential component of the stress at the aortic wall.

First, let us introduce some basics about aorta anatomy, illustrated
in the Figure 3.1. The blood penetrates from the heart through the aortic
valve where we find the sinus of Valsalva, three bulges at the beginning of
the aorta. Right there the aorta ramifies in the coronary arteries. We con-
tinue through the ascendant aorta, the aortic arch and the descendant
aorta. These three parts constitute the thoracic aorta. At the aortic arch
three more ramifications are present, the supra-aortic arteries. After
thoracic aorta comes the abdominal aorta with much more ramifications
supplying blood to the lower body.

The aim of this work is relating geometrical properties of aortas with
patterns of WSS. And if some anomalous value is found, determining
what possible prosthetic aortic valves can remedy such a behaviour.
Measuring WSS in a patient with medical tests is extremely difficult,
because it depends on the velocity of blood point to point, which at the
same time is vaguely determined by 4D medical visualization techniques
[21]. This kind of measures are called in vivo. A better strategy is carry-
ing out simulations of blood flow in a scanned aorta from a patient, and
then, compute the WSS from the numerical solution of the flow, This is
a in silico measurement. The Figure 3.2 shows a summarized scheme of
the in silico process.
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Figure 3.1: Aorta picture, from Cirugía Cardiaca Madrid

Figure 3.2: Scheme of an in silico measurement of the WSS in the aorta of a patient.
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In this context, our aim is to solve the Navier-Stokes Equations with
boundary conditions, which will model blood flow in aorta. In order to es-
tablish proper boundary conditions one needs data about how the blood
gets in the aorta through the aortic valve from the heart. Some good
references about the physics of the cardiovascular system are [39, 20].
The cardiac cycle has two principal phases: diastole and systole. In the
latter the aortic valve opens letting the blood to come in. In systole,
blood flow reaches maximum values, so we will focus our attention in
this phase. We have two main purposes: validate the reconstruction
method mentioned and determine how different aortic valves affect WSS
profiles. For the former, simulations in both real aorta and reconstructed
one are to be carried out, and in the latter, we will vary boundary condi-
tions in order to reproduce the effect of different type of valves (natural
and prosthetic). On the other hand, blood flow in aorta develop a tur-
bulent behaviour, with twists and many length scales. For an accurate
estimation of WSS, the use of a turbulence model can be of great rele-
vance. Then, we also present a study to compare the estimations of fluid
variables with three different turbulence models. We will use the Finite
Volume solver OpenFOAM to carry out the CFD simulations

3.2
Computational fluid dynamics for blood

flow in aorta

In this Section we will detail the main features of the model taken to
describe the blood flow in the aorta.

3.2.1
Aorta geometry

Real aorta geometries are obtained by Computed Tomography scans
realized by collaborators in Hospital Universitari i Politècnic La Fe of
Valencia. Some manipulations are needed to clean the aorta surface in
order to make it suitable for CFD simulation. With Blender we eliminate
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Figure 3.3: Aorta scan with Computed Tomography (left), after processing (center) and
reconstructed (right).

some calcifications that do not correspond to the aorta surface and, for
the sake of simplicity, we are removing the supra-aortic arteries. We
also define three different patches in the aorta surface, which are the
inlet Γin, the wall Γwall and the outlet Γout. The reconstruction method is
applied to the aorta after this process. It consists in a parametrization of
the tubular surface with elliptical cross sections for the aorta:

x(s, θ) = α(s) + a(s) cos(θ) + b(s) sin(θ).

The centerline α(s) and ellipses semi-axis a(s), b(s) are obtained through
our reconstruction algorithm. Then, B-splines are used to get contin-
uous functions that reshape the ellipses in such a way reconstructed
sections reproduce the originals. More details can be found in [108]. In
the Figure 3.3 we show examples of real aorta, as it is obtained from the
scan, a processed aorta and a reconstructed aorta.
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3.2.2

Blood flow model

Blood flow can be approximated by a Newtonian fluid in certain situa-
tions [61]. Fortunately, ours is one of those thanks to the wide Section of
the aorta. See [20] to consult the models used in other type of vessels. As
approximation, we consider steady-state flow as if peak systolic cardio-
vascular conditions remained constant, when flow and arterial pressure
are maximum. We know that our results will not be exact but at least
we expect that some reasonable conclusions can be made in that instant
of maximum arterial stress. Then, our model will be the steady-state
incompressible Navier-Stokes equations:

∇⃗ · V = 0, (3.1a)

V · ∇⃗V = −1

ρ
∇⃗p+ ν∇⃗2V . (3.1b)

We set the kinematic viscosity of the blood to ν = 3.37 · 10−6 m2/s as
[21]. We will impose boundary condition according to the expressions
(2.2) which, at the same time, will try to resemble the peak systolic car-
diovascular phase. For syntax reasons, the pre-established OpenFoam
parameter files demands to settle a boundary condition to each patch
and for all variables, even it is not necessary, as it happens with the
pressure at the inlet. Normally, in pipe-like problems one either estab-
lishes boundary conditions over pressure values and velocity derivatives
or only to the velocity values. If one settles in the same patch condi-
tions fixing values to both variables, OpenFOAM will report a message
and the simulation will stop; it assumes that we have made a mistake
and that conditions over velocity derivatives are required instead. at the
inlet, values for the velocity are settled modeling the blood entry. Then
a condition over the values of the pressure is not allowed by the soft-
ware in this patch. Nonetheless, a boundary condition for the pressure
is still needed by OpenFOAM. Then, we will use a condition over pressure
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derivative. In the end, the following boundary conditions are applied:{
∇p(x) = 0

V (x) = f(x)
if x ∈ Γin

{
∇p(x) = 0

V (x) = 0
if x ∈ Γwall

{
p(x) = 0

∇V (x) = 0
if x ∈ Γout

(3.2)

This is in agreement with the boundary conditions (2.2) expect for the
fact that there, we had an outlet condition over ∂V n/∂n and here, we
have it over ∇V . It turns out that there is not much difference, as we
explain now. Consider two orthonormal tangential directions, T1 and T2,
and another one perpendicular N to the outlet. The 2-tensor field ∇⃗V
has the following components:

∇⃗V =

(
∂V n/∂n ∂V ti/∂n
∂V n/∂tj ∂V ti/∂tj

)
.

In fully-developed flows V ti = 0 is satisfied by definition. So, at the out-
let the unique difference between the boundary conditions in (2.2) and
(3.2) is that ∂V n/∂ti = 0 is imposed in the second. This condition would
be incompatible with the wall non-slip condition V = 0. Nonetheless,
at the beginning of each simulation OpenFOAM does a few iterations to
get a preliminary smooth flow such that the condition ∂V n/∂ti = 0 is not
strictly satisfied near the wall. Then, ∂V n/∂n = 0 is the one really im-
posed, as it was stated in (2.2). The reason having ∇V = 0 is because,
doing so, we have a friendly implementation of boundary conditions in
OpenFOAM which provide good results.

We want to impose the most realistic boundary conditions. An ap-
proach to reality will be a parabolic profile of the flow at the inlet, as it
is illustrated in the Figure 3.4. We make this description with an aorta
with elliptic section for simplicity, but it can be easily extended to more
general sections. In the Figure, we plot the modulus of the velocity re-
spect the position in the elliptic section. In particular we have imposed
the expression

V = Vc

(
x2

a2
+
y2

b2

)
N , (3.3)
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where (x, y) are the coordinates in the basis formed by the unit vectors
along the axis of the ellipse, Vc is the velocity in the center, a and b the
semi-axis longitude and N the unit vector normal to the inlet.

Figure 3.4: Vertical profile of some of the inlet boundary conditions considered. The
maximum velocity is Vc = 1 m/s.

This type of boundary condition is used in the validation of the re-
construction algorithm. On the other hand, we know now that a healthy
aortic valve section is more similar to the tricuspid valve [58]. In fact, it
seems that a plateau function at the inlet, instead of the parabolic pro-
file, is more realistic. We will take this into account in the analysis of
aortic valves. We will carry out simulations with inlet boundary condi-
tions reproducing the tricuspid valve and two more profiles that try to
resemble the effect of two types of artificial valves: Meditronic valve [36]
and St. Jude Medical valve [84]. The three profiles are shown in the
Figure 3.5. Artificial valves try to treat cardiovascular diseases. We will
compute the effect of these in the WSS of an aorta with stenosis, a car-
diovascular disease that consists in a shrinking of the aorta walls.

(a) Natural healthy valve. (b) Artificial
bileaflet valve.

(c) Artificial tilting
disk valve.

Figure 3.5: Vertical profile of some of the inlet boundary conditions considered. The
maximum velocity is 1 m/s.
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Turbulent models

We know that the Reynolds number in the aorta can reach values
around 104. Then, a turbulent model to describe blood flow may be more
appropriate against DNS with the pure Navier-Stokes Equations. We use
the three models described in the Section 2.2 in its steady-state version:
k − ϵ, k − ω and SST k − ω models. When a turbulent model has been
selected, additional boundary conditions must be settled. We will make
use of some analytical functions called wall functions. In the closest
region to the wall, also called boundary layer, some time-averaged and
turbulent variables can be approximated analytically by means of the
wall functions. Some of them are pre-established in OpenFOAM and
other CFD solvers.

The boundary conditions to be applied over the new turbulent vari-
ables are shown in (3.4). We use the reference [80] to get the wall function
ωwall and other conditions over k and ω. Meanwhile we have used [53] to
settle boundary conditions to ϵ.

ϵ(x) = 2

k(x) = 10−6

ω(x) = 1

if x ∈ Γin


∇ϵ(x) = 0

k(x) = 10−10

ω(x) = ωwall(x)

if x ∈ Γwall


∇ϵ(x) = 0

∇k(x) = 0

∇ω(x) = 0

if x ∈ Γout

(3.4)

3.2.3
Finite Volume Method solver: OpenFOAM

We employ the CFD solver OpenFoam which is an open source C++
object-oriented library. This software applies the FVM to the balance
laws introduced and it has tools to process and mesh the geometry where
the fluid problem takes place. The structure of the principal directo-
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Figure 3.6: Scheme of the file structure of OpenFOAM.

ries and files is shown in the Figure 3.6. The main directory contains
all the information about mechanical fluid problem and the numerical
resolution. We distinguish files that define the geometry and meshing
properties, and files that characterize the CFD resolution.

The volume of the aorta will be determined by a tringulated surface
which constitutes the aorta boundary. The information about the surface
is carried in a STL file, format used to describe the surface of a three-
dimensional object. It sets the triangles that constitutes the surface by
giving a structured list of all the vertices. This file is provided by our
collaborators from the Hospital Universitari i Politècnic La Fe. The three
principal patches of the surface (inlet, outlet and wall) are tagged inside
the file, and its structure is shown in the Figure A.1.

Meshing

The mesh where the CFD simulation will take place consists in staked
polyhedra (volumes). The meshing process from the triangulated surface
is divided in three steps, each one carried out by a specific utility in
OpenFOAM.

The first one is the blockMesh utility, which defines a preliminary
mesh with regular hexaedra. The second one is called surfaceFeature-
Extract, which extract geometrical information about points, edges and
faces from our STL file. Basically, it marks those pair of faces of the
boundary for which the angle formed by their normal vectors exceed a
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Figure 3.7: A close-up of the mesh used for simulation. The resolution at the wall is
1mm.

determined value. Then, it stores information about the roughness of
the surface. The last utility is called snappyHexMesh, which carries the
process of refinement and addition of layers near the boundaries.

The refinement process consists in the increment of the spatial reso-
lution as one gets closer to the boundaries. For us, a refinement level is
the number of times we split the polyhedra close to the wall with respect
its resolution in the coarser region of the mesh. For instance a level 1 of
refinement means improving the spatial resolution a factor 2 with respect
the coarser region, and a level 2 to improve it a factor 4. In the Figure
3.7 we show an example of a mesh used in aorta with a refinement level
of 2. Notice that three sizes are present for the polyhedra. On the other
hand, the layer addition process shrinks the mesh after the refinement
to add extra polyhedra becoming gradually thinner as approaching the
wall. In the Figure 3.7 3 layers have been incorporated. All this features
can be settled in a parameter file, shown in A.2.

Our focus is on the WSS, which is related to the velocity variation in
the normal direction to the wall. Then, the refinement and layer addition
processes will be essential.

After the meshing processes, the mesh is stored in three principal files
containing the vertices, faces and patches. The first is called points and
is read by the next one, faces, which at the same time is read by the
latter, boundary. The structure of these files can be seen in the Figures
A.3, A.4 and A.5.
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Fluid properties

Properties about the fluid are settled in the file transportProperties.
There, we establish the kinematic viscosity ν and whether the fluid is
Newtonian or precise other constitutive relation.

On the other hand, if we want to apply some turbulence model, we
have to specify it in the file turbulenceProperties (see A.6). One can
set the keyword laminar, which means that no turbulence model is go-
ing to be applied, i.e. DNS. There are several turbulence models avail-
able.

Initial and boundary conditions

Boundary conditions and initial conditions are settled inside the di-
rectory case/0 (see Figure 3.6). Particularly, there exist one file per
variable to set these conditions.

For syntax reasons one always need to settle initial conditions, even
if we are in steady-state flow. Concerning boundary conditions, we are
applying the ones shown in (3.2). The file that settles these conditions for
the pressure is shown in the Figure A.7. Besides, we show in the Figures
A.8 and A.9 examples to settle a uniform and non-uniform boundary
condition for the velocity at the inlet. In the last case we have used a
parabolic profile as the one in the Figure 3.4.

There is no tool in OpenFOAM to apply a determined function as
boundary condition. Therefore, we have drawn a script in Python that
does this task. We do not show the details of this script but the structure
is presented as pseudo-code in the Box 3.1.

The main steps are the following. First, we read the files that contain
information about the location of the inlet faces. With this we are able
to compute the centroid of each face, where the velocity is settled by our
FVM. Then, we read some parameters from the reconstruction process
about the inlet: normal vector, center point and two semi-axis (the el-
lipse axis if a reconstruction method by ellipses has been used). If the
reconstruction takes into account a more general closed curve, we can
always obtain the ellipse that better reproduces the curve. Once we have
these data we can compute the elliptic coordinates of each face centroid
to compute the velocity of that point with the parabolic profile formula
(3.3). Then, an array with these velocities is created in agreement with
the sorting of the inlet faces by OpenFOAM. Finally, we can rewrite the
file case/0/U with these values of the velocity in the correct syntax.
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read points
read faces
read boundary
compute centroid_faces_inlet
read normal_vector
read center_inlet
read semi_axis
for each c ∈ centroid_faces_inlet

compute elliptic_coordinates
compute velocity_vector
append velocity_vector to velocities_array

end
for each v ∈ velocities_array

write v to case/0/U
end

Box 3.1: Pseudo-code of the scrip to settle a parabolic profile for the velocity as boundary
condition at the inlet.

When a turbulent model is selected additional boundary conditions
must be set, as in (3.4). There is no much mystery here once we have
explained how to do it for pressure and velocity. However, we show an
illustrative example with k in the Figure A.10, where we have used a wall
function for k.

Numerical resolution issues

Now, we explain the parameter files that control the numerical solu-
tion: controlDict, fvSchemes and fvSolution. In the first one, several
balance laws and algorithms of resolution can be established. In the ex-
ample shown in the Figure A.11, the keyword simpleFoam has been set,
which is an application for incompressible steady-state flows using SIM-
PLE algorithm. Here, we can also fix the time step, which is meaningless
in this case.

In fvSchemes the discretization strategy for the transient term, gra-
dients, divergences and laplacians is settled (see Figure A.12). Finally, in
fvSolution we put parameters concerning the SIMPLE algorithm and
iterative solvers for the algebraic linear systems that come from the
discretization process (see Figure A.13). There, a geometric multigrid
method called faceAreaPair has been set.
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The simulation is an iterative process. The solution of each iteration
of the SIMPLE algorithm is stored in directories. When a transient model
is applied the directories correspond to a specific time. WSS is computed
in a post process, after the numerical simulation, and it is also stored in
these directories.

3.3

Results

In the previous Sections we have introduced the tools to apply the
FVM to solve numerically the Navier-Stokes Equations in aorta.

The simulations have a twofold goal. One is based in geometrical
aspects. In this work we have a sample of aortas from Computerized
Tomography with aortic stenosis to which we apply the designed recon-
struction method to be validated here with CFD.

The other goal is the determination of how inlet conditions affect the
shear stress in a non-desirable manner and put some redress. We know
that low values of WSS are related to atherosclerosis [83]. To do so, we
first need to determine what model is more appropriate to this task. We
test a model based on the Navier-Stokes Equations (DNS), and also k− ϵ,
k−ω and SST k−ω models of turbulence. Once we have chosen our model
we will study the influence of three types of aortic valves: a healthy valve
and two prosthetic valves.

With the meshing tools of OpenFOAM, we build a preliminary mesh of
cubes of 2 mm, followed of a refinement process and finally adding some
additional layers to increase further the spatial resolution near the wall.
We will specify the maximum resolution in each problem.

In all simulations a linear Gauss finite volume discretization is em-
ployed for the balance laws, and we will combine a geometric multigrid
method with the Gauss-Seidel method as smoother. All this in the con-
text of the SIMPLE algorithm.
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Figure 3.8: Results of the streamlines from simulations with the original aorta (left) and
reconstructed aorta (right). Four different aorta patients are shown.

3.3.1

Validation of the reconstruction algorithm

In this Subsection we work with a mesh of volumes where a refine-
ment level of 2 has been applied. We also use 3 additional layers becom-
ing thinner and thinner until reaching a spatial resolution of 0.1 mm at
the aortic wall. The boundary conditions applied are the ones in (3.2)
with a parabolic profile for the inlet. DNS is to be applied in this part.

The following results show the differences between the original ge-
ometries and the reconstructed ones. We present four streamlines com-
parisons between original aorta (left) and reconstructed one (right) in the
Figure 3.8. And in the Figure 3.9 we show four WSS comparisons be-
tween original aorta (left) and reconstructed one (right).

Even though the results are very preliminary, the most noticeable
macroscopic WSS patterns that appear on the original aorta mesh are
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Figure 3.9: Results of the WSS profiles from simulations with the original aorta (left) and
reconstructed aorta (right). Four different aorta patients are shown.
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reproduced when using the reconstructed surface. This might indicate
that the proposed characterization would be able to store geometric in-
formation relevant to reproduce WSS profiles.

The proposed characterization of the geometry offers a low-dimensional
representation of the aorta that can be used as a characteristic vector for
statistical or Machine Learning analyses. By means of Statistical Shape
Modelling, a large dataset of aorta geometries can be generated to run
simulations and characterize different WSS profiles from the geometry.
Compared to other dimensional reduction techniques, such as Principal
Component Analysis or Neural Network approaches [76], our approach is
based on geometry and, thus, characteristics are more meaningful even
from a clinical point of view.

3.3.2

WSS analysis

Now, we focus our attention on one specific thoracic aorta and its
values of WSS. Particularly, we know that low values are related to
atherosclerosis [83]. We first need to determine what model is more ap-
propriate to this task. Once we have chosen the model, we will study the
influence of three types of aortic valves: a healthy valve and two pros-
thetic valves.

Our purposes have a health motivation here, so the choice of the
mesh plays a crucial role. A mesh independence analysis in this context
(see [106]) has determined that a level 5 of refinement plus an addition of
15 thinner and thinner layers is good enough to get stabilized WSS pro-
files. We will work with a mesh of 8.6 millions of volumes with maximum
spatial resolution of 50 µm at the aortic wall. The mesh used is shown
in the Figure 3.10.

Boundary conditions for pressure and velocity are the same of those
in the Subsection 3.3.1, expect for the velocity inlet conditions where we
apply those shown in the Figure 3.5. We use DNS and three RANS models
(k− ϵ, k−ω and SST k−ω) for the simulations. Boundary conditions over
the new turbulent variables are shown in (3.4).
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Figure 3.10: Aorta section showing the ultimate mesh used for the WSS analysis.

CFD model

First of all, we are determining which one is the most suitable model
for simulation. To do so we are using a healthy valve profile for the inlet
boundary condition. In the Figure 3.11 we show some simulations using
DNS, k − ϵ and k − ω models. The first row present streamlines and the
second one WSS profiles.

We described in the Subsection 2.2 the main features of k−ϵ and k−ω
turbulent models. The most remarkable result is the high values of WSS
provided by the k − ϵ in the descending aorta. Since this model does not
properly compute turbulence in regions with large pressure gradients
(such as the boundary layer) and strong accelerations (when the aortic
duct narrows), this model can be assumed to provide a poor approxima-
tion. On the other hand, we know that the k − ω model is sensitive to
boundary conditions of the turbulent variables at the inlet free stream,
which does not happen with the k − ϵ model. This explains the distinct
behaviour of streamlines computed with k − ω model in the cavity of the
aorta.

One would expect that the SST k−ω model, which combines good fea-
tures of both model, will work better. In the Figure 3.12 simulations with
this turbulence model can be found for three inlet boundary conditions,
each one reproducing the behaviour of a type of aortic valve. Focusing
in the healthy valve, the cavity flow computed with this model looks like
the one computed with k − ϵ model, which is most reliable in this region,
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(a) DNS model and healthy valve. (b) k − ϵ model and
healthy valve.

(c) k − ω model and
healthy valve.

Figure 3.11: Streamlines (above) and τw/ρ profiles (below) obtained with different turbu-
lence models. All units in the SI.

and the WSS profile has more resemblance with the one computed with
k−ω model, the one that behaves better near the wall. Performing a DNS
seems in good agreement with SST k − ω model. Nevertheless k is an
essential parameter in the study of diseases like stenosis or coarctation.
Besides a turbulent model is more efficient computationally in certain
contexts (see Section 2.2). Then, we claim that the SST k − ω model is
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more suitable for the task addressed here.

(a) SST k − ω model and
healthy valve.

(b) SST k − ω model and
bileaflet valve.

(c) SST k−ω model and tilting
disk valve.

Figure 3.12: Streamlines (above) and τw/ρ profiles (below) obtained with different turbu-
lence models. All units in the SI.
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Influence on the type of valve

Now, we focus on the profiles of the Figure 3.12 to analyse the influ-
ence of the inlet boundary condition, trying to extract some conclusions
about aortic valves. Streamlines obtained in ascending aorta with the
three types of valve are trustable when comparing with experimental and
theoretical works [54, 133]. Regarding the effect of the valve type, it
clearly affects the WSS profile. We consider a critical value of 0.5 Pa
under which there is risk of atherosclerosis appearance, see [83]. The
Figure 3.13 shows a detailed analysis of the influence of valve on the
WSS values. We analyze 7 sections along the aorta, Si for 1 ≤ i ≤ 7. S1, S2
and S3 are placed in the ascending aorta where the results are more
trustworthy. We can see that in the case of the bileaflet valve almost
16% of S1 is in risk, the highest value of the analysis, meanwhile 10%
with the tilting disk valve and 2% with the healthy valve. In S2 there is
no region in risk for any valve and in S3 we have 6%, 5% and 4% for the
healthy, bileaflet and tilting disk valve, respectively.

Figure 3.13: Location of the selected aortic sections for the WSS analysis (left) and his-
tograms showing, for each section and for the three valves studied, the percentage of
points with ananomalous values of WSS (right).

Sections S4 and S5 are placed at the aortic arch where we have sup-
pressed the supraortic arteries. These arteries suppose the 30% of the
entire flow. Besides, in this region the geometry is highly modified be-
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cause of this. Then, the results in this zone are to be ignored. Similarly,
the values on the descending aorta are not trustable. Although the ge-
ometry is not altered there, the lack of flow may be determinant in this
analysis. Nonetheless, we observe in an increase of the risk region with
artificial valves.

3.4
Final remarks

The reconstruction method for aorta geometries has been capable to
capture the general behaviour of WSS patterns. However, it is still at an
early stage and requires further improvement. First of all, there are some
free parameters, such as the number of elliptic cross sections, or the de-
grees of freedom of the centerline that need to be fixed to have an stan-
dard characterization. The proper selection of these and other parame-
ters needs to be done using a larger sample of aortas to determine which
are more discriminant of the intra-population variations. The method, in
its current form, does not reconstruct the sinuses of Valsalva and is not
able to build the main aorta branches. Using a centerline extraction that
is able to reproduce branching would enable this feature. The location
and orientation of these branches should also be considered as relevant
features.

On the other hand, we concluded that the SST k − ω model was the
most reliable in WSS studies as it posses the good properties from both
k − ϵ and k − ω. Besides, it calculates the turbulent kinetic energy k,
which is important in the study of cardiovascular diseases and it is com-
putationally cheaper than applying DNS.

Concerning the study of WSS values and aortic valves, we have ob-
served the following: the inlet boundary conditions that model the two
prosthetic valves contribute, in general, to increase the region with risky
WSS values. The bileaflet valve does it in a minor level than the tilting
disk valve in the ascending aorta. According to this we affirm that hu-
man biology has made a good work and whenever a prosthetic valve is
needed we will support the bileaflet valve above the tilting disk one.

Of course, this is a very preliminary analysis. Future studies must
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include the addition of the supraortic arteries. Besides, transitory sim-
ulations, to take into account the whole cardiac cycle, are needed. By
doing so, we will be able to compute other hemodynamic variables of in-
terest as OSI or TAWSS [131]. Also a fluid-structure interaction should
be considered to get a complete study of genesis of cardiovascular dis-
eases.





4
Overview about
Relativity and

Gravitation

The forecoming chapters will be framed in the Theory of Relativity ei-
ther with or without gravitation. Then, we include here an introductory
chapter to establish the basic concepts and notions about this theory.
The contents herein are a summary of the references [102, 125, 51, 50,
130]. The Theory of Relativity supposes a change of paradigm in the no-
tion of space and time. The time will no longer be an absolute quantity
in which every observer or detector agrees, but it becomes an observer
dependent quantity, as it will be space. We begin introducing the theory
of Special Relativity and then extend it to General Relativity, a theory to
describe gravitation, based on the Einstein Equations. We will continue
describing some analytical solutions of the Einstein Equations and fin-
ish with a section about Numerical Relativity, where the equations are
rewritten to make them suitable for numerical simulations.
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4.1
Special Relativity

Special Relativity was published by Einstein in 1905. It is framed in
the context of non-accelerated observers and in the absence of gravity,
which will be addressed the next section. The theory is supported by two
initial postulates which involve the notion of inertial (non-accelerated)
observer. We will assume both of them as true over the manuscript.
They are called Einstein Postulates and read as follows:

1. Any inertial observer perceives the same laws of physics.

2. The speed of light in vacuum detected by any inertial observer has
always the same value.

The constant value of the speed of light will be denoted c from now
on. As noticed both postulates involve important symmetry arguments.
The second has an interesting causality motivation. Einstein realized
that should this not be case, some inertial observers would detected the
effect before the cause. And this could not happen for him. Many ex-
periments have checked the constant value of the speed of light. The
most famous is the Michelson-Morley experiment. The established value
is c = 299.792.458 m/s

4.1.1
New description of space and time

Let us consider an inertial observer O. Any event will be tag by four
quantities (t, x, y, z) by O, which are referred as coordinates measured by
O. The first one will be the time and the latter three the spatial position
as perceived by O, in Cartesian coordinates. Let us consider two events
labeled by the coordinates (t1, x1, y1, z1) and (t2, x2, y2, z2). ∆t = t2 − t1 is
the lapse of time measured by O between the events. Now, we define the
spacetime interval of the two events as the quantity

∆s2 := −(c∆t)2 +∆x2 +∆y2 +∆z2. (4.1)
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Suppose there exist another inertial observer O′ moving at constant speed
V with respect O. The constant value of the speed of light implies that the
new observer O′ will measure another set of coordinates for both events.
If O′ moves alongside the x-direction of O, their coordinates are related
by the expressions

ct′ = Γ(ct− V x/c), x′ = Γ(x− V t), y′ = y, z′ = z. (4.2)

where Γ = (1 − V 2/c2)−1/2 is the Lorentz factor, to be properly defined
later. It turns out that the spacetime interval (4.1) is preserved when
the coordinates are substituted by the ones detected by O′. Hence, dis-
covering that it is a conserved quantity, no matter the inertial observer
who is taking measures. We say that the coordinate change (4.2) is
a Lorentz transformation. So, the spacetime interval is preserved by
these transformations. In this manner, we have found an absolute (non-
observer-dependant) quantity which allow us to define the following met-
ric of spacetime in Cartesian components:

ηαβ = diag(−1, 1, 1, 1), (4.3)

to be applied over the affine space M constituted by the set of points of
all events. In other words, the vectors of this affine space are endowed
with the scalar product

⟨v,u⟩ = ηαβv
αuβ. (4.4)

We also write ⟨v,u⟩ = vαu
α, with vα = ηαβv

α. Of course, the scalar product
(4.4) is a Lorentz invariant. The affine space M is dimension 4 and en-
dowed with the metric (4.3) is called Minkowski spacetime or flat space-
time. As seen, the signature of the metric is (1, 3), so it is a Lorentzian
metric.

The interval expressed in differential form takes the form

ds2 = ηαβdx
αdxβ. (4.5)

We denote x0 = c t as a rescaled time coordinate and xi are the spatial
Cartesian coordinates. The differential expression of the spacetime in-
terval (4.5) in some coordinates will be a regular form for presenting the
metric of the spacetime in those coordinates.

If two event satisfy that ∆s2 < 0 they are said to have a timelike
separation. For those events there exists an inertial observer for which
∆l = ∆x2 +∆y2 +∆z2 = 0 and we define the proper time as the measured
by this observer,

τ :=
√

−∆s2/c. (4.6)
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Similarly, the vectors for which vαv
α < 0 are called timelike vectors. On

the other hand, those events with ∆s2 > 0 are said to have a spatial sep-
aration. There exists an inertial observer for which both events occur
at the same time. The length measured by this observer between both
events is called proper length, l := ∆s2, and a vector such that vαvα > 0
is called spacelike vector. Finally, if ∆s2 = 0 both events are said to be
connected by a null separation and a vector such that vαvα = 0 is called
null vector.

A curve of spacetime C can be described by four functions xα(λ), for
which each value of the parameter λ give the spacetime coordinates of
the particle with respect some inertial observer. We say that a curve
is timelike, spacelike or null if its tangent vector has the same charac-
ter. A timelike curve can be parametrized by the proper time τ , a more
convenient choice as it is Lorentz invariant. Then, the four-velocity of a
timelike curve is defined as

vα :=
1

c

dxα

dτ
. (4.7)

Notice that the components of the four-velocity do not have physical di-
mensions. One can easily show that vαvα = −1. We define the four-
acceleration of the curve as

aα :=
1

c

dvα

dτ
. (4.8)

It can be checked that this is a spacelike vector.

Despite the fact that the notion of observer can be intuitively realized
as a person with some kind device to take measures, some books make
a rigorous mathematical definition. We say that a set of four vector fields
(eα) is a local frame if it is a right-handed orthonormal basis of M for all
point p ∈M and each element eα is differentiable. A local frame is said to
be alongside a timelike curve C if it satisfies e0(p(λ)) = v (the four-velocity
of the curve), where p(λ) ∈ C . Then, an observer is defined as the set of a
timelike curve and local frame alongside this curve. Moreover, an inertial
observer is defined such that it satisfies

eα(λ)

dλ
= 0,

so they always move in straight lines.
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4.1.2
Kinematics of a particle

Let us consider the movement of a particle. The trajectory of the par-
ticle will be a curve described by some coordinates (xα) according to an
inertial observer. Suppose that the trajectory of the particle is a time-
like curve of spacetime. Particles that follow spacelike trajectories are
called tachyons, and its existence would provoke some causality issues.
Choose the proper time τ as a parameter of the timelike curve. It can be
seen as the time measured by a clock attached to the particle. Be v the
four-velocity of the particle and let us call V i = dxi/dt the usual velocity
of classical mechanics. Then, the four-velocity can be express as

vα = Γ(1, V i/c), (4.9)

where we have defined the Lorentz factor of the particle as

Γ :=
dt

dτ
. (4.10)

One can easily show the following formula

Γ =
1√

1− (V/c)2
. (4.11)

with V =
√
(V x)2 + (V y)2 + (V z)2. The four-momentum of a particle of

mass m is defined as
pα := mvα. (4.12)

It satisfies
pαp

α = −m2. (4.13)

The component p0 have a significance relevance. If we expand in Taylor
expansion up to V 2 we get

c2 p0 = mc2 +
1

2
mV 2 + ... (4.14)

The first term mc2 in the righthand side is called rest energy of the par-
ticle, and in the second one we recognize the kinetic energy of classical
mechanics. Then, we define the energy of the particle ε as c2 p0 and the
following expressions hold

pα = (ε/c2, P i/c), ε = Γmc2, (4.15)



58 4.1. Special Relativity

where we have defined the momentum of the particle P i = ΓmV i, which
is the one perceived by the inertial observer.

Particles that follow null trajectories travel at the speed of light. In-
deed

ds2 = −c2dt2 + dl2 = 0 =⇒ c = dl/dt = V (4.16)

Thus, they cannot be parametrized by the proper time τ , as dτ = −ds2/c =
0. Let us consider a parameter λ realized as the quotient τ/m if the
particle moved close but strictly below c and had mass m. The four-
momentum of the particle is defined as

pα =
dxα

dλ
. (4.17)

This expression resembles that for the timelike particle (4.12). Then, as
it follows a null curve, it satisfies

pαp
α = 0, (4.18)

from which, according to (4.13), we affirm that the particle must have
zero mass m = 0.

Particles moving at the speed of light are massless. According to
Planck’s formula massless particles have energy ε = hf , with f the as-
sociated frequency by quantum physics and h the Planck constant. It is
often to write the four-momentum of a massless particle as

pα = (ℏω/c2, ℏKi/c), ω = cK (4.19)

where ω = f/2π, ℏ = h/2π, Ki is the wave vector and K its modulus. The
wave vector determines the direction of propagation and is also identified
with the (three) momentum of the massless particle.

4.1.3
Hydrodynamics

In classical fluid dynamics, the matter an momentum conservation
lead the to the Navier-Stokes Equations or the Euler Equation in the
absence of viscous stresses. They involve quantities as mass density
or momentum. In Special Relativity mass, momentum and energy are
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observer dependant magnitudes. Then, it will be very convenient to write
conservation laws in a non observer dependant form.

Let us define the matter density ρ and the internal energy density ϵ
of the fluid as those quantities that would measure an observer moving
with the fluid particles. This type of observer is called comoving observer.
The total energy density is µ = ρc2 + ϵ. Now, for our purposes, we define
the matter-current four-vector jα such that:

j0 is the matter density,

cjk is the matter flux in the xk-direction,

measured by an inertial observer. We consider now the four-velocity vα

of the fluid. The following relation can be demonstrated:

jα = ρvα. (4.20)

and the matter conservation can be described by the expression

∂αj
α = 0. (4.21)

It also can be expressed as

dρ

dτ
+ ρ∂αv

α = 0, (4.22)

where dρ/dτ = vα∂αρ. This equation is the generalization of the mass
conservation equation (2.1a) to Special Relativity.

Conservation of energy and momentum can be written in a simi-
lar form with the help of the energy-momentum tensor. The energy-
momentum tensor is a (2,0)-tensor Tαβ defined such that

T 00 is the energy density,

cT 0j is the energy flux in the xj-direction,

c−1T j0 is the j-component of momentum density,

T jk is the j-momentum flux in the xk-direction, specifically T jk is
the pressure in the xj-direction,

all quantities measured by the inertial observer. Energy and momentum
conservation can be written as

∂αT
αβ = 0. (4.23)
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Let us take a perfect fluid model. This type of fluid is characterized by not
accounting for viscous effects or shear stresses. Its energy-momentum
tensor is

Tαβ = (µ+ p)vαvβ + pηαβ. (4.24)

If we develop the expression (4.23) and project it over the direction of vα

we obtain the conservation equation for the energy:

dµ

dτ
+ (µ+ p)∂αv

α = 0 (4.25)

On the other hand, the orthogonal part to vα leads to the momentum
conservation equation

(µ+ p)
dvα

dτ
+ (ηαβ + vαvβ)∂βp = 0. (4.26)

which is the relativistic version of the Equation (2.1b) without viscosity,
i.e. it is the relativistic Euler Equation. The classical version is recovered
in the limit c → ∞, or put in another way, when the velocities are much
smaller than c.

4.1.4
Electrodynamics

Electric E and magnetic B fields are observer dependant magnitudes
too. The equations describing its dynamics are the so-known Maxwell
Equations

∇×E = −∂B
∂t

, ∇ ·E =
q

ε0
,

∇×B = µ0J + µ0ε0
∂E

∂t
, ∇ ·B = 0,

(4.27)

where ε0 is the permitivity of vacuum, µ0 the permeability of vacuum, q
the charge density and J the charge-current density. When the charged
matter is moving in vacuum, we simply have J = qV with V the velocity
of the charged particles.

Wave solutions of the Maxwell Equations are called electromagnetic
waves and are a description of the wavelike behaviour of light. It turns
out that its propagation speed in vacuum is equal to (ε0µ0)

−1/2 which
must coincide with c.
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A spacetime observer independent form can be derived for Maxwell
Equations. For this task we define the electromagnetic tensor field Fαβ

which is defined such that Fαβ = −F βα, F 0j = Ej/c and F ij = ϵijkBk,
where ϵijk is the totally antisymmetric spatial Levi-Civita symbol. We
define too a charge-current density four-vector

kα = qvα (4.28)

where q is the charge density measured by an observer attached to the
charged particle element. It has an analogous interpretation to the mat-
ter current four-vector jα: k0 is the charge density and kj the charge flux
density in the xj-direction as perceived by an inertial observer. Then, the
Maxwell Equations can be cast as

∂βF
αβ = µ0k

α, ∂βF
∗αβ = 0. (4.29)

where F ∗αβ = (1/2)ϵαβγδFγδ is the dual electromagnetic tensor, with ϵαβγδ

the totally antisymmetric spacetime Levi-Civita symbol. The antisymme-
try of the electromagnetic tensor enforces ∂α∂βFαβ = 0 which translates
in

∂α(qv
α) = 0, (4.30)

finding the charge conservation equation.

We know that the electromagnetic field carries energy, momentum
and stresses. The latter two are represented by the Poynting vector and
the Maxwell stress tensor. This is compatible with the following definition
for the energy-momentum tensor of the electromagnetic field:

Tαβ =
1

µ0

(
FαγF β

γ − 1

4
ηαβFγδF

γδ

)
. (4.31)

In this case, a conservation law for energy and momentum similar to the
one found for a perfect fluid does not exits. Indeed,

∂βT
αβ = −Fα

γ k
γ . (4.32)

This makes sense as the electromagnetic field exerts forces and inter-
changes energy with charged particles. Precisely, the spatial compo-
nents of (4.32) are related to the Lorentz force. On the other hand, an
isolated system constituted by a fluid interacting with the electromag-
netic fields must preserve energy and momentum. In that case, the
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energy-momentum tensor of the whole system include both fluid and
electromagnetic contributions Tαβ

total = Tαβ
fluid + Tαβ

EM, and it will satisfy

∂αT
αβ
total = 0. (4.33)

Taking the model of perfect fluid, this relation drives to

(µ+ p)
dvα

dτ
+ (ηαβ + vαvβ)∂βp+ c2qFα

β v
β, (4.34)

which we call relativistic magnetohydrodynamic Euler Equation.

Ohm’s law

When the charged matter is moving in the interior of some material
we have to add a contribution to the charge-current density J . According
to Ohm’s law, in the comoving frame, this contribution reads

J = σE (4.35)

where σ is the conductivity of the material. The quantity η = 1/σ is
referred as resistivity. Notice that J is an observer dependant magnitude.
It can be shown (see [120]) that in a general inertial frame the expression
transforms into

J = ΓqV + σΓ (E + V ×B + (E · V )V ) . (4.36)

The expression of the charge-current density four-vector takes the form

kα = qvα + σFα
β v

β. (4.37)

When Ohm’s law is taken into account we talk about Resistive Relativistic
Magnetohydrodynamics. On the other hand, ideal magnetohydrodynam-
ics is the limit σ → ∞ or η → 0. In that case, the electromagnetic field
satisfy the next relations

E = −V ×B, (4.38)
∂B

∂t
= ∇× (V ×B). (4.39)

So the electric field is derived from an algebraic equation. The limit σ →
∞ is a particular case of a more general behaviour that arise in the area
of partial differential equation. Consider a balance law with a source
term. When a term inside the source is associated to phenomena of
very different temporal scales, and where the source terms associated to
them show factors which can potentially be several orders of magnitude
higher than the others source terms, the balance law is said to be stiff,
and those terms are refereed to stiff terms.
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4.2
General Relativity

General Relativity is the theory of gravitation Einstein developed in
1915 [38]. It is written in the language of differential geometry. Then,
some aspects about it will be outlined, although we will assume that
some semantics of this area are previously known.

4.2.1
Differential geometry

The spacetime is defined as a four-dimensional differential manifold
M endowed with a Lorentzian metric g. The pair (M, g) is called pseudo-
Riemannian manifold. We denote ∇ an affine connection on M. Be u
and v two vector fields, we denote the covariant derivative of v respect to
u as ∇uv.

A set of vector fields (eα) in M is said to be a local frame if the con-
ditions established in the previous Section for a local frame are satisfied
for all p ∈ M in the tangent space Tp(M). The connection coefficients
Γµ

αβ associated with ∇ are defined as the scalar fields such that

∇eβ
eα = Γµ

αβeµ. (4.40)

An affine connection is said to be torsion-free if for any scalar field f ,
the bilinear form ∇∇f is symmetric. The Levi-Civita connection is the
unique torsion-free affine connection satisfying ∇g = 0. In that case the
connection coefficients are called Christoffel coefficients. Consider some
coordinates (xα) and the associated coordinate basis (eα) = (∂α). In that
case, the Christoffel coefficients are computed as

Γµ
αβ =

1

2
gµλ (∂αgλβ + ∂βgλα − ∂λgαβ) , (4.41)

where gµν is defined as the inverse of the metric gµν, i.e. gµλgλν = δµν ,
where δµν is the Kronecker delta. The tensor indexes are raised and
lowered with gµν and gµν.



64 4.2. General Relativity

Given a vector field v, we define (1, 1)−tensor ∇v such that component
by component in the coordinate basis is expressed as:

∇µv
ν = ∂µv

ν + Γν
µλv

λ. (4.42)

Check [50] for more details. This definition can be generalized to any
tensor field T :

∇µT
µ1... µk

ν1... νl
= ∂µT

µ1... µk
ν1... νl

+
k∑

i=1

Γµi

λµT
µ1...

i
↓
λ... µk

ν1... νl

−
l∑

j=1

Γλ
νjµT

µ1... µk
ν1... λ

↑
j

... νl
.

(4.43)

4.2.2
Curvature

General Relativity is lean on the Einstein’s equivalence principle, which
can be formulated as follows:

It is impossible to detect the presence of gravity within the boundaries
of a small enough free-falling laboratory in a gravitational field.

This idea, along with the mental experiment of bend of light in an ac-
celerated frame, drove Einstein to connect gravity with the curvature of
the spacetime. Curvature manifests itself when a vector field v is paral-
lely transported from one point to another through different curves. In
an euclidean space, a parallelly transported vector field does not depend
on the curve it is transported through. But when curvature is present
this is no longer the case. This mismatch is captured in the lack of com-
mutativity of two successive covariant derivatives over a vector field. It
can be demonstrated that the tensor field (∇α∇β −∇β∇α)v

µ evaluated at
p ∈ M not only is distinct from zero in general but it uniquely depends
on the values of the vector vµ(p) [130]. This defines the components of
the Riemann tensor field R:

(∇α∇β −∇β∇α)v
µ = Rµ

ναβv
ν . (4.44)
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The relation can be extended to any tensor field:

(∇α∇β −∇β∇α)T
µ1... µk

ν1... νl
=

k∑
i=1

Rµi

λαβT
µ1...

i
↓
λ... µk

ν1... νl

−
l∑

j=1

Rλ
νjαβ

Tµ1... µk
ν1... λ

↑
j

... νl
.

(4.45)

The Riemann tensor can be expressed in terms of the Christoffel coeffi-
cients:

Rµ
ναβ = ∂αΓ

µ
νβ − ∂βΓ

µ
να + Γµ

λαΓ
λ
νβ − Γµ

λβΓ
λ
να. (4.46)

A spacetime is said to be flat or has no curvature when Rµ
ναβ = 0. Then,

if no curvature is present the operator ∇∇ is always commutative and
General Relativity reduces to Special Relativity. When the Christoffel co-
efficients are zero the spacetime is flat, but the reciprocal is not true.
They may not the be zero in a flat spacetime, a reason that can come
from the complexity of the charts used to cover the full spacetime. The
Riemann tensor encodes the full information about geometry of space-
time and it is a measurable quantity (see [130] for some techniques). One
can easily check the following symmetries of the Riemann tensor:

Rµν(αβ) = R(µν)αβ = Rµ[ναβ] = 0, Rµναβ = Rαβµν , (4.47)

where the indices between parenthesis mean to apply the action of anti-
symmetry A(αβ) = Aαβ −Aβα, and the indices between brackets mean the
action of symmetry A[αβ] = Aαβ +Aβα.

4.2.3
Geodesics

The timelike, spacelike and null character of a vector field or a curve
is defined as in Special Relativity but considering the metric tensor gαβ.
The proper time is also defined equivalently,

τ :=

∫ √
−ds2/c =

∫ √
−gαβdxαdxβ/c. (4.48)

In a flat spacetime the curves with zero four-acceleration are timelike
straight lines. The four-acceleration in flat spacetime was defined in
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(4.8). The generalized four-acceleration of a particle, with four-velocity
field v, in a curved spacetime is

a :=
Dv

dτ
:= ∇vv. (4.49)

And the generalization of a straight line will be the curve satisfying a = 0.
Such a curve is called geodesic. Choosing some coordinates xα, a curve
is a geodesic if the equation

d2xα

dτ2
+ Γα

βγ

dxβ

dτ

dxγ

dτ
= 0 (4.50)

holds. The last equation is called geodesic equation. If gravity and geom-
etry are the same, it turns out that the curves of the free-falling particles
in a gravitational field are identified with the geodesics of the spacetime.

4.2.4
Recovery of Newtonian gravity

For instance, in Newtonian gravity spacetime is flat and the classical
acceleration of a particle is (∇⃗Φ), where Φ is the Newtonian potential
satisfying the elliptic equation

∇⃗2Φ = 4πGρ (4.51)

where ρ is the matter density and G the universal constant of gravitation.
The equation of motion for a particle in a gravitational field is

dV i

dτ
= −∂iΦ,

which can also be written as

d2x0

dτ2
= 0,

d2xi

dτ2
+
∂Φ

∂xi

(
dx0

dτ

)2

= 0. (4.52)

The change of paradigm of the equivalence principle says that this has to
be the geodesic equation of a free particle in a curved spacetime. Com-
paring the Equations (4.50) and (4.52) one can get the Christoffel coeffi-
cients of a Newtonian-curved spacetime:

Γi
00 =

1

c2
∂Φ

∂xi
, Γα

βγ = 0 otherwise. (4.53)
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From the last expressions we get the Riemann tensor easily:

Ri
0j0 = −Ri

00j =
1

c2
∂2Φ

∂xi∂xj
, Rµ

ναβ = 0 otherwise. (4.54)

Now we define the Ricci tensor in terms of contractions of the Riemann
tensor as Rµν = Rα

µαν , and the scalar curvature as R = Rµ
µ. In Newtonian-

curved spacetime only the component R00 is distinct to zero and the fol-
lowing relation holds:

R00 =
4πG

c2
ρ. (4.55)

This can be viewed as a partial differential equation to determine the
metric tensor. A solution expressed in Cartesian coordinates is

ds2 = gµνdx
µdxν = −

(
1 +

2Φ

c2

)
d(ct)2 + δijdx

idxj . (4.56)

This metric tensor encompass all phenomena in Newtonian gravity.

4.2.5
Einstein Equations

The metric tensor (4.56) does not predict the bending of light or the
correct measure of the precession rate of the perihelion of Mercury. What
is the equation that accurately describes the relationship between the
distribution of matter and spacetime? Einstein was influenced by the
Mach’s principle, which asserts that the geometry of spacetime is deter-
mined by the distribution of matter of the universe.

Consider the energy-momentum tensor of a perfect fluid (4.24) with-
out pressure, Tαβ = µ vαvβ. The classical limit is recover if c → ∞. In
that case, T 00, T00 → ρc2 as long as ρc2 ≫ ϵ. Then, in view of the Equation
(4.55), one could think that

Rµν =
4πG

c4
Tµν , (4.57)

is the correct equation to describe gravity. In fact, this equation was pos-
tulated by Einstein. Now, remember that energy and momentum conser-
vation is expressed through the Equation (4.23) in Special Relativity. If
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gravity is the same as curvature of spacetime, the partial derivative in
the energy-momentum conservation equation must be changed by the
Levi-Civita connection, getting

∇αT
αβ = 0. (4.58)

This fact would imply that ∇µR
µν = 0, according to (4.57). Should this

be the case, the relation ∇µR = 0 is obtained, and hence ∇µT = 0, a huge
and poor realistic constrain for the matter. If we instead introduce the
Einstein tensor

Gµν := Rµν −
1

2
gµνR (4.59)

there is no longer conflicts with conservation laws. Then, we end up with
the equation

Gµν =
8πG

c4
Tµν , (4.60)

which are the Einstein Equations, and they are the correct description
of gravity we were looking for: the General Relativity equations. The
Einstein Equations are a system of ten coupled second order non-linear
partial differential equations. The symmetries of the Riemann tensor
leave only six independent components, which leave us the freedom to
choose four extra condition, called gauge conditions. This refers to the
ability to select a system of coordinates.

4.3
Solutions of the Einstein Equations

The Einstein Equations are solvable analytically only in high-symmetry
scenarios. In the following we will show solutions in spherical and axial
symmetry.

4.3.1
Spherical symmetry

A famous solution of the Einstein Equations is the one found by Karl
Schwarzschild to describe the exterior region of a compact spherical dis-
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tribution of matter. This region is called Schwarzschild spacetime and it
is described by the following metric tensor:

ds2 = −
(
1− RS

r

)
d(ct)2 +

(
1− RS

r

)−1

dr2 + r2(dθ2 + sin2 θdϕ2), (4.61)

where RS = 2GM/c2 is the Schwarzschild radius and M is identified by
the mass of a spherically symmetric central body. The coordinates used
to express the metric tensor field (4.61) are called Schwarzschild coor-
dinates, and they are well adapted to the symmetry of the problem. In
the spatial infinity r → ∞ Minkowski spacetime is recovered and the
spatial coordinates are the usual spherical coordinates. If the matter
distribution is concentrated below r = RS, we call black hole region the
one for which r < RS. Birkhoff’s theorem [15] establishes that, up to
a potential coordinate transformation, the spacetime in the empty area
outside of a spherically symmetric object is equivalent to a portion of the
Schwarzschild spacetime.

Schwarzschild coordinates have the advantage to ease calculations
finding a solution of the Einstein Equations. However, one can see that
they are bad behaved at r = RS, the event horizon, which translates
in a freezing of the coordinate time as a particle approaches this point.
To illustrate this, consider a falling particle approaching r = RS and
following the curve

dr

dt
= −V

(
1− RS

r

)
, (4.62)

where V is a constant and can be proven to be the velocity measured
by a static observer, with spatial coordinates constant. This curve is not
a geodesic of this spacetime but this choice makes calculations simpler.
Let us suppose that the particle departs from r0 > RS at t = 0. Then, the
curve of the particle is

r − r0 +RS log

(
r −RS

r0 −RS

)
= −V t, (4.63)

We see that the particle r → RS when → ∞. The proper time measured
by the static observer of the travel from r0 = r(0) to r = r(t) is

τ =

∫ t

0
dτ =

∫ t

0

√
−ds2/c =

∫ t

0

√
1− RS

rO
dt, (4.64)

where rO is the fixed radial position of the observer. Then, limr→RS
τ = ∞.

So according to the static observer the particle never touches the event
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horizon. The particle would have been a falling timelike geodesic if V in
(4.62) had been changed by

V (r) = c

 RS
r − RS

r0
+
(
U
c

)2 (
1− RS

r

)
1− RS

r0

1/2

,

with U the velocity at r0 > RS [119]. Supposing that it departs at zero
velocity from the spatial infinity, it rests V (r) = c

√
RS/r. In any case,

the time measured by the static observer would have been infinity with
trickier computations.

We can show that this problem is an issue derived from Schwarzschild
coordinates: it is a coordinate singularity. Let us make a change t → T
in the coordinate time:

cT = ct+ 2RS

(√
r

RS
+

1

2
log

(√
r/RS − 1√
r/RS + 1

)]
. (4.65)

The tensor metric in these new coordinates takes the form

ds2 = −d(cT )2 +
(
dr +

√
RS

r
d(cT )

)2

+ r2(dθ2 + sin2 θdϕ2). (4.66)

The new coordinates are called Gullstrand-Painlevé and they have not
any singularity at r = R. Suppose a particle following the curve

dr

dT
= −c

√
RS

r
. (4.67)

Notice that it becomes greater than c when the event horizon is crossed.
This is not in disagreement with the theory of Relativity, or has any
causality issues, because is not a velocity measured by an inertial ob-
server. Notice that the static observer is not inertial.

One can easily see that the newly introduced coordinate time T is the
proper time associated with the observer (4.67). If r = r0 is the position
at T = 0, one can easily integrate and have an explicit expression for the
curve:

2

3

(
r0

√
r0
RS

− r

√
r

RS

)
= cT. (4.68)

Then, if r0 > RS, the particle can cross the event horizon in a finite time.
It is not hard to see that the previous curve is a timelike geodesic. We
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have found that T is well-behaved at r = RS, which definitely proves that
t is bad-behaved if we check (4.65).

On the other hand, the point r = 0 is also reached in a finite time. This
is a real singularity that cannot be avoided. This type of singularities
have been studied since the publication of the General Relativity during
many years. Oppenheimer and Snyder in 1939 [94] proved that, indeed,
there exists a solution of the Einstein Equations in which a spherical
symmetric stellar collapse is continued indefinitely, when the mass of
the object is big enough. Certainly, once a specific radius is reached,
the gravitational quantum effects would come into play, thus requiring
a more comprehensive examination of the scenario. To get more insight
about the phenomena of singularities we address the reader to the Pen-
rose’s article [99], merit to the Physics Nobel Prize in 2020.

4.3.2
Axial symmetry

For completeness reasons we give another example of solution of the
Einstein Equations that gets rid of spherical symmetry and goes to the
next step: axial symmetry. The spacetime here described is referred as
Kerr spacetime. The contents presented in this Subsection are a sum-
mary of the reference [129]. This spacetime can be described by the Kerr
coordinates, for which the metric tensor reads:

ds2 = −
(
1− RS r

r2 + a2 cos2 θ

)(
d(cu) + a sin2 θdφ

)2
+2
(
d(cu) + a sin2 θdφ

) (
dr + a sin2 θdφ

)
+
(
r2 + a2 cos2 θ

) (
dθ2 + sin2 dφ2

)
,

(4.69)

where RS is the Schwarzschild radius, previously defined. M can be
identified with the mass of a rotational object with constant angular mo-
mentum J = Ma. Unfortunately there not exists any Birkhoff’s theorem
in axial symmetry. The best we can do is stating that a in the outer region
of an axisymmetric object the spacetime approaches the Kerr spacetime
asymptotically, as one gets closer to spatial infinity.

Kerr coordinates have curvature singularity at the region

r2 + a2 cos2 θ = 0 ⇐⇒ r = 0 ∧ θ =
π

2
. (4.70)
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It turns out that this does not correspond to a point but to a ring around
the equator. It is referred as ring singularity. In Kerr coordinates we do
not have any other singularity, nor curvature-like nor coordinate, but
the metric have many off-diagonal terms, which can make computations
tedious.

It may be convenient to work with another set of coordinates. By the
coordinate transformation u→ t, φ→ ϕ defined by

u = t+ r +RS

∫
r dr

r2 −RSr + a2
, φ = −ϕ− a

∫
dr

r2 −RSr + a2
, (4.71)

we get the so-called Boyer-Lindquist coordinates, for which the metric
tensor reads:

ds2 = −
(
1− RS r

r2 + a2 cos2 θ

)
d(ct)2 − 2

(
RS r a sin

2 θ

r2 + a2 cos2 θ

)
d(ct)dϕ

+

(
r2 + a2 cos2 θ

r2 + a2 −RSr

)
dr2 +

(
r2 + a2 cos2 θ)dθ2

+

(
r2 + a2 +

RS r a
2 sin2 θ

r2 + a2 cos2 θ

)
sin2 θdϕ2,

(4.72)

where there is only one off-diagonal component. In the limit r → ∞ we re-
cover Minkowski spacetime and the spatial coordinates become the usual
spherical coordinates. We also get a richer description of the spacetime.
The ring singularity holds in the same region, since r and θ have not been
changed. However, due to the change of coordinates, we find two coordi-
nate singularities: an outer and an inner event horizon, with equations
given by

r± =
RS

2
±
√(

RS

2

)2

− a2. (4.73)

In the case of a = 0, the previous expression degenerates to, on one
hand, the event horizon and, on the other hand, the central curvature
singularity of the Schwarzschild spacetime. We find also another type
of surfaces called stationary limit surfaces. We find an outer and inner
stationary limit surface described by the equations

rSL
± =

RS

2
±
√(

RS

2

)2

− a2 cos2 θ. (4.74)

In the region between these two surfaces is impossible for any particle to
stand still. We see that

rSL
+ ≥ r+ ≥ r− ≥ rSL

− . (4.75)
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The region between the outer stationary limit surface and the outer event
horizon is called ergosphere and it is characterized by the fact that any
particle cannot stand still, although they can reach spatial infinity. More
features about the behaviour of this spacetime can be found in [129].

4.4
Numerical relativity

In most of the real astrophysical scenarios Einstein Equations must
be solved numerically. Hence, it is convenient to express the system of
partial differential equations as Cauchy problem, a problem with initial
and boundary condition. To do so, one option is to split time and space
in what is called the 3+1 formalism. In this Section we summarize the
decomposition of the Einstein Equations in the 3+1 formalism. In this
Section we will summarize the contents of the references [14, 50, 5]. We
will use geometric units, c = G = 1.

4.4.1
Foliations

Let us introduce a scalar function t to determine a foliation of the
spacetime by hypersurfaces Σt. This is

Σt = {p ∈M such that t(p) is constant }. (4.76)

The hypersurfaces are said to be spacelike if the vector ∇µt is timelike.
Let us assume this is the case. We define the 1-form Ωµ = ∇µt and we
define the scalar function

N :=

√
−1

ΩµΩµ
(4.77)

The function N is known as lapse function and allows us to define the
unit normal vector to the hypersurfaces:

nµ = −NgµνΩν . (4.78)
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We can easily check nαn
α = −1. The spatial projector is

γµν = δµν + nµnν , (4.79)

and the temporal projector

Nµ
ν = −nµnν . (4.80)

Both operators are orthogonal, γµλN
λ
ν = 0. The spatial and temporal

projectors allows one to project components of tensor fields onto the hy-
persurfaces and the normal direction n, respectively. For instance, the
spatial metric induced in each hypersurface is

γµν := γµλγ
ν
κgλκ = gµν + nµnν . (4.81)

We define the inverse space metric γµν by requiring γµλγ
λν = δ ν

µ . The
spatial covariant derivative will be Dµ = γνµ∇ν, which is compatible with
the spatial metric, Dµγνρ = 0. The Christoffel coefficients associated with
D in the coordinate basis (ei) = (∂i) in the hypersurfaces will be

Γ̄ρ
µν =

1

2
γρσ (∂νγσµ + ∂µγσν − ∂σγµν) , (4.82)

where the bar designates the fact that they are quantities defined in the
spatial hypersurfaces. The spatial Riemann tensor will be:

R̄µ
νρσ = ∂ρΓ̄

µ
νσ − ∂σΓ̄

µ
νρ + Γ̄λ

νσΓ̄
µ
λρ − Γ̄λ

νρΓ̄
µ
λσ. (4.83)

As we will see below, in the Equation (4.89), the information lost when
going from Rµ

νρσ to R̄µ
νρσ is contained in the extrinsic curvature tensor of

the hypersurface, which can be computed as:

Kµν = −1

2
Lnγµν , (4.84)

being Ln the Lie derivative with respect the vector field n. But the vector
field n is not the natural evolution vector field orthogonal to the hyper-
surfaces because is not dual to Ωµ. However, the vector field m := Nn
which is dual to Ωµ, mµΩµ = 1, plays that role. Let us suppose we have
chosen some coordinates (xi) in each hypersurface and consider the co-
ordinate basis (∂α) associated to the coordinates (t, xi). The vector field
t := ∂t also plays the role of evolution vector as it is dual to Ωµ by defi-
nition. Nonetheless, t is tangent to the curves that preserve the spatial
coordinates (xi) as we move through the hypersurfaces of the foliation.
The difference between both vectors is called shift vector,

β := t−m (4.85)
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It follows that NLn = Lt − Lβ. In the coordinate basis the Lie derivative
along t is the partial derivative, Lt = ∂t, βµ has only spatial components,
βµ = (0, βi) and nµ has only temporal component, so that:

nµ =
1

N
(1,−βi), nµ = (−N, 0, 0, 0). (4.86)

The metric of spacetime can be written as

ds2 = −(N2 − βiβi)dt
2 + 2βidx

idt+ γijdx
idxj . (4.87)

As n and t are timelike vectors fields can be associated to observers. The
one associated with n is called Eulerian observer and the other one follow
the curves that preserve the spatial coordinates, so we will call it static
observer. Attending to the expression (4.87) and the Figure 4.1, we make
the following interpretations:

The lapse function N is the proportionality factor between the lapse
of proper time of the Eulerian observer and the static observer.

The shift vector β can be regarded as the relative velocity between
the Eulerian observer and the static observer,

The 3-metric γij measures distances between points on each hyper-
surface.

For asymptotically flat spacetimes, we have

N → 1, β → 0, (4.88)

at spatial infinity.

Figure 4.1: Interpretation of tµ, βµ and nµ between two neighbouring hypersurfaces Σ1

y Σ2, taken from [50].
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4.4.2
3+1 decomposition

Now, we already have all the ingredients to decompose the Einstein
Equations in the 3+1 formalism, introduced by the work [7]. For this
purpose, we will have to use the Gauss-Codazzi equations, which are
obtained by projecting all the indices of the Riemann tensor onto the
hypersurfaces:

γαµγ
β
νγ

δ
ργ

γ
σRαβδγ = R̄µνρσ +KµσKνρ −KµσKνρ. (4.89)

The Codazzi-Minardi equations, which are obtained by making three spa-
tial projections and one temporal projection, will also be used:

γαµγ
β
νγ

δ
ρn

γRαβδγ = DνKµρ −DµKνρ. (4.90)

Finally, by making two spatial and two temporal projections we obtain
the Ricci equations:

1

N

(
∂Kµν

∂t
− LβKµν

)
= nρnσγαµγ

β
νRβρασ − 1

N
DµDνN −Kρ

νKµρ. (4.91)

Following this procedure we can arrive at the 3+1 decomposition of
the Einstein Equations. Notice that the spatial tensors, the ones defined
in the spacelike hypersurfaces, must cancel when contracted with the
normal vector n. Now, looking at the above equations, we can deduce
that any contravariant component with index 0 in a spatial tensor must
cancel. The 3+1 system split in two evolution equations

∂tKij = −DiDjN+N(R̄ij+KKij−2KikK
k
j)−4πN(γij(S−E)−2Sij)+LβKij , (4.92)

∂tγij = −2NKij + Lβγij , (4.93)

and two constraint equations

H = R̄+K2 −KijK
ij − 16πE = 0, (4.94)

Mi = DjK
j
i −DiK − 8πpi = 0, (4.95)

where K = γijKij is the trace of the extrinsic curvature, S = Sµ
µ (with

Sµν = γρµγσνTρσ), E = nµnνTµν and pi = −γiµnνTµν. The Equations (4.94)
and (4.95) are known as Hamiltonian and momentum constraint equa-
tions, respectively, and are elliptic equations. They are equations that
do not involve time derivatives and must be satisfied on a each spacelike
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hypersurface. Note that R̄ij is a spatial tensor only with spatial deriva-
tives of the space metric. In summary, the 3+1 system has 12 evolution
equations (6 corresponding to the space metric and 6 to the extrinsic
curvature) and 4 constraint equations. Notice that the evolution equa-
tions (4.92) and (4.93) do not allow any set of initial conditions, but only
those that preserve the constraint equations. These initial conditions are
referred as initial data.

Well-posedness behaviour of the 3+1 system

The 3+1 system is not suitable for numerical treatment, since it is a
weakly hyperbolic system, and therefore constitutes an ill-posed Cauchy
problem. A physical theory must be predictive, and this requires a well-
posed Cauchy problem. We now proceed to define the concept of hyper-
bolicity more formally. Let be the system:

∂tu+M i∂iu = s(u), (4.96)

where u denotes the set of variables, M i matrices n × n (where n is the
number of variables and i = 1, 2, 3) and s(u) is a vector of dimension n
containing source terms and no temporal or spatial derivatives of u. Let
us construct too the matrix P =M ini, being ni any 1-form. Thus, we will
say that the system is:

Strongly hyperbolic: when P has real eigenvalues and a complete
set of eigenvectors for all ni.

Weakly hyperbolic: when P has real eigenvalues but does not have
a complete set of eigenvectors.

Symmetric hyperbolic: when P can be a symmetric matrix indepen-
dently of ni. They are automatically strongly hyperbolic

Strongly hyperbolic Cauchy problems are well-posed, which means that
the solutions depend continuously on the initial data, or, in other words,
that small changes in the initial data correspond to small changes in
the solutions. We can improve the stability of a weakly hyperbolic, i.e.
numerically unstable system (such as the 3+1 system), by introducing
new evolution variables defined from the previous ones, in order to make
the system strongly hyperbolic.
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Free evolution and constrained schemes

There are the two main schemes followed in Numerical Relativity to
solve the systems of partial differential equations. We have already seen
that the system of equations splits into evolution and constraint equa-
tions.

If we solve the constraint equations in an initial hypersurface Σ0, they
are theoretically satisfied in all next hypersurfaces Σt, t > 0. Then, an-
other strategy is to solve the constraint equations only initially. These are
the free evolution schemes. One of the most used evolution schemes
in Numerical Relativity is the BSSNOK formalism [13, 90, 117]. De-
spite the fact that in an evolution scheme the constraint equations are
not solved in practice, they are monitored to verify that the constraints
H ≃ Mi < ϵ ≪ 1. BSSNOK formulation is a standard 3+1 formulation in
Numerical Relativity. Stable numerical simulations have been possible
in systems with intense gravity, neutron stars [41] and black holes [126].

On the other hand, we say that a constrained formalism is being
applied if all constraint equations are solved in each time step of the
numerical resolution. The formulations described hereinafter are in the
set of the constrained formalisms.

Conformal decomposition

The next decompositions and definitions are motivated by previous
works and ideas, clearly summarized in [50], and lead to strong hyper-
bolic systems. First, we introduce a time independent flat background
metric fij, which coincides with γij at spatial infinity, and the following
conformal decomposition of the spatial metric:

γij = ψ4γ̃ij . (4.97)

γ̃ij is the conformal metric and the scalar ψ := (γ/f)1/12 is the conformal
factor, where γ = det γij and f = det fij. Defining the conformal metric in
this way, it is a tensor field and

det(γ̃ij) = f. (4.98)

We define the inverse spatial conformal metric γ̃ij by requiring that

γ̃ikγ̃
kj = δ j

i , (4.99)

which is equivalent to
γij = ψ−4γ̃ij . (4.100)
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The affine connections associated with γ̃ij and fij are denoted D̃ and D,
respectively. For asymptotically flat spacetimes, we have ψ → 1 at spatial
infinity. We define the tensor Aij as the traceless part of Kij = γikγjlKkl:

Aij = Kij − 1

3
Kγij . (4.101)

The next step is introducing a conformal decomposition of the extrinsic
curvature,

Aij = ψ10Âij . (4.102)

Then, we end up with the following system of evolution equations(
∂

∂t
− Lβ

)
ψ =

ψ

6

(
D̃iβ

i −NK
)
, (4.103)(

∂

∂t
− Lβ

)
γ̃ij = −2Nψ−6Âij −

2

3
D̃kβ

kγ̃ij , (4.104)

(
∂

∂t
− Lβ

)
K = −ψ−4

(
D̃iD̃

iN + 2D̃i logψD̃
iN

)
+N

(
4π(E + S) + ψ−12ÂijÂ

ij +
K2

3

)
(4.105)(

∂

∂t
− Lβ

)
Âij =

1

3
D̃kβ

kÂij+N

[
−2ψ−6γ̃klÂikÂjl − 8πψ6

(
ψ−4Sij −

S

3
γ̃ij

)]
+ψ2

{
−D̃iD̃jN+2D̃i logψD̃jN + 2D̃k logψD̃iN

+
1

3

(
D̃kD̃

kN− 4D̃k logψD̃
kN
)
γ̃ij

+N

[
R̃ij −

1

3
R̃γ̃ij− 2D̃iD̃j logψ + 4D̃i logψD̃j logψ

2

3

(
D̃kD̃

k logψ− 2D̃k logψD̃
k logψ

)
γ̃ij

]}
,

(4.106)
together with the following set of two constraint equations

D̃iD̃
iψ − 1

8
R̃ψ +

1

8
ψ−7ÂijÂ

ij

(
2πE − K2

12

)
ψ5 = 0, (4.107)

D̃jÂ
ij − 2

3
ψ6D̃iK = 8πψ10pi, (4.108)

where

R̃ =
1

4
γ̃klDkγ̃

mnDlγ̃mn − 1

2
γ̃klDkγ̃

mnDnγ̃ml.



80 4.4. Numerical relativity

This system (4.104)-(4.108) is the one presented in [50] with slight mod-
ifications. We will refer to the previous system as conformal system. A
frequent approximation to the conformal system is the so-called Confor-
mally Flat Condition (CFC), which considers γ̃ij = fij. CFC is an exact
condition in spherical symmetry. Besides, it can be a good approximation
in cases where the deviation from spherical symmetry is not significant
(even if the curvature is not negligible).

Local uniqueness

It turns out that the uniqueness of the solution of the conformal sys-
tem is not guaranteed. Indeed, suppose an elliptic equation for u of the
form

∆u+ hup = g, (4.109)

where h and g are function not dependant on u and p is a constant. There
is a maximum principle that guarantees the uniqueness of the previous
equation provided the sign of p is different from the sign of h. Attending
to (4.107) this condition is not satisfied. In practice, it is observed the
transition to non physical solution when compactness is high enough
[31]. However, with the introduction of the rescaled variables:

E∗ = ψ6E, (4.110)

S∗ = ψ6S, (4.111)

(S∗)i = ψ6Si, (4.112)

we solve the problem of the sign in such a way the stated maximum
principle can be applied. The conformal decomposition Aij = ψ10Âij is
also key in this issue.

4.4.3

Fully Constrained Formalism

The following considerations will lead us to the so-called Fully Con-
strained Formalism (FCF) [18, 31]. Let us change the connection of the
conformal space metric D̃ by the connection of the flat metric D. They
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are related by the formula:

D̃kT
i1... ik

j1... jl
=DkT

i1... ik
j1... jl

+

p∑
m=1

∆im
lkT

i1...

m
↓
l ... ik

j1... jl

−
q∑

n=1

∆l
jnkT

i1... ik
j1... k

↑
n

... jl
,

(4.113)

where we have introduced the (1,2)-tensor field

∆k
ik =

1

2
γ̃kl (Diγ̃lj +Dj γ̃il −Dlγ̃ij) . (4.114)

If we call Γ̃k
ik and Γ̄k

ik the Christoffel coefficients of D̃ and D, respectively,
then, the relation ∆k

ik = Γ̃k
ik − Γ̄k

ik is satisfied.
To solve the system we further decompose the conformal traceless

part of extrinsic curvature Âij such that

Âij = Âij
TT + (LX)ij , (4.115)

where Âij
TT is traceless and tranverse with respect fij, i.e.

DjÂ
ij
TT = 0. (4.116)

(LX)ij is the flat Killing operator associated with fij,

(LX)ij = DiXj +DjXi − 2

3
f ijDkX

k. (4.117)

The condition DiÂ
ij
TT = 0, up to boundary conditions, determines Xi. At

spatial infinity, we will consider Âij
TT → 0. (LX)ij and Âij

TT are called,
respectively, longitudinal and transverse part of Âij. This strategy was
inspired by the decomposition done in [134] which is called the conformal
transverse traceless (CTT) method. The tensor Âij

TT is to be determined
by an evolution equation, while Xi by a constraint equation.

We also introduce the tensor

hij = γ̃ij − f ij . (4.118)

For asymptotically flat spacetimes we have

hij → 0, Aij → 0, (4.119)

at spatial infinity. There remains to choose the 4 gauge conditions, that
permit the Einstein Equations, to close the system. We are using K = 0,
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which is called maximal slicing, and the generalized Dirac gauge condi-
tion:

Diγ̃
ij = 0. (4.120)

The name Dirac gauge comes from its resemblance to the Dirac gauge
of electrodynamics. We called this formulation the FCF of the Einstein
Equations.

Finally, we have the evolution equations:

∂th
ij = βkDkh

ij + 2Nψ−6Âij
TT + 2Nψ−6(LX)ij − γ̃ikDkβ

j − γ̃kjDkβ
i +

2

3
γ̃ijDkβ

k,

(4.121)

∂tÂ
ij = Dk

(
βkÂij

)
− ÂkjDkβ

i − ÂikDkβ
j +

2

3
ÂijDkβ

k + 2Nψ−6γ̃klÂ
ikÂjl +Nψ2R̃ij

∗

+Dk

(
Nψ2

2

)
γ̃klDlh

ij +
Nψ2

2
γ̃klDk

(
Dlh

ij
)

+4ψ(γ̃ikγ̃jlDkψDlN + γ̃ikγ̃jlDkNDlψ) + 8Nγ̃ikγ̃jlDkψDlψ

−1

3

(
N(ψ2R̃+ 8γ̃klDkψDlψ) + 8ψγ̃klDkψDlN

)
γ̃ij − 1

2
(γ̃ikDkh

lj + γ̃kjDkh
il)Dl(Nψ

2)

−γ̃ikγ̃jlDkDl(Nψ
2) +

1

3
γ̃ij γ̃klDkDl(Nψ

2)− 8πNψ6

(
ψ4Sij − Sγ̃ij

3

)
.

(4.122)
where

R̃ij
∗ =

1

4
γ̃ikγ̃jlDkh

mnDlγ̃mn

+
1

2

(
−Dlh

ikDkh
jl − γ̃klγ̃

mnDmh
ikDnh

jl + γ̃nlDkh
mn(γ̃ikDmh

jl + γ̃jkDmh
il)
)
.

(4.123)

And we add the following constraint equations:

∆Xi +
1

3
DiDjX

j = −γ̃im
(
Dkγ̃ml −

1

2
Dmγ̃kl

)(
DkX l +DlXk − 2

3
fklDpX

p

)
+8πγ̃ij(S∗)j − γ̃im

(
Dkγ̃ml −

1

2
Dmγ̃kl

)
Âkl

TT ,

(4.124)

γ̃klDkDlψ = −2πψ−1E∗ − 1

8
ψ−7γ̃ilγ̃jmÂ

lmÂij +
1

8
ψR̃, (4.125)

γ̃klDkDl(Nψ) = Nψ

(
2πψ−2(E∗ + 2S∗) +

7

8
ψ−8γ̃ilγ̃jmÂ

lmÂij +
1

8
R̃

)
, (4.126)
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∆βi +
1

3
DiDjβ

j = 16πNψ−6γ̃ij(S∗)j − hklDkDlβ
i − 1

3
hikDkDjβ

j + ÂijDj(2Nψ
−6)

−Nψ−6γ̃im(Dkγ̃ml +Dlγ̃km −Dmγ̃kl)
(
(LX)kl + Âkl

TT

)
.

(4.127)
The hyperbolic sector (4.121)-(4.122) has been proven to be strongly

hyperbolic when ∂t is timelike [25]. The whole system (4.121)-(4.127)
is the one shown in [31] with slight modifications. There, numerical
simulations were carried out using the CFC (i.e., hij = 0), which in the
improved formulation is referred as xCFC. They demonstrate that in this
approximation Âij

TT = 0 can be considered. The uniqueness problem,
observed in the original conformal formulation (4.104)-(4.108) with the
CFC approximation, is not present anymore in the xCFC formulation,
for which the CTT decomposition is fundamental. In the 6.5, the second
source term has the correct sign thanks to the decompositions (4.102)
and (4.115), from which it follows that Âij = (LX)ij is known as Xi is
previously solved.

4.5
Final remarks

In this Chapter we outlined the basic concepts of Special Relativity
and General Relativity with the aim to give some background for the
forecoming chapters. The contents about relativistic hydrodynamics will
be used constantly and systems with spherical and axial symmetries will
be considered. The Resistive Relativistic Magntetohydrodynamic equa-
tions will be addressed in the Chapter 7 and numerically integrated with
a new scheme.

We paid attention in the derivation of the system (4.121)-(4.127), to
be used in the Chapter 6. The main advantage of a FCF formulation
is that the constraint equations are satisfied numerically in every time
step by definition. Therefore, long term simulations are likely to be safer
in these formalism. This formulation will be extended to a version with
some accuracy improvements. It will also be solved numerically in the
context of a stationary spacetime.





5
Euler Equation with

gravity

The main goal of this Chapter is to study the Euler Equation in pres-
ence of gravity. This equation, in its classical version, is derived from the
Navier-Stokes Equations neglecting viscous stresses. In its relativistic
version is obtained from the energy-momentum conservation equation
considering the energy-momentum tensor of a perfect fluid. We study
here two scenarios in spherical symmetry. One classical and another
relativistic. The first one will be a self-gravity Newtonian star, meanwhile
the second one will be a perfect fluid in the Schwarzschild spacetime. We
get the Riemann invariants and the wave speeds for both systems.

In the first case, we write the Euler Equation in its classical version
adding an extra source term accounting for the Newtonian potential. A
study of the characteristic curves is to be carried out, which was useful
to the work [114].

In the second case, we describe the general relativistic Euler Equa-
tion. We will write it as a balance law and derive its stationary solutions
in the Gullstrand-Painlevé coordinates. This work tries to complete the
articles [73] and [72] where Schwarzschild coordinates were used. The
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stationary solutions derived will permit to develop well-balance meth-
ods in the way it was done in [72]. Well-balanced methods for balanced
laws [22] are proven to be very powerful when stationary solutions exists.
They are able to numerically recover these solutions, or their behaviour
when a perturbation is applied, with more precision than other schemes
that treat the fluxes differently. To develop these methods is very con-
venient to have analytical expressions of the stationary solutions of the
system of partial differential equations under resolution, or at least a
numerical solution of it.

5.1
Euler Equation in Newtonian gravity

For the gravity sector, in classical mechanics, we just have to solve
an elliptic equation for the Newtonian potential Φ:

∇⃗2Φ = 4πGρ, (5.1)

with G the universal constant of gravitation.
In Newtonian gravity, the Euler Equation have the form

∂(ρV )

∂t
+∇ · (ρV ⊗ V ) = −∇p− ρ∇Φ. (5.2)

It is basically the Equation (2.1b) neglecting the viscosity effects and
adding the Newtonian term. It has to be solved along the matter conser-
vation equation

∂ρ

∂t
+∇ · (ρV ) = 0. (5.3)

From now on we, restrict ourselves to spherical symmetry and suppose
that the fluid is forming a compact object of tilting radius R(t). The
velocity field is radial, V = V er, and all variables depend on one spatial
coordinate, the radial coordinate r. In order to have coordinates well
adapted to the problem, we make a change of the spatial coordinate from
r to ξ = r/R(t). In the new coordinates, our set of hyperbolic equations
can be written as

∂ρ

∂t
− 1

R
(R′ξ − V r)

∂ρ

∂ξ
+
ρ

R

∂V r

∂ξ
= − 2

Rξ
ρV r, (5.4)

∂V r

∂t
+

Γ1κ

R
ρΓ1−2∂ρ

∂ξ
− 1

R
(R′ξ − V r)

∂V r

∂ξ
= − 1

R

∂Φ

∂ξ
, (5.5)
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where R′(t) = ∂tR, or
∂u

∂t
+A

∂u

∂ξ
= f, (5.6)

where

u =

(
ρ
V r

)
, A =

1

R

(
−(R′ξ − V r) ρ
Γ1κρ

Γ1−2 −(R′ξ − V r)

)
, f = − 1

R

(
2
ξρV

r

∂Φ
∂ξ

)
,

(5.7)
and a polytropic equation of state p = κρΓ1 has been taken into ac-
count, with κ and Γ1 > 1 constants. See [114] for more details about
the derivation of these equations. The eigenvectors and eigenvalues, re-
spectively, are given by the following expressions (derived by the author
of this manuscript in [114]):

r± =

(
1

±√
Γ1κρ

Γ1−3
2

)
, λ± =

1

R

[
(V r −R′ξ)±

√
Γ1κρ

Γ1−1
2

]
. (5.8)

At the radius of the star, r = R(t) or equivalently ξ = 1,

λ±(t, 1) = ±
√
Γ1κ

R
(ρs)

Γ1−1
2 , (5.9)

where it has been used R′ = V r(ξ = 1) and ρs = ρ(1) denotes the density
at the surface. ρs is usually close to zero, so we expect λ± to be also close
to zero at the surface. Let us perform a stability analysis by considering
the homogeneous system ∂tu + A∂ξu = 0, with A fixed at (t0, ξ0 = 1). The
system can written in diagonal form as

∂w

∂t
+ Λ

∂w

∂ξ
= 0, (5.10)

where w =M−1u = (w− w+)
T , Λ = diag(λ−, λ+), and

M = (r− r+) =

(
1 1

−√
Γ1κρ

Γ1−3
2

√
Γ1κρ

Γ1−3
2

)
. (5.11)

Then, the system decouples into

∂w±
∂t

+ λ±
∂w±
∂ξ

= 0, (5.12)

with

w± =
1

2

(
ρ± 1√

Γ1κ
ρ−

Γ1−3
2 V r

)
. (5.13)
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Each equation in (5.12) is a constant coefficient linear advection equa-
tion. The scalar functions w± are called Riemann invariants and are
constant along the characteristic curves ξ = ξ0 + λ±t. We also refer to λ±
as wave speeds. The solutions of the system are derived from the initial
conditions:

w±(ξ, t) = w±(ξ − λ±t, 0). (5.14)

And the solution to the original system is finally recovered via (5.11) and
can be expressed as

u(t, ξ) = w−(ξ − λ−t, 0)r− + w+(ξ − λ+t, 0)r+ (5.15)

where by assumption r± are constant. We have seen that at the surface
of the star both λ± approach zero, which means that small disturbances
applied at the surface propagate very slowly. Of course, A is not really
constant, but we would have arrived to the same conclusion if an expan-
sion around a constant value ū were possible. For instance, if

u(ξ, t) = ū+ ϵu(1)(t, ξ) + ϵ2u(2)(t, ξ) + ... , (5.16)

with ϵ ≤ 1, we find that u(1)(t, ξ) satisfies

∂u(1)

∂t
+A(ū)

∂u(1)

∂ξ
= 0, (5.17)

with A(ū) constant and the same conclusions would have been derived
for u(1)(t, ξ).

According to [75, 73] the system is said strictly hyperbolic if the
wave speeds are all real and distinct. According to (5.9) this is indeed
the case as the density ρ is always positive. Moreover, we say that the
system is genuinely non-linear if all waves speeds are monotonic. This
is a required statement in rarefaction waves. Also, the system is lin-
early degenerate if all wave speeds are constant. Linear degeneracy is
linked with contact discontinuities, points where a jump in the density
exists but the velocity is kept continuous. We address the reader to the
reference [75] for further details. If the density at the surface is zero,
ρs = 0, our system is linearly degenerate and the surface is a contact
discontinuity.
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5.2
Euler Equation in Schwarzschild

spacetime

Now we consider the Euler Equation in a curved, fixed spacetime,
coupled to the matter conservation equation. The equation (4.22) corre-
sponds to the matter conservation in Special Relativity; its generalization
in General Relativity is given by:

dρ

dτ
+ ρ∇ · v = 0, (5.18)

where dρ/dτ = v · ∇ρ, and v is the Eulerian four-velocity of the fluid.
We have just changed the usual partial derivative by the Levi-Civita con-
nection. The generalization of the energy and momentum conservation
equations in Special Relativity, (4.25) and (4.26), are given by:

dµ

dτ
+ (µ+ p)∇ · v = 0, (5.19)

(µ+ p)
Dv

dτ
+ (g + v ⊗ v) · ∇p = 0, (5.20)

where Dv/dτ = v · ∇v. The Equation (5.20) is the version of the Eu-
ler Equation in a curved spacetime. In this Section we will restrict the
spacetime metric to the Schwarzschild one, which was introduced in the
Subsection 4.3.1. The Gullstrand-Painlevé coordinates will be used.

5.2.1
Balance law equation

The generalized Euler Equation has an interesting resemblance to its
classical version. However, it is also interesting to consider the equations
derived from the direct use of the energy-momentum conservation equa-
tions, ∇αT

αβ = 0 (see (4.43)). This approach is followed in [73] consid-
ering Schwarzschild coordinates and spherical flow. Nevertheless, these
coordinates have a singularity at the horizon, which is not physical. To
avoid any issue, it is important to refrain from including this region in
our numerical domain and imposing boundary conditions in its vicinity.
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The problem is directly removed when the Gullstrand-Painlevé coordi-
nates are used (see (4.66)). Here, we derive equivalent equations in these
coordinates. To use the expression (4.43), some Christoffel coefficients
are needed. They can be easily computed from the Equation (4.41). We
list those that are not zero:

Γ0
00 =

RS

2r2

√
RS

r
, Γ0

10 =
RS

2r2
, Γ0

11 =
1

2r

√
RS

r
,

Γ0
22 = −r

√
R

r
, Γ1

00 =
RS

2r2

(
1− RS

r

)
, Γ1

01 = −RS

2r2

√
RS

r
,

Γ1
11 = −RS

2r2
, Γ1

22 = RS − r, Γ1
33 = (RS − r) sin2 θ,

Γ2
12 = Γ3

13 =
1

r
, Γ2

33 = − sin θ cos θ, Γ3
23 = cot θ.

(5.21)

We have bypassed those that can be derived from the symmetry Γµ
αβ =

Γµ
βα. Now, we can write expression (4.43) with the energy-momentum

tensor of a perfect fluid (4.24). We assume spherical flow, as in [73], i.e.,

v = v(T, r) = (v0(T, r), v1(T, r), 0, 0),

where T and r are time and radial coordinates in Gullstrand-Painlevé
coordinates (see Subsection 4.3.1). Let us denote x0 = c T and x1 = r.
Then, we get two equations, which read as:

∂

∂x0
(
r2(µ+ p)v0v0 − r2p

)
+

∂

∂x1
(
r2(µ+ p)v0v1 + r2Bp

)
+
rB

2

(
(µ+ p)(v0v0 − 1)− 3p

)
= 0,

∂

∂x0
(
r2(µ+ p)v0v1 + r2Bp

)
+

∂

∂x1
(
r2(µ+ p)v1v1 + r2Dp

)
+
RS

2
(µ+ p) + (RS − 2r)p = 0,

(5.22)

where B =
√
RS/r and D = 1 − RS/r. As the four-velocity is normalized

by definition, gαβvαvβ = −1, only one of the two non-zero components of
v is independent. Besides, an equation of state p = p(µ) is still needed.
In the end, there are two equations and two independent variables (as it
should be). Let us introduce the effective velocity,

v :=
c

B

v1

v0
. (5.23)
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Then, using the normalization condition, the following relations hold:

(v0)2 =
r c2

rc2 −RS(v + c)2
, (v1)2 =

RS v
2

rc2 −RS(v + c)2
,

Bv0v1 =
RS vc

rc2 −RS(v + c)2
.

(5.24)

Finally, the previous system can be rewritten is a a more compact
way:

∂

∂x0

[
r2
(
(µ+ p)

r

d
− p
)]

+
∂

∂x1

[
r2B

(
(µ+ p)u

r

d
+ p
)]

+
rB

2

(
(µ+ p)(1 + u)2

RS

d
− 3p

)
= 0,

(5.25a)

∂

∂x0

[
r2B

(
(µ+ p)u

r

d
+ p
)]

+
∂

∂x1

[
r2
(
(µ+ p)u2

R

d
+Dp

)]
+
RS

2
(µ+ p) + (RS − 2r)p = 0,

(5.25b)

where u = v/c is a dimensionless velocity and d = r − RS(u + 1)2 is an
effective distance. Let us introduce the variable γ = B(u + 1). With this
choice we get expressions aesthetically similar of those in [73], where
Schwarzschild coordinates are used. We can present them as the follow-
ing system of nonlinear balance law:

∂0V + ∂1F (V, r) = S(V, r), (5.26a)

where

(1− γ2)V =

(
µ+ pγ2

(µ+ p) γ −B
(
µ+ pγ2

)) , (5.26b)

(1− γ2)F =

(
(µ+ p) γ −B

(
µ+ pγ2

)(
µγ2 + p

)
− 2B (µ+ p) γ +B2

(
µ+ pγ2

)) , (5.26c)

(1− γ2)S =

(
− 2

r
(µ+ p) γ + 2B

r

(
µ+ pγ2

)
− B

2r

(
(µ+ 4p)γ2 − 3p

)
− 2

r

(
µγ2 + p

)
+ 2B

r
(µ+ p) γ − 2B2

r

(
µ+ pγ2

)
− B2

2r
(1− γ2)µ− 3B2−4

2r
(1− γ2)p

)
.

(5.26d)
It has been assumed that we can get expressions of the primitive vari-
ables (µ, γ) in terms of the conservative ones V = (V 0, V 1), that is µ = µ(V )
and γ = γ(V ). For instance, if the sound speed is constant, say k, one
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has the equation of state p = k2µ. In that case, the following relations
hold

γ =

(1 + k2)−
√
(1 + k2)2 − 4k2

(
B + V 1

V 0

)
2k2

(
B + V 1

V 0

) , µ = V 0

(
1− γ2

1 + k2γ2

)
. (5.27)

The Equations (1.3d) in [73], which are the analogous ones to (5.27), can
be recovered imposing B = 0. This makes sense since Schwarzschild and
Gullstrand-Painlevé coordinates converge to Minkowski flat spacetime at
spatial infinity (r → ∞).

5.2.2
Well-podness behaviour

We are now determining the necessary and sufficient conditions that
ensure hyperbolicity and genuine non-linearity properties of the system
(5.26). Let us consider its homogeneous part, ∂0V + ∂1F (V, r0) = 0, where
the flux F is evaluated at a fixed radius r0. The system can be written in
terms of the Riemannn invariants and waves speeds:

∂0w± + λ±(w±, r0)∂1w± = 0. (5.28)

Considering the first Lemma of [73], we can proceed by following the
outlined steps of its proof to compute the Riemann invariants and the
wave speeds, respectively, as:

w± =
1

2
log

(
1 + γ

1− γ

)
±
∫ µ

1

√
p′(x)

x+ p(x)
dx, (5.29)

λ± =
γ ±

√
p′(µ)

1±
√
p′(µ)γ

−B, (5.30)

where p′(µ) denotes the derivative of the pressure p with respect to µ.
Again, the results in Schwarzschild coordinates are similar by using the
effective velocity γ, and they coincide at spatial infinity.



5. Euler Equation with gravity 93

Attending to (5.30), our system is: strictly hyperbolic if and only if
p′(µ) > 0, ∀µ; genuinely non-linear if and only if

2p′(1− p′) + p′′(µ+ p) > 0, ∀ ρ; (5.31)

and linearly degenerate if and only if the sign > in previous inequality is
replaced by an equal sign. This result is the same as using Schwarzschild
coordinates (at it should be) and the proof is actually similar to the one
presented in the first Proposition of [73]. The difference is that in the
Gullstrand-Painlevé coordinates we do not need to restrict our spatial
domain to r > RS.

5.2.3
Stationary solutions

We are deriving the stationary solutions µ = µ(r) and γ = γ(r) of
the Equations (5.26), for specified conditions at some r = r0. There are
significant differences in the derivation of these solutions with respect to
the ones obtained using Schwarzschild coordinates.

Lemma. If µ = µ(r) and γ = γ(r) are solutions to the system

dF (µ, γ, r)

dr
= S(µ, γ, r), (5.32a)

µ(r0) = µ0, γ(r0) = γ0, (5.32b)

the following relations hold:

r2(1−Bγ)(µ+ p)
γ −B

1− γ2
= C0, (5.33a)

log(1−Bγ)− 1

2
log(1− γ2) + l(µ) = D0, (5.33b)

where l(µ) is a primitive of p′(µ)
µ+p(µ) and C0, D0 are constants satisfying

C0 = r20(1−B0γ0)(µ0 + p(µ0))
γ0 −B0

1− γ20
, (5.34a)

D0 = log(1−B0γ0)−
1

2
log(1− γ20) + l(µ0), (5.34b)
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where B0 =
√
R/r0.

Proof. The system (5.32a) can be written as

d(r2F 0)

dr
= −rB

2

(
(µ+ p)

γ2

1− γ2
− 3p

)
, (5.35a)

d(r2F 1)

dr
= −R

2
(µ+ p) + r(D + 1)p, (5.35b)

where

F 0 = (µ+ p)
(γ −B)

1− γ2
+Bp, (5.36a)

F 1 = (µ+ p)
(γ −B)2

1− γ2
+Dp. (5.36b)

We see that F 1 = (F 0−Bp)(γ−B)+Dp. Making use of this relation in the
Equation (5.35b), one can get that

(µ+ p)
(γ −B)

1− γ2
dγ

dr
+ (1−Bγ)

dp

dr
+
Bγ

2r
(µ+ p) = 0. (5.37)

Since −dB
dr = B

2r , introducing the variable χ = Bγ,

dχ

dr
−B

dγ

dr
= γ

dB

dr
= −Bγ

2r
. (5.38)

Taking this relation into account in (5.37), and dividing by (µ+ p)(1− χ),
we get

γ

1− γ2
dγ

dr
+

1

µ+ p

dp

dr
− 1

1− χ

dχ

dr
= 0, (5.39)

which can be integrated and (5.33b) is obtained. On the other hand,
using the Equations (5.35a) and (5.37), one can see that

d

dr

(
r2(1−Bγ)(µ+ p)

γ −B

1− γ2

)
= 0. (5.40)

Therefore, the Equation (5.33a) can be also obtained. □

As an example let us compute some solutions for an equation of state
p(µ) = k2µ, with k a constant value. We have already stated that k plays
the role of the speed of sound. The stationary solution to (5.32a), attend-
ing to the previous Lemma, can be rewritten in the following form:

r2
(
1− γ2

) 1−k2

2k2 (γ −B)

(1−Bγ)1/k
2 = C1, r2

(
γ −B

1− γ2

)
µ = C2, (5.41)
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where the constants C1, C2 depend on r0, µ0 and γ0. From the definition
γ = B(u + 1), we can derive the corresponding expression for u. In the
Figure 5.1 we show some solutions u(r/R) for different values of the con-
stant C1. This figure is similar to the one obtained in [72] when r → ∞.
Note that γ does not play the role of any physical speed particle, but it is
an effective Eulerian velocity. We can check that at the event horizon the
Eulerian effective velocity u is zero or negative, and the radial component
of the fluid velocity is zero or points towards the center of the black hole,
respectively.
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u

Figure 5.1: Function u(r/R) associated to stationary solutions of the Euler Equation
in spherical symmetry using Gullstrand-Painlevé coordinates. Different colors refer to
different values of the constant C1.
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5.3
Final remarks

In the first Section of this Chapter, we have considered the Euler
Equation in Newtonian gravity and made an analysis of the characteris-
tic curves. This was useful to go to the next step, where General Relativ-
ity was considered, studying the problem of a perfect fluid moving in a
fixed Schwarzschild spacetime. To do so we have considered the general
relativistic Euler Equation in the Gullstrand-Painlevé coordinates. The
resulting system allows the fluid to cross the event horizon r = RS with
different negative values for the radial component of the velocity. Then,
using these coordinates we do not need to restrict our spatial domain
to the region r > RS as in Schwarzschild coordinates, the ones used in
[73] to address the same problem. Gullstrand-Painlevé coordinates do
not have any coordinate singularity but have the drawback of making
computations trickier. We studied the hyperbolic behaviour of the sys-
tem and we obtained its stationary solutions. The availability of these
solutions make possible the development of well-balanced methods as
the ones given in [72], where the authors considered the Schwarzschild
coordinates. The main advantage of using now the Gullstrand- Painlevé
coordinates is that we can consider the whole domain 0 < r <∞.



6
Reformulation of the

Fully Constrained
Formalism

The modeling of relevant astrophysical and cosmological scenarios
often requires the numerical solution of the Einstein Equations. It is
important having a diversity in our numerical simulations to compare
numerical results, and different gauge choices can be more appropri-
ate. In this Chapter we focus on the Fully Constrained Formulation
(FCF) of the Einstein Equations [18, 32], which was introduced in the
Chapter 4. Along these lines [132, 23, 112, 56] have proposed waveless
constrained approximations to the full Einstein equations, while [19] de-
rived a fourth-order post-Newtonian approximation to the system. We
will propose a reformulation of the equations by adding two new vari-
ables to make explicitly visible a post-Newtonian hierarchical structure
of the equations and, at the same time, preserving the good properties
of the formulation, such as local uniqueness of the elliptic sector [31].
In the case of long-term numerical simulations (i.e., in supernovae ex-
plosions [124] or cosmological applications, this scheme or part of it can
be very useful to get accurately enough numerical simulations, while re-
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ducing the computational cost. We will derive stationary initial data of a
rotating neutron star without assuming a conformally flat spatial metric
(CFC) [56, 132] to show the potential of this new reformulation. We also
make a comparison between our solution with the new reformulation of
the FCF equations and a spacetime assuming a CFC. CFC scheme can be
derived from FCF by neglecting the FCF hyperbolic sector; this compar-
ison confirms the accuracy improvement in the proposed reformulation
of the FCF equations.

We will assume geometrized units, in which c = G = 1.

6.1

Motivation

Astrophysical scenarios containing compact objects are modeled by
complex spacetimes which require, in general, to solve the Einstein Equa-
tions numerically [5, 74, 116]. This is also true in the case of com-
plex cosmological models [49, 81]. The gravitational radiation emitted
by these scenarios encode some of their physical properties. The ac-
curate extraction of the gravitational radiation both from our numerical
simulations and from the experimental measurements is crucial to de-
termine the physical properties of the corresponding scenario. In the
last decade numerous gravitational wave detections were observed by
the LIGO-Virgo-KAGRA Collaborations [24]; all the detected signals were
generated by binary systems of compact objects. In particular, the ob-
servation of the first binary neutron star system detected with gravita-
tional waves together with the associated electromagnetic counterparts
[4] marks a new era of multi-messenger astronomy, including the gravi-
tational waves in the different, complementary, key channels to observe
these scenarios. The fourth observing run, O4, has just started, and
numerical simulations with more accuracy will be required in the near
future to extract new gravitational wave signals from the next observing
runs data.
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6.2
Reformulation of the equations

Many of the manipulations in this Section have in mind the post-
Newtonian expansions (PNEs) of the variables we are considering. This
means to expand variables in powers of 1/c, valid in the approximation
of weak gravity and small velocities of the sources. Post-Newtonian hy-
drodynamics has been considered by a number of authors in the past
[17, 8, 11]. To the leading order, the PNE of the metric variables we are
manipulating can be deduced from [17], and are listed below:

N = 1− Φ

c2
+O

(
1

c4

)
, ψ = 1 +

Φ

2c2
+O

(
1

c4

)
, Nψ2 = 1 +O

(
1

c4

)
,

βi = O
(

1

c3

)
, hij = O

(
1

c4

)
,

Âij = O
(

1

c3

)
, Xi = O

(
1

c3

)
, Âij

TT = O
(

1

c5

)
,

where Φ is the Newtonian potential.
We introduce now a new vector field, with the goal of simplifying at

least part of our equations:

V i = 2Nψ−6Xi − βi. (6.1)

The post-Newtonian order of this vector is V i = O(c−5). This order is
justified below in the text. Once Xi, ψ, N and V i are known, the shift
vector βi can be computed directly from the previous definition for V i.
The equation most positively affected by this new auxiliary variable is
the evolution equation for the hij tensor, which, in terms of the new
variables, reads:

∂th
ij = βkDkh

ij − hikDkβ
j − hkjDkβ

i +
2

3
hijDkβ

k + 2Nψ−6Âij
TT + (LV )ij

−XjDi(2Nψ−6)−XiDj(2Nψ−6) +
2

3
f ijXkDk(2Nψ

−6).

(6.2)

It turns out that, after the introduction of V i, this equation has been
slightly simplified and, more importantly, has balanced post-Newtonian
orders in both sides of the equation, which are now both O(c−5). The
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previous version of this Equation (4.121) had O(c−5) at the left hand side
while O(c−3) at the right hand side. Of course, in the previous version,
terms of order O(c−3) must cancel out theoretically to become O(c−5), but
this may not happen always numerically. With the introduction of the
vector V i we avoid this potential numerical issue.

Let us focus now on the other evolution equation for Âij (4.122). In-
stead of Âij, we propose explicitly working with the variables Xi and Âij

TT .
Remind that Âij is O(c−3), while Âij

TT is O(c−5) in post-Newtonian order.
The main reason of taking into account Âij

TT is to solve the spacetime met-
ric more accurately in those cases or regions where the post-Newtonian
approximation is valid. In other cases, our reformulation is just a change
of variables with no additional effects. The resulting evolution equation
for Âij

TT reads:

∂tÂ
ij
TT = βkDkÂ

ij − ÂkjDkβ
i − ÂikDkβ

j +
5

3
ÂijDkβ

k + 2Nψ−6γ̃klÂ
ikÂjl

+
3

4
Nψ−6γ̃ij γ̃lkγ̃nmÂ

kmÂln +Nψ2R̃ij
∗ − 1

4
Nψ2R̃γ̃ij

+
1

2
(γ̃klDkh

ij − γ̃ikDkh
lj − γ̃kjDkh

il)Dl(Nψ
2)

+4ψ−1γ̃ikγ̃jlDkψDl(Nψ
2) + 4ψ−1γ̃ikγ̃jlDlψDk(Nψ

2)− 2ψ−1γ̃ij γ̃klDkψDl(Nψ
2)

+
Nψ2

2
γ̃klDk

(
Dlh

ij
)
− 8Nγ̃ikγ̃jlDlψDkψ + 2Nγ̃ij γ̃klDkψDlψ − γ̃ikγ̃jlDkDl(Nψ

2)

−(LẊ)ij − 8πNψ10Sij + 4πNS∗γ̃ij , (6.3)

where Ẋi = ∂tX
i. The left hand side of the Equation (6.3) has order

O(c−6), while the terms of the last two lines of the right hand side of
this equation have order O(c−4). This new expression reduces signifi-
cantly the number of terms that should cancel with respect to previous
versions. Correcting the post-Newtonian order of these terms is a possi-
bility that will be considered in the future. However, it will not be easy
in general since it contains terms including matter variables. We note
that for this equation there is no need to introduce V i since in does not
modify the post-Newtonian order of the different terms.

The elliptic equations we are going to consider are the ones from the
Chapter 4, see (4.124)-(4.127), with some modifications and simplifica-
tions due to the use of the vector field V i, as well as an additional elliptic
equation for the new variable V i instead of the elliptic equation for the
shift vector βi, and another additional elliptic equation for the variable Ẋi

to close the system. The whole elliptic sector is presented below, where
the post-Newtonian order of the corresponding expressions is placed at
the end of each equation, which is, at the same time, the order of the
variable under resolution:

∆Xi +
1

3
DiDjX

j = −γ̃im
(
Dkγ̃ml −

1

2
Dmγ̃kl

)
Âkl + 8πγ̃ij(S∗)j = O

(
1

c3

)
; (6.4)
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γ̃klDkDlψ = −2πψ−1E∗ − 1

8
ψ−7γ̃ilγ̃jmÂ

lmÂij +
1

8
ψR̃ = O

(
1

c2

)
; (6.5)

γ̃ikDiDk(Nψ
2) = 2ψ−1γ̃ikDkψDi(Nψ

2)− 2ψ−2(Nψ2)γ̃ikDkψDiψ +
1

4
(Nψ2)R̃

+
3

4
ψ−8(Nψ2)γ̃ilγ̃jmÂ

lmÂij + 4πψ−2(Nψ2)S∗ = O
(

1

c4

)
; (6.6)

∆V i +
1

3
DiDjV

j = −hkjDkDjV
i − 1

3
hikDkDjV

j + 2Nψ−6

(
hkjDkDjX

i +
1

3
hikDkDjX

j

)
+ γ̃kjXiDkDj(2Nψ

−6) +
1

3
γ̃ikXjDkDj(2Nψ

−6)

+Dk(2Nψ
−6)

(
2γ̃kjDjX

i +
1

3
γ̃ikDjX

j +
1

3
γ̃ijDjX

k − Âik

)
= O

(
1

c5

)
;

(6.7)

∆Ẋj +
1

3
DjDiẊ

i = βkDiDkÂ
ij −DiÂ

ikDkβ
j − ÂikDiDkβ

j +
2

3
ÂijDiDkβ

k +
5

3
DiÂ

ijDkβ
k

− 1

2
Nψ−6γ̃jlDl

(
γ̃inγ̃kmÂ

nmÂik
)
− ψ−8γ̃jlγ̃inγ̃kmÂ

nmÂikDl(Nψ
2)

+ 8ψ−7Nγ̃jlγ̃inγ̃kmÂ
nmÂikDlψ

+ 2Nψ−6Di(γ̃klÂ
ikÂjl)− 16ψ−7Nγ̃klÂ

ikÂjlDlψ + 2ψ−8γ̃klÂ
ikÂjlDl(Nψ

2)

− 1

2
Di(Nψ

2)Dlh
ikDkh

jl − 1

6
γ̃kjDkh

ilDiDl(Nψ
2)− γ̃ikDih

jlDkDl(Nψ
2)

− 8Nγ̃ikDih
jlDkψDlψ + 4Nγ̃jlDlh

ikDiψDkψ

+ 4ψ−1γ̃ikDih
jl(Dl(Nψ

2)Dkψ +Dk(Nψ
2)Dlψ

)
− 4ψ−1γ̃jlDlh

ikDi(Nψ
2)Dkψ + R̃ij

∗∗Di(Nψ
2) +Nψ2DiR̃

ij
∗∗ − 1

2
Nψ2γ̃ijDiR̃

− 8πψ−2E∗γ̃jlDl(Nψ
2) + 16πψ−1NE∗γ̃jlDlψ + 16πψ−1NS∗γ̃jlDlψ

− 8πNψ10DiS
ij − 8πψ8SijDi(Nψ

2)− 64πψ9NSijDiψ = O
(

1

c4

)
,

(6.8)

where

R̃ij
∗∗ =

1

2

(
−γ̃klγ̃mnDmh

ikDnh
jl + γ̃nlDkh

mn(γ̃ikDmh
jl + γ̃jkDmh

il)
)

+
1

4
γ̃ikγ̃jlDkh

mnDlγ̃mn. (6.9)

We can check that the hyperbolic and elliptic sectors can be solved hi-
erarchically (as previously). Indeed, given the hydrodynamical variables
E∗, S∗, S∗

j , S
ij, we have the hierarchical structure of Table 6.1 with equa-

tions including terms with progressively post-Newtonian orders. Note
that γ̃ij = f ij + hij, with f ij a flat, fixed and known background metric.
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Variable under
resolution

Computed
from Equation

PNE

hij (6.2) O(c−4)

Âij
TT (6.3) O(c−5)

Xi(hij , Âij
TT , S

∗
j ) (6.4) O(c−3)

Âij(Xi, Âij
TT ) (4.115) O(c−3)

ψ(hij , Âij , E∗) (6.5) 1 +O(c−2)

(Nψ2)(hij , Âij , ψ, S∗) (6.6) 1 +O(c−4)
N(ψ,Nψ2) – 1 +O(c−2)

V i(hij , Âij , Xi, ψ,N) (6.7) O(c−5)
βi(Xi, ψ,N, V i) (6.1) O(c−3)

Ẋi(hij , Âij , Xi, ψ,N, βi, E∗, S∗, Sij) (6.8) O(c−4)

Table 6.1: Hierarchical structure of resolution for the hyperbolic and elliptic sectors of
the reformulated FCF.

Note that in the Equation (6.6) we solve Nψ2, with post-Newtonian
order O(c−4), instead of N or Nψ, of order O(c−2). However, there may
be additional numerical errors due to the presence of the first derivative
of (Nψ2) in the right hand side of the Equation (6.6). This was not the
case in the elliptic equation for (Nψ) stated in the Equation (4.126). So
we will keep in mind potential numerical advantages when solving (Nψ)
instead of (Nψ2).

In the next Section we compute the stationary initial data associated
to the spacetime geometry of a rotating neutron star as an illustrative
numerical application of the proposed reformulation of the FCF.
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6.3
Computation of stationary spacetime

initial data

6.3.1
Initial set-up

As a numerical test we use a rotating neutron star composed of a
perfect fluid with polytropic equation of state p = CρΓ, where p is the
pressure, Γ = 2 and C = 145731 (cgs units, K = 100 in geometrized
units). Considering a central density ρc = 7.91 · 1014 g/cm3 and a ro-
tation frequency f = 550 Hz, we obtain a neutron star with equatorial
radius Req = 12.86 km and polar radius Rp = 11.20 km, and gravitational
mass M = 1.487M⊙. Hydrodynamical and spacetime metric variables are
computed with the code rotstar_dirac [79] based on the C++ library
LORENE [2]. This code employs the same gauge we use here, i.e., maxi-
mal slicing and Dirac gauge (4.120). This allows us to use the hydrody-
namical quantities to compute the spacetime metric variables with our
reformulation. In addition, the spacetime metric variables from LORENE
can be used to check the numerical results from our approach. For this
compact object, spacetime is stationary and we can adapt the coordi-
nate time t to this stationarity, setting the derivatives with respect to
t in the Equations (6.2) and (6.3) to zero. Moreover, this spacetime is
axisymmetric and we can also adapt spherical type coordinates r and θ
(2-dimensional problem). The rotation axis is fixed at θ = 0. Orthornor-
mal spherical components are used for all vector and tensor fields in
the numerical implementation of the formulation, but we change to or-
thonormal cylindrical components at the time of the numerical resolution
because is a simpler strategy for this scenario.

We are going to use a finite-difference grid, with equally spaced cells
in the radial and angular directions. The numerical grid has nr = 3200
points in the radial coordinate r and nθ = 64 points in polar angle θ,
where

r1 =
∆r

2
, rnr = 12Req − ∆r

2
, θ1 =

∆θ

2
, θnθ

= π − ∆θ

2
,

being ∆r = 12Req/nr ≈ 48 m and ∆θ = π/nθ ≈ 0.05 the radial and angular
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cell sizes, respectively. This grid covers the spacetime up to 12 times the
radius of the star with more than 260 radial points inside the star at the
equator.

We use ghosts cells to compute the discretization of the spatial deriva-
tives close to the numerical grid boundaries, keeping the same radial and
angular cell sizes. The values of the numerical solution in the ghost cells
for the different variables take into account the theoretical behaviour of
these variables close to the boundaries. If uij denotes the numerical so-
lution of the variable u, where i and j indexes refer to the radial and
angular cells, respectively, then its values in the ghost cells are given by:

u(1−l)j = ±ulj , (6.10)

ui(1−l) = ±uil, ui(nθ+l) = ±ui(nθ−l+1), (6.11)

where l denotes the number of ghost cells in the corresponding direc-
tion, the positive sign denotes symmetric boundary conditions and the
negative sign denotes antisymmetric boundary conditions. We are going
to follow the symmetries used in [12]. Since we will need to solve some
elliptic equations in orthonormal cylindrical components, we also need
to consider symmetries in this new basis. Taking into account the trans-
formations from spherical to cylindrical components, we will follow the
prescription of Table 6.2.

Center Axis Equator

Vectors Xi, V i and Ẋi
ϖ - - +
z + + -
φ - - +

Tensor hij

ϖϖ + + +
zz + + +
φφ + + +
ϖz - - -
ϖφ + + +
zφ - - -

Table 6.2: Parity conditions for cylindrical orthonormal components of vectors and ten-
sors as implemented in the resolution of some elliptic equations. Components of vectors
Xi, V i and Ẋi, and tensor hij have to be multiplied with the corresponding sign when
they are copied into ghost zones.

At the outer boundary we impose a Robin condition, assuming u =
u0 +M/rn for a generic variable u, which is equivalent to impose u → u0
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at spatial infinity (r → ∞) and ∂ru = −n (u−u0)/r, so only the values n and
u0 need to be specified. The values in the ghost cells of the outer bound-
ary u(nr+l)j are set such that this behaviour is reproduced. We consider
n = 1 for scalar fields and n = 2 for vector fields. We will also need to
solve an elliptic equation for the tensor hij using orthonormal cylindrical
components; in this case, n = 3 will be used for the diagonal components
and n = 4 for the non-diagonal non-zero component hϖz. This is the case
when we solve stationary initial data for a rotating neutron star in the
Dirac gauge. In dynamical spacetimes, we must set n = 1 for the hij

components in general.
All discretizations of the spatial differential operators are second-

order and we use the LAPACK library to invert the Laplacian operators
in the resolution of the elliptic equations. In some equations the vari-
able under resolution appears outside the main Laplacian operator in
the source term; in this case we apply a fix-point iterative method with a
relaxation factor. Each loop finishes when the mean difference between
two successive iterations is smaller than a given tolerance ϵ,

nr∑
i=1

nθ∑
j=1

|uk+1
ij − ukij |
nrnθ

< ϵ,

where k denotes the corresponding iteration and (i, j) refers to a generic
point of the numerical mesh. For all variables we use ϵ = 10−6.

6.3.2
Vector and tensor Poisson-like equations

In those cases where we solve a vector or tensor Poisson-like equa-
tion, we make a transformation to the orthonormal cylindrical coordi-
nates because there are more components decoupled with respect to the
orthonormal spherical one. The vector Poisson-like equations we need to
solve have the following form:

∆vi + λ f ijDjDkv
k = Ri. (6.12)

where ∆ = DkDk, Ri is a general source term which does not depend on
the unknown vector vi and λ is a constant. The first step of the general
procedure for solving the Equation (6.12) follows the strategy used in
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[52, 18]. It considers the divergence of the previous equation to derive

∆ϕ =
DiR

i

1 + λ
, (6.13)

with ϕ = Dkv
k. We solve this scalar Poisson equation and get ϕ. The

second step is to solve vi via the following equation (equivalent to the
original one):

∆vi = Ri − λ f ijDjϕ. (6.14)

In orthonormal cylindrical coordinates {ϖ,ϕ, z} and in axisymmetry, all
components decouple in the following way:

(∆v)ϖ = ∆vϖ − vϖ

ϖ2
= Rϖ − λDϖϕ, (6.15)

(∆v)ϕ = ∆vϕ − vϕ

ϖ2
= Rϕ, (6.16)

(∆v)z = ∆vz = Rz − λDzϕ. (6.17)

The left hand side of these equations is discretized applying second-order
finite differences, leading to a linear operator, which we invert using LA-
PACK subroutines, as previously mentioned.

On the other hand, as we are imposing stationarity for the computa-
tion of stationary initial data, from the Equation (6.3), we end up with a
tensor Poisson-like equation for hij of the following form:

(∆h)ij = Rij , (6.18)

where Rij is a general source term which does not depend on the un-
known tensor hij. Besides, in axisymmetry, we can set coordinates in
such a way that hrϕ = hθϕ = 0. It turns out that in orthonormal cylindri-
cal coordinates not all the non-zero components of hij (hϖϖ, hzz, hϖz and
hϕϕ) are fully decoupled, even if axisymmetry is imposed:

(∆h)ϖϖ = ∆hϖϖ − 2

ϖ2

(
hϖϖ − hϕϕ

)
, (6.19)

(∆h)ϕϕ = ∆hϕϕ +
2

ϖ2

(
hϖϖ − hϕϕ

)
, (6.20)

(∆h)zz = ∆hzz, (6.21)

(∆h)ϖz = ∆hϖz − hϖz

ϖ2
. (6.22)

The equations for hzz and hϖz are fully decoupled from the rest ones. If
we define the auxiliary variables

C1 = hϖϖ + hϕϕ, C2 = hϖϖ − hϕϕ, (6.23)
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then we can derive the following decoupled elliptic equations:

∆C1 = Rϖϖ +Rϕϕ, (6.24)

∆C2 −
4

ϖ2
C2 = Rϖϖ −Rϕϕ. (6.25)

Once C1 and C2 are solved, we can easily get hϖϖ and hϕϕ.
We will use this strategy to solve the whole system of elliptic equa-

tions.

6.3.3
Code

We are using a Fortran based code to solve the previous system. The
structure of scripts is divided in the following modules or directories:

common elliptic fcf_ellitpic fcf_hyperbolic

In the module common we define some subroutines to compute changes
of coordinates and tensor calculations. Inside elliptic the subroutines
to solve all the types of elliptic equations are programmed. We also set
the boundary conditions according to the type of variable. Here, we use
the library LAPACK to finally solve the algebraic linear equations coming
from the discretization of the differential operators by the finite differ-
ences. The module fcf_ellitpic contains the definition of the source
terms of all elliptic equations of the formulation. The computation of
all first and second order covariant derivatives of all vector and tensor
fields is carried out by subroutines built inside this directory. Finally,
in fcf_hyperbolic we set the numerical integration of the hyperbolic
sector of the formulation.

6.3.4
Comparison with results in the xCFC

formulation

In this Subsection we set hij = 0, so we can compare our results with
the ones obtained with the xCFC formulation [31] (without the introduc-
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tion of the auxiliary variables V i and Ẋi). The xCFC formulation can be
seen as an approximation to the FCF, except in the spherically symmet-
ric case, where this formulation is exact (see [28]). Then, we will compare
the numerical solution of the Equations (6.4)–(6.8) imposing hij = 0 to the
resulting one using the original xCFC formulation. Actually, it is conve-
nient to solve an elliptic equation for (Nψ2 − 1) instead of Nψ2, due to
the fact that (Nψ2 − 1) is O(c−4) in PNE. Therefore, the elliptic equations
for Xi and ψ are the same as in the xCFC case, and the main differ-
ences are that in our proposal we compute N from the elliptic equation
for (Nψ2−1), derived from the Equation (6.6), the shift vector is obtained
once V i is known, and the elliptic equation for Ẋi was not considered in
the xCFC formulation.

Figure 6.1: Profile of Xϕ in the meridional plane. A contour plot is also displayed. The
location of the surface of the star is denoted with a dashed black line. The rotation
axis is placed at θ = 0 (axis in the meridional plane determined by x = 0 in Cartesian
coordinates).

The profile for Xϕ in the meridional plane is shown in the Figure 6.1.
This is the only non-zero component of the vector field Xi in orthonormal
spherical components when axisymmetry is imposed. Contours of the
profile are also displayed. The location of the surface of the star is also
included in the contours with a dashed black line.

In the Figure 6.2 we show the profiles of the numerical solutions of
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Figure 6.2: Profiles of ψ (left) and N (right) in the meridional plane. A contour plot is also
displayed. The location of the surface of the star is denoted with dashed black lines. The
rotation axis is placed at θ = 0.

the variables ψ and N . To get N , we use the numerical solutions of
the elliptic equations for (Nψ2 − 1) and ψ. In the Figure 6.3 we check
that the radial profile of (Nψ2 − 1) ∼ O(c−4) decreases much faster than
(N − 1) ∼ O(c−2) and (ψ− 1) ∼ O(c−2); for example, at r = 102, (Nψ2 − 1) is
100 times smaller than the other two quantities.

In the Figure 6.4 we display the profiles of the only two non-zero
components of the conformal traceless extrinsic curvature, Ârϕ and Âθϕ,
where Âij = (LX)ij, since we are considering hij = 0 in the Equation
(4.115).

The figure 6.5 shows the numerical solution of the new introduced
vector field V i. The shift vector βi, directly computed from V i, is dis-
played in the Figure 6.6. For these vector fields only the angular com-
ponents V ϕ and βϕ are non-zero. V i ∼ O(c−5), while Xi ∼ O(c−3) and
βi ∼ O(c−3). Radial profiles of these quantities are displayed on the left
of the Figure 6.7. When we compare βi computed through the xCFC
formulation, βixCFC, to that computed with our new approach, the differ-
ence is very small (i.e., around 10−6 at most) and increases with r, as it
can be observed on the right of the Figure 6.7, where the radial profiles
of this difference in absolute value at θ = 0, π/4, π/2 are displayed. This
small difference may be related to the fact that we are solving V i ∼ O(c−5)
(with an elliptic equation with source terms of the same post-Newtonian
orders), and then we compute βi from V i; this strategy may be more ac-
curate for larger radial values with respect to the direct computation of
βixCFC.

Concerning the vector field Ẋi, we know that it must be zero theoret-
ically as ∂t is a Killing vector if the full metric is solved (hij = 0 is not
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Figure 6.3: Radial profiles of (N − 1) (solid blue line), (ψ − 1) (dashed red line), and
(Nψ2 − 1) (dash-dotted yellow line) in log-log scale at θ = π/2 are plotted. The vertical
solid black line denotes the radius of the star.

imposed). However, we can solve the Equation (6.8) imposing hij = 0
as an experiment; the expected error should be of the order of the ten-
sor hij = O(c−4) that we are neglecting. In fact, we obtain a maximum
absolute value for Ẋi of order 10−5 km−1, which can be justified tak-
ing into account that Xi reaches a maximum absolute value of order
10−2, the characteristic distance of the system is R ∼ 10 km, and an
underestimated approximation of the characteristic time of the system
T ∼ R (geometrized units) can be considered, so one would roughly ex-
pect Ẋi ∼ Xi/T ∼ 10−3, 2 orders of magnitude above the maximum value
obtained for Ẋi. The variables are solved with a tolerance of 10−6, so the
non-zero value obtained for Ẋi might be just numerical error.
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Figure 6.4: Profiles (left) of Ârϕ (top) and Âθϕ (bottom) in the meridional plane. A contour
plot of these components are also displayed (right). The location of the surface of the
star is denoted with dashed black lines. The rotation axis is placed at θ = 0.
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Figure 6.5: Profile (left) of V ϕ in the meridional plane. A contour plot is also displayed
(right). The location of the surface of the star is denoted with a dashed black line. The
rotation axis is placed at θ = 0.
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Figure 6.6: Profile of βϕ in the meridional plane. A contour plot is also displayed. The
location of the surface of the star surface is denoted with a dashed black line. The
rotation axis is placed at θ = 0.
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Figure 6.7: Left: radial profiles of βi (solid blue line), Xi (dashed red line), and V i (dash-
dotted yellow line) in log-log scale at θ = π/2. Right: radial profiles of the difference
between the computation of βϕ in the xCFC formulation, βϕ

xCFC, and with our approach
imposing h = 0, βh=0, in log-log scale at θ = 0, π/4, π/2. The solid and dashed vertical
black lines denote the radius of the star at θ = π/2 and θ = π/4, respectively.
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6.3.5
Numerical resolution of stationary initial data in

the FCF

In this Subsection we solve all the metric variables without the restric-
tion hij = 0. We obtain the numerical solution of the Equations (6.4)–(6.8)
(without imposing hij = 0) for the variables Xi, ψ, (Nψ2 − 1) (at this point
we can recover N therefore), V i (at this point we can recover βi therefore),
and Ẋi. Moreover, we solve the Equations (6.2) and (6.3) setting to zero
the time derivatives, as we are computing a stationary spacetime. On
one hand, from the Equation (6.3), we get an elliptic equation for hij:

γ̃klDkDlh
ij =

(
Nψ2

2

)−1 (
βkDkÂ

ij − ÂkjDkβ
i − ÂikDkβ

j +
5

3
ÂijDkβ

k

+2Nψ−6γ̃klÂ
ikÂjl +

3

4
Nψ−6γ̃ij γ̃lkγ̃nmÂ

kmÂln

+Nψ2R̃ij
∗ − 1

4
Nψ2R̃γ̃ij +

1

2
(γ̃klDkh

ij − γ̃ikDkh
lj − γ̃kjDkh

il)Dl(Nψ
2)

+4ψ−1γ̃ikγ̃jlDkψDl(Nψ
2) + 4ψ−1γ̃ikγ̃jlDlψDk(Nψ

2)− 2ψ−1γ̃ij γ̃klDkψDl(Nψ
2)

−8Nγ̃ikγ̃jlDlψDkψ + 2Nγ̃ij γ̃klDkψDlψ − γ̃ikγ̃jlDkDl(Nψ
2)− (LẊ)ij

−8πNψ10Sij + 4πNS∗γ̃ij

)
, (6.26)

and, on the other hand, from the Equation (6.2), an algebraic equation
for Âij

TT :

Âij
TT = −(2Nψ−6)−1

(
βkDkh

ij − hikDkβ
j − hkjDkβ

i +
2

3
hijDkβ

k + (LV )ij

−XjDi(2Nψ−6)−XiDj(2Nψ−6) +
2

3
f ijXkDk(2Nψ

−6)

)
. (6.27)

The term (LẊ)ij in (6.26) can be neglected since we are computing sta-
tionary initial data. We can also check the accuracy of our approach by
including this vector field, solving it via its elliptic equation and monitor-
ing the values of this quantity. We will discuss the results of both options
at the end of this subsection. The Equation (6.2) already had source
terms with consistent post-Newtonian order, so the Equation (6.27) too.
Moreover, setting the term ∂tÂ

ij
TT to zero in the Equation (6.3) makes the

elliptic equation (6.26) to also have a consistent post-Newtonian trunca-
tion in the source terms for the computation of the hij tensor.
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We overview here the iterative strategy used to solve all the equations
in order to get the stationary spacetime metric initial data, based on the
hierarchical structure of the equations already commented in Table 6.1:

1. Solve the Equations (6.4)–(6.8) for Xi, ψ, (Nψ2 − 1) (N can be there-
fore also computed), V i (βi can be therefore computed), and Ẋi,
imposing hij = 0.

2. Solve the elliptic equation (6.26) for hij with values computed in the
previous step.

3. Compute Âij
TT from the Equation (6.27).

4. Solve the Equation (6.4) for Xi, now considering the previous ob-
tained values (in general, hij ̸= 0).

5. Compute Âij from the Equation (4.115) (in general, hij ̸= 0 ̸= Âij
TT ).

6. Solve the Equations (6.5)–(6.8) for ψ, (Nψ2 − 1) (N can be there-
fore also computed), V i (βi can be therefore computed), and Ẋi (in
general, hij ̸= 0).

7. Go to step 2, until a desired level of tolerance is achieved.

After only 5 iterations with the previous strategy, we observe that the
absolute values of the differences of the variables in successive iterations
are smaller than 1%.

We obtain similar profiles for all variables with respect to the results
shown in the previous subsection. A detailed analysis of the expected
difference between the values of the variables when hij = 0 (xCFC) or
hij ̸= 0 (FCF) are considered can be found in the appendix of [31]. There
it is established that those differences are expected to be of the order of
hij. We can check this fact numerically in the Figure 6.8 , where we dis-
play the differences of N , ψ and βi when the cases hij ̸= 0 and hij = 0 are
considered. We notice that these differences are several orders of mag-
nitude smaller than the corresponding variables, and also smaller than
the profiles of the non-zero components of hij (when hij ̸= 0 is considered)
shown in the Figures 6.9-6.12.

We get similar profiles for Ẋi in comparison with those computed in
the previous Subsection considering hij = 0. Results for Ẋi are displayed
in the Figure 6.13. Fourth-order interpolation near r = 0 for some sec-
ond derivatives in the source of the Equation (6.8) was required to avoid
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Figure 6.8: Comparison of the conformal factor ψ (top), lapse N (middle) and angular
component of the shift βϕ (bottom) between the corresponding variable obtained using
the xCFC and the FCF formulations. A contour plot is also displayed (right). The location
of surface of the star is denoted with dashed black lines. The rotation axis is placed at
θ = 0.
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Figure 6.9: Profile (left) of hrr in the meridional plane. A contour plot is also displayed
(right). The location of surface of the star is denoted with a dashed black line. The
rotation axis is placed at θ = 0.
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Figure 6.10: Profile (left) of hθθ in the meridional plane. A contour plot is also displayed
(right). The location of surface of the star is denoted with a dashed black line. The
rotation axis is placed at θ = 0.
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Figure 6.11: Profile (left) of hϕϕ in the meridional plane. A contour plot is also displayed
(right). The location of surface of the star is denoted with a dashed black line. The
rotation axis is placed at θ = 0.
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Figure 6.12: Profile (left) of hrθ in the meridional plane. A contour plot is also displayed
(right). The location of surface of the star is denoted with a dashed black line. The
rotation axis is placed at θ = 0.
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some numerical divergences at the center r = 0 (possibly due to the ap-
pearance of some numerical errors and their amplification due to the use
of orthonormal spherical components). It is interesting to observe that,
on one hand, if we neglect the vector Ẋi in general (and in particular
the term involving this vector in the Equation (6.26)), we do not need
anymore to apply the previously mentioned interpolation and we obtain
profiles of hij which are closer to the reference solution obtained with
LORENE [2] close to the center r = 0. Remind that LORENE considers
Ẋi = 0 to compute the initial data. On the other hand, we get profiles
closer to the ones from the reference solution from LORENE when Ẋi

is included in the whole numerical domain except in the region close to
the center. This means that interpolations to avoid the numerical di-
vergences are also introducing a source of error close to r = 0. This
behaviour can be observed in the Figure 6.14, which will be further com-
mented in the next subsection.

Finally, in the Figure 6.15 we show the profiles for Âij
TT . We check that

the components of Âij
TT are at least two orders of magnitude smaller than

the corresponding Âij components, in agreement with their expected
post-Newtonian orders.

Convergence

We will compare with more detail our results with those computed
with LORENE using several resolutions and placing the outer boundary
at different radii. LORENE uses spectral methods and an exponential
convergence with increasing resolution for smooth variables is expected.
In our case, we use finite differences of second-order, so our conver-
gence with increasing resolution is expected to be slower. Then, we use
LORENE solutions as reference for testing the convergence and reliability
of our approach. We compute the relative error between our numerical
solution f and the one derived with LORENE fL,

εr(f) =
||f − fL||2
||fL||2

,

both with the same spatial resolution and numerical domain. We use the
discrete 2-norm,

||f ||2 =
(
(
∑i=nr,j=nθ

i=1,j=1 f(ri, θj)
2

nrnθ

)1/2

.

We set a decay of the form r−n at the outer boundary and expect better
results as the outer boundary is placed further from the neutron star.
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Figure 6.13: Profiles (left) of Ẋr (top) and Ẋθ (bottom) in the meridional plane. A contour
plot is also displayed (right). The location of surface of the star is denoted with dashed
black lines. The rotation axis is placed at θ = 0.
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Figure 6.14: Radial profiles of the numerical solution for hrr (top left), hθθ (top right), hϕϕ

(bottom left) and hrθ (bottom right), imposing Ẋi = 0 (dashed yellow lines) and solving
the Ẋi vector field (red dotted lines). The reference solution computed with LORENE is
also displayed (solid blue lines). ∆r = 96 m.
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Figure 6.15: Profiles (left) of Ârϕ
TT (top) and Âθϕ

TT (bottom) in the meridional plane. A
contour plot is also displayed (right). The location of surface of the star is denoted with
dashed black lines. The rotation axis is placed at θ = 0.
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We will focus on the hij tensor in this subsection, since the rest of the
variables are not computed with LORENE (these variables were just in-
troduced in this work) or we see no significant difference when increasing
the resolution or changing the location of the outer boundary. The latter
point may be due to other more dominant sources of numerical errors.

We perform some simulations to establish the proper location of the
outer boundary. In the Figure 6.16 we show results for the relative errors
of all the non-zero components of hij, including or not the computation of
Ẋi, respectively, with a fixed spatial resolution of ∆r = 386 m and varying
the location of the outer boundary. The error stabilizes once the outer
boundary is placed at 3 times the equatorial radius of the star Rstar, or
further away. If we are interested in dynamical spacetimes with poten-
tial gravitational radiation, the location of the outer boundary should be
placed around 100 times the equatorial star radius, according to [27].
From the Figure 6.16, we can quantify the consequences of neglecting
Ẋi. The errors are considerably higher if Ẋi = 0 is imposed. We think
that improving the interpolation technique close to the center would de-
crease even more the relative errors when Ẋ is not neglected, although
this is beyond the scope of this work.
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0.35

Figure 6.16: Relative errors comparing with LORENE solutions for the non-zero compo-
nents of hij, when Ẋi is considered (solid lines) and when is set to zero (dashed lines),
for several locations of the outer boundary Lgrid = kRstar with k = 1.5, 3, 6, 12. nr is such
that the spatial resolution is fixed to ∆r = 386 m.

Concerning the location of the outer boundary, we see a similar be-
haviour with other tested resolutions: ∆r = 772 m, 193 m, 96.4 m and 48.2
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m. Since we concluded that placing the outer boundary at r = 3Rstar is
enough to guarantee the numerical solution not to be strongly affected
by the boundary condition, we fix the outer boundary at r = 6Rstar. In the
Figure 6.17 we display the relative errors for several spatial resolutions.
All components stabilize its relative error for a spatial resolution of about
∆r ≲ 100 m.

Notice that the relative errors between the numerical solution of the
variables with our approach and using LORENE, shown in the Figure
6.16, are strongly affected by the values of the variables close to the outer
boundary, which are several orders of magnitude smaller than those at
the center. This fact can be shown in Figures 6.14, where the non-zero
components of hij are displayed.
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Figure 6.17: Relative errors for the non-zero components of hij for several radial spatial
resolutions.

LORENE results are a very good reference solution. It uses spectral
methods which have an exponential order of convergence in N , where N
is the number of base functions used in the spectral decompositions. To
conclude this subsection, we perform convergence studies with numer-
ical results of our code considering different resolutions. In the Figure
6.18 we plot our numerical solution, close to the center r = 0, for the
non-zero components of hij with different resolutions. In Table 6.3 we
estimate the order of convergence p at r = 0 km and r = 5 km, with
∆r = 386 m, according to the following expression

p ≈ log2

(
ε(∆r)

ε(∆r/2)

)
, (6.28)
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where ε(∆r) = |u(∆r) − u(∆r/2)| and u(∆r) is the numerical value of the
variable u at a fixed r when a spatial resolution ∆r is used. We obtain in
general an order of convergence close to the expected second-order, due
to the use of second-order finite differences for the spatial derivatives. We
obtain similar but slightly closer to second-order of convergence when we
considered the values of the variables at r = 5 km, as shown in the Table
6.3.
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Figure 6.18: Radial profiles for θ = π/2 of the numerical solution for hrr (top left), hθθ (top
right), hϕϕ (bottom left) and hrθ (bottom right) for numerical resolutions ∆r = 12Req/N
with N = 200, 400, 800, 1600, 3200.

r [km] p(hrr) p(hθθ) p(hϕϕ) p(hrθ)

0 1.9654 2.0646 1.9468 2.2798
5 1.9236 2.1470 2.0655 2.3158

Table 6.3: Estimation of the order of convergence p with the non-zero components of hij

using a spatial resolution ∆r = 386 m in expression (6.28) at r = 0 km and r = 5 km.
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Dirac gauge and determinant condition.

Dirac gauge condition is given by

Dih
ij = 0. (6.29)

In axisymmetry the condition Dih
iϕ = 0 is trivially fulfilled. Although we

assume the Dirac gauge to be satisfied, we are going to check it numer-
ically computing the following quantities, which we expect to be much
smaller than one:

Qi =
|Djh

ji|
max(|Drhri|, |Dθhθi|)

∣∣∣∣
(r,θ)=(r0,π/2)

, i = r, θ, (6.30)

where r0 stands for the radius at which |Djh
ji| deviates more from zero,

i.e., the violation of the Dirac gauge condition is more significant. We
choose r0 = 7 km.

The procedure used in LORENE to solve hij [79], satisfies the Dirac
gauge condition by construction. Of course, Qi is not going to be numer-
ically zero, but one would expect to be tiny compared to 1. In fact, we
get Qr

L, Q
θ
L ∼ 10−4, where the L subscript refers to quantities computed

using LORENE data. Notice that our strategy does not impose the Dirac
gauge condition directly (although it is applied when the expression in
Eq. (6.29) appears explicitly). In our approach, we get Qr, Qθ ∼ 10−2. In
the Figure 6.19 we compare the radial profiles of the Dirac gauge condi-
tion for i = r and i = θ with respect to the individual covariant derivatives
involved at θ = π/2.

On the other hand, there is another condition that our metric must
fulfill, according to Eq. (4.97):

det(f ij + hij) = 1. (6.31)

Reference [79] also imposes this condition in the resolution of the hij

tensor, so the numerical solution derived with LORENE satisfies this al-
gebraic constraint by construction. In our case, we compute the quantity

max(|1− det(f ij + hij)|)

to check the violation of this algebraic constraint. We get a value of order
10−5, to be compared with zero. Since some variables are solved with a
tolerance of 10−6, and taking into account that the absolute value of some
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Figure 6.19: Comparison of the gauge condition Djh
ji (solid blue line) with the covariant

derivatives involved Drh
ri (pointed red line), Dθh

θi (dashed yellow line) and Dϕh
ϕi (dash-

pointed violet line) for i = r (left) and i = θ (right).

components |hij | reach values of order 10−3, we think that the constraint
(6.31) is reasonably satisfied.

Indeed, we think that a strategy combining the resolution of the Equa-
tion (6.26) with imposing somehow the Dirac gauge and determinant
conditions of the Equations (6.29) and (6.31), respectively, is quite im-
portant. We can always remove one differential equation for some com-
ponent of the hij and then apply the determinant condition to get this
remaining component. The Dirac gauge in cylindrical coordinates has
only two non-zero components:

∂hϖϖ

∂ϖ
+

1

ϖ
(hϖϖ − hϕϕ) +

∂hϖz

∂z
= 0, (6.32)

∂hϖz

∂ϖ
+
hϖz

ϖ
+
∂hzz

∂z
= 0. (6.33)

For instance, one can get first hϖz from the Equation (6.22). Then,
combining the Equations (6.19) and (6.32), an elliptical equation for hϖϖ

can be derived:
∆hϖϖ +

2

ϖ

∂hϖϖ

∂ϖ
= Sϖϖ − 2

ϖ

∂hϖz

∂z
. (6.34)

hzz can be derived from the Equation (6.21). Finally, hϕϕ can be deduced
from the determinant condition, or the Equation (6.24) for the scalar C1

or the Equation (6.25) for the scalar C2, as hϖϖ is known. In this pro-
posal we have only used the first equation of the Dirac gauge.
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Another way may be first get hzz from the Equation (6.21). Then, the
second Dirac gauge equation (6.33) and the Equation (6.22) provide an
elliptic equation for hϖz:

∆hϖz − 1

ϖ

∂hϖz

∂ϖ
− 2

ϖ2
hϖz = Sϖz +

1

ϖ

∂hzz

∂z
. (6.35)

Now, if we take into account the Equations (6.24) and (6.25), we get hϖϖ

and hϕϕ. We can also consider the Equation (6.34) to get hϖϖ, using the
first Dirac gauge equation (6.32). Finally, the determinant condition can
be used to get hϕϕ, or solve for C1 or C2.

A third option, for which all conditions are used, consists in the fol-
lowing steps: solve hzz with the Equation (6.21); solve hϖz with the Equa-
tion (6.35); solve hϖϖ with the Equation (6.34); and, finally, get hϕϕ with
the Equation (6.31).

These options are beyond the scope of this work, but further investi-
gation is on our future plans.

6.4
Final remarks

In this Chapter we have presented a reformulation of the FCF, includ-
ing modifications both in the elliptic and the hyperbolic sectors, by in-
troducing two new variables, V i and Ẋi. With this new reformulation, we
keep the local uniqueness properties of the elliptic sector, and, moreover,
the new set of the equations are presented with a hierarchical structure
in terms of PNE. The addition of the new variables also simplifies the
source terms of the evolution equations.

In order to numerically test this reformulation, we have computed
stationary initial data of a rotating neutron star. We have discretized
the spatial derivatives by means of second-order finite-differences. We
have compared our results to the numerical solution using the xCFC
scheme, and also to the reference solution obtained with the spectral
code LORENE. We have also checked the convergence of our numerical
solutions, getting the expected second-order. The solution of the refor-
mulation of the FCF deviates from the one using xCFC as expected: the
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differences of the variables in the two approaches are of the order of the
hij tensor (or smaller), as it was theoretically established in [31]. Due to
the simplification in some equations, some metric variables are solved
with more accuracy; in particular, considering the new vector V i allows
one to compute the βi vector more accurately.

The generalized Dirac gauge and the condition on the determinant for
the conformal metric have been checked too. To our knowledge, this is
the first time when the condition for the determinant has been checked in
any finite-differences code for the resolution of the Einstein Equations in
complex non-analytical spacetimes, either in constrained formulations
or in free evolution schemes. Although the generalized Dirac gauge is
reasonable satisfied (see Figure 6.19 for more details), we plan to check
in the future the commented strategies to explicitly imposed these re-
strictions.

We plan to test the stationarity of the computed initial data for a rotat-
ing neutron star. To accomplish this, we will perform its time evolution
numerically integrating the hyperbolic sector of the new reformulation.
It remains for the future to check the behaviour of the new reformulation
in complex and really dynamical numerical simulations, and extract the
corresponding gravitational radiation of the system. Also, this new re-
formulation can be used to compute initial data using finite-differences
beyond the xCFC condition, i.e., satisfying all the constraint equations
without imposing the conformal metric to be flat. Another potential ap-
plication of this work is to use a simplified version of our proposed equa-
tions in the context of cosmological simulations by considering only the
leading terms of the PNE.



7
Resistive relativistic

magnetohydrodynamic
equations

This Chapter presents the results of the article [29], which applies the
Minimally-Implicit Runge-Kutta (MIRK) method to the numerical evolu-
tion of the resistive relativistic magnetohydrodynamic (RRMHD) equa-
tions.

In the Subsection 4.1.4 we introduced the basic concepts about mag-
netohydrodynamics (MHD), and we will introduce now the complete sys-
tem of equations to be solved, accounting for both hydrodynamic and
electrodynamic sectors. We will present two simple numerical tests of
the RRMHD equations with astrophysical motivations. Significant mag-
netic fields are present in relevant astrophysical scenarios, like accretion
disks, active galactic nuclei, relativistic jets, quasars, or compact objects;
see, for example, references [10, 16, 34, 47, 48, 64, 68, 86, 101, 118] for
some general reviews. Ideal MHD is recovered in the limit of RRMHD
when the resistivity tends to zero (see Equations (4.38) and (4.39)). If we
consider numerical simulations solving the ideal MHD equations [96],
effects induced by numerical errors and numerical resistivity will ap-
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pear. These effects depend on the numerical method and resolutions
used, and the physical resistivity is therefore not modeled consistently.
A consistent treatment for the resistivity is then necessary.

Here, we follow the approach proposed by [67] of an augmented sys-
tem of evolution equations to numerically deal with the constraints equa-
tions ∇ · E = q/ε0 and ∇ · B = 0. Previous approaches rely on Implicit-
Explicit (IMEX) Runge-Kutta schemes. In general, compared to explicit
schemes, IMEX methods need to apply the recovery (which can be very
expensive computationally) of the primitive variables from the conserved
ones (see more details in next section) in numerous additional times.
Moreover, the use of an iterative process for the recovery could have
potential convergence problems, increased by the additional number of
required loops. In addition, the computational cost of the previous IMEX
approach in comparison with the standard explicit methods is much
higher. The MIRK methods are able to deal with stiff terms (see the
end of Subsection 4.1.4) producing stable numerical evolutions, mini-
mize the number of recoveries needed in comparison with IMEX meth-
ods, their computational cost is similar to the standard explicit methods
and can actually be easily implemented in numerical codes which previ-
ously used explicit schemes.

We set the speed of light c = 1, the permitivity of vacuum ε0 = 1 and
the permeability of vacuum µ0 = 1.

7.1
Structure of the evolution system of

equations

In the case of the RRMHD equations [67], we have to deal with a hy-
perbolic system of evolution equations for the mass density ρ, the com-
ponents of the velocity field measured by the inertial observer V i, the
internal energy density ϵ, the electric charge density q, the components
of the electric field Ei and the components of the magnetic field Bi. In
addition, we have two constraint equations: the divergence of the mag-
netic field has to vanish and the divergence of the electric field equals the
electric charge density. Shock and rarefaction waves potentially develop
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in the evolution of these equations, even when one starts from smooth
initial data, and therefore high resolution shock capturing (HRSC) meth-
ods [6] must be used in order to properly capture these phenomena.
However, in this manuscript we will consider only smooth initial data
and smooth data during the evolution, and we will focus on how to deal
with the resistive source terms numerically, which become stiff at high
conductivities.

In [67], the evolution system of equations was augmented by the ad-
dition of two scalar fields, ϕ and ψ, and their corresponding evolution
equations. By doing this, the constraint for the divergence of the mag-
netic field, ∇ · B = 0, and its evolution equation, ∂tB + ∇ × E = 0, were
replaced by the following two equations:

∂tϕ+∇ ·B = −κϕ, (7.1)

∂tB +∇×E +∇ϕ = 0. (7.2)

Analogously, the constraint for the divergence of the electric field, ∇·E =
q, and its evolution equation, −∂tE + ∇ × B = J , were replaced by the
following two equations:

∂tψ +∇ ·E = q − κψ, (7.3)

−∂tE +∇×B −∇ψ = J , (7.4)

where J takes the expression

J = ΓqV + σΓ (E + V ×B + (E · V )V ) ,

where Γ = (1 − V 2)−1/2 is the Lorentz factor and σ is the conductivity.
In the definition of J we are assuming Ohm’s law for the charge-current
density (7.1). With these replacements and for positive κ, the potential
constraint violations that may be generated numerically will decay ex-
ponentially and propagate at the speed of light. Moreover, after these
replacements are applied, one only has to solve a system of evolution
equations for the electromagnetic sector, formed by the Equations (7.1)–
(7.4), together with charge conservation equation (4.30), which can be
written as an evolution equation for Q = Γ q,

∂tQ+∇ · J = 0. (7.5)

The electromagnetic sector (7.1)-(7.4) and the evolution equation (7.5)
have to be evolved together with the hydrodynamic equations (4.33) and
(4.22), which can be written as

∂tD +∇ · (ρΓV ) = 0, (7.6)

∂te+∇ · (E ×B + ρ hΓ2 V ) = 0, (7.7)
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∂tP +∇ ·
(
−E ⊗E −B ⊗B + ρ hΓ2 V ⊗ V +

(
(E2 +B2)/2 + p

)
η
)
= 0, (7.8)

where D = ρΓ, e = (E2 + B2)/2 + µ, P = (E × B) + ρ hΓ2 V , h is the
relativistic enthalpy per unit mass

h =
µ+ p

ρ
,

p is the pressure and η is the Minkowski spacetime metric tensor. µ =
ρ+ϵ is the total energy density. All the evolution equations can be written
as a hyperbolic balance law.

In [67] the same variable κ was introduced in the replacement of both
constraint equations, (7.1) and (7.3). However, for the case of the general
relativistic force-free electrodynamics, [82] found it more convenient to
choose different values for κ in each of the constraint equations, and the
optimal values were actually very different (by approximately 3 orders of
magnitude). In this manuscript we will follow the approach considered
in [67], since our numerical experiments do not require different values
for κ.

At this point, it is important to clarify the process of the recovery of
the variables. On one hand, the set of physical variables,

{ϕ,Bi, ψ,Ei, Q, ρ, ϵ, V i},

are called the primitive variables. On the other hand, the set of evolved
variables,

{ϕ,Bi, ψ, Ei, Q,D, P i, e},
are called the conserved variables. The determinant of the matrix of
change of variables is always different from zero, so a bijective relation
between the primitive and conserved variables is always locally guaran-
teed to exist. Notice that the subset {ψ,Ei, ϕ,Bi, Q}, associated to the
Maxwell equations, has elements which are both part of the primitive
and the conserved variables. In one direction, the conserved variables
can be obtained directly from the primitive ones from their definitions. In
the other direction, this process is known as the recovery, and it can be
quite difficult to obtain the explicit values of the primitive variables from
the conserved ones in a general scenario. Although the set of quantities
that we do evolve in time are the conserved variables, we are interested
in the explicit values of the primitive and physical ones, and these val-
ues are also needed in order to compute the pressure p appearing in the
source terms.
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Moreover, it is important to highlight that the conductivity σ can be
potentially large, so the source term of the evolution equation for the
electric field, and therefore the whole system of equations, can be poten-
tially stiff. The ideal regime is defined by the limit σ → ∞, and in this case
Ei = −(V ×B)i. If not taken into account in the numerical resolution, the
stiffness of the source term for σ ≫ 1 can lead to the development of nu-
merical instabilities. We can write whole system of evolution equations
as follows:

∂tE
j = Sj

E − σ Γ
(
Ej + (V ×B)j − (VlE

l)V j
)
= S̃j

E , (7.9)

∂tB
j = Sj

B, (7.10)

∂tY = SY , (7.11)

where Y denotes the rest of the evolved variables, Y = {ϕ, ψ,Q,D, e, P i}.
The factor multiplying σ Γ in (7.9) is the one called stiff term. We will
not include the set of variables Y in the implicit terms, and this is the
reason for considering this structure for the evolution equations. It is
remarkable that in relativistic fluids the conductivity σ always appears
multiplied by the Lorentz factor Γ, so one could define an effective rela-
tivistic conductivity, σ̄ = σ Γ.

7.2
Minimally implicit Runge Kutta method

7.2.1
Previous numerical approaches

As mentioned in the previous section, the presence of stiff source
terms requires a specific approach. One option is to implement an im-
plicit treatment of the source term, or part of it. A hyperbolic equation
with a relaxation term can be written as follows:

∂tU = F (U) +
1

ϵ
R(U). (7.12)

Here, R(U) does not have derivatives with respect to the evolved variable
U , and we have stiff source term in case ϵ≪ 1.
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In order to numerically solve the RRMHD evolution system of equa-
tions presented in the previous section, and taking into account the
structure of a hyperbolic equation with a relaxation and stiff source term,
some numerical methods have been used in the literature. For example,
in [67] the Strang-splitting method was applied. Also, the authors of
reference [96] used IMEX Runge-Kutta methods (we refer to this refer-
ence for more details about the application of these methods). With this
technique, these authors were able to successfully perform several sim-
ulations: the evolution of Alfven waves, where high values for the waves
amplitude and the conductivity were considered, and the results for the
ideal case were properly recovered; the evolution of a self-similar current
sheet; the evolution of shock tubes, where a broad range of different val-
ues for the conductivity was considered; or the evolution of a neutron
star with magnetic field. In their approach, the implicit operator is also
applied to the whole source term which contains the conductivity fac-
tor; in particular, this source term also contains the Lorentz factor and
it is important to notice that it is defined in terms of primitive variables
(specifically, in terms of the components of the velocity field), and there-
fore requires additional recoveries and iterative loops. This implies that
the application of IMEX methods is very expensive computationally, and
the nested iterative loops for the additional recoveries of primitive vari-
ables do not have any guarantee of convergence. This motivates us to
design an alternative approach, which is described in the next subsec-
tion.

The authors of [37] use local space-time discontinuous Galerkin meth-
ods to deal with the stiffness of the source terms of the same RRMHD
equations (again, we refer to this reference for more details), in the con-
text of unstructured meshes in multiple space dimensions with an uni-
fied framework of one-step finite volume and discontinuous Galerkin
schemes. A locally implicit scheme, explicit for the fluxes and implicit
(but not minimally implicit as the approach of next subsection) for the
source, was used. These authors were able to successfully perform sev-
eral simulations (some of them similar to the ones presented in [96]):
the evolution of Alfven waves, where high values for the waves ampli-
tude and the conductivity were again considered, and the results for the
ideal case were properly recovered; the evolution of a self-similar cur-
rent sheet; the evolution of shock tubes, with different values for the
conductivity; the resistive relativistic version of the MHD rotor problem;
the cylindrical explosion problem; or the resistive relativistic analogous
of the Orszag-Tang vortex problem.

It would be very interesting to compare these results, which include
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non-smooth data, with the ones obtained by using a minimally implicit
(our new proposal) implementation for the source terms, but this is be-
yond the scope of this manuscript.

7.2.2
Alternative approach

Let us describe the general idea of the MIRK method before applying
it to the RRMHD equations. Consider a hyperbolic system of equations
with a stiff source term where a parameter can be potentially very large
(like the conductivity in the case of RRMHD equations) of the form

∂tU + ∂iF
i(U) = S(U), (7.13)

where U is the vector of conserved variables, F i are the fluxes and the
source term S(U) can be written as

S(U) = SE(U) + σSI(U). (7.14)

Here SE are explicitly evolved source terms, while SI is evolved by using
MIRK-like methods and can be written as

Si
I(U) = H i +

n∑
j=1

Gi
j(U)U j , (7.15)

where H i do not depend on the conserved variables. In the previous ex-
pression Gi

j can depend on the conserved variables U and are always
evaluated explicitly; only the components of the vector of conserved vari-
ables, U i, multiplying the terms Gi

j, are implicitly evaluated. This means
that the inversion of the operators can be done analytically and in a very
simple way. Moreover, the coefficients appearing when allowing evalua-
tions in different stages of a single time-step (see next sections) should
be derived from stability conditions, and the stiff limit can provide key
information to select the correct values for these coefficients.

Identifying if the hyperbolic system of equations for a particular case
admits such a decomposition is an art; when this is achieved, one has
performed a sort of linearization of the system, quite standard in some
physical scenarios. Then, one can study if the application of the MIRK
method provides stable numerical evolutions.
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7.3
MIRK method for RRMHD equations

In the structure introduced in the Equations (7.9)-(7.11), the terms
SY , Sj

B and Sj
E are evolved explicitly, and we only consider implicit eval-

uations of the electric and magnetic components, Ej , Bj, appearing in
the source term for the evolution of the electric field multiplied by the
conductivity σ (i.e., terms Ej and Bj in the source of the Equation (7.9)).

7.3.1
First-order MIRK method

The general proposal in the case of a first-order method can be written
as:

Ej |n+1 = Ej |n +∆t Sj
E |n −∆t σ̄|n

(
c1E

j |n + (1− c1)E
j |n+1 + c2(V ×B)j |n

+(1− c2)(V |n ×B|n+1)
j − c3V

j |nVl|nEl|n
−(1− c3)V

j |nVl|nEl|n+1

)
, (7.16)

Bj |n+1 = Bj |n +∆t Sj
B|n, (7.17)

Y |n+1 = Y |n +∆t SY |n, (7.18)

where ci are constant coefficients to be determined. We can isolate Ei
n+1

in the Equation (7.16) having

Ei|n+1 =M
i
j

{
∆tSj

E |n + El|n
(
δjl −∆tσ̄c1δ

j
l +∆tσ̄c3(V

jVl)|n
)

−∆tσ̄
(
c2(V ×B)j |n + (1− c2)

(
V |n ×B|n+1

)j)}
,

(7.19)

where

M i
j =

(
1 + ∆tσ̄

(
1− c1 − V 2|n(1− c3)

))
δij +∆tσ̄(1− c3)(V

iVj)|n(
1 + ∆tσ̄(1− c1)

)(
1 + ∆tσ̄

(
1− c1 − V 2|n(1− c3)

)) . (7.20)

Since we want finite values for the computed quantities for very high
values of the effective conductivity (i.e., σ̄ ≫ 1), we will request(

1− c1 − V 2|n(1− c3)
)
̸= 0 ̸= (1− c1).
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Taking into account the wave-like behavior of the magnetic and electric
fields, we use a first-order Partially Implicit Runge-Kutta (PIRK) method
[30, 26], which sets c2 = 0.

We perform a linear stability analysis of the evolution system in the
case of infinite conductivity. We can choose c3 = 1 keeping numerical
stability of the numerically evolved system, slightly simplifying the pro-
posed method. Moreover, in the ideal limit σ → ∞, the electric field Ei is
no longer an independent quantity, since Ei = (V ×B)i; this means that,
independently of the velocity field V i, we should have a zero eigenvalue of
multiplicity at least 3 and we need to impose c1 = 0. With these choices,
the other eigenvalue of the system is bounded by 1 in absolute value,
independently of the velocity field V i value considered. In addition,

(
1− c1 + V 2|n(c3 − 1)

)
= (1− c1) = 1 ̸= 0,

as requested previously, and the ideal limit is recovered for ∆t→ 0.
The numerical integration of the evolution equation for Ei can then

be written as:

Ei|n+1 = Ei|n+
∆t

1 + ∆t σ̄|n
(
Si
E |n+ σ̄|nEl|n(V i|nVl|n−δil )− σ̄|n(V |n×B|n+1)

i
)
. (7.21)

This scheme can be viewed as an explicit scheme for the evolution of the
electric field when an effective time-step is considered:

∆t

1 + ∆t σ̄|n
.

This effective time step is of the order of ∆t, for sufficiently small values
of this quantity. In some sense, we are implementing a numerical first-
order explicit method for the modified evolution equation

∂tE
j =

1

1 +∆t σ̄|n
S̃j
E ,

where the modification is of order ∆t and thus we recover the original
evolution equation for the electric field in the limit ∆t → 0. Adapting
explicit schemes to this method is direct.
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7.3.2
Second-order MIRK method

The general proposal for a second-order two-stages method can be
written as:

Ej |(1) = Ej |n +∆t Sj
E |n −∆t σ̄|n

(
c1E

j |n + (1− c1)E
j |(1) + c2(V ×B)j |n

+(1− c2)(V |n ×B|(1))j − c3V
j |nVl|nEl|n

−(1− c3)V
j |nVl|nEl|(1)

)
, (7.22)

Bj |(1) = Bj |n +∆t Sj
B|n, (7.23)

Y |(1) = Y |n +∆t SY |n. (7.24)

Ej |n+1 =
1

2

(
Ej |n + Ej |(1) +∆t Sj

E |(1)
)
−∆t σ̄|(1)

{
(1− c1)

2
Ej |n + c4E

j |(1)

+
(c1
2

− c4

)
Ej |n+1 +

1− c2
2

(V |(1) ×B|n)j + c5(V ×B)j |(1)

+
(c2
2

− c5

)
(V |(1) ×B|n+1)

j

+V j |(1)Vl|(1)
(
(1− c3)

2
El|n + c6E

l|(1) +
(c3
2

− c6

)
El|n+1

)}
,(7.25)

Bj |n+1 =
1

2

(
Bj |n +Bj |(1) +∆t Sj

B|(1)
)
, (7.26)

Y |n+1 =
1

2

(
Y |n + Y |(1) +∆t SY |(1)

)
. (7.27)

Ei|(1) can be isolated from (7.22) getting an expression similar to (7.19)
and, from (7.25), Ei|n+1 can be expressed as

Ei|n+1 =N
i
j

{
∆t

2
Sj
E |(1) +

El|n
2

(
δjl −∆tσ̄(1− c1)δ

j
l +∆tσ̄(1− c3)V

j |(1)Vl|(1)
)

+ El|(1)
(
δjl/2−∆tσ̄c4δ

j
l +∆tσ̄c6V

j |(1)Vl|(1)
)

−∆tσ̄

(
1− c2

2

(
V |(1) ×B|n

)j
+ c5(V ×B)j |(1)

+
(c2
2

− c5

) (
V |(1) ×B|n+1

)j )}
,

(7.28)
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where

N i
j =

(
1 + ∆tσ̄

(
c1/2− c4 − V 2|(1)(c3/2− c6)

))
δij +∆tσ̄(c3/2− c6)(V

iVj)|(1)(
1 + ∆tσ̄(c1/2− c4)

)(
1 +

(
c1/2− c4 − V 2|(1)(c3/2− c6)

)) .

(7.29)
Since we want finite values for the computed quantities for very high
values of the effective conductivity (i.e., σ̄ ≫ 1), we will request(

1− c1 − V 2|n(1− c3)
)
̸= 0 ̸= (1− c1),(

c1/2− c4 − V 2|(1)(c3/2− c6)
)
̸= 0 ̸= (c1/2− c4).

Using a second-order PIRK method for the wave-like behavior of the elec-
tric and magnetic fields sets

c2 = 1−
√
2

2
, c5 =

√
2− 1

2
.

As in the first-order method, we perform a linear stability analysis of
the evolution system in the case of infinite conductivity. We can choose
c3 = 1 and c6 = 1/2, keeping numerical stability of the numerically evolved
system, slightly simplifying the proposed method. Moreover, in the ideal
limit σ → ∞, due to the same reason as in the first-order method, we
need to impose

c4 =
(1− c1)

2

2c1
, c1 ̸= 0,

so one eigenvalue of multiplicity at least 3 is set to zero. With these
choices, the other eigenvalue of the system is bounded by 1 in absolute
value, independently of the velocity field V i value considered, if c1 <
0; actually the expression for this eigenvalue achieves its minimum in
absolute value with respect to the remaining coefficient c1 for c1 = −1/

√
2.

We will choose this value for the c1 coefficient. Finally,(
1− c1 + V 2|n(c3 − 1)

)
= (1− c1) = (1 + 1/

√
2) ̸= 0,(

c1/2− c4 − V 2|(1)(c3/2− c6)
)
= (c1/2− c4) = (1 +

√
2/2) ̸= 0,

and the ideal limit is recovered for ∆t→ 0.
The two-stages of the numerical integration of the evolution equation

for Ei can then be written as follows:

Ej |(1) = Ej |n +∆t Sj
E |n −∆t σ̄|n

(
− 1√

2
Ej |n + (1 + 1/

√
2)Ej |(1)

+(1− 1/
√
2)(V ×B)j |n +

1√
2
(V |n ×B|(1))j − V j |nVl|nEl|n

)
,(7.30)
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Ej |n+1 =
1

2

(
Ej |n + Ej |(1) +∆t Sj

E |(1)
)
−∆t σ̄|(1)

{
(1 + 1/

√
2)

2
Ej |n

−
√
2(1 +

√
2)2

4
Ej |(1) + (1 +

√
2/2)Ej |n+1 +

1

2
√
2
(V |(1) ×B|n)j

+
(
√
2− 1)

2
(V ×B)j |(1) + (1− 3

√
2/4)(V |(1) ×B|n+1)

j

+
1

2
V j |(1)Vl|(1)El|(1)

}
. (7.31)

The Equation (7.30) can be rewritten as:

Ej |(1) = Ej |n +
∆t

1 + ∆t σ̄|n(1 + 1/
√
2)

(
Sj
E |n + σ̄|nEl|n(V j |nVl|n − δjl )

−σ̄|n(1− 1/
√
2)(V ×B)j |n − σ̄|n√

2
(V |n ×B|(1))j

)
. (7.32)

The Equation (7.31) can be rewritten as:

Ej |n+1 =
1

2
(Ej |n + Ej |(1)) +

∆t

1 + ∆t σ̄|(1)(1 + 1/
√
2)

{
1

2
Sj
E |(1)

−σ̄|(1)(1 + 1/
√
2)Ej |n + σ̄|(1)

(1 +
√
2)

2
Ej |(1)

−σ̄|(1)
√
2

4
(V |(1) ×B|n)j − σ̄|(1)

(
√
2− 1)

2
(V ×B)j |(1)

−σ̄|(1)(1− 3
√
2/4)(V |(1) ×B|n+1)

j − σ̄|(1)
1

2
V j |(1)Vl|(1)El|(1)

}
. (7.33)

Here, again, an effective time step appears:

∆t

1 + ∆t σ̄(1 + 1/
√
2)
.

For the first stage, σ̄ is evaluated in the previous time-step, σ̄|n. For the
second stage, σ̄ is evaluated in the first stage, σ̄|(1).
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7.4

Numerical simulations

We use Cartesian coordinates, equally spaced numerical grid and cen-
tered finite differences of second-order for the discretization of the spa-
tial derivatives. We present two different numerical tests, namely the
self-similar current sheet test and the large amplitude Alfven wave test;
both tests deal with smooth initial data and smooth data during the evo-
lution. They are also discussed in detail in references [96, 37] where it
can be checked the success of their numerical codes when dealing with
high values for the conductivity.
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Figure 7.1: Self similar current sheet test. Numerical values for By and Ez at t = 5,
for three different spatial resolutions, when a first-order MIRK method is used. V x = 0,
σ = 103 and CFL=0.8. The exact solution is also included.

In general, the evolution of the magnetic and electric fields are con-
sidered, and the charge is computed from its definition as divergence
of the electric field. The zero divergence of the magnetic field is con-
served through the evolution due to the particular configuration of initial
data. We present numerical results using the first and second-order
MIRK methods.
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7.4.1
Self similar current sheet

This is a simple test in 1D. During the evolution, the only non-zero
components of the electric and magnetic fields are By(x, t) and Ez(x, t).
Vacuum is considered, so we do not evolve the hydrodynamic sector.
We keep both the velocity components and the conductivity as constant
values. Unless otherwise stated, a Courant-Friedrichs-Lewy (CFL) value
of 0.8 is used. The set-up for the initial data is: ϕ = 0, V = (V x, 0, 0),
E = (0, 0, 0), B = (0, By(x, t = 1), 0), being By(x, t = 1) = erf(x

√
σ/2). The

exact solution of this problem is

By(x, t) = erf
(
x

2

√
σ

t

)
. (7.34)

We consider t = 1 for the initial data to avoid singular values of the exact
solution. We consider x ∈ [−1, 1]. At the spatial boundaries x = −1
and x = 1, we make use of ghost cells, where the evolved variables are
set equal to the the values from the adjacent cells inside our numerical
domain. We explore two illustrative examples among the possibilities for
this very simple case.

-1 -0.5 0 0.5 1

x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

B
y

 x = 0.02

 x = 0.01

 x = 0.005

Exact solution

(a) By

-1 -0.5 0 0.5 1

x

0

1

2

3

4

5

6

7

8

9

E
z

10
-3

 x = 0.02

 x = 0.01

 x = 0.005

(b) Ez

Figure 7.2: Self similar current sheet test. Numerical values for By and Ez at t = 5, for
three different spatial resolutions, when a second-order MIRK method is used. V x = 0,
σ = 103 and CFL=0.8. The exact solution is also included.

On one hand, we consider V x = 0 and σ = 103. The results for By

and Ez for three different spatial resolutions (namely, ∆x = 0.02, 0.01 and
0.005) when the first-order MIRK method is used, together with the exact
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Figure 7.3: Self similar current sheet test. Zoom on the numerical values for By and
Ez at t = 5, for three different spatial resolutions, when a first and second-order MIRK
methods are used. V x = 0, σ = 103 and CFL=0.8.

∆x 0.04 0.02 0.01

p for the 1st-order MIRK method 2.1648142 2.0709731 2.0383649
p for the 2nd-order MIRK method 2.1522280 2.0501579 2.0197818

Table 7.1: Estimated convergence orders for the first and second-order MIRK methods
applied to the self similar current sheet test at t = 5, with σ = 103 and CFL = 0.5, and
resolutions ∆x = 0.04/2k, k = 0, 1, 2, 3, according to the formula (7.35).

solution, are displayed in the Figures 7.1a and 7.1b at t = 5. The same
data are displayed in the Figures 7.2a and 7.2b when a second-order
MIRK method is used.

In all cases, the numerical values are on top of the exact solution. We
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Figure 7.4: Self similar current sheet test. Numerical results for several CFL values when
first and second-order MIRK methods are used at t = 5. V x = 0, σ = 103 and ∆x = 0.005.

get convergence of the evolved variables, as can be better appreciated in a
zoom of the previous Figures, displayed in the Figure 7.3. No significant
differences between the results of first and second-order MIRK methods
are found. Second-order convergence is obtained when both methods
are applied using the L2 norm of the error between the numerical and
the analytical (available for this test) solutions, always using points from
the coarsest grid. Specifically, we are considering the following formula:

p ≈ log2

(
ε(∆x)

ε(∆x/2)

)
, (7.35)

where p is the estimate of the order of convergence and ε(∆x) is the L2

norm of the error of a numerical solution with respect to the analytical
one for a resolution ∆x. In Table 7.1 we show the estimated order of
convergence for several resolutions. We get second-order of convergence
for both first and second-order MIRK methods. It is remarkable that
second-order is achieved also for the first-order MIRK method. This is,
most probably, due to the fact that this is indeed a very simple test where
the solution is symmetric with respect to x = 0.

We explore now several CFL values, even higher than 1, to check the
stability of the simulations, using first and second-order MIRK meth-
ods. We choose CFL values of 1, 50 and 100. We can observe in the
Figures 7.4a and 7.4b the appearance of numerical oscillations for very
high CFL values. Increasing the order of the method improves this be-
haviour, making the numerical simulations for a CFL value of 100 stable
at t = 5. The appearance of these oscillations is not due to the use of
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MIRK methods; for large CFL values and using IMEX methods, we will
find a similar behaviour [3]. The reason of these oscillations is the conse-
quence of using a larger CFL than allowed for the source terms included
in the purely explicit part in the MIRK methods (Sj

E , S
j
B, SY ), producing

this oscillatory behaviour.
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Figure 7.5: Self similar current sheet test. Numerical values for By and Ez at t = 5, for
three different spatial resolutions, when a first-order explicit method is used. V x = 0,
σ = 103 and CFL=0.3. The exact solution is also included.
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Figure 7.6: Self similar current sheet test. Numerical values for By and Ez at t = 5, for
three different spatial resolutions, when a first-order explicit method is used. V x = 0.1,
σ = 103 and CFL=0.3. The exact solution is also included.

In the case of the first-order (pure) explicit method, ∆x = 0.02 and
CFL=0.8, numerical instabilities develop very quickly, the electric and
magnetic field components achieving values of 10290 at t = 5. In order



146 7.4. Numerical simulations

to get stable and accurate results, we need to consider ∆x = 0.005 and
CFL=0.3, as shown in the Figures 7.5a and 7.5b. We find an analogous
behaviour for the second-order explicit method.

On the other hand, we consider V x = 0.1 and σ = 103. In the case
of the first-order explicit method, ∆x = 0.02 and CFL=0.8, the electric
and magnetic field components develop again numerical instabilities very
quickly, achieving values of order 10291 or higher at t = 5. As previously
for V x = 0, setting ∆x = 0.005 and CFL=0.3, we obtain good numerical
results, as shown in the Figures 7.6a and 7.6b. We find an analogous
behaviour for the second-order explicit method.
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Figure 7.7: Self similar current sheet test. Numerical values for By and Ez at t = 5, for
three different spatial resolutions, when first and second-order MIRK methods are used.
V x = 0.1, σ = 103 and CFL=0.8. The exact solution is also included.

Instead, when the first-order MIRK method is used, the By and Ez

profiles, shown in the Figures 7.7a and 7.7b, respectively, have the ex-
pected behavior for all resolutions: initial profiles are shifted to the right
and slightly smoothed with time. All the profiles lie on top of the exact
solution.

We also explore several CFL values. We see in the Figures 7.8a and
7.8b that much lower CFL values are allowed; the oscillations begin to
appear with CFL=4.5 for the first-order method and with CFL=10 for the
second-order one. Again, the reason of these oscillations is associated to
the stability of the terms included in the purely explicit part in the MIRK
methods (Sj

E , S
j
B, SY ).
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Figure 7.8: Self similar current sheet test. Numerical results for several CFL values
when first and second-order MIRK methods are used at t = 5. V x = 0.1, σ = 103 and
∆x = 0.005.

7.4.2
CP Alfven waves

In this second test we simulate the Circular Polarized (CP) Alfven
Waves in 1D. Here the hydrodynamic equations (7.6)–(7.8) need to be
solved, as well as the Maxwell Equations. The set-up for the initial data
for the electromagnetic field is

B(x, 0) = B0 (1, cos(k x), sin(k x)), (7.36)

with k = 2π and B0 = 1.1547, and

E(x, 0) = −V (x, 0)×B(x, 0), (7.37)

with
V (x, 0) =

VA
B0

(0, By(x, 0), Bz(x, 0))

and VA the special relativistic Alfven speed, see [96]. Moreover, we con-
sider ρ(x, 0) = p(x, 0) = 1 and the initial values for conserved hydrody-
namic variables can be derived from them. We consider a perfect fluid
model and an ideal fluid equation of state

p = (Γ1 − 1)(ρ+ ϵ),

with Γ1 = 4/3, being Γ1 the adiabatic index. With these choices VA =
0.423695. x ∈ [0, 1] defines our numerical domain (one spatial period) and
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we impose periodic boundary conditions. Since we want to test if we
are able to recover the ideal MHD limit, we consider σ = 108 in all the
simulations presented in the manuscript; the numerical solution should
be very close to the analytical solution in the ideal limit.

Primitive variables must be computed on each time stage of each it-
eration; we apply the recovery procedure used in [37]. First, a quartic
equation for the Lorentz factor Γ can be derived, with coefficients defined
in terms of conserved variables:

A4Γ
4 +A3Γ

3 +A2Γ
2 +A1Γ +A0 = 0, (7.38)

where A0 = γ21 (C1 + D2), A1 = −2γ1C2D, A2 = C2
2 − 2γ1C1 − γ21 D, A3 =

2γ1C2D, A4 = C1 − C2
2 , C1 = |P − E × B|2, C2 = e − (E2 + B2)/2 and

γ1 = (Γ1 − 1)/Γ1. We use the bisection method to get the solution of the
Equation (7.38) with machine precision. Afterwards, we can compute the
remaining primitive variables as follows:

ρ =
D

Γ
, (7.39)

h =
e− 1

2(E
2 +B2)− γ1

D
Γ

Γ2 − γ1
, (7.40)

p = γ1ρ(h− 1), (7.41)

V =
P −E ×B

e− 1
2(E

2 +B2) + p
. (7.42)

We consider CFL=0.3. A Kreiss-Oliger term of the form

− ϵd
16

(∆x)3∂4xY (7.43)

has been included in the hydrodynamic sector, in order to guarantee
stability by adding a controlled amount of artificial dissipation, with ϵd =
0.01.

The time coordinate starts at t = 0 and ends after one period, at t =
T = 1/VA. In the Figures 7.9a and 7.9b we display the numerical solution
of By and Ey at t = T for three different resolutions, ∆x = 0.02/2k, k =
0, 1, 2, when a first-order MIRK method is used, together with the exact
solution in the ideal MHD limit.

In the case of second-order MIRK method, we use the same set up as
before, but removing the Kreiss-Oliger term (similar results are obtained
when this term is not removed). The numerical results are shown in
the Figures 7.10a and 7.10b for the same variables as for the first-order
method. The numerical solution is closer to the exact solution in the
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Figure 7.9: CP Alfven waves test. Numerical values for By and Ey at t = T , for three dif-
ferent spatial resolutions, when first-order MIRK method is used. σ = 108 and CFL=0.3.
The exact solution in the ideal MHD limit is also included.

ideal MHD limit in comparison with the one obtained with the first-order
method, as it can be seen clearer in the zoom of the Figures 7.11.

We estimate the convergence order of our methods for this test. We
carry out simulations for successive smaller resolutions. We have de-
tected that the Kreiss-Oliger dissipation term (7.43) affects this compu-
tation; therefore, we increase in one unit the power of the factor ∆x and
the coefficient ϵd = 0.1 in this term. Moreover, we employ a CFL value
of 0.1. We consider, as in the previous test, the L2 norm of the errors;
in this case, however, since we do not have the exact solution (the ex-
act solution in the ideal MHD limit should be considered as a reference),
the error is computed based on the difference of numerical solutions S
for successive smaller resolutions, always using points from the coarsest
grid:

ε(∆x) = ||S(∆x)− S(∆x/2)||2. (7.44)

We get first-order of convergence for the first-order MIRK method as ex-
pected, but also first-order of convergence is obtained for the second-
order MIRK method. Table 7.2 shows the obtained results. We were not
able to find the reason of this reduction in the order of convergence. Nev-
ertheless, for the second-order MIRK method the orders of convergence
computed are always bigger than for the first-order MIRK method.

Finally, we explore three different values for the CFL. We obtain in-
teresting results: for CFL=0.3 and 0.7 we have stable numerical results,
but for CFL=0.8 this is no longer the case. This effect is more severe if
the Kreiss-Oliger dissipation term is neglected. In the Figure 7.12, we
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Figure 7.10: CP Alfven waves test. Numerical values for By and Ey at t = T , for three
different spatial resolutions, when second-order MIRK method is used. σ = 108 and
CFL=0.3. The exact solution in the MHD ideal limit is also included.

∆x 0.04 0.02 0.01 0.005 0.0025 0.00125

p for the 1st-order
MIRK method 1.38867 0.93344 0.87209 0.92522 0.96129 0.98042

p for the 2nd-order
MIRK method 1.63763 1.20525 0.99682 0.96979 0.97859 0.98787

Table 7.2: Estimated convergence orders for the first and second-order MIRK methods
applied to the CP Alfvén waves test at t = T , with σ = 108 and CFL = 0.1, and resolutions
∆x = 0.04/2k, k = 0, 1, . . . , 6, according to the Equation (7.44) and the formula (7.35).

show the numerical results obtained using first and second-order MIRK
methods for these CFL values. It has been checked that the behaviour
with and without artificial dissipation in the second-order MIRK method
is quite similar.

7.5
Final remarks

In this work, first and second-order MIRK methods have been pre-
sented to numerically integrate the RRMHD equations proposed in [67].
In these MIRK methods, only conserved variables are included in the im-
plicit evaluations. The inversion of the operators can be done analytically
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(c) Ey. First-order method.
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Figure 7.11: CP Alfven waves test. Zoom on the numerical values for By and Ey at t = T ,
for three different spatial resolutions, when first and second-order MIRK method are
used. σ = 108 and CFL=0.3. The exact solution in the MHD ideal limit is also included.

and is trivial. First and second-order PIRK methods to take into account
the wave-like behaviour of the magnetic and electric fields, in addition
to linear stability conditions close to the ideal limit, are used to select
the values for the ci coefficients. There is no need of additional iterative
steps on each stage with respect to the explicit methods. The potential
comparison with IMEX methods strongly depend on the numerical tests
carried out: MIRK methods have the same computational cost as explicit
ones, while IMEX methods will be more computationally expensive and
this cost will depend on the complexity of the equation of state consid-
ered (and therefore on the complexity of the recovery process). For both
first and second-order MIRK methods, an effective time-step can be de-
fined, making the change of the numerical codes with explicit methods
quite direct.



152 7.5. Final remarks

0 0.2 0.4 0.6 0.8 1

x

-1.5

-1

-0.5

0

0.5

1

1.5

B
y

CFL = 0.3

CFL = 0.7

CFL = 0.8

Exact solution

(a) First-order method

0 0.2 0.4 0.6 0.8 1

x

-1.5

-1

-0.5

0

0.5

1

1.5

B
y

CFL = 0.3

CFL = 0.7

CFL = 0.8

Exact solution

(b) Second-order method without Kreiss-Oliger
term

0 0.2 0.4 0.6 0.8 1

x

-1.5

-1

-0.5

0

0.5

1

1.5

B
y

CFL = 0.3

CFL = 0.7

CFL = 0.8

Exact solution

(c) Second-order method with Kreiss-Oliger term

Figure 7.12: CP Alfven waves test. Numerical results for several CFL values when first
and second-order MIRK methods are used. σ = 108 and ∆x = 0.005.

We have also shown some simple dynamical numerical simulations
with smooth data, namely the self similar current sheet test and the
CP Alfven waves test. More complex simulations and also with non-
smooth data are needed to really check the potential of the proposed
schemes. Also, the comparison with other approaches, like the ones
used in [96, 37], would be also addressed in future steps.

The idea behind the MIRK methods can be applied to other kinds of
equations. In particular, in the next chapter, we will apply this strategy
to the numerical resolution of the Boltzmann Equation to solve the neu-
trino transport equations in supernovae simulations using the so-called
M1 closure approximation. Also, the application to the force-free elec-
trodynamics in its different formulations (see references in [82]) can be
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further discussed. Other examples can be found in contexts with rar-
efied gases [66] and the shallow water equations [65]; there, stiff terms
appear in the balance laws coming from the corresponding scenarios.
Regarding the future, it is planned to combine the strategy of the MIRK
method with a well-balanced method (see [22]) to manage the fluxes in
order to preserve stationary solutions.





8
Radiative transport

equations

The contents of this Chapter are those of reference [111].
The radiation hydrodynamic equations describe the dynamics of the in-
teraction between matter and radiation such as photons or neutrinos.
Its evolution couples the hydrodynamic equations to those of radiative
transfer [88, 89], and they appear in many astrophysical scenarios.

Neutrinos are extremely important in core-collapse supernovae (CC-
SNe) and neutron stars. In usual environments, they can traverse huge
amounts of matter without interacting as they only undergo the elec-
troweak interaction and its mass is negligible. We say that the matter
is optically thin or transparent. Nonetheless, we find the reverse case
when extreme conditions, as nuclear densities, in CCSNe are reached
(matter becomes optically thick). Neutrinos are such important that the
explosion mechanism of CCSNe cannot be understood without a detailed
account of the generation and transport of neutrinos.

With this context in mind, in this Chapter we will apply the MIRK
method to numerically integrate the neutrino transport equations in a
stable way. In the Chapter 7, we applied the MIRK method to the RRMHD
equations, which may become stiff due to the fact that the conductivity σ
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may be high. Here the stiff regime will be determined by two scalar func-
tions, the absorption and scattering opacities. The method can also be
expressed in an explicit-like form and the inversion of the implicit oper-
ator can be done analytically too. We also take into account the physical
behavior of the evolved variables in the limit of the stiff regime. We will
show the results of applying this method to the reactions between neu-
trinos and matter in CCSNe simulations.

8.1
Radiation hydrodynamics equations

In this Section we describe the coupling between the radiation and the
hydrodynamic sector. Much of the complexity of theoretically modelling
the aforementioned systems comes from the equation underlying radia-
tive transfer. At a basic level, the Boltzmann equation, which come from
statistical mechanics, describes the evolution of the distribution func-
tion, F , of radiation quanta in the phase-space. In the following, we will
also describe the Method of Moments to solve Boltzmann Equation. The
contents described here are a summary of those in the reference [63].

8.1.1
Statistical mechanics

We introduce now some basic concepts about statistical mechanics
which will contextualize the Boltzmann Equation. We address the inter-
ested reader to the book [55] for further information about this topic.

Statistical mechanics address the problem of counting the number of
possibles microstates given a macroscopic thermodynamic state. It in-
volves results about classical mechanics, thermodynamics or quantum
physics. Its natural work space is the phase space where the position X
and the momentum P of particles are the independent variables. Sta-
tistical mechanics relies on the Heisenberg uncertainty principle which
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states that
∆X∆P ≥ ℏ

2
(8.1)

where ℏ = h/2π, being h the Planck constant and ∆X and ∆P are the
standard deviation of the distribution function of position and momen-
tum, respectively, of a particle. For this reason, the volume of a single
state of particle in the phase space is assigned to be h3. Another impor-
tant result is the Entropy Boltzmann Equation

S = kB log g, (8.2)

where S is the entropy of a macroscopic thermodynamic system, g is the
number of possibles microstates (also called statistical weight) and kB
is Boltzmann constant. This relation connects microscopic and macro-
scopic worlds.

On the other hand, a function that plays a crucial role in statistical
mechanics is the particle distribution function F defined in such way the
quantity

dN =
g

h3
F(t,X,P )dX3dP 3 (8.3)

is the number of particles in the volume of phase space dX3dP 3. The
statistical weight g must account for the Pauli exclusion principle if the
particle under consideration is a fermion.

8.1.2
Boltzmann equation for radiative transfer

The particle distribution function F is determined by the Boltzmann
equation for radiative transfer

1

c

∂F
∂t

+N · ∇⃗F = B (8.4)

where N = K/K, and B is the collision integral. In the Equation (4.19)
we referred as K the momentum of massless particles, notation we follow
from now. B contains terms representing the interaction of one quanta
with others or with matter that take the form of integrals over momen-
tum space. Then, the Boltzmann Equation is an integro-partial differen-
tial equation, and a rigorous treatment is feasible only in special cases.
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The numerical methods that used to model, e.g., CCSNe rely on approx-
imations of the Boltzmann Equation.

In a very common approach, we integrate the specific intensity

I = (K/h)3cF (8.5)

multiplied by the tensor product of n = 0, 1, ... unit vectors N . Then,
yielding a series of moments, now only functions of space and time. The
first four moments are

{cE, F i, cP ij , Qijk} =

∫
dΩI{1, N i, N iN j , N iN jNk}. (8.6)

where dΩ is the element of solid angle. The first ones have a direct phys-
ical interpretation: n = 0, 1, and 2 correspond to the radiation energy
and momentum densities and the radiation pressure, respectively. The
resulting infinite series of evolution equations takes the form of conser-
vative form, in which the moment of order n + 1 appears as a (spatial)
flux of the moment of degree n and source terms, accounting for the re-
actions, follow from moments of the collision integrals. Truncating the
series at a finite degree n and closing the system with a local algebraic
relation for the higher moment(s) defines the family of Mn methods.

M0 or (flux-limited) diffusion and M1 or algebraic Eddington tensor
methods offer a good compromise between accuracy and numerical costs,
and are thus widely used in relativistic astrophysics. The system for E
and F i (in the comoving frame) can be written for each neutrino species
as

∂tE +∇jF
j +∇j(V

jE) + (∇jVk)P
jk − (∇jVk)∂ω(ωP

jk) = C(0), (8.7a)

∂tF
i + c2∇jP

ij +∇j(V
jF i) + F j∇jV

i − (∇jVk)∂ω(ωQ
ijk) = C(1),i, (8.7b)

where terms of order O(V 2/c2) have been excluded, ω = cK (see (4.19)),
V i is the velocity of the fluid and

C(0) =

∫
dΩ(K/h)3cB, (8.8a)

C(1),i =

∫
dΩ(K/h)3cBN i. (8.8b)

The system (8.7) is the spectral M1 system of transport equations. The
closure relations for the moments of order higher than 1 are too complex
to put them here; we refer to [63] instead for more details.
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M1 methods are very good at modelling radiation in the optically thick
and the transparent regimes and also work well in the intermediate,
semi-transparent regime. Nonetheless, a few difficulties remain. A par-
ticularly important one pertains to the time integration in the optically
thick regime, in which the typical time scales of interactions between ra-
diation and matter (the inverse of the reaction rates) can be many orders
of magnitude smaller than the time scales associated to the radiation
propagation or the dynamical time scales: the equations are stiff.

Designing methods for stiff equations requires specific considerations.
Explicit time integration is only stable if the numerical time step is re-
duced to the characteristic time scales of the fastest evolving term, which
in this case would be the radiation-matter interaction ones. Implicit
methods, on the other hand, allow for a stable evolution even when using
the–much larger–time steps set by, e.g., radiation propagation or hydro-
dynamics. They, however, can be very complicated to implement due to
the inversion of the operators involved, in particular for parallel execu-
tion, and suffer from low computational efficiency. As a compromise,
IMEX Runge-Kutta methods [97] combine an implicit integration of only
the stiff terms with an explicit integration of the rest of the equations.
This strategy has been used very recently by [57]. Semi-implicit nu-
merical schemes [43] have also been used very recently in neutron star
mergers (see for example [104]). Here, we will apply the MIRK method
to the system (8.7). This system will be coupled to the hydrodynamics
equations which, for completeness, we briefly describe hereunder.

8.1.3

Hydrodynamic sector

The hydrodynamic sector involves the usual mass, energy and mo-
mentum conservation equation of the Chapter 4. However, the neutrino
interaction give rise to source terms in this case. As usual, we deal with
fluid density ρ, momentum density ρV i and total energy density µ of the
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fluid. The system written as a conservation law reads

∂ρ

∂t
+∇j(ρV

j) = 0, (8.9a)

∂(ρYe)

∂t
+∇j(ρYeV

j) = QN, (8.9b)

∂(ρV )

∂t
+ ∇⃗ · (ρV ⊗ V ) = −∇⃗p+QM, (8.9c)

∂µ

∂t
+ ∇⃗ · ((µ+ p)V ) = QE + V ·Qi

M, (8.9d)

where Ye is the electron fraction and the source terms are computed as

QN = −
∑

species

∫ ∞

0
C(0)dω, (8.10a)

QM = −c−2
∑

species

∫ ∞

0
C(1)dω, (8.10b)

QE = −mB

∫ ∞

0

{(
C(0)

ω

)
νe

+

(
C(0)

ω

)
ν̄e

}
dω, (8.10c)

where νe and ν̄e accounts for electronic neutrino and electronic antineu-
trino species, respectively.

We present in this manuscript a numerical scheme to solve the M1

neutrino-hydrodynamics equations to first and second-order in time which,
as in the Chapter 7, preserves stability properties of implicit methods
and, at the same time, has a computing speed similar to that of an ex-
plicit method. We implement the new solver in the neutrino-hydrodynamics
code of [63] as an higher order alternative to the IMEX scheme that is al-
ready implemented.

Other very different numerical approaches can be considered. For
example, Monte Carlo methods can be used to include neutrino transport
in the context of CCSNe and this strategy has been implemented in the
general relativistic code SpEC [44, 45].
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8.2

Equations for neutrino transport in the
M1 closure

The basic variables of M1 radiative transfer, the energy and momen-
tum density, E(t,X, ω) and F⃗ (t,X, ω), respectively, of the radiation field,
are functions of time t, position X and particle angular frequency ω asso-
ciated to quantum physics [88, 89]. Owing to their conservative charac-
ter, the corresponding evolution equations take the form of balance laws
including the spatial transport and the redistribution across particle en-
ergies by differential operators. Exchange of energy and momentum with
matter enter the equations via source terms that typically depend only on
the local state of radiation field and the matter, but not on their deriva-
tives. Since we will deal with the latter terms, we write the M1 system in
the following simplified way (see also [63]):

∂tE = SE + C(0), (8.11a)

∂tF
i = Si

F + C(1),i, (8.11b)

where the terms with spatial or energy derivatives are included in the
SE and Si

F terms, and the interaction source terms C(0) and C(1),i are
explicitly split from the rest of the source terms. The form of the inter-
action source terms depends on the choice of interactions and possible
approximations used to describe them. We focus on the thermal emis-
sion and absorption and isotropic scattering. Then, the rates of energy
and momentum exchange are proportional to the absorption opacity κa
and transport opacity κtra, respectively. The interaction source terms are
given by the following expressions:

C(0) = c κa(Eeq − E), (8.12a)

C(1),i = −c κtraF
i. (8.12b)

The transport opacity satisfies κtra = κa + κs, where κs is the scatter-
ing opacity. The Equation (8.12a) describes how matter emits radiation
thermally with an equilibrium energy density Eeq (associated with the
Maxwell-Boltzmann distribution for photons or Fermi-Dirac distribution
for neutrinos), and how it absorbs the local radiation energy. In the case
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of neutrinos Eeq is computed as

Eeq(ω, µν , T ) =

∫
dΩ
( ω
hc

)
FFD =

∫
dΩ
( ω
hc

)(
exp

(
ω − µν
kBT

)
+ 1

)−1

,

(8.13)
where T and µν are the fluid temperature and chemical potential of the
neutrino species, respectively. The Equation (8.12b) accounts for the
transfer of momentum to the gas by means of absorption and scatter-
ing reactions. We note that the same terms appear with the opposite
sign (and integrated over particle energy) as sources in the hydrodynamic
equations for the gas (see the Equations (8.9) and (8.10)).

We do not go deeper into the detailed, potentially very complicated,
dependence of the opacities on E and F⃗ , as well as on the composition
and thermodynamic state of the gas, because our method is valid for
general opacity laws. Our main focus lies on the stiff, optically thick
limit, in which the opacities are very high, κa,tra ≫ 1, and the interaction
terms dominate over SE and Si

F in the Equations (8.11). Under these
conditions, numerical difficulties arise due to the need to simultaneously
follow all the terms with characteristic time scales that can differ by
many orders of magnitude.

The physically correct stiff limit consists of E approaching the equi-
librium energy density Eeq. Furthermore, the Equation (8.12b) indicates
that high opacities will reduce F⃗ to zero. However, the precise manner in
which F⃗ vanishes matters a lot for getting the correct solution. In a non-
uniform radiation field, F⃗ has to approach the diffusion limit satisfying

F⃗ → F⃗diff =
1

3 c κtra
∇⃗E.

While some M1 methods [59, 103, 60, 9] deal with this requirement by
explicitly enforcing the diffusion flux for high optical thickness, others
[63] found that an appropriate treatment of the flux terms in SF is suffi-
cient to reproduce the correct limit. In practise, approaches such as the
one of [63] allow us to offload the issue of the correct diffusion limit to the
solution of SF . As long as our method for C(1),i ensures that F⃗ vanishes
in the optically thick limit in the absence of SF , the coupled solution of
SF and C(1),i will behave correctly.

We focus now on the numerical schemes that can be used to solve the
Equations (8.11). The time-integration strategy for the transport equa-
tions (8.11) is usually chosen based on a trade-off between stability, ac-
curacy, and numerical costs. These goals are somewhat at odds with
each other: the most stable schemes, implicit time integrators, and the
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most accurate ones, high-order methods, are also the most expensive
ones; furthermore, high-order implicit methods tend to be particularly
complex. The difficulties are exacerbated when applying the integrators
to terms involving spatial as well as temporal derivatives. For this rea-
son, an operator-splitting approach is common in which the transport
terms, SE,F , the interaction terms, C0,1, and, in the case of coupled ra-
diation hydrodynamics, the flux and source terms of the hydrodynamics
equations not connected to neutrino interactions, are treated separately
using suitable methods. In the applications we are mostly interested
in, CCSNe, we follow the evolution of the system on the hydrodynamical
time scales, which leads us to select an explicit time integrator for the
latter group of terms. Furthermore, the maximum hydrodynamic flow
and sound speeds are similar to the characteristic velocities of the neu-
trino transport terms, which allows us to use an explicit time integrator
for them with roughly the same stability constraint on the time step. On
the other hand, their stiffness makes an implicit time integration scheme
the only feasible option for the interaction terms.

The IMEX strategy is commonly employed in neutrino-hydrodynamics
codes in high-energy astrophysics. Among the proposed methods, we
follow the one implemented by [63], whose discretized schematics we
briefly summarise in the following. We denote the conserved variables
of hydrodynamics (the densities of mass, momentum, energy) and of the
neutrino radiation (E,F ), collectively as U and W , respectively, and use
superscripts n,n+1 to indicate the states at discrete time steps tn and
tn+1 = tn+∆t, respectively. Then our prescription to update the variables
to the next time step is given by

(Un+1 − Un)/∆t = Lhydro(U
n) + L̄int(U

n,Wn+1), (8.14)

(Wn+1 −Wn)/∆t = Ltr(W
n) + Lint(U

n,Wn+1), (8.15)

where we the symbols Lhydro and Ltr stand for the discretized operators
including the fluxes and sources of hydrodynamics and the fluxes of
neutrino transport, respectively. Without entering into further details,
we note that they are evaluated explicitly with data of the previous time
step, tn. The neutrino-matter interactions, represented by the operator
Lint, i.e., the discretized version of the Equations (8.12), depends on both
W and U . Its dependence on the hydrodynamic variables is a result of
both the opacities and the equilibrium energy density, Eeq, being func-
tions of the thermodynamic state of the gas. We note its counterpart in
the hydrodynamic equations, L̄int, can be computed after Lint, and thus
presents no further difficulty.
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A fully implicit treatment of Lint in (8.15) would imply a fully implicit
evaluation of all the variables, Lint(U

n+1,Wn+1). The intricate dependence
of κa,tra and Eeq on U makes this task computationally costly, which
burden the numerical solution. This step would require at multiple times
the recovery of the primitive (thermodynamic) variables, in particular the
temperature, from U , i.e., the inversion of non-linear relations.

The MIRK method will minimize the computation cost of the process
of the recovery of variables. Our alternative approach differs in that we
evaluate implicitly only the conserved neutrino variables, Wn+1, but treat
the hydrodynamic variables and the variables derived from them, opac-
ities and equilibrium energy density, explicitly by using Un. This simple
change allows for preserving the stability properties and simultaneously
reducing the computational cost to that of an explicit method, as there
is no need to apply the recovery multiple additional times. In the fol-
lowing we explain the method in detail. Such an approach has been
implemented by [63] without exploring the mathematical framework pre-
sented in the next section. Here we go beyond their method, and this
mathematical framework also allows for a higher order extension.

8.3
Numerical methods

This Section present the equations of a general MIRK method of first
and second-order. The general expressions contain undetermined coef-
ficients that we will choose adequately in order to guarantee a correct
behaviour in the stiff limit regime.

8.3.1
First-order method

The equations of a first-order MIRK method for the Equations (8.11)
take the form

En+1 = En +∆t
(
Sn
E + acκna(E

n
eq − En) + (1− a)cκna(E

n
eq − En+1)

)
,(8.16a)

(F i)n+1 = (F i)n +∆t
(
(Si

F )
n − bcκntra(F

i)n − (1− b)cκntra(F
i)n+1

)
, (8.16b)
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where a, b are arbitrary real coefficients that we will select later according
to stability criteria. From previous equations, the explicit expressions for
En+1 and (F i)n+1 can be derived easily; they can be cast in matrix form
as:

(
E
F i

)n+1

=

(
E
F i

)n

+

(
∆t

1+∆t κn(1−a) 0

0 δij ∆t
1+∆t κ′n(1−b)

)(
c κa(Eeq − E) + SE
−c κtra F

i + Si
F

)n

,

(8.17)
where κ := c κa and κ′ := c κtra. The conditions a, b < 1 must be satis-
fied to force non-zero (and positive) denominators always. Notice that
the Equations (8.17) resemble a pure explicit method with effective time
steps

∆tE =
∆t

1 + ∆t κn(1− a)
, ∆tF =

∆t

1 + ∆t κ′n(1− b)

for the E and F i evolution equations, respectively. The previous matrix
expression has been easily and analytically derived thanks to the fully
explicit evaluation of the non conserved variables (e.g., all the variables
different from E and F i). Due to this reason, one would expect to have
a computational cost similar to that of applying a fully explicit method.
We now analyze the behaviour in the stiff limit regime.

Mathematically speaking, the stiff limit refers to κa, κtra → ∞. In that
limit, the Equation (8.17) reads(

E
F i

)n+1

=

( −a
1−a 0

0 δij −b
1−b

)(
E
F i

)n

+

(
En

eq
1−a

0

)
. (8.18)

Thus, the conditions
a < 1/2, b < 1/2, (8.19)

must be fulfilled for the spectral radius of the updated matrix to be
strictly bounded by 1, thus having a stable numerical method. This is a
more restrictive condition in comparison with previous conditions a, b < 1
(needed to avoid zero values in the denominators). In order to guaran-
tee a correct behaviour of the numerical solution at the stiff limit, and
assuming a well-behaved and smooth data for the previous time step,
En = En

eq +O(∆t) and (F i)n = 0 +O(∆t), we have that, ∀ a, b,

En+1 = En+1
eq +O(∆t),

(F i)n+1 = 0 +O(∆t).
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So, independently on the values of the coefficients a, b we get well-behaved
and smooth data in the next time step at first-order. This give us, in prin-
ciple, full freedom for choosing a and b, as long as conditions (8.19) are
satisfied. However, the behaviour of the evolved variables are far from
been smooth in CCSNe simulations. Therefore, we should guarantee
their correct behaviour at the stiff limit even when we are dealing with
non-smooth data, and regardless the possible presence of numerical er-
rors in the previous time steps. The choice b = 0 guarantees the correct
behaviour for F at the stiff limit, i.e., (F i)n+1 = 0. It remains choosing
a value for a. By analogy with b, and taking into account the particular
case Eeq = 0, we will simply consider a = 0. This means that the be-
haviour of E at the stiff limit is not controlled by previous values of this
quantity, but only by evaluations of Eeq = Eeq(U), which only depends
on the hydrodynamic variables U . With this choice, it is satisfied that
En+1 = En

eq = En+1
eq + O(∆t). Finally, in the case a = b = 0 the method

reads:

En+1 = En +
∆t

1 + ∆t κn
(
Sn
E + κn(En

eq − En)
)
, (8.20a)

(F i)n+1 = (F i)n +
∆t

1 + ∆t κ′n
(
(Si

F )
n − κ′n(F i)n

)
. (8.20b)

8.3.2

Second-order method

Hereafter we follow the same strategy as in the first-order case. Two
stages are needed for the second-order method. We denote the interme-
diate step by a (1) superindex and the final step by n + 1. In general,
we have four coefficients, a, a′, b, b′, to be determined based on stability
arguments. The first stage reads

E(1) = En +∆t
(
Sn
E + a κn(En

eq − En) + (1− a)κn(En
eq − E(1))

)
,(8.21a)

(F i)(1) = (F i)n +∆t
(
(Si

F )
n − b κ′n(F i)n − (1− b)κ′n(F i)(1)

)
, (8.21b)
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and the second stage can be written as

En+1 =
1

2
[E(1) + En] + ∆t

[
1

2
S
(1)
E + a′ κ(1)(E

(1)
eq − E(1))

+
1− a

2
κ(1)(E

(1)
eq − En) +

(a
2
− a′

)
κ(1)(E

(1)
eq − En+1)

]
, (8.22a)

(F i)n+1 =
1

2
[(F i)(1) + (F i)n] + ∆t

[
1

2
(Si

F )
(1)

− b′κ′(1)(F i)(1) − 1− b

2
κ′(1)(F i)n −

(
b

2
− b′

)
κ′(1)(F i)n+1

]
. (8.22b)

Isolating E(1) and (F i)(1), we get similar expressions to those of first-
order, just substituting the superindex n by (1):

E(1) = En +
∆t

1 + ∆t κn(1− a)

(
Sn
E + κn(En

eq − En)
)
, (8.23a)

(F i)(1) = (F i)n +
∆t

1 + ∆t κ′n(1− b)

(
(Si

F )
n − κ′n(F i)n

)
. (8.23b)

Then, En+1 and F i,n+1 can be expressed explicitly in terms of previous
evaluations of these quantities as:

En+1 =
[
1 + ∆t κ(1)

(a
2
− a′

)]−1
{[

1

2
−∆t κ(1)

(
1− a

2

)]
En

+

[
1

2
−∆t κ(1)a′

]
E(1) +

∆t S
(1)
E

2
+

∆t κ(1)E
(1)
eq

2

}
=
[
1 + ∆t κ(1)

(a
2
− a′

)]−1
{[

1

2
−∆t κ(1)

(
1− a

2

)]
En

+

[
1

2
+ ∆t κ(1)

(
1

2
− a′

)]
E(1) +

∆t

2

[
S
(1)
E + κ(1)(E

(1)
eq − E(1))

]}
,

(8.24a)

(F i)n+1 =

[
1 + ∆t κ′(1)

(
b

2
− b′

)]−1{[
1

2
−∆t κ′(1)

(
1− b

2

)]
(F i)n

+

[
1

2
−∆t κ′(1)b′

]
(F i)(1) +

∆t (Si
F )

(1)

2

}
=

[
1 + ∆t κ′(1)

(
b

2
− b′

)]−1{[
1

2
−∆t κ′(1)

(
1− b

2

)]
(F i)n

+

[
1

2
+ ∆t κ′(1)

(
1

2
− b′

)]
(F i)(1) +

∆t

2

[
(Si

F )
(1) − κ′(1)(F i)(1)

]}
.

(8.24b)

The following conditions are necessary for forcing non-zero (positive)
denominators always:

a

2
− a′ > 0, 1− a > 0;

b

2
− b′ > 0, 1− b > 0. (8.25)
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We finally determine the coefficients of the method taking into account
previous conditions and the behaviour of the numerical solution at the
stiff limit.

The stiff limit refers to κn, κ(1), κ′n, κ′(1) → ∞. In that limit, the Equa-
tions (8.24) read

En+1 = λEE
n +

−a′(
a
2 − a′

)
(1− a)

En
eq +

1/2
a
2 − a′

E
(1)
eq , (8.26a)

(F i)n+1 = λF (F
i)n, (8.26b)

where

λE =
a′a−

(
1−a
2

)
(1− a)(

a
2 − a′

)
(1− a)

, (8.27a)

λF =
b′b−

(
1−b
2

)
(1− b)(

b
2 − b′

)
(1− b)

. (8.27b)

The conditions |λE | ≤ 1 and |λF | ≤ 1 must be fulfilled to guarantee stabil-
ity of the numerical method at the stiff limit. If we assume well-behaved
and smooth data at second-order in time at t = tn,

En = En
eq +O(∆t2), (8.28a)

(F i)n = 0 +O(∆t2), (8.28b)

we can get, from the Equation (8.26) the following expressions:

En+1 = En+1
eq +

a′ + 1−a
2

a
2 − a′

(
∇XEeq

)n · S̃n
X∆t+O(∆t2), (8.29a)

(F i)n+1 = 0 +O(∆t2), (8.29b)

where we have used a Taylor expansion over E(1)
eq , X = (U ,W ) represents

the vector of all the evolved variables, ∇X = (∂X1 , ∂X2 , ...) and S̃X is the
source term in the evolution equation of the form ∂tX = S̃X . So in
order to satisfy the Equation (8.28) in the next time step tn+1, we need to
impose a′ = (a− 1)/2. We could choose b′ in resemblance with a′,

a′ =
a− 1

2
, b′ =

b− 1

2
. (8.30)

This choice for a′ preserves the second-order behaviour of our numerical
solution in the next time step and at the stiff limit when smooth data
are involved. Moreover the condition a/2− a′ > 0 is trivially satisfied and
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λE = −1. Note that having λE = −1 means consider a value for λE at the
border of the stability region, which seems to be not very convenient. In
addition, as commented for the first-order method, we must take into ac-
count that the evolved variables have a non-smooth behaviour in CCSNe
simulations.

Our proposal is then to consider b ̸= 0 and b′ = (b− 1)2/(2b) to guaran-
tee λF = 0 (as we did choosing b = 0 for the first-order method), preserving
the correct behaviour of our numerical solution regardless the possible
presence of numerical errors or non-smooth data. By analogy with b′,
and taking into account the particular case Eeq = 0, we will consider
a ̸= 0 and a′ = (a− 1)2/(2a), or λE = 0 equivalently. For these choices, the
conditions (8.25) result in

a′ =
(1− a)2

2a
, a ∈ (−∞, 0) ∪ (1/2, 1), (8.31a)

b′ =
(1− b)2

2b
, b ∈ (−∞, 0) ∪ (1/2, 1), (8.31b)

and the Equation (8.29a) reads

En+1 = En+1
eq +

1− a

2a− 1

(
∇XEeq

)n · S̃n
X∆t+O(∆t2). (8.32)

Second-order for smooth data at the stiff limit would be guaranteed if a =
1, but this is incompatible with conditions (8.31a). Restricting ourselves
to (8.31a), we only get first-order in time at the stiff limit for E, as seen in
(8.32); a price to pay when non-smooth data is considered. Within these
constraints, we still have some freedom for the election of the coefficients
a, b.

We can write our numerical method in such a way it resembles a pure
explicit scheme of the form

X(1) = Xn +∆tS̃n
X , (8.33a)

Xn+1 =
Xn

2
+
X(1)

2
+ ∆t

S̃
(1)
X

2
. (8.33b)

For the choices (8.30), the Equations (8.23) keep the same form, while
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the Equations (8.24) can be written as:

En+1 =
1−∆t κ(1)(1− a)

2 + ∆t κ(1)
En +

1 +∆t κ(1)(2− a)

2 + ∆t κ(1)
E(1)

+
∆t

2 + ∆t κ(1)

[
S
(1)
E + κ(1)(E

(1)
eq − E(1))

]
, (8.34a)

(F i)n+1 =
1−∆t κ′(1)(1− b)

2 + ∆t κ′(1)
(F i)n +

1 +∆t κ′(1)(2− b)

2 + ∆t κ′(1)
(F i)(1)

+
∆t

2 + ∆t κ′(1)

[
(Si

F )
(1) − κ′(1)(F i)(1)

]
, (8.34b)

where a, b have not been chosen yet. For κ, κ′ → 0, we recover the struc-
ture of the previous second-order pure explicit method.

Finally, with conditions (8.31), the Equations (8.23) keep the same
form, while the Equations (8.24) can be written as:

En+1 =
1−∆t κ(1)(1− a)

2 + ∆t κ(1)
(
2− 1

a

)En +
1 +∆t κ(1)

(
3− a2+1

a

)
2 + ∆t κ(1)

(
2− 1

a

) E(1)

+
∆t

2 + ∆t κ(1)
(
2− 1

a

) [S(1)
E + κ(1)(E

(1)
eq − E(1))

]
, (8.35a)

(F i)n+1 =
1−∆t κ′(1)(1− b)

2 + ∆t κ′(1)
(
2− 1

b

) (F i)n +
1 +∆t κ′(1)

(
3− b2+1

b

)
2 + ∆t κ′(1)

(
2− 1

b

) (F i)(1)

+
∆t

2 + ∆t κ′(1)
(
2− 1

b

) [(Si
F )

(1) − κ′(1)(F i)(1)
]
, (8.35b)

with a, b still to be chosen. Choices to be used in the forecoming simula-
tions are summarized in the Tables 8.1 and 8.2. For κ, κ′ → 0, we recover
the structure of the previous second-order pure explicit method.

8.4
Numerical simulations and results

8.4.1
Input physics

To assess its properties, we apply our method to the Radiation Hy-
drodynamics of stellar CCSNe in spherical symmetry. This setup tests
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the scheme in a highly dynamic system including both the optically thin
and the optically thick, stiff regimes of neutrino-matter interactions. As
such, it represents a demanding problem for numerical codes. While the
neglect of non-spherical flows limits the degree of realism, it makes the
problem more standardised and controllable. Therefore, our tests fol-
low in the footsteps of many previous studies of new schemes that used
similar setups (e.g., [105, 78, 113, 93, 87, 92, 63, 69, 100, 95, 62, 70]).

All simulations presented in the rest of this Section use the neutrino-
(magneto-)hydrodynamics code Alcar [63] and, except where explicitly
stated, the same input physics, initial conditions, and, except for the
time integration, numerical methods and parameters. We solve the equa-
tions of special relativistic hydrodynamics including a balance law for the
electron fraction of the gas Ye (see (8.9)). We account for the self-gravity
of the star using a pseudo-relativistic gravitational potential (potential A
of [85]). The spectral M1 transport modules evolve the radiation energy
and momentum density in a reference frame comoving with the fluid. The
coupling between neutrino particle energies via velocity and gravitational
terms, e.g., Doppler or gravitational red-/blue-shifts, are included up to
first-order in V/c. We describe the thermodynamic properties of the gas
using the nuclear equation of state (EoS) SFHo [121]. Strictly speaking,
an EoS of this type, assuming that the composition of the gas is given
by nuclear statistical equilibrium, is not valid for low temperatures and
densities. Nonetheless, we simplify our setup by not including a tran-
sition to a sub-nuclear EoS below a threshold density. This choice has
no implication for the tests at hand because the neutrino-matter inter-
action rates are very small at the densities where the transition between
EoS regimes would take place.

We employ the spectral M1 transport methods for the three species of
neutrinos (electron νe, muon νµ, tau ντ neutrinos) and their antiparticles.
Our set of neutrino-matter reactions contains the important interactions
that dominate the dynamics of the collapse (see [63, 62] for implementa-
tion details):

absorption and emission of νe and ν̄e by β processes of free neutrons
and protons and nuclei,

iso-energetic scattering of neutrinos of all flavours off nucleons and
nuclei,

pair creation of neutrinos of all flavours by electron-positron anni-
hilation and nucleonic bremsstrahlung,
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non-iso-energetic scattering of neutrinos of all flavours off electrons
and positrons.

We note that the last process is not written in terms of an opacity and
thus our MIRK method does not apply. We treat it in an operator-split
manner in the same way as described in [62]. In principle, the same
holds for the pair processes. However, the approximate treatment of [92]
reformulates the interaction in terms of opacities, which allows us to
include them in the MIRK scheme.

8.4.2
Initial data and reference simulation

As a test case, we used the same model as in the comparison of
neutrino-hydrodynamics codes of [105], i.e., the core of a star of a zero-
age main-sequence mass of MZAMS = 15M⊙. Before presenting results
of the new MIRK method implementation, we describe the dynamics
of a reference simulation (denoted RK2) computed with the traditional
scheme used in [63]. It uses a method similar to our first-order MIRK
scheme as a building block in a second-order Runge-Kutta time integra-
tor.

As the central density increases during collapse, electron captures
deleptonize the matter and drive the electron fraction at the center to
values Ye,c ≈ 0.28 and the lepton fraction, including the net lepton num-
ber corresponding to νe and ν̄e, to Yl,c ≈ 0.34. These quantities assume
a roughly constant level once the neutrinos are trapped inside the in-
ner core as densities ρ ≳ 1012 g cm−3 render the gas optically thick. The
shock wave launched at core bounce (time tb) and the formation of the
proto-neutron star (PNS) stalls about 70 ms later after having reached a
maximum radius of rsh;max ≈ 145 km, i.e., still inside the collapsing iron
core (see Figure 8.1, second panel). It recedes slowly for another 90 ms
to rsh ≈ 125 km. Matter continues to fall through the shock wave and
settles onto the PNS, which gradually contracts from a maximum radius
of up to rPNS ≲ 80 km immediately after bounce to rPNS ≳ 20 km at tpb = 1 s
(here we use the radius of the νe-sphere as a proxy for the PNS radius).
By tpb = t − tb ≈ 150ms, the entire iron core has been accreted. Con-
sequently, the density and ram pressure of the accreting matter drops,
which causes a brief expansion of the shock by about 10 km. Neutri-
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nos heat the post-shock gas, but, as is typical for spherically symmetric
CCSNe, the conditions for shock revival and an explosion are never met.
Thus, the shock wave gradually contracts to a radius below 50 km over
the course of 1 s after bounce. The early neutrino emission is charac-
terized by the intense burst of νe emitted in the first few tens of ms after
bounce (third panel of the Figure 8.1). After the burst, the νe luminos-
ity, Lνe, and those of the other two flavors reach slowly varying values
of several 1052 erg/s. We find the typical ordering with almost equal lumi-
nosities of the electronic flavors and a lower emission of the heavy-lepton
neutrinos as well as the dependence of the luminosities on the mass ac-
cretion rate that leads to the lower levels of Lν after tpb ∼ 200ms. The
mean energies (bottom panel) with values in the range of 10–25 MeV
reflect the rising temperatures near three neutrinospheres of the three
flavors with the sequence eνe < eν̄e < eνX following from the hierarchy of
neutrino-matter cross sections.

8.4.3
First-order MIRK numerical simulations

The first-order MIRK scheme has two free parameters, a and b. We
compare the four combinations of setting them to zero and to a non-zero
value of 1/2 (see Table 8.1). Simulation M1-1 with a = b = 0 satisfies
the correct optically thick limit. It produces a stable simulation whose
results are very close to those of the reference simulation, both in terms
of the global evolution shown in the Figure 8.1 and in terms of the radial
profiles of the Figure 8.2. The density profiles at representative epochs
during the evolution (top panel) are almost identical to the ones of model
RK2. The PNS at the center as well as the surrounding region of de-
creasing density do not show any notable difference between the two
simulations. The only small discrepancies appear right at the shock
wave where ρ falls by about an order of magnitude over a few km. The
entropy and the electron/lepton fractions (second and third panels) are
more sensitive than the density to the details of the neutrino treatment.
Nevertheless, there are only minor deviations of model M1-1 from RK2.
Apart from the shock wave, we only find small differences in the precise
pattern of oscillations in the entropy behind the shock wave at late times
(tpb = 400ms). If anything, the MIRK simulations might be able to resolve
the shock wave more sharply. Furthermore, there is a minor offset of Yl
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Figure 8.1: From top to bottom, evolution of the following quantities: central electron
and lepton fractions as a function of central density during collapse; rsh, and rPNS, dur-
ing the first second after bounce; luminosities of the three neutrino flavors, where left
part focuses on the νe burst and the right part on the evolution until the end of the
simulations; mean energy of the three neutrino energies. Models are distinguished by
colors, according to the second panel (see the Tables 8.1 and 8.2).
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model a b result
M1-1 0 0 ✓
M1-2 1/2 1/2 ×
M1-3 0 1/2 ×
M1-4 1/2 0 △

Table 8.1: List of first-order MIRK simulations. The first three columns give the name of
the simulation, and the values of the parameters a and b. In the last column, the symbols
✓, △, and × indicate simulations that ran stably and with correct results, simulations
that ran stably into the post-bounce phase, but gave wrong results, and simulations that
turned unstable when the core reached optically thick conditions, respectively.

outside of the shock wave. This deviation turns out to be connected to
the neutrinos, not the matter, as we find a similar offset in the profiles
of the neutrino luminosities (bottom panel) exterior to the shock. Among
the neutrinos, we point out the relatively pronounced temporal fluctua-
tions of the heavy lepton species, νX , in particular of its mean energy,
which we attribute to the fact that these neutrinos are generated and
absorbed only via the relatively subdominant pair processes. Thus, they
tend to bear the imprint of fluctuations at their production site at larger
radii to a higher degree than the electron type neutrinos. In any case, the
differences between the first-order MIRK run and the reference solution
are entirely within the margins of uncertainty of the latter alone.

The correct limit in the optically thick limit of the momentum equa-
tion is a crucial requisite for the stability of the simulations. Models
M1-2 and M1-3 with (a, b) = (1/2, 1/2) and (0, 1/2), respectively, which
do not satisfy the asymptotically correct behavior (8.20b) for all, smooth
and non-smooth, initial data, turn unstable once the core becomes opti-
cally thick at a central density ρc ≳ 3 × 1012 g cm−3 (see Figure 8.3). The
instability appears first in the form of strong fluctuations near the origin
that spread outward and lead to a termination of the simulation before
the bounce can occur.

Model M1-4 with (a, b) = (1/2, 0) evolves stably and correctly through
collapse and until immediately before bounce (Figure 8.4). The evolution
of the central electron and lepton fractions agrees well with the refer-
ence model. After bounce, however, differences between the two models
appear. Most notably, the central values of Ye,l do not stabilize at the
levels they reached during neutrino trapping, but decrease further (note
the drop of the two green lines in the top panel of the Figure 8.4 for
ρc ≳ 2 × 1014 g cm−3). After about 30 ms more, they reach a minimum
around Ye,l ≈ 0.065, i.e., far below the correct values. Unlike in the ref-
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Figure 8.2: Radial profiles of selected models at a few times after bounce, as given in
the legend in the top panel. Top panel: mass density. Second panel: specific entropy.
Third panel: electron and lepton fractions (distinguished by line thickness, see legend).
Bottom panel: total neutrino luminosities of all flavors.
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erence case, the two variables are almost equal at r = 0 throughout the
entire post-bounce evolution (see third panel of the Figure 8.5), i.e., the
net neutrino lepton number is close to zero. Additionally, the center
of the PNS is hotter at almost twice the entropy of that of RK2 (second
panel).

Discrepancies between the models are present in the νe burst, mostly
in the form of larger fluctuations in all three flavors. Afterwards model
M1-4 emits a considerably lower Lνe and higher Lν̄e than RK2. The mean
neutrino energies lie below the ones of RK2.

Additional differences appear in the structure of the core. Until tpb ≈
20ms, the shock wave transiently expands faster than in RK2. This phase
is characterized by the appearance of a bump in density (see top panel
of the Figure 8.5, tpb, at r ≈ 60 km) absent from the reference case and
marked differences in the entropy and Ye,l profiles (second and third pan-
els). Whereas the shock wave starts to recede in the reference model after
it reached its furthest expansion at tpb ≈ 70ms, it stays in M1-4 at the
same radius for another 90 ms before expanding up to rsh ≈ 158 km and
retreating only thereafter. The main differences between the models are
found in the PNS, which is less dense with a shallower ρ profile, hotter
and neutron-richer in M1-4 than in RK2. In the surrounding hot bub-
ble, the differences are less pronounced, but still far larger than the ones
between the reference model and M1-1. Finally, a numerical instability
develops in the PNS after almost 400 ms of post-bounce evolution.

To summarize, our MIRK scheme is able to reproduce the results of
the reference simulations stably and correctly if the parameters a and b
for the energy and momentum equations, respectively, are chosen such
that they satisfy the correct limit in the optically thick regime. Using
a different parameter in the momentum equation, i.e., b ̸= 0 makes the
simulations unstable once neutrinos are trapped by scattering reactions.
The choice b = 0, but a ̸= 0, i.e., obeying the constraints in the momen-
tum, but not the energy equation, cures this instability, but results in
incorrect results once, near bounce, the emission/absorption reactions
become stiff as well. The simulation can continue for several 100 ms
thereafter, but the PNS properties are wrong and eventually a numerical
instability ensues.
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Figure 8.4: Similar plots as in the Figure 8.1, but comparison of simulations that evolve
stably beyond bounce but produce incorrect results, as indicated in the legend, to the
reference numerical solution.
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Figure 8.5: Similar plots as in the Figure 8.2, but comparison of simulations that evolve
stably beyond bounce but produce incorrect results, as indicated in the legend, to the
reference numerical solution.
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8.4.4

Second-order MIRK numerical simulations

We performed a series of simulations using the second-order MIRK
scheme and explore the evolution for various combinations of the four
parameters a, a′, b, b′ (see Table 8.2). The basic set of simulations consists
of the 16 models M2-11, ..., M2-44, in which we set, following the possi-
ble choices introduced in the Section 8.3, a ∈ {1/2,−1/2} and a′ = a−1

2 ∈
{−1/4,−3/4} or a′ = (1−a)2

2a ∈ {1/4,−9/4}, and analogously for b and b′ (see
Table 8.3 for the values of these two functions for all the parameters we
have used). The nomenclature of the models is given by the following
systematic scheme: the last two digits of the generic model name M2-AB
indicate the values of the parameters a and b. Indices A = 1, 2, 3, 4, stand
for values (a, a′) = (a, a−1

2 ) = (1/2,−1/4), (a, a′) = (a, (1−a)2

2a ) = (1/2, 1/4),

(a, a′) = (a, a−1
2 ) = (−1/2,−3/4), and (a, a′) = (a, (1−a)2

2a ) = (−1/2,−9/4), re-
spectively, and analogously for index B and parameters (b, b′).

We find the same three evolutionary paths as in the first-order case.
Most combinations result in a numerical instability at the onset of neu-
trino trapping, as shown for the example of model M2-11 in the Figure
8.3. As in the unstable first-order runs, the instability develops in the
optically thick core and causes catastrophic oscillations in the electron
and lepton fractions which quickly lead to a termination of the simula-
tions.

All simulations with (b, b′) = (b, (1−b)2

2b ) = (−1/2,−9/4) avoid this insta-
bility, irrespective of the values of a and a′. However, within the basic set
of the 16 models M2-11 – M2-44 only the choice a < 0 and a′ = (1−a)2

2a
produces stable and correct results that, like for M1-1, agree very well
with the reference simulation both in the evolution of global quantities
(Figure 8.1) and in the profiles at specific times (Figure 8.2). The differ-
ences with model RK2 are limited to minor details such as the width of
the shock wave (second panel of the Figure 8.2) or a small offset in the
neutrino luminosity outside the shock wave.

Models M2-41, M2-42, and M2-43 with (b, b′) = (−1/2,−9/4) and (a, a′) ̸=
(−1/2,−9/4) show the same behavior as model M1-4 (see Figures 8.4 and
Figure 8.5). Until close to the point at which the source terms in the en-
ergy equation become stiff, they follow the reference simulation. At that
point, however, they yield an incorrect PNS with too low Y cnt

e,l , too shallow
density profiles, and too low entropy. The luminosities and mean ener-
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model a a′ b b′ result
M2-11 +1/2 −1/4 +1/2 −1/4 ×
M2-12 +1/2 −1/4 +1/2 +1/4 ×
M2-13 +1/2 −1/4 −1/2 −3/4 ×
M2-14 +1/2 −1/4 −1/2 −9/4 △
M2-21 +1/2 +1/4 +1/2 −1/4 ×
M2-22 +1/2 +1/4 +1/2 +1/4 ×
M2-23 +1/2 +1/4 −1/2 −3/4 ×
M2-24 +1/2 +1/4 −1/2 −9/4 △
M2-31 −1/2 −3/4 +1/2 −1/4 ×
M2-32 −1/2 −3/4 +1/2 +1/4 ×
M2-33 −1/2 −3/4 −1/2 −3/4 ×
M2-34 −1/2 −3/4 −1/2 −9/4 △
M2-41 −1/2 −9/4 +1/2 −1/4 ×
M2-42 −1/2 −9/4 +1/2 +1/4 ×
M2-43 −1/2 −9/4 −1/2 −3/4 ×
M2-44 −1/2 −9/4 −1/2 −9/4 ✓
M2-44-1 −1/4 −25/8 −1/4 −25/8 ✓
M2-44-2 −1/16 −289/32 −1/16 −289/32 ✓
M2-44-3 −1/2 −9/4 −1/4 −25/8 ✓
M2-44-4 −1/4 −25/8 −1/2 −9/4 ✓
M2-51 −1/2 −9/4 3/4 1/24 ×
M2-52 −1/2 −9/4 3/4 −1/8 ×
M2-53 3/4 1/24 3/4 1/24 ×
M2-54 3/4 −1/8 −1/2 −9/4 △
M2-55 3/4 1/24 −1/2 −9/4 ✓

Table 8.2: List of second-order MIRK simulations. The first five columns give the name
of the simulation, the values of the parameters a, a′, b, and b′. The symbols in the last
column have the same meaning as in the Table 8.1.

x x−1
2

(1−x)2

2x

−1/2 −3/4 −9/4
−1/4 −5/8 −25/8
−1/16 −17/32 −289/32
1/2 −1/4 1/4
3/4 −1/8 1/24

Table 8.3: Values of x = (a, b) (first column) and the corresponding values of the functions
used to compute x′ = (a′, b′) (second and third columns).
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gies show the same deviations from RK2 as found in M1-4, and all models
suffer the same numerical instabilities after a time of tpb ∼ 300− 400ms.

We added models M2-44-1 – M2-44-4 similar to M2-44. Their re-
sults agree well with those of model M2-44, indicating that stability
and accuracy do not depend on the specific values as long as (a′, b′) =(
(1−a)2

2a , (1−b)2

2b

)
and a, b < 0.

Another group of simulations, models M2-51 – M2-55, probe posi-
tive values of a and b between 1/2 and 1, which according to the Equa-
tions (8.31a) and (8.31b) could also lead to a stable evolution. How-
ever, we find that all simulations with b = 3/4 are unstable. If we set,
as in M2-44, (b, b′) = (−1/2,−9/4), we obtain a stable and correct sim-
ulation with (a, a′) = (3/4, 1/24) and a stable, but incorrect one with
(a, a′) = (3/4,−1/8).

Hence, we find that, similarly to the first-order schemes, the stability
is set by the parameters for integrating the momentum equation: only
b′ = (1−b)2

2b and b < 0 are stable. Among these, the ones for which the

parameters for the energy equation fulfil the constraint a′ = (1−a)2

2a and
a < 0 or 1/2 < a < 1 are also correct.

8.5
Final remarks

We have derived a MIRK method for the M1 equations for neutrino
transport. We use it to treat the neutrino matter interaction terms de-
scribing reactions such as absorption, emission, and scattering in an
operator-split manner separately from the (hyperbolic) transport terms
of an M1 method. In general, the stiffness of the interaction terms in the
optically thick regime poses a stability problem for their time integration.
The problem can be overcome by fully implicit methods, but these can
be very costly because of the complex dependence of the reaction rates
on the neutrino fields and the thermodynamic state of the matter. The
proposed approach reduces the use of implicit terms to the minimum
required for stability by evaluating the opacities and the thermodynam-
ics at the original time step. This choice makes the resulting scheme
take a form similar to that of an explicit method. The first-order method
is a straightforward modification of an explicit scheme with an effective,
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reduced time step that guarantees the stability. This method is similar
to the one that has already been used in this context in the neutrino-
hydrodynamics code Alcar [63]. Here we give a mathematical framework
and a generalization to a second-order method that retains the simplicity
of the first-order one.

The second-order method depends on two numerical parameters. We
demonstrate that these parameters can be chosen in such a way that
they satisfy an algebraic condition that guarantees the correct optically
thick limit for the source terms for neutrino energy and momentum. In
this case, the new time integrator gives stable and accurate results in
simulations of the collapse of stellar cores, as we show by implementing
it in the code Alcar and comparing it to its traditional solver. If, on the
other hand, these conditions are violated, the simulations become un-
stable once the core turns optically thick.

Our scheme is simple and efficient and can be used in a wide range
of similar applications. We already applied it in [29] for the RRMHD
equations, whose contents were presented in the previous Chapter. In
future works in supernovae simulations, we will explore more general
sets of parameters, the incorporation of more complex reactions such as
pair processes, and a combination with a well-balanced method scheme
[22] for the fluxes. Other examples, already stated, are rarefied gases
contexts [66], shallow water equations [65] or force-free electrodynamics
in General Relativity [82].



9
Realistic equation of

state for nuclear
matter

In the Chapter 4 we introduced the theory of gravitation. We ad-
dressed a simple scenario in spherical symmetry in the Chapter 5, where
we focused on the hydrodynamic sector and in the Chapter 6 we solved
the Einstein Equations numerically in the context of a rotating neutron
star. There, we solved a reformulation of the FCF of Einstein Equations.
In all these chapters, a polytropic EoS was always the model to describe
the fluids involved. However, we know that this simple model does not
describe real matter in general. For instance, in the Chapter 8 we used a
more realistic EoS called SFHo [121] to describe a CCSNe. Another case
which requires a realistic EoS are neutron stars. In black holes all in-
formation is kept inside the event horizon. However, a neutron star, the
second densest compact object observed in the universe, does not have
any horizon. Then, we are able to access to some information about the
structure of the matter they are made of. An object of such extreme den-
sity is composed of matter which properties are poorly know, and the
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determination of the EoS in this case is arduous. Tabulated data com-
puted from particle and nuclear physics are available, from which we can
carry out numerical simulations with neutron stars. The simulated re-
sults could be compared to observations in order to study the viability of
EoS data. Unfortunately, tabulated data add noise in the numerical sim-
ulations in such way they may become unstable. A strategy to smooth
these data is needed and, in this chapter, we will develop an algorithm
to carry out polynomial regression in several variables to address this
problem.

9.1
Numerical issues with realistic

equations of state

Gravitational waves have become a new way to explore the universe,
complementary to the electromagnetic waves. Information about mat-
ter of neutron stars is accessible by these channels. Modeling EoS for
neutron stars in order to perform numerical simulations is important.
If we are able to simulate astrophysical events with any type of EoS, to
be compared with observables from detections, one can get constraints
about this type of matter. Binary coalescence or oscillations of neutron
stars beyond axisymmetry are events subject to emit gravitational waves.

The main problem is the lack of knowledge about the true EoS for
these objects. Considering different approaches is possible in numerical
simulations. Polytropic EoS are a simple choice, but it is more realistic to
consider data from particle and nuclear physics computations which are
tabulated in CompOSE [1]. In this Chapter we will study and develop nu-
merical techniques that will help applying realistic EoS. It turns out that
the data from CompOSE tables are noisy enough to make simulations
unstable. Then, a polynomial fit of these data will be derived to smooth
them. The main contribution of this Chapter is to provide an algorithm to
carry out this task with EoS of one, two and three independent variables.
Data from CompOSE tables provide values of thermodynamic quantities
as a function of the number baryon density nb, the electron fraction Ye
and the temperature T . Realistic matter should be modeled by EoS de-
pending on these three independent variables. Nonetheless, using one
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or two variables are the convenient previous steps.
The aim is that the work developed in this Chapter will be applied

in simulations with oscillating neutron star, but in this manuscript we
will not detail this complex phenomena. To get some knowledge about
this topic, we refer the reader to [109]. Simulations will use the software
LORENE [2], which relies on the spectral decomposition of functions.
The work presented in this Chapter is not focused on the simulations
themselves, but in the development of some C++ scripts to be coupled
with LORENE and that will manage the EoS sector.

9.2
Thermodynamic relations

Polynomial fits will provide us analytic expressions for the adiabatic
index. The thermodynamic relations in this Section will be used to com-
pute some thermodynamic variables from the adiabatic index. The ther-
modynamic variables describe matter of neutron stars. Some of the ex-
pressions of this Section have been derived by the researcher Gaël Servi-
gnat from the Observatoire de Paris-Meudon or have been gathered from
[115] and [127]. Basic variables under consideration are the total energy
density µ, the pressure p, the entropy S and the baryon number density
nb. The definition of the velocity of sound is

c2s :=

(
∂p

∂µ

)
S,Nb, Ne

, (9.1)

where Nb and Ne are the baryon number and the electron number, re-
spectively.

If we suppose zero temperature and β equilibrium, the baryon num-
ber density nb can be used as unique independent variable. In that case,
one can arrive to the following expression

c2s =
p

µ+ p

d log p

d log nb
. (9.2)

and the adiabatic index is defined as

Γ1 =
d log p

d log nb
. (9.3)
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Let us define the chemical potential of the baryon matter µb as µb =
dµ/dnb. On the other hand, we can write the first law of thermodynamics
as

µ = µbnb − p, (9.4)

But using nb as independent variable may be cumbersome as it is not
continuous in general, for instance at the surface of the star or in regions
where a phase transition happens. Then, it is convenient to work with
the enthalpy h defined as

h =
µ+ p

nbmb
, (9.5)

where mb is the neutron mass. In fact, we will use the log-enthalpy
H = log h. Considering differentials of the first law of thermodynamics
(9.4) and using the definition of the chemical potential, one arrives to the
expression

dp

dH
= µ+ p, (9.6)

and we also can get the following relation:

Γ1 =
p′2

p(p′′ − p′)
, (9.7)

with p′ = dp/dH. In previous Chapters we have mentioned that an EoS
is given by an expression of the form p = p(µ). Another form of giving
an EoS is to provide Γ1 in terms of the rest of variables. Suppose that
we have Γ1 = Γ1(H). Now, we define Π = log p and Y = 1/Π′, where the
prime denotes derivative with respect to H. We can derive the following
ordinary differential equation (ODE):

Y ′ + Y =
Γ1 − 1

Γ1
. (9.8)

Integrating this ODE, one can obtain the variables Y , Π and p. Once we
get p = p(H), other important quantities can be computed easily. The
sound velocity is given by

c2s = Y Γ1, (9.9)

the total energy density is

µ = p

(
1

Y
− 1

)
, (9.10)

and the baryon number density is

nb =
p

eHY mb
. (9.11)
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Now, we consider two independent variables by adding the electron
fraction Ye to H. As stated in [127], several definitions for the adiabatic
index are used in astrophysics. We will use the following choice:

Γ1 :=

(
∂log p

∂log nB

)
Ye

. (9.12)

In that case, we recover a similar expression as for one independent
variable (9.7) but substituting p′ by (∂p/∂H)Ye

. A differential equation of
the form (9.8) also holds substituting derivative by a partial derivative.
Then we can easily extend the procedure of one independent variable to
two independent variables. Another reasonable choice could have been

Γ1 :=

(
∂log p

∂log nB

)
ne

, (9.13)

in resemblance with the sound speed in several variables. Then, we get
the following expression:

Γ1 =

.
p
2

p(
..
p− .

p)
, (9.14)

with
.
p = (∂p/∂H)ne

. The problem in this case arises when one wants to
stick using H and Ye as independent variables, because from the relation

(
∂p

∂H

)
ne

=

(
∂p

∂H

)
Ye

−
Ye

(
∂nB
∂H

)
Ye

Ye

(
∂nB
∂Ye

)
H
+ nB

(
∂p

∂Ye

)
H

, (9.15)

where we have used Maxwell thermodynamic relations, we find that Γ1

and p are related by a complex partial differential equation (PDE), making
computations trickier.

9.3
EoS and polynomial regression

In this section, we explain how to use a realistic tabulated EoS in Nu-
merical Relativity simulations with the open source C++ library LORENE.
We have already stated the numerical problems that arise when using
realistic EoS data from CompOSE. A polynomial fit of such data is nec-
essary and this is widely applied in EoS with one free parameter. In this
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section, we will describe the procedure and extend the implementation to
EoS with two and three free parameters. We will use the relations of the
Section 9.2 to compute smooth data from the fitted data. Before doing it,
we will describe some important features of LORENE.

9.3.1
Spectral method software: LORENE

We do not plan to give an extensive description of the LORENE library,
but just some basic ideas about the file structure. To learn more about
LORENE, the reader can consult the manual in [2].

Spectral methods

LORENE is based in the approximation of functions by a finite expan-
sion of the form

N∑
i=0

ciϕi, (9.16)

where ϕi is a member of the base of the norm space

L2
ω(I) := {f such that

∫
I
f(x)2ω(x)dx <∞}, (9.17)

being ω a function with integrable square called weight. L2
ω(I) is a Hilbert

space with the scalar product

⟨f, g⟩ =
∫
I
f(x)g(x)ω(x)dx (9.18)

for f, g ∈ L2
ω(I) . Any derivative of a function is again approximated by

an expression of the type (9.16). This type of approximation is the main
idea of spectral methods to numerically solve PDEs. The order of con-
vergence of spectral methods is exponential in N , much more efficient
than finite differences or finite volumes methods. Nonetheless, this rate
of convergence is only valid when functions satisfy certain regularity re-
quirements. Chebyshev polynomials are orthogonal base functions for
ω(x) = 1/

√
1− x2, and they are the ones used by LORENE.
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Files structure

LORENE has a lot of directories with pre-established physical cases in
the main directory. Inside each one, we find parameter files that settles
the physics and the numerical resolution. In the Figure 9.1 we show the
structure of the files and directories we are interested in. For example,
inside RotStar/Dirac we find a parameter file called parrot.d to set
some parameters about a rotating star case, as the angular velocity or
the central density. This case in particular imposes Dirac gauge.

Figure 9.1: Structure of files and directories we are focused on.

Nonetheless, we focus on the file par_eos.d which settles the type
of EoS. There, we can fix a polytropic EoS or, if we want to set a more
complex one, we have the chance to create a file, call it eos_data.d, with
structured data about density, energy and pressure.

The aim is to implement smooth data of realistic EoS to simulations
of oscillating neutron stars. Results (called resu.d in the Figure 9.1)
from non-oscillating rotating star will serve as initial data.

We will consider realistic EoS given through tabulated data from Com-
POSE [1]. We will detail how the polynomial regression of these data
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have been done and how to create the file eos_data.d containing the
smoothed data.

9.3.2

Polynomial regression of CompOSE data

In the website of CompOSE one can download different data files with
thermodynamical quantities. In particular, in this subsection, we se-
lect the type SLy4. We consider a particular version tagged as ”one-
parameter cold neutron star EoS”. We can choose several versions de-
pending on the number of independent variables, but let us schedule the
whole procedure for one independent variable first.

One independent variable approach

We download the files eos.nb and eos.thermo. A detailed description
of these files can be found in the manual of CompOSE [127]. The file
eos.nb is just a list of the values for the baryon number density nb,
and the file eos.thermo is a list for several thermodynamic variables of
interest.

Once we have the data from CompOSE the fit is managed by a C++
script that we are calling Make_smooth_eos.C. We show in the Box 9.1
its structure in pseudo-code.

read par_fit.d
read eos.nb, eos.thermo
store nb, p, e
compute H, Gamma
call function polyonomial_fit_1D (H, Gamma, N)
compute Gamma_fit, Y, Pi, p_fit, e_fit, nb_fit
write eos_smooth_data.d

Box 9.1: Pseudo-code of the script Make_smooth_eos.d, that reads CompOSE data,
carries out the one-parameter polynomial fit of the adiabatic, computes thermodynamic
quantities and creates eos_smooth_data.d with smooth tabulated data to be read with
LORENE
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After reading a parameter file and CompOSE data, we build arrays to
store the information about nb, p and µ. Then, we are able to compute
the log-enthalphy H and the adiabatic index Γ1 with expressions of the
Section 9.2. The polynomial fit is to be done to the adiabatic index Γ1,
taking H as independent variable. For one independent parameter or
variable, we will simply use

pN (x) = a0 + a1x+ a2x
2 + ...+ aNx

N , (9.19)

where N ∈ N. We proceed by applying a previously built C++ function
called polynomial_fit_1D, which gives the coefficients ai of the poly-
nomial fit (9.19) using the least squares method. At this point, it is
interesting to remark that LORENE deals with expressions of the form
(9.16), with ϕi being the Chebyshev polynomials:

pN (x) = c0T0(x) + c1T1(x) + c2T2(x) + ...+ aNTN (x). (9.20)

Notice that there is a linear transformation from the coefficients ai in
(9.19) to the coefficients ci in (9.20). The way LORENE stores the infor-
mation of the fitted Γ1 will be by means of the coefficients ci.

At this stage we have an adiabatic index which is smooth enough to
get rid of the noise instability problems. Then, making use of the Equa-
tions (9.8),(9.10) and (9.11), we can get the pressure, energy density and
baryon number. These variables are also smooth enough to preserve
stability. In the last line of the Box 9.1 the file eos_smooth_data.d is
created from the smooth expressions of the thermodynamic variables.
Then, providing “smooth” data.

Two independent variables approach

In general, not only nb is cast as independent variable but also the
electron fraction Ye and the temperature T . In CompOSE we can select
several EoS that depend on these three parameters. In those cases, we
need to download files with temperature data eos.t and electron frac-
tion data eos.yq. In this Subsection we will focus on two independent
variables, nb and Ye, but the case with three variables can be derived
analogously. When the definition 9.12 is considered for the adiabatic
index, we can repeat the whole procedure as for one parameter EoS by
substituting primes by partial derivatives. The scheme is quite similar
to that in the Box 9.1, including also the corresponding data for the new
independent variable Ye, and performing a two-parameter polynomial re-
gression. The Box 9.2 shows the pseudo-code of the modified script
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Make_eos_smooth.C. The two-parameter polynomial fit is carried out by
the previously built C++ function polyonomial_fit_2D. The regression
is done using the following expression of a polynomial of degree N in two
variables:

pN (x, y) =a0 + a1x+ a2x
2 + ...+ aNx

N + aN+1y + aN+2xy + ...

+ak(i,j)x
iyj + ...+ aMy

N ,
(9.21)

where M = (N +2)(N +1)/2 is the number of coefficients ai in this expan-
sion. Note that LORENE only manages one-parameter expansions of the

read par_eos.d
read eos.nb, eos.yq, eos.thermo
store nb, yq, p, e
compute H, Gamma
call function polyonomial_fit_2D (H, yq, Gamma, N)
compute Gamma_whole
for each yq

compute Y, Pi, p, e, nb
end
write eos_smooth_data.d

Box 9.2: Pseudo-code of the modified script Male_eos_smooth.C, that reads CompOSE
data, carries out the two-parameter polynomial fit of the adiabatic index, computes ther-
modynamic quantities and creates the file eos_smooth_data.d with smooth tabulated
data ready to be read with LORENE.

form (9.20). However, we would need expansions of the form

pN (x, y) =

N∑
i+j=0

aijTi(x)Tj(y) (9.22)

which specifically considers two independent variables. First, we con-
sider the two-parameter polynomial fit of the adiabatic index, Γ1(x, y) =
pN (x, y); second, we evaluate the second parameter of this fit at each Ye
value of our EoS data, Γ1(x, ŷ) = pN (x, ŷ), where ŷ = (Ye); third, expres-
sions (9.8),(9.10) and (9.11) are used to derive the pressure, energy and
number density as one-parameter polynomials evaluated at (x, ŷ). Then,
the rest of the thermodynamic variables are computed from the previous
quantities. Doing so, we go from an expression of the form (9.21) to the
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following one-parameter expression

pN (x, ŷ) =a0 + a1x+ a2x
2 + ...+ aNx

N + aN+1ŷ + aN+2xŷ + ...

+ak(i,j)x
iŷj + ...+ aM ŷ

N = b0 + b1x+ b2x
2 + ...+ bNx

N ,
(9.23)

where the coefficients bi = bi(ai, ŷ). In the Figure 9.2 we show the smoothed
data for the adiabatic index Γ1 and the pressure p, obtained with the pro-
cedure just described. Data derived from the CompOSE are also plotted.

Figure 9.2: Profiles of the smoothed data from polynomial regression with the data from
CompOSE, for the adiabatic index Γ1 (left) and the pressure p (right).

We provide more details of the algorithm that has been developed to
carry out the multivariable polynomial fit in the rest of the Chapter. We
will derive the explicit form of the dependence bi = bi(ai, ŷ) in (9.23).

9.3.3

Multivariable polynomial regression

The method of least squares is widely used in science. Let us in-
troduce some expressions in one variable that will serve us to fix some
notation for the multivariable case.
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One-parameter polynomial regression

We use the arrays x and y (say of length n) representing H and Γ1

x = (H1 H2 ... Hn)

y = ((Γ1)1 (Γ1)2 ... (Γ1)n)
(9.24)

to carry out the polynomial fit of the adiabatic index to an expression of
the form

pN (H) = a0 + a1H + a2H
2 + ...+ aNH

N . (9.25)

The number of coefficients ai in (9.25) is N + 1. So we need n ≥ N + 1 for
the regression to make sense. Let the x-Vandermonde matrix be

Ax =


1 H1 H2

1 ... HN
1

1 H2 H2
2 ... HN

2
...

...
...

...
...

1 Hn H2
n ... HN

n

 . (9.26)

Ax is a matrix of dimension n× (N +1). We define the vector of dimension
N + 1

β = yAx, (9.27)

and the symmetric matrix (N + 1)× (N + 1)

α = (Ax)TAx, (9.28)

which has maximum rank if Hi ̸= Hj for i ̸= j. Then the coefficients ai of
the polynomial fit by least squares can be computed as

(a0, a1, ..., aN ) = βα−1. (9.29)

We show in Box B.1 in pseudo-code the function polynomial_fit_1D
that applies the least square method in one variable.

Let us explain now the strategy followed to carry out a polynomial fit
in two and three dimensions. In general, the number of coefficients M in
a polynomial with k independent variables, pN (x(1), x(2), ..., x(k)), is

M =

(
N + k
k

)
. (9.30)

Then, the number of data n must be equal or greater than this number.



9. Realistic equation of state for nuclear matter 197

Two-parameter polynomial regression

Suppose that Γ1 is a function of H and Ye, Γ1 = Γ1(H,Ye). Imagine that
we have downloaded the proper data from CompOSE and have computed
H and Γ1 in such a way and we have three arrays of n data for H, Ye and
Γ1:

x = (H1 H2 ... Hn)

y = ((Ye)1 (Ye)2 ... (Ye)n),

z = ((Γ1)1 (Γ1)2 ... (Γ1)n).

(9.31)

We want to fit these data to a polynomial of degree N of two variables for
the adiabatic index of the following form:

pN (H,Ye) =a0 + a1H + a2H
2 + ...+ aNH

N + aN+1Ye + aN+2HYe + ...

+a2NH
N−1Ye + ...+ ak(i,j)H

iY j
e + ...+ aMY

N
e .

(9.32)

First, powers of H in increasing order from 0 to degree N are consid-
ered; then, the same list of considered H powers is multiplied by Ye; we
continue in this way, successively increasing the powers of Ye. Notice
that

M =

(
N + 2

2

)
(9.33)

Now, consider the x-Vandermonde matrix (9.26) and let us define the
y-Vandermonde matrix

Ay =


1 Y1 Y 2

1 ... Y N
1

1 Y2 Y 2
2 ... Y N

2
...

...
...

...
...

1 Yn Y 2
n ... Y N

n

 .. (9.34)

We also define a generalized Vandermonde matrix of two set of n data:

Axy =


1 H1 ... HN

1 Y1 H1Y1 ... HN−1
1 Y1 Y 2

1 Y 2
1 H1 ... Y N

1

1 H2 ... HN
2 Y2 H2Y2 ... HN−1

2 Y2 Y 2
2 Y 2

2 H2 ... Y N
2

...
...

...
...

...
...

...
...

...
...

...
...

1 Hn ... HN
n Yn HnYn ... HN−1

n Yn Y 2
n Y 2

nHn ... Y N
n

 .

(9.35)
The order of the monomials is the one explained before. It turns out that
the following relation is satisfied between the coefficients of Ax and Ay

and the xy-Vandermonde matrix Axy:

Axy
ij = Ax

imj
Ay

ilj
, (9.36)
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where lj is such that fN (lj − 1) < j ≤ fN (lj), where

fN (lj) :=

(
N + 2
N

)
−
(
N − lj + 2
N − lj

)
. (9.37)

The index lj introduced in this way is unique (given j and N ), and we can
solve the previous inequations to get the following simpler expression:

lj =

⌈
2N + 3−

√
(2N + 3)2 − 8j

2

⌉
. (9.38)

On the other hand, the index mj is computed as

mj = j, mod fN (lj − 1). (9.39)

The case mod 0 is not well defined; in this case, we just assign mj = j.
Once, we have Axy, we are able to compute the vector

β = zAxy, (9.40)

which has dimension M , and the symmetric matrix

α = (Axy)T Axy, (9.41)

which has dimension M ×M . The matrix α will be singular if there exist
repeated points or the points (Hi, (Ye)i, (Γ1)i) remain in a straight line.
Suppose α is invertible. Then, the M coefficients of the polynomial fit pN
of two variables are

(a0, a1, ..., aM ) = βα−1. (9.42)

The relation (9.36) provide us an easy algorithm to program the function
that will compute such a fit. We have called it polynomial_fit_2D in
the Box 9.2, and the pseudo-code is shown in the Box B.2.

If we restrict the second independent variable y to a specific ŷ = Ye in
the two-parameter polynomial fit we get a one-parameter polynomial:

pN (H, ŷ) =a0 + a1H + a2H
2 + ...+ aNH

N + aN+1ŷ + aN+2Hŷ + ...

+ak(i,j)H
iŷj + ...+ aM ŷ

N = b0 + b1H + b2H
2 + ...+ bNH

N ,
(9.43)

where the coefficients ai and bi are related by the formula

bk =
∑

j /mj=k

aj (ŷ)
lj−1. (9.44)

The use of this formula has been mentioned before. In the Box B.3, the
pseudo-code that applies this formula to compute each bi can be found.
Notice that the coefficient bi under consideration in each for loop, it is
not ordered with the counter of the loop.
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Three-parameter polynomial regression

Let us add a third independent variable, commonly, the temperature
T . Suppose that we have four arrays of n data, being the third ones from
the independent variables H, Ye and T :

x = (H1 H2 ... Hn)

y = ((Ye)1 (Ye)2 ... (Ye)n),

z = (T1 T2 ... Tn),

u = ((Γ1)1 (Γ1)2 ... (Γ1)n).

(9.45)

We want to find the polynomial of degree N of three variables of the
following form

pN (H,Ye, T ) = a0 + a1H + a2H
2 + ...+ aNH

N + aN+1Ye + aN+2HYe + ...

+ au(i,j)H
iY j

e + ...+ aM2Y
N
e + aM2+1T + ...

+ aM2+NH
N−1T + aM2+N+1YeT + aM2+N+2HYeT + ...

+ av(i,j,k)H
iY j

e T
k + ...+ aMT

N .

(9.46)

that fit the data for the adiabatic index by using the least squares method.
The order of the monomials try to resemble that from the two-parameter
case. A way to understand the order is to first build the polynomial
(9.32) with Ye and T as variables, let us say pN (Ye, T ). Then, take in-
creasing powers of H, and multiply the monomials of pN (Ye, T ) keeping
the same order. Notice that M2 = (N + 2)(N + 1)/2 and

M =

(
N + 3

3

)
. (9.47)

Consider the x-Vandermonde matrix (9.26) and y-Vandermonde matrix
(9.34). Now, we define the z-Vandermonde matrix

Az =


1 T1 T 2

1 ... TN
1

1 T2 T 2
2 ... TN

2
...

...
...

...
...

1 Tn T 2
n ... TN

n

 . (9.48)

The xyz-Vandermonde matrix will be in this case:

Axyz =


1 ... HN

1 ... Y N
1 T1 ... H i

1Y
j
1 T

k
1 ... TN

1

1 ... HN
2 ... Y N

2 T2 ... H i
2Y

j
2 T

k
2 ... TN

2
...

...
...

...
...

...
...

...
...

1 ... HN
n ... Y N

n Tn ... H i
nY

j
nT k

n ... TN
n

 . (9.49)
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The order of monomials is the same of that in pN (H,Ye, T ). The following
relation holds:

Axyz
ij = Ax

imj
Ay

ilj
Az

inj
, (9.50)

where nj is such that fN (nj − 1) < j ≤ fN (nj), where

fN (nj) :=

(
N + 3
N

)
−
(
N − nj + 3
N − nj

)
, (9.51)

lj is such that gN (lj − 1) < j ≤ gN (lj), where

gN (lj) :=

(
N − nj + 3
N − nj + 1

)
−
(
N − nj − lj + 3
N − nj − lj + 1

)
, (9.52)

or equivalently

lj =

⌈
2(N − nj + 1) + 3−

√
(2(N − nj + 1) + 3)2 − 8j′

2

⌉
(9.53)

and
mj = j′, mod gN (lj − 1) (9.54)

where j′ = j − fN (nj − 1). Remember that we have defined mj = j for
mod 0. From the matrix Axyz, we can build the M-dimensional vector

β = uAxyz, (9.55)

and the symmetric matrix M ×M

α = (Axyz)T Axyz. (9.56)

The matrix α is singular whenever there are repeated points or they all
remain in a plane. If α is invertible, the polynomial coefficients are

(a0, a1, ..., aM ) = βα−1. (9.57)

The pseudo-code that applies this procedure is shown in the Box B.4.

9.4
Final remarks

The main topic of this Chapter has been polynomial regression in sev-
eral variables. We have developed numerical techniques to do so in two
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and three variables taking advantage of what was widely used in one
variable. We applied these techniques to fit the adiabatic index com-
ing from realistic EoS data, taken from CompOSE. EoS can be provided
in several ways. For instance giving the pressure in terms of the log-
enthalpy, p = p(H) or, if taking H, Ye and T as independent variables,
p = p(H,Ye, T ). EoS can also be given equivalently by an expression of the
adiabatic index of the type Γ1 = Γ1(H) or Γ1 = Γ1(H,Ye, T ). It turned out
that tabulated data from CompOSE is too noisy and simulations become
unstable using them directly. Then, we applied polynomial regression
in one and two variables to realistic data, and in particular to the adia-
batic index, in order to make them smoother. Simulations of oscillating
neutron stars with realistic one-parameter EoS were possible with this
strategy [114]. There remains for the future applying it in the case of
realistic (two and three)-parameter EoS.

All scripts we built are based on the LORENE library. As LORENE
uses expansions of Chebyshev polynomials to describe functions, all
thermodynamic variables are described by analytical functions. Nonethe-
less, only the fitted variable, the adiabatic index, is treated analytically
respect the two independent variables H and Ye. For technical reasons
explained before, the other ones are analytical just in one variable, the
log-enthalpy H, and discrete in Ye. It would be interesting having vari-
ables described by expressions of the type

N∑
i+j=0

aijTi(x)Tj(y).

By doing so, we would have managed all thermodynamic quantities with
analytical expressions of H and Ye. This task would require the devel-
opment of a new class in the LORENE library which is left for a future
work. An extension of the procedure to three or more independent vari-
ables can be done analogously.

Other approaches to polynomial regression in several variables use
Kronecker product of matrices [35]. For instance, in the two-parameter
case consider the polynomial of degree 2N

p2N (x, y) =

N∑
i,j=0

aijx
iyj . (9.58)

In that case, the coefficients aij of the fit to this expression are obtained
by means of the Kronecker product ⊗K of the Vandermonde matrices for
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x and y,
Axy = Ax ⊗K Ay.

The previous strategy would continue likewise with the xy-Vandermonde
matrix Axy computed in this way. Proceeding in this manner is aesthet-
ically simpler but the polynomial expression takes into account powers
of x, y from 0 to N , while in our case the sum of the powers of x, y goes
from 0 to N . Besides, the degree of the polynomial in the Kronecker case
has to be even, 2N . In k variables the polynomial degree would have to
be a multiple of k. Notice that the computational cost of the Kronecker
case and our proposed strategy are similar.
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Summary and

perspectives

We finish the manuscript with a summary of the main results, final
reflections and perspectives.

We began with a context framed in classical mechanics, where the
Navier-Stokes Equations were used to model a fluid mechanics problem:
blood flow in aorta. We applied CFD simulation for blood flow in aorta to
validate a reconstruction method. This method takes into account key
geometrical parameters of aorta geometries. We have seen that the gen-
eral behaviour observed in real aortas is captured in the reconstructed
version. Further improvement is required for the reconstruction algo-
rithm by taking a realistic characterization. For this task it is important
to increase the sample of real aortas. The reconstruction of the Sinus of
Valsalva and the aorta branches are still to be included. Having a good
characterization will permit the generation of synthetic aortas to carry
out CFD simulation in order to establish relations between geometrical
features and WSS values in the aorta. This is to be done by machine
learning techniques and it is ultimate goal of this project.

We have concluded that the SST k−ω turbulent model is the most ade-
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quate to analyze WSS profiles for the study of cardiovascular diseases. A
preliminary study on the dependence of the WSS values with respect the
inlet boundary condition applied has been conducted. The inlet bound-
ary conditions try to reproduce different aortic valves, a healthy natural
valve and two prosthetic valves. We have conclude that the healthy valve
produces healthier values of WSS in the ascendant aorta, and that the
bileaflet valve works better than the tilting disk valve.

In the next future, time-dependent simulations considering the whole
cardiac cycle, are to be carried out. Moreover at some point we will have
to take into account fluid-structure interaction models.

This task is not only complex from the mathematical point of view.
Nowadays, blood flow and cardiovascular simulations require multidis-
ciplinary research groups composed by mathematicians, physicists, en-
gineers, computer scientists and physicians. Therefore, an effort to un-
derstand us all each other is crucial.

Afterwards, we got into astrophysical scenarios framed in the Theory
of Relativity. First, the Euler Equation was studied in Newtonian grav-
ity and we made an analysis of characteristic curves. We deducted that
the surface of a Newtonian self-gravity star is a contact discontinuity.
After that, we address the general relativistic version of the Euler Equa-
tion. We restricted to a Schwarzschild spacetime background and used
Gullstrand-Painlevé coordinates. Then, we could consider the whole do-
main 0 < r < ∞, differently as when Schwarzschild coordinates were
used in [73]. We wrote the system as a balance law and studied its hy-
perbolic type behaviour. We also obtained its stationary solutions which
will permit the development of well-balanced methods to solve numeri-
cally the general relativistic Euler Equation in its non-steady version.

We reformulated the Fully Constrained Formulation of [31] of the Ein-
stein Equations by introducing the variables V i and Ẋi. The new version
preserves the good properties of local uniqueness and hierarchical struc-
ture and posses numerical accuracy advantages. We carried out the first
preliminary tests with a rotating neutron star, where spacetime is sta-
tionary.

It is planned for the future, applying the new formulation to more
complex astrophysical scenarios and cosmology.

We have introduced the MIRK method for stiff balance laws. The gen-
eral a idea comes from IMEX Runge-Kutta methods with a key difference:
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only conserved variables are evaluated implicitly in the equations of the
method. We have applied it to the equations of the RRMHD and the Ra-
diation Transport equations for neutrinos. In the first case, we saw two
academic tests with astrophysical motivation. In the self similar current
sheet test no evolution of matter was present. In the circular polarized
Alfven waves test we checked that the primitive variables can be recov-
ered in a straightforward manner. This would not have been the case in
pure IMEX methods, where iterative fix-point methods had been needed
in the recovery process. The Radiation Transport equations for neutrino-
matter interaction, present in CCSNe, were also solved numerically in
the M1 closure approximation with the new MIRK approach.

In all cases we did a linear stability analysis at the stiff limit, de-
ducing a stability region, from which we proposed some choices for the
coefficients of the method. Imposing a good behaviour of the conserved
variables at the stiff limit have guided us determining some of the co-
efficients. Some choices for coefficients provide stable simulations and
reproduce the correct physical behaviour. Of course, a complete anal-
ysis would have determined a narrow stability region, and indeed some
choices have driven to non-physical or unstable simulations in the case
of CCSNe. We were also able to write the equations of the method in a
explicit-like form by means of an effective time step. This means that the
computational cost of the new approach is that of explicit methods, but
preserving the good properties of implicit methods when stiff terms are
present in the balance laws.

We let for the future the application of the MIRK method to other con-
texts where stiff balance laws are present. Some of them could be the
force-free electrodynamics [82], rarefied gases [66] or the shallow wa-
ter equations [65]. Moreover, a combination with well-balanced methods
(see [22]) can provide fruitful results managing numerical solutions close
to a stationary solution.

We ended the manuscript with a different numerical problem. We
developed a polynomial regression algorithm in several variables. We did
it for two and three independent variables, and the expressions make one
think that it can be generalized to any number of independent variables.

We applied this strategy to the adiabatic index obtained from tabu-
lated data from CompOSE [1] to model realistic EoS for nuclear matter.
It is left for the future coupling these modules to simulations with oscil-
lating neutron stars with LORENE [2].

We also commented the benefit of using products of Chebyshev poly-
nomials to describe functions of several variables; this will be explored
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deeper in a future work.
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solid Inlet
facet normal -0.081044 -0.000000 -0.996711
outer loop
vertex 0.076150 0.182734 -1.722376
vertex 0.662153 -0.210114 -1.770025
vertex 0.270598 -0.798052 -1.738187
endloop
endfacet
facet normal -0.081043 0.000009 -0.996711

...
endsolid Inlet
solid Wall

facet normal 0.001038 0.995185 -0.098012
outer loop
vertex 4.972343 0.201948 3.898096
vertex 5.148643 0.182733 3.704861
vertex 4.974410 0.182733 3.703016

endloop
endfacet
facet normal 0.003075 0.956941 -0.290267

...
endsolid Wall
solid Outlet

facet normal 0.999944 0.000002 0.010590
outer loop
vertex 5.136793 -0.415367 4.823768
vertex 5.139659 -1.068649 4.553185
vertex 5.146577 -0.798051 3.899940
endloop
endfacet
facet normal 0.999944 0.000000 0.010604

...
endfacet

endsolid Outlet

Figure A.1: STL file defining the triangulated surface to be used by OpenFOAM.
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castellatedMeshControls
{

maxLocalCells 1000000;
maxGlobalCells 8000000;
minRefinementCells 100;
nCellsBetweenLevels 1;
features
(

{
file "aorta_surface.eMesh";
level 0;

}
);
refinementSurfaces
{

aorta_surface
{

level (0 0);
regions
{

Outlet
{ level (0 0); patchInfo { type patch; } }

Wall
{ level (2 2); patchInfo { type patch; } }

Inlet
{ level (0 0); patchInfo { type patch; } }

}
}

}
resolveFeatureAngle 20;
refinementRegions
{

Wall
{

}
}
locationInMesh (0.0 0.0 0.0);
allowFreeStandingZoneFaces true;

}

Figure A.2: Main lines of the file snappyHexMeshDict to specify different parameters to
the castellation process of snappyHexMesh utility.
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14063
(
(0.0013555307 0.30274852 -1.8986701)
(-0.10568855 0.30133507 -1.800514)
...
)

Figure A.3: File points with the points that constitute the vertices of the final mesh.

34969
(
3(12921 13413 12644)
4(13413 12921 13416 12650)
...
)

Figure A.4: File faces with the faces that constitute the volumes of the final mesh. The
number of vertices and the reference number of them in the file points is settled for
each face.
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3
(

Inlet
{

type patch;
nFaces 67;
startFace 30206;

}
Wall
{

type patch;
nFaces 4642;
startFace 30273;

}
Outlet
{

type patch;
nFaces 54;
startFace 34915;

}
)

Figure A.5: Structure of the file boundary. The tags of each patch of the surface are
established and the references to the faces are consistent with order in the file faces.

simulationType RAS;
RAS
{

RASModel kEpsilon;
turbulence on;
printCoeffs on;

}

Figure A.6: Structure of the file turbulenceProperties.
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internalField uniform 0.0;

boundaryField
{

Wall
{

type zeroGradient;
}
Inlet
{

type zeroGradient;
}
Outlet
{

type fixedValue;
value uniform 0.0;

}
}

Figure A.7: Structure of the file 0/p. Boundary conditions for the pressure are settled
and, in non-steady simulations, the initial conditions.
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internalField uniform (0 0 0);

boundaryField
{

Wall
{

type noSlip;
}
Inlet
{

type fixedValue;
value uniform (0.0 0.0 1);

}
Outlet
{

type inletOutlet;
inletValue uniform (0 0 0);
value uniform (0 0 0);

}
}

Figure A.8: Structure of the file 0/U. Boundary conditions for the velocity are settled
and, in non-steady simulations, the initial conditions.

Inlet
{

type fixedValue;
value nonuniform List<vector>

548
(
(-0.015192 -0.003396 0.01146)
(-0.014498 -0.003241 0.010937)
...
(-0.010019 -0.00224 0.007558)
)
;

}
Outlet

Figure A.9: Structure of the file 0/U when a non-uniform boundary condition is applied
in a patch.
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internalField uniform 1e-6;

boundaryField
{

Outlet
{

type zeroGradient;
}
Wall
{

type kLowReWallFunction;
value uniform 1e-6;

}
Inlet
{

type fixedValue;
value uniform 1e-6;

}
}

Figure A.10: Structure of the file 0/k. Boundary conditions for the kinetic turbulent
energy are settled and, in non-steady simulations, the initial conditions.

application simpleFoam;

startFrom startTime;

startTime 0;

stopAt endTime;

endTime 100.0;

deltaT 0.1;
...

Figure A.11: Structure of the file system/controlDict. Main lines only are shown.
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ddtSchemes
{

default steadyState;
}

gradSchemes
{

// Limit gradient to improve stability when bad cells encountered
// (0 = no limiting; 1 = do not exceed surrounding cells)
default cellLimited Gauss linear 0.95;
grad(p) Gauss linear;

}

divSchemes
{

default none;
// Use second-order accurate convection
// Bounded schemes for steady-state solution
div(phi,U) bounded Gauss linearUpwindV grad(U);
div((nuEff*dev2(T(grad(U))))) Gauss linear;

}

laplacianSchemes
{

// Limited explicit correction to the surface normal gradient,
// for stability in highly non-orthogonal cells.
// (0 = uncorrected, fully implicit; 1 = full correction)
default Gauss linear limited 0.3;

}
...

Figure A.12: Structure of the file system/fvSchemes. Main lines only are shown
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SIMPLE
{

// Non-orthogonal correctors for robustness on tet meshes.
// Porous baffles require a higher number of corrections.
nNonOrthogonalCorrectors 5;

consistent no; // Setting this impairs stability of porous baffles
residualControl
{

p 0.0001;
U 0.0001;
"(k|epsilon|omega|f|v2|nuTilda)" 0.0001;

}
pRefValue 0;
pRefCell 0;

}
...
solvers
{

"(p|p_rgh|pcorr)"
{

solver GAMG;
tolerance 1e-7;
relTol 0.01;
smoother GaussSeidel;
nPreSweeps 0;
nPostSweeps 2;
cacheAgglomeration on;
agglomerator faceAreaPair;
nCellsInCoarsestLevel 10;
mergeLevels 1;

}
...

U
{

solver smoothSolver;
smoother GaussSeidel;
tolerance 1e-8;
relTol 0.1;
nSweeps 1;

}
...
}
...

Figure A.13: Structure of the file system/fvSolution. Main lines only are shown.
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Pseudo-codes for

polynomial regression

function polynomial_fit_1D (x, y, N)
asssert length(x)=length(y)
ndata=length(x)
A(:,1)=1
for i=1,..,ndata

for j=1,..,N
A(i,j)=A(i,j-1)*x(i)

end
end
compute alpha, b
return inv_alpha*b

end

Box B.1: Pseudo-code of a function computing a one-parameter polynomial fit by the
method of least squares.
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function polynomial_fit_2D (x, y, z, N)
asssert length(x)=length(y)=length(z)
ndata=length(x)

Ax(:,1)=1
for i=1,..,ndata

for j=1,..,N
Ax(i,j)=Ax(i,j-1)*x(j)

end
end

Ay(:,1)=1
for i=1,..,ndata

for j=1,..,N
Ay(i,j)=Ay(i,j-1)*y(j)

end
end

M=(N+2)(N+1)/2

for j=1,..,M
l=ceil( (2*N+3-sqrt((2*N+3)^2-8*j))/2 )
mj = j mod l*(2*N+3-l)/2
for i=1,..,ndata

Axy(i,j)=Ay(i,mj)*Ay(i,lj)
end

end

compute alpha, b
return inv_alpha*b

end

Box B.2: Pseudo-code of a function computing a two-parameter polynomial fit by the
method of least squares with our algorithm
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function bcoefs_from_acoefs (acoefs, y, N)

M=(N+2)(N+1)/2

for j=1,..,M
l=ceil( (2*N+3-sqrt((2*N+3)^2-8*j))/2 )
mj = j mod l*(2*N+3-l)/2
bcoefs(mj) = bcoefs(mj) + acoefs(j)*y^(l-1)

end

return bcoefs
end

Box B.3: Pseudo-code of a function computing the coefficients bi from ai and Ŷe by the
formula (9.44)
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function polynomial_fit_3D (x, y, z, u, N)
assert length(x)=length(y)=length(z)=length(u)
ndata=length(x)

compute Ax

compute Ay

compute Az

M=(N+3)(N+2)(N+1)/6

for j=1,..,M
compute nj
m=N-ni+1
compute jp
lj=ceil( (2*m+3-sqrt((2*m+3)^2-8*jp))/2 )
mj = jp mod lj*(2*m+3-lj)/2
for i=1,..,ndata

Axyz(i,j)=Ay(i,mj)*Ay(i,lj)*Ay(i,nj)
end

end

compute alpha, b
return inv_alpha*b

end

Box B.4: Pseudo-code of a function computing a three-parameter polynomial fit by the
method of least squares with our algorithm
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