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Abstract: After proving, in a purely categorial way, that the inclusion functor InAlg(Σ) from Alg(Σ),
the category of many-sorted Σ-algebras, to PAlg(Σ), the category of many-sorted partial Σ-algebras,
has a left adjoint FΣ, the (absolutely) free completion functor, we recall, in connection with the functor
FΣ, the generalized recursion theorem of Schmidt, which we will also call the Schmidt construction.
Next we define a category Cmpl(Σ), of Σ-completions, and prove that FΣ, labeled with its domain
category and the unit of the adjunction of which it is a part, is a weakly initial object in it. Following
this we associate to an ordered pair (α, f ), where α = (K, γ, α) is a morphism of Σ-completions from
F = (C, F, η) to G = (D, G, ρ) and f a homomorphism in D from the partial Σ-algebra A to the
partial Σ-algebra B, a homomorphism ΥG,0

α ( f ) : Schα( f ) // B. We then prove that there exists an
endofunctor, ΥG,0

α , of Mortw(D), the twisted morphism category of D, thus showing the naturalness
of the previous construction. Afterwards we prove that, for every Σ-completion G = (D, G, ρ),
there exists a functor ΥG from the comma category (Cmpl(Σ)↓G) to End(Mortw(D)), the category
of endofunctors of Mortw(D), such that ΥG,0, the object mapping of ΥG, sends a morphism of
Σ-completion in Cmpl(Σ) with codomain G, to the endofunctor ΥG,0

α .

Keywords: Many-sorted partial algebra, free completion, category of completions, weakly initial
object, comma category of objects over a completion, Schmidt construction, Schmidt homomorphism,
twisted morphism category, Schmidt endofunctor, functoriality of the Schmidt construction.

1. Introduction

Both partiality and heterogeneity are phenomena that occur, since time immemorial, in
mathematics and in computability theory. The study of both topics, from an abstract point
of view, is carried out, mainly but not exclusively, by means of the many-sorted partial
algebras and the homomorphisms between them, i.e., its study takes place in the category
PAlg(Σ), of many-sorted partial Σ-algebras, and subcategories of it. However, such a
study is not limited to such categories, but also includes the investigation of the functors
from and to such categories, as well as the natural transformations between them. In this
regard, there is a key result: The inclusion functor InAlg(Σ) from Alg(Σ), the category of
many-sorted Σ-algebras, to PAlg(Σ) has a left adjoint FΣ, the (absolutely) free completion
functor (see [3], [4] and [17]) (and, for every partial Σ-algebra A, ηA, the value of the unit
of the adjunction at A, is a dense injective homomorphism from A into FΣ(A)). And,
in connection with FΣ, we have the generalized recursion theorem of Schmidt (see [17]),
which we will also call the Schmidt construction, and which states the following:

Let f be a homomorphism from the partial Σ-algebra A to the partial Σ-
algebra B. Then there exists an A-generated relative subalgebra Sch( f ) of
FΣ(A), the free completion of A, and a closed homomorphism f Sch : Sch( f ) // B
such that f = f Sch ◦ inA,Sch( f ), where inA,Sch( f ) is the canonical inclusion of A
into Sch( f ). Moreover, f Sch is the largest homomorphic extension of f to an
A-generated relative subalgebra of FΣ(A), and it is the only closed one of this
kind.

It is worth emphasizing that the Schmidt construction is the basis of a model theoretic
approach to the theory of many-sorted partial algebras. Moreover, for every S-sorted set X,
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every s ∈ S and every partial Σ-algebra A, it allows to associate to every term P in TΣ(X)s,
a partial term operation PA on A, i.e., a partial mapping from Hom(X, A), the set of all
S-sorted mappings from X to A, to As; it also allows to state the general homomorphism
theorem of Schmidt; and, in addition, given a quasiprimitive set V of partial Σ-algebras,
i.e., a set of partial Σ-algebras closed under the operators I, S and P, it can be used to prove
that the inclusion functor InV from V, the full subcategory of PAlg(Σ) determined by V,
to PAlg(Σ) has a left adjoint TV .

On the other hand, there exists a functor (·)∞, called the one-point per sort completion,
from the category PAlg(Σ)c, of many-sorted partial Σ-algebras and closed homomor-
phisms, to the category Alg(Σ) and a natural transformation from the restriction of the
functor FΣ to PAlg(Σ)c to the functor (·)∞. However, and this should be emphasised, for
the functor (·)∞, unlike in the case of the functor FΣ, there are partial Σ-algebra A, for
which the canonical embedding of A into A∞ is not necessarily dense. This deficiency
of the functor (·)∞ will lead us to consider a subfunctor (·)◦ of (·)∞ such that, for every
partial Σ-algebra A, the canonical embedding of A into A◦ is dense, and which will con-
stitute, together with FΣ, another relevant example of the notion of completion of partial
Σ-algebras that we will consider in this paper. Notwithstanding, the functor (·)∞ is used,
in particular, in one of the constructive proofs of the recursion theorem for Dedekind-Peano
Σ-algebras with respect to partial Σ-algebras—which for partial Σ-algebras is even more
important than the recursion theorem for Dedekind-Peano partial Σ-algebras with respect
to Σ-algebras—and which states the following:

Let X be an S-sorted set, A a partial Σ-algebra and f an S-sorted mapping
from X to A. Then there exists a unique homomorphism

f ∂ : ∂( f ) //A

such that

1. ηX [X] ⊆ ∂( f ), where ηX is the canonical embedding of X into TΣ(X).
2. ∂( f ) is an X(∼= ηX [X])-generated relative subalgebra of TΣ(X).
3. f ∂ ◦ inX,∂( f ) = f , where inX,∂( f ) is the canonical embedding of X into ∂( f ).
4. f ∂ is a closed homomorphism.
5. f ∂ is the largest homomorphic extension of f to an X-generated relative

subalgebra of TΣ(X) with codomain A.

The observation of the factorizations of the homomorphism f in the generalized
recursion theorem of Schmidt and of the many-sorted mapping f in the recursion the-
orem for Dedekind-Peano Σ-algebras with respect to partial Σ-algebras, has led us at
first to generalize the Schmidt construction and then to show its functoriality. Such a
generalization will be carried out through the notions of Σ-completion and of morphism
between Σ-completions and it will consist in associating to a pair formed by a morphism
of Σ-completions and a homomorphism between partial Σ-algebras, a so-called Schmidt
homomorphism, concretely, we will state and prove the following proposition:

Let α = (K, γ, α) be a morphism of Σ-completions from F = (C, F, η)
to G = (D, G, ρ) and f : A // B a homomorphism of D. Then there ex-
ists an ηK(A)[γA[A]]-generated relative subalgebra Schα( f ) of F(K(A)), the
Σ-completion of K(A) associated to F, and a homomorphism ΥG,0

α ( f ) of D
from Schα( f ) to B such that f = ΥG,0

α ( f ) ◦ (ηK(A) ◦ γA), where, with the cus-
tomary abuse of notation, the same symbol is used for the homomorphism
ηK(A) ◦ γA from A to F(K(A)) and its corestriction to Schα( f ). Moreover,
ΥG,0

α ( f ) is the largest homomorphic extension of f to an ηK(A)[γA[A]]-generated
relative subalgebra of F(A).

The plan of this paper is, briefly, as follows.
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In Sections 2 to 5 we fix notation and terminology and review those concepts and
results about many-sorted sets, many-sorted algebras, many-sorted partial algebras and
partial Dedekind-Peano algebras, which will be used in this paper and which will make it
as self-contained as possible (this material is quite standard, so the expert reader may skip
most of it).

In Section 6, taking into account a theorem about adjoint functors, we again obtain, as
a corollary of it, the theorem that states that the inclusion functor InAlg(Σ) from Alg(Σ) to
PAlg(Σ) has a left adjoint FΣ, the (absolutely) free completion functor. At the end of this
section, and related to the functor FΣ from PAlg(Σ) to Alg(Σ), we state the generalized re-
cursion theorem of Schmidt (see [17]), which we will also call the Schmidt construction. We
remark that the rest of this article will focus on such a nice and fundamental mathematical
construction in order to show its functoriality.

Next, in Section 7, and assuming that the category PAlg(Σ) is equipped with a
factorization system (E, M), we define a category Cmpl(Σ), of Σ-completions, whose
objects are ordered triples F = (C, F, η) that satisfy the following conditions:

1. C is a wide subcategory of PAlg(Σ), i.e., a subcategory of PAlg(Σ) such that Ob(C) =
Ob(PAlg(Σ)), satisfying that

1.1 for every homomorphism f of C if f = h ◦ g, for some (g, h) ∈ E×M, then h
is a homomorphism of C.

2. F is a functor from C to Alg(Σ).
3. η is a natural transformation from InC to InAlg(Σ) ◦ F, i.e., for every homomorphism

f : A // B between partial Σ-algebras of C, we have that

F( f ) ◦ ηA = ηB ◦ f ,

satisfying that

3.1 for every partial Σ-algebra A, ηA : A // F(A) is a dense injective homomor-
phism.

Moreover, we prove that FΣ = (PAlg(Σ), FΣ, η), the Σ-completion associated to the
free completion functor FΣ and the unit η of the adjunction FΣ a InAlg(Σ), is a weakly initial
object of Cmpl(Σ).

Following this, in Section 8, we begin to realize our project of showing the functoriality
of the Schmidt construction. To do it, we begin by associating to an ordered pair (α, f ),
where α = (K, γ, α) is a morphism of Σ-completions from F = (C, F, η) to G = (D, G, ρ)
and f a homomorphism of D from the partial Σ-algebra A to the partial Σ-algebra B,
a homomorphism ΥG,0

α ( f ) : Schα( f ) // B. This construction, actually, generalizes the
Schmidt construction. We then prove that there exists an endofunctor, denoted ΥG,0

α , called
the Schmidt endofunctor relative to G and α, of Mortw(D), the twisted morphism category
of D, thus showing the naturalness of the Schmidt construction.

Afterwards, in Section 9, we prove that, for every Σ-completion G, there exists a
functor ΥG from the comma category (Cmpl(Σ)↓G) to End(Mortw(D)), the category
of endofunctors of Mortw(D), such that ΥG,0, the object mapping of ΥG, sends an ob-
ject α : F //G of (Cmpl(Σ)↓G), i.e., a morphism of Σ-completion of Cmpl(Σ) with
codomain G, to the endofunctor ΥG,0

α of End(Mortw(D)).
Although there are excellent monographs and survey articles on many-sorted par-

tial algebras, e.g., [5] and [6], unfortunately it does not seem that, generally speaking,
researchers are familiar enough with such a mathematical field. So it has seemed to us
appropriate, for completeness and easy reference, to recall those fundamental notions and
constructions in that field of which we make use.

Our underlying set theory is ZFSk, Zermelo-Fraenkel-Skolem set theory (also known
as ZFC, i.e., Zermelo-Fraenkel set theory with the axiom of choice) plus the existence of
a Grothendieck universe U, fixed once and for all (see [14], pp. 21–24). We recall that the
elements of U are called U-small sets and the subsets of U are called U-large sets or classes.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 September 2021                   doi:10.20944/preprints202109.0445.v1

https://doi.org/10.20944/preprints202109.0445.v1


4 of 53

Moreover, from now on Set stands for the category of sets, i.e., the category whose set of
objects is U and whose set of morphisms is the set of all mappings between U-small sets.

In all that follows we use standard concepts and constructions from category theory,
see e.g., [12] and [14], universal algebra, see e.g., [1], [5] [6], [7], [8], [10], [11], [13], [15],
[16], [17] and [18], and set theory, see e.g., [2]. Nevertheless, regarding set theory, we have
adopted the following conventions. An ordinal α is a transitive set that is well-ordered
by ∈, thus α = { β | β ∈ α }. The first transfinite ordinal ω0 will be denoted by N, which
is the set of all natural numbers, and, from what we have just said about the ordinals,
for every n ∈ N, n = {0, . . . , n − 1}. If Φ and Ψ are (binary) relations in a set A, then
we will say that Ψ is a refinement of Φ if Ψ ⊆ Φ. We will denote by Pfnc(A, B) the set
of all partial functions from A to B, and by Fnc(A, B) the set of all functions from A to B.
We recall that a partial function from A to B is a subset F of A × B such that, for every
x ∈ A, there is at most one y ∈ B such that (x, y) ∈ F, and that a function from A to B
is a subset F of A× B such that, for every x ∈ A, there exists a unique y ∈ B such that
(x, y) ∈ F. A partial function from A to B is usually denoted by (Fx)x∈Dom(F), where
Dom(F), the domain (of definition) of F, is {x ∈ A | ∃ y ∈ B ((x, y) ∈ F)}, and a function
F from A to B is generally denoted by (Fx)x∈A. We will denote by Homp(A, B) the set
of all partial mappings from A to B, and by Hom(A, B) (and, sometimes, also by BA) the
set of all mappings from A to B. We recall that a partial mapping from A to B is an ordered
triple f = (A, F, B), denoted by f : A / B, in which F is a partial function from A to B,
and that a mapping from A to B is an ordered triple f = (A, F, B), denoted by f : A // B,
in which F is a function from A to B. Therefore Homp(A, B) = {A} × Pfnc(A, B)× {B}
and Hom(A, B) = {A} × Fnc(A, B) × {B}. For a partial mapping f : A / B we will
denote by Γf the underliyng partial function of f and by Dom( f ) precisely Dom(Γf ). For
two sets A and B we will denote by 0A,B the partial mapping from A to B such that
Dom(0A,B) = ∅ (≡ Γ0A,B = ∅). Thus 0A,B is the composition of the unique partial mapping
from A to ∅ and the unique (partial) mapping from ∅ to B. Let us note that, for a partial
mapping f : A / B, d0( f ), the categorial domain (or source) of f , which is A, contains
Dom( f ), while, for a mapping f : A // B, d0( f ) = Dom( f ). We will denote by Sub(A)
the set of all sets X such that X ⊆ A and if X ∈ Sub(A), then we will denote by {AX
or A− X the complement of X in A. Moreover, if f is a mapping from A to B, then the
mapping f [·] from Sub(A) to Sub(B), of f -direct image formation, sends X in Sub(A) to
f [X] = {y ∈ B | ∃ x ∈ X (y = f (x))} in Sub(B), and the mapping f−1[·] from Sub(B) to
Sub(A), of f -inverse image formation, sends Y in Sub(B) to f−1[Y] = {x ∈ A | f (x) ∈ Y}
in Sub(A). In the sequel, for a mapping f from A to B and a subset X of A, we will
write Ker( f ) for the kernel of f , Im( f ) to mean f [A] and the restriction of f to X will be
denoted by f �X. Let us note that for partial mappings f : A / B and g : B / C, the
domain of the composite g ◦ f is Dom(g ◦ f ) = f−1[Dom(g) ∩ f [Dom( f )]] and the image
is Im(g ◦ f ) = g[Dom(g) ∩ f [Dom( f )]].

Finally, with regard to category theory, we have adopted the following conventions. If
C is a category, then Ob(C) denotes the set of objects of C, and Mor(C) its set of morphisms.
Moreover, the operations of vertical and horizontal composition of natural transformations
will be denoted by ◦ and ∗, respectively.

2. Many-sorted sets

In this section we collect the basic facts, mostly without proofs, about many-sorted
sets that we will need afterwards.

Assumption 1. From now on S stands for a set of sorts in U, fixed once and for all.

Definition 1. An S-sorted set is a mapping A = (As)s∈S from S to U.
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Definition 2. If A and X are S-sorted sets, then we will say that X is a subset of A, denoted by
X ⊆ A, if, for every s ∈ S, Xs ⊆ As. We will denote by Sub(A) the set of all S-sorted sets X such
that X ⊆ A.

Definition 3. Let A and B be S-sorted sets. The cartesian product of A and B, denoted by
A× B, is the S-sorted set (As × Bs)s∈S.

Let Φ be an S-sorted set. We will say that Φ is an S-sorted relation from A to B if
Φ ⊆ A× B. Thus, for every s ∈ S, Φs ⊆ As × Bs. We denote by Rel(A, B) the set of all S-sorted
relations from A to B. If A = B, then we write Rel(A) instead of Rel(A, A) and call its elements
S-sorted relations on A.

The diagonal of A, denoted by ∆A, is the S-sorted relation on A defined, for every s ∈ S, as
∆As , and the codiagonal of A, denoted by ∇A, is the S-sorted relation on A defined, for every
s ∈ S, as ∇As = As × As.

Let Φ be an S-sorted relation from A to B and Ψ an S-sorted relation from B to C, then the
composition of Φ and Ψ, denoted by Ψ ◦Φ, is the S-sorted relation from A to C defined, for every
s ∈ S, as

Ψs ◦Φs = {(x, z) ∈ As × Cs | ∃ y ∈ Bs ((x, y) ∈ Φs & (y, z) ∈ Ψs)}.

This composition is associative and the diagonal relation ∆A is a neutral element for it.
Let Φ an S-sorted relation from A to B. Then the inverse of Φ, denoted by Φ−1, is the S-sorted

relation from B to A defined, for every s ∈ S, as

Φ−1
s = {(y, x) ∈ Bs × As | (x, y) ∈ Φs}.

Let Φ be an S-sorted relation from A to B, X an S-sorted subset of A and Y an S-sorted subset
of B, then the direct image of X under Φ, denoted by Φ[X], is the S-sorted subset of B defined, for
every s ∈ S, as

Φ[X]s = { b ∈ Bs | ∃ x ∈ Xs((x, b) ∈ Φs) },

therefore Φ[X] = (Φs[Xs])s∈S, and the inverse image of Y under Φ, denoted by Φ−1[Y], is the
S-sorted subset of A defined, for every s ∈ S, as

Φ−1[Y]s = { a ∈ As | ∃ y ∈ Xs((a, y) ∈ Φs) },

therefore Φ−1[Y] = (Φ−1
s [Ys])s∈S.

An S-sorted function from A to B is a functional S-sorted relation F from A to B, i.e., an
S-sorted relation F from A to B such that, for every s ∈ S, Fs is a function from As to Bs. We denote
by Fnc(A, B) the set of all S-sorted functions from A to B. The composition of S-sorted functions,
which is a particular case of the composition of S-sorted relations, is an S-sorted function.

An S-sorted mapping from A to B is a triple f = (A, F, B) where F is an S-sorted function
from A to B. We denote by Hom(A, B) or by BA the set of all S-sorted mappings from A to B. We
consider the expressions f ∈ Hom(A, B), f ∈ BA and f : A // B as synonymous. Moreover,
given f : A // B and g : B // C, g ◦ f = (A, G ◦ F, C), the composition of f and g, is an
S-sorted mapping from A to C, and idA = (A, ∆A, A), is an S-sorted endomapping of A, the
identity S-sorted mapping at A. We denote by SetS the category of S-sorted sets and S-sorted
mappings.

Let f : A // B be an S-sorted mapping. Then the mapping

f [·] : Sub(A) // Sub(B),

of f -direct image formation, sends X ∈ Sub(A) to f [X] = ( fs[Xs])s∈S ∈ Sub(B), and the
mapping

f−1[·] : Sub(B) // Sub(A),

of f -inverse image formation, sends Y ∈ Sub(B) to f−1[Y] = ( f−1
s [Ys])s∈S ∈ Sub(A).
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Figure 1. The corestriction of a many-sorted mapping.

The image of f , denoted by Im( f ), is f [A], i.e., ( fs[As])s∈S. Moreover, if X ⊆ A, then the
restriction of f to X, denoted by f�X , f |X or resX( f ), is f ◦ inX,A, where inX,A = (inXs ,As)s∈S
is the canonical embedding of X into A.

Remark 1. To give an S-sorted mapping from A to B, as in the just stated definition, is equivalent
to give an S-indexed family f = ( fs)s∈S, where, for every s in S, fs is a mapping from As to Bs.
Thus, an S-sorted mapping from A to B is, essentially, an element of ∏s∈S Hom(As, Bs).

Definition 4. Let I be a set in U and (Ai)i∈I an I-indexed family of S-sorted sets. Then
the product of (Ai)i∈I , denoted by ∏i∈I Ai, is the S-sorted set defined, for every s ∈ S, as(
∏i∈I Ai)

s = ∏i∈I Ai
s, where

∏i∈I Ai
s =

{
(ai)i∈I ∈ Fnc

(
I,
⋃

i∈I Ai
s
)
| ∀ i ∈ I

(
ai ∈ Ai

s
)}

.

For every i ∈ I, the i-th canonical projection, pri = (pri
s)s∈S, is the S-sorted mapping from

∏i∈I Ai to Ai that, for every s ∈ S, sends (ai)i∈I in ∏i∈I Ai
s to ai in Ai

s. The ordered pair
(∏i∈I Ai, (pri)i∈I) has the following universal property: For every S-sorted set B and every I-
indexed family of S-sorted mappings ( f i)i∈I , where, for every i ∈ I, f i is an S-sorted mapping from
B to Ai, there exists a unique S-sorted mapping

〈
f i〉

i∈I from B to ∏i∈I Ai such that, for every
i ∈ I, pri ◦

〈
f i〉

i∈I = f i.
The coproduct of (Ai)i∈I , denoted by äi∈I Ai, is the S-sorted set defined, for every s ∈ S, as(

äi∈I Ai)
s = äi∈I Ai

s, where

äi∈I Ai
s =

⋃
i∈I(Ai

s × {i}).

For every i ∈ I, the i-th canonical injection, ini, is the S-sorted mapping from Ai to äi∈I Ai

that, for every s ∈ S, sends a in Ai
s to (a, i) in äi∈I Ai

s. The ordered pair (äi∈I Ai, (ini)i∈I) has
the following universal property: For every S-sorted set B and every I-indexed family of S-sorted
mappings ( f i)i∈I , where, for every i ∈ I, f i is an S-sorted mapping from Ai to B, there exists a
unique S-sorted mapping [ f i]i∈I from äi∈I Ai to B such that, for every i ∈ I, [ f i]i∈I ◦ ini = f i.

The remaining set-theoretic operations on S-sorted sets: q (binary coproduct),
⋃

(union), ∪
(binary union),

⋂
(intersection), ∩ (binary intersection), − (difference) and {A (complement of an

S-sorted set in a fixed S-sorted A), are defined in a similar way, i.e., componentwise.

Definition 5. We will denote by 1S the (standard) final S-sorted set of SetS, which is 1S = (1)s∈S,
and by ∅S the initial S-sorted set, which is ∅S = (∅)s∈S. We shall abbreviate 1S to 1 and ∅S to ∅
when this is unlikely to cause confusion.

Proposition 1. Let B be an S-sorted set, Y a subset of B and f an S-sorted mapping from A to B.
Then the following statements are equivalent:

1. Im( f ) ⊆ Y.
2. There exists an S-sorted mapping h from A to Y such that the diagram in Figure 1 commutes.

If one of the above equivalent statements holds, then we will call h, which is univocally determined,
the corestriction of f to Y and we denote it by f |Y or coresY( f ).
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f
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A/Φ

h
��

B

Figure 2. The coastriction of a many-sorted mapping.

Proposition 2. Let PSetS be the category whose objects are the S-sorted set pairs, i.e., the ordered
pairs pairs (A, X) where A is an S-sorted set and X ⊆ A, and in which the set of morphisms from
(A, X) to (B, Y) is the set of all S-sorted mappings f from A to B such that f [X] ⊆ Y. Let G be
the functor from SetS to PSetS whose object mapping sends A to (A, A) and whose morphism
mapping sends f : A // B to f : (A, A) // (B, B). Then, for every S-sorted pair (B, Y), there
exists a universal mapping from G to (B, Y), which is precisely the ordered pair (Y, inY,B) with
inY,B : (Y, Y) // (B, Y) the morphism of PSetS associated to inY,B : Y // B.

Definition 6. Let f be a PSetS-morphism from (A, X) to (B, Y). Then we denote by f |YX,
biresX,Y( f ), or, if no confusion can arise, f̂ the S-sorted mapping coresY(resX( f )) (which is
identical to resX(coresY( f ))). We will call this S-sorted mapping the birestriction of f to X and
Y.

Definition 7. Let A be an S-sorted set. Then the cardinal of A, denoted by card(A), is
card(ä A), i.e., the cardinal of the set ä A =

⋃
s∈S(As × {s}). An S-sorted set A is finite

if card(A) < ℵ0. We will say that an S-sorted set X is a finite subset of A if X is finite and X ⊆ A.
We will denote by Subf(A) the set of all S-sorted sets X in Sub(A) which are finite.

Definition 8. Let A be an S-sorted set. Then the support of A, denoted by suppS(A), is the set
{ s ∈ S | As 6= ∅ }.

Remark 2. An S-sorted set A is finite if and only if suppS(A) is finite and, for every s ∈
suppS(A), As is finite.

We next define the notion of equivalence relation on a many-sorted set and state the
universal property of the corresponding quotient many-sorted set.

Definition 9. An S-sorted equivalence relation on (or, to abbreviate, an S-sorted equivalence
on) an S-sorted set A is an S-sorted relation Φ on A such that, for every s ∈ S, Φs is an equivalence
relation on As. We will denote by Eqv(A) the set of all S-sorted equivalences on A (which is
an algebraic closure system on A × A), by Eqv(A) the algebraic lattice (Eqv(A),⊆), by ∇A
the greatest element of Eqv(A) and by ∆A the least element of Eqv(A). As for ordinary sets,
Eqv(A) is also an algebraic lattice, and we denote by EgA the canonically associated algebraic
closure operator. For A, we have that EgA(Φ) = (EgAs

(Φs))s∈S.
For an S-sorted equivalence relation Φ on A, the S-sorted quotient set of A by Φ, denoted

by A/Φ, is (As/Φs)s∈S = ({[x]Φs | x ∈ As})s∈S(⊆ (Sub(As))s∈S), where, for every s ∈ S
and every x ∈ As, [x]Φs , the equivalence class of x with respect to Φs (or, the Φ-equivalence
class of x) is {y ∈ As | (x, y) ∈ Φs}, and prΦ : A // A/Φ, the canonical projection from A
to A/Φ, is the S-sorted mapping (prΦ

s )s∈S, where, for every s ∈ S, prΦ
s is the canonical projection

from As to As/Φs (which sends x in As to prΦ
s (x) = [x]Φs , the Φs-equivalence class of x, in

As/Φs). Moreover, if Ψ is an S-sorted equivalence on an S-sorted set B and f an S-sorted mapping
from A to B, then the astriction of f to B/Ψ, denoted by astB/Ψ( f ), is prΨ ◦ f , where prΦ is the
canonical projection of B onto B/Ψ.
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Proposition 3. Let A be an S-sorted set, Φ an S-sorted equivalence on A and f : A // B an
S-sorted mapping. Then the following statements are equivalent:

1. Φ ⊆ Ker( f ).
2. There exists an S-sorted mapping h from A/Φ to B such that the diagram in Figure 2

commutes.

If one of the above equivalent statements holds, then we will call h, which is univocally determined,
the coastriction of f to A/Φ and we denote it by coastA/Φ( f ).

Proposition 4. Let ClfdSetS be the category whose objects are the classified S-sorted sets, i.e,
the ordered pairs (A, Φ) where A is an S-sorted set and Φ an S-sorted equivalence relation on A,
and in which the set of morphisms from (A, Φ) to (B, Ψ) is the set of all S-sorted mappings f from
A to B such that, for every s ∈ S and every (x, y) ∈ A2

s , if (x, y) ∈ Φs, then ( fs(x), fs(y)) ∈ Ψs.
Let G be the functor from SetS to ClfdSetS whose object mapping sends A to (A, ∆A) and whose
morphism mapping sends f : A // B to f : (A, ∆A) // (B, ∆B). Then, for every classified S-
sorted set (A, Φ), there exists a universal mapping from (A, Φ) to G, which is precisely the ordered
pair (A/Φ, prΦ) with prΦ : (A, Φ) // (A/Φ, ∆A/Φ).

Definition 10. Let f be a ClfdSetS-morphism from (A, Φ) to (B, Ψ). Then we denote by
biastA/Φ,B/Ψ( f ) or f Φ,Ψ the S-sorted mapping astB/Ψ(coastA/Φ( f )) (which is identical to
coastA/Φ(astB/Ψ( f ))). We will call this S-sorted mapping the biastriction of f to A/Φ and
B/Ψ.

We define next the concept of kernel of an S-sorted mapping, and state the quadran-
gular and triangular factorizations of an S-sorted mapping.

Definition 11. let f : A // B be an S-sorted mapping. Then the kernel of f , denoted by Ker( f ),
is the S-equivalence on A defined as:

Ker( f ) = (Ker( fs))s∈S.

Proposition 5. Let f : A // B be an S-sorted mapping. Then we have the following quadrangular
and triangular factorizations of f :

A
prKer( f )

//

f e

��

A/ Ker( f )

f m

��

f b

yy
Im( f )

inIm( f )
// B

where the involved S-sorted mappings are defined coordinatewise, i.e., for every s ∈ S, (prKer( f ))s
is prKer( fs), the canonical projection from As to As/ Ker( fs), f b

s the canonical isomorphism from
As/Ker( fs) to Im( fs), (inIm( f ))s the canonical embedding inIm( fs) of Im( fs) into Bs, f e

s the
corestriction of fs to Im( fs) and f m

s the mapping which sends [a]Ker( fs) in As/ Ker( fs) to fs(a)
in Bs.

We next define the concept of free monoid on a set and several notions associated with
it that will be used afterwards to construct the free algebra on an S-sorted set.

Definition 12. Let A be a set. The free monoid on A, denoted by A?, is (A?,f, λ), where A?,
the set of all words on A, is

⋃
n∈N Hom(n, A), the set of all mappings w : n // A from some

n ∈ N to A, f, the concatenation of words on A, is the binary operation on A? which sends a pair
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of words (w, v) on A to the mapping wf v from |w|+ |v| to A, where |w| and |v| are the lengths
(≡ domains) of the mappings w and v, respectively, defined as follows:

wf v


|w|+ |v| // S

i 7−→
{

wi, if 0 ≤ i < |w|;
vi−|w|, if |w| ≤ i < |w|+ |v|,

and λ, the empty word on A, is the unique mapping from ∅ to A. A word w ∈ A? is usually
denoted as a sequence (ai)i∈|w|, where, for i ∈ |w|, ai is the letter in A satisfying w(i) = ai. We
will denote by ηA the mapping from A to A? that sends a ∈ A to (a) ∈ A?, i.e., to the mapping
(a) : 1 // A that sends 0 to a. The ordered pair (A?, ηA) is a universal morphism from A to the
forgetful functor from the category Mon, of monoids, to Set.

3. Many-sorted algebras

Our next aim is to provide those notions from the field of many-sorted universal
algebra that will be used afterwards. We will specially focus on the constructive description
of the subalgebra generating many-sorted operator, the congruence generating many-sorted
operator and the (absolutely) free many-sorted algebra on a many-sorted set.

Convention. In what follows, for a set of sorts S, an arbitrary word on S? will be denoted by s,
i.e., a lower case bold type s. The letter s will be used to represent an arbitrary letter in S.

Definition 13. An S-sorted signature is a mapping Σ from S? × S to U which sends a pair
(s, s) ∈ S? × S to the set Σs,s of the formal operations of arity s, sort (or coarity) s and rank (or
biarity) (s, s).

Assumption 2. From now on Σ stands for an S-sorted signature, fixed once and for all.

We shall now give precise definitions of the concepts of many-sorted algebra and
homomorphism between many-sorted algebras.

Definition 14. The S?×S-sorted set of the finitary operations on an S-sorted set A is (Hom(As, As))(s,s)∈S?×S,
where, for every s ∈ S?, As = ∏j∈|s| Asj , with |s| denoting the length of the word s (if s = λ,
then Aλ is a final set). A structure of Σ-algebra on an S-sorted set A is a family (Fs,s)(s,s)∈S?×S,
denoted by F, where, for (s, s) ∈ S? × S, Fs,s is a mapping from Σs,s to Hom(As, As) (if
(s, s) = (λ, s) and σ ∈ Σλ,s, then Fλ,s(σ) picks out an element of As). For a pair (s, s) ∈ S? × S
and a formal operation σ ∈ Σs,s, in order to simplify the notation, the operation Fs,s(σ) from As to
As will be written as Fσ. A many-sorted Σ-algebra (or, to abbreviate, Σ-algebra) is a pair (A, F),
denoted by A, where A is an S-sorted set and F a structure of Σ-algebra on A. A Σ-homomorphism
(or, to abbreviate, homomorphism) from A to B, where B = (B, G), is a triple (A, f , B), denoted
by f : A // B, where f is an S-sorted mapping from A to B such that, for every (s, s) ∈ S? × S,
every σ ∈ Σs,s and every (aj)j∈|s| ∈ As, we have fs(Fσ((aj)j∈|s|)) = Gσ( fs((aj)j∈|s|)), where fs
is the mapping ∏j∈|s| fsj from As to Bs that sends (aj)j∈|s| in As to ( fsj(aj))j∈|s| in Bs. We will
denote by Alg(Σ) the category of Σ-algebras and homomorphisms and by Alg(Σ) the set of objects
of Alg(Σ).

In some cases, to avoid mistakes, we will denote by FA the structure of Σ-algebra on A, and,
for (s, s) ∈ S? × S and σ ∈ Σs,s, by FA

σ , or simply by σA, the corresponding operation. Moreover,
for s ∈ S and σ ∈ Σλ,s, we will, usually, denote by σA the value of the mapping FA

σ : Aλ
// As

at the unique element in Aλ.
We will denote by 1S or, to abbreviate, by 1, the (standard) final Σ-algebra.

We add some further results concerning direct products and homomorphisms, which
will be of great importance later on.
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Definition 15. Let (Ai)i∈I be a family of Σ-algebras, where we agree that, for every i ∈ I,
Ai = (Ai, Fi). Then

1. The product of (Ai)i∈I , ∏i∈I Ai, is the Σ-algebra which has as S-sorted underlying set
∏i∈I Ai, and where, for every (s, s) ∈ S? × S and every σ ∈ Σs,s, the structural operation
Fσ is defined as follows:

Fσ

{
(∏i∈I Ai)s // ∏i∈I Ai

s
(aj)j∈|s| 7−→ (Fi

σ((aj(i))j∈|s|)i∈I
.

2. For every i ∈ I, the i-th canonical projection is the homomorphism from ∏i∈I Ai to Ai

determined by the S-sorted mapping pri which, for every s ∈ S, is defined as follows

pri
s

{
∏i∈I Ai

s
// Ai

s
(ai)i∈I 7−→ ai

Proposition 6. Let (Ai)i∈I be a family of Σ-algebras. Then the pair (∏i∈I Ai, (pri)i∈I) is a
product in Alg(Σ).

We next introduce the support of a many-sorted algebra and the definition of finiteness
of a many-sorted algebra.

Definition 16. Let A be a Σ-algebra. Then the support of A, denoted by suppS(A), is suppS(A),
i.e., the support of the underlying S-sorted set A of A.

Remark 3. The set {suppS(A) | A ∈ Alg(Σ)} is a closure system on S.

Definition 17. Let A be a Σ-algebra. We will say that A is finite if A, the underlying S-sorted set
of A, is finite.

We shall now go on to define the notion of subalgebra of a Σ-algebra A, the principle
of proof by Algebraic Induction and the subalgebra generating operator for A.

Definition 18. Let A = (A, F) be a Σ-algebra and X ⊆ A. Given (s, s) ∈ S? × S and σ ∈ Σs,s,
we will say that X is closed under the operation Fσ : As // As if, for every (aj)j∈|s| ∈ Xs,
Fσ((aj)j∈|s|) ∈ Xs. We will say that X is a closed subset of A if X is closed under the operations
of A. We will denote by Cl(A) the set of all closed subsets of A (which is an algebraic closure
system on A) and by Cl(A) the algebraic lattice (Cl(A),⊆). We will say that a Σ-algebra B is a
subalgebra of A if B ⊆ A and the canonical embedding of B into A determines an embedding of B
into A. We will denote by Sub(A) the set of all subalgebras of A. Since Cl(A) and Sub(A) are
isomorphic, we shall feel free to deal either with a closed subset of A or with the correlated subalgebra
of A, whichever is most convenient for the work at hand.

Definition 19. Let A be a Σ-algebra. Then we denote by SgA the many-sorted closure operator on
A defined as follows:

SgA

{
Sub(A) // Sub(A)

X 7−→ ⋂{C ∈ Sub(A) | X ⊆ C }

We call SgA the subalgebra generating many-sorted operator on A determined by A.
For every X ⊆ A, we call SgA(X) the subalgebra of A generated by X. Moreover, if X ⊆ A
is such that SgA(X) = A, then we say that X is an S-sorted set of generators of A, or that X
generates A. Besides, we say that A is finitely generated if there exists an S-sorted subset X of A
such that X generates A and card(X) < ℵ0.
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Remark 4. Let A be a Σ-algebra. Then the algebraic closure operator SgA is uniform, i.e., for every
X, Y ⊆ A, if suppS(X) = suppS(Y), then we have suppS(SgA(X)) = suppS(SgA(Y)).

We next recall the Principle of Proof by Algebraic Induction.

Proposition 7 (Principle of Proof by Algebraic Induction). Let A be a Σ-algebra generated by
X. Then to prove that a subset Y of A is equal to A it suffices to show:

1. X ⊆ Y (algebraic induction basis); and
2. Y is a subalgebra of A (algebraic induction step).

Proposition 8. Let A be a Σ-algebra. Then the many-sorted closure operator SgA on A is algebraic,
i.e., for every S-sorted subset X of A, SgA(X) =

⋃
K⊆fX SgA(K).

For a Σ-algebra A we next provide another, more constructive, description of the
algebraic many-sorted closure operator SgA.

Definition 20. Let Σ be an S-sorted signature and A a Σ-algebra.

1. We denote by EA the many-sorted operator on A that assigns to an S-sorted subset X of A,
EA(X) = X ∪

( ⋃
σ∈Σ 6=λ,s

Fσ[Xar(σ)]
)

s∈S, where, for s ∈ S, Σ 6=λ,s is the set of all many-
sorted formal operations σ such that ar(σ) ∈ S? − {λ}, car(σ) = s, and if ar(σ) = s, then
Xar(σ) = ∏i∈|s| Xsi .

2. If X ⊆ A, then we define the family (En
A(X))n∈N in Sub(A), recursively, as follows:

E0
A(X) = X ∪ (

⋃
σ∈Σλ,s

Fσ[Aλ])s∈S,

En+1
A (X) = EA(En

A(X)), n ≥ 0.

3. We denote by Eω
A the many-sorted operator on A that assigns to an S-sorted subset X of A,

Eω
A(X) =

⋃
n∈N En

A(X).

Remark 5. Since, for s ∈ S and σ ∈ Σλ,s, σA is the value of FA
σ : Aλ

// As at the unique
element in Aλ, it follows that( ⋃

σ∈Σλ,s
Fσ[Aλ]

)
s∈S = ({σA | σ ∈ Σλ,s})s∈S

Proposition 9. Let A be a Σ-algebra and X ⊆ A, then SgA(X) = Eω
A(X).

Remark 6. For a homomorphism f from a Σ-algebra A to another B and a subset X of A, we have
that f [SgA(X)] ⊆ SgB( f [X]).

Our next goal is to define the concepts of congruence on a Σ-algebra and of quotient
of a Σ-algebra by a congruence on it. Moreover, we recall the notion of kernel of a homo-
morphism between Σ-algebras, the universal property of the quotient of a Σ-algebra by a
congruence on it and the congruence generating operator for A.

Definition 21. Let A be a Σ-algebra and Φ an S-sorted equivalence on A. We will say that
Φ is an S-sorted congruence on (or, to abbreviate, a congruence on) A if, for every (s, s) ∈
(S? − {λ})× S, every σ ∈ Σs,s, and every (aj)j∈|s|, (bj)j∈|s| ∈ As, if, for every j ∈ |s|, (aj, bj) ∈
Φsj , then (Fσ((aj)j∈|s|), Fσ((bj)j∈|s|)) ∈ Φs. We will denote by Cgr(A) the set of all S-sorted
congruences on A (which is an algebraic closure system on A× A), by Cgr(A) the algebraic lattice
(Cgr(A),⊆), by ∇A the greatest element of Cgr(A) and by ∆A the least element of Cgr(A).

For a congruence Φ on A, the quotient Σ-algebra of A by Φ, denoted by A/Φ, is the
Σ-algebra (A/Φ, FA/Φ), where, for every (s, s) ∈ S? × S and every σ ∈ Σs,s, the opera-
tion FA/Φ

σ from (A/Φ)w to As/Φs, also denoted, to simplify, by Fσ, sends ([aj]Φsj
)j∈|s| in

(A/Φ)s to [Fσ((aj)j∈|s|)]Φs in As/Φs, and the canonical projection from A to A/Φ, denoted
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by prΦ : A //A/Φ, is the full surjective homomorphism determined by the projection from A
to A/Φ. The ordered pair (A/Φ, prΦ) has the following universal property: Ker(prΦ) is Φ and,
for every Σ-algebra B and every homomorphism f from A to B, if Ker( f ) ⊇ Φ, then there exists a
unique homomorphism h from A/Φ to B such that h ◦ prΦ = f . In particular, if Ψ is a congruence
on A such that Φ ⊆ Ψ, then we will denote by pΦ,Ψ the unique homomorphism from A/Φ to A/Ψ
such that pΦ,Ψ ◦ prΦ = prΨ.

Remark 7. Let ClfdAlg(Σ) be the category whose objects are the classified Σ-algebras, i.e, the
ordered pairs (A, Φ) where A is a Σ-algebra and Φ a congruence on A, and in which the set of
morphisms from (A, Φ) to (B, Ψ) is the set of all homomorphisms f from A to B such that, for every
s ∈ S and every (x, y) ∈ A2

s , if (x, y) ∈ Φs, then ( fs(x), fs(y)) ∈ Ψs. Let G be the functor from
Alg(Σ) to ClfdAlg(Σ) whose object mapping sends A to (A, ∆A) and whose morphism mapping
sends f : A // B to f : (A, ∆A) // (B, ∆B). Then, for every classified Σ-algebra (A, Φ), there
exists a universal mapping from (A, Φ) to G, which is precisely the ordered pair (A/Φ, prΦ) with
prΦ : (A, Φ) // (A/Φ, ∆A/Φ).

Definition 22. Let A be a Σ-algebra. Then we denote by CgA the many-sorted closure operator on
A× A defined as follows:

CgA

{
Sub(A× A) // Sub(A× A)

Φ 7−→ ⋂{Ψ ∈ Con(A) | Φ ⊆ Ψ }

We call CgA the congruence generating many-sorted operator on A× A determined
by A. For every relation Φ ⊆ A× A, we call CgA(Φ) the congruence on A generated by Φ.

For a Σ-algebra A we next provide another, more constructive, description of the
algebraic many-sorted closure operator CgA.

Definition 23. Let Σ be an S-sorted signature and A a Σ-algebra.

(1) We denote by CA the many-sorted operator on A× A that assigns to an S-sorted relation
Φ ⊆ A× A, the S-sorted relation

CA(Φ) = (Φ ◦Φ) ∪
(⋃

σ∈Σ 6=λ,s
Fσ × Fσ

[
Φar(σ)

])
s∈S

,

where, for s ∈ S, Σ 6=λ,s is the set of all many-sorted formal operations σ such that ar(σ) ∈
S? − {λ}, car(σ) = s and if ar(σ) = s, then Φar(σ) = ∏j∈|s| Φsj . Let us note that

Φar(σ) ⊆ ∏j∈|s| A2
sj
∼= (∏j∈|s| Asj)

2.

(2) If Φ ⊆ A × A, then we define the family (Cn
A(Φ))n∈N in Sub(A × A), recursively, as

follows:

C0
A(Φ) = Φ ∪Φ−1 ∪ ∆A,

Cn+1
A (Φ) = CA(Cn

A(Φ)), n ≥ 0.

(3) We denote by Cω
A the many-sorted operator on A× A that assigns to an S-sorted relation

Φ ⊆ A× A, Cω
A(Φ) =

⋃
n∈N Cn

A(Φ).

Proposition 10. Let A be a Σ-algebra and let Φ ⊆ A× A be a relation on A. For every n ∈ N we
have that

(1) Cn
A(Φ) is a reflexive relation;

(2) Cn
A(Φ) ⊆ Cn+1

A (Φ);
(3) Cn

A(Φ) is a symmetric relation.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 September 2021                   doi:10.20944/preprints202109.0445.v1

https://doi.org/10.20944/preprints202109.0445.v1


13 of 53

Proposition 11. Let A be a Σ-algebra and Φ ⊆ A× A, then CgA(Φ) = Cω
A(Φ).

We next state that the forgetful functor GΣ from Alg(Σ) to SetS has a left adjoint
TΣ which assigns to an S-sorted set X the free Σ-algebra TΣ(X) on X. We latter state
the universal property of the free many-sorted algebra and provide a characterization by
means of the notion of Dedekind Peano-algebras.

Let us note that in what follows, to construct the algebra of Σ-rows in X, and the free
Σ-algebra on X, since neither the S-sorted signature Σ nor the S-sorted set X are subject to
any constraint, coproducts must necessarily be used.

Definition 24. Let X be an S-sorted set. The algebra of Σ-rows in X, denoted by WΣ(X), is
defined as follows:

1. The underlying S-sorted set of WΣ(X), written as WΣ(X), is precisely the S-sorted set
((ä Σqä X)?)s∈S, i.e., the mapping from S to U constantly (ä Σqä X)?, where (ä Σq
ä X)? is the set of all words on the set ä Σqä X, i.e., on the set

[(
⋃
(s,s)∈S?×S(Σs,s × {(s, s)}))× {0}] ∪ [(

⋃
s∈S(Xs × {s}))× {1}].

2. For every (s, s) ∈ S?× S and every σ ∈ Σs,s, the structural operation Fσ associated to σ is the
mapping from WΣ(X)s to WΣ(X)s which sends (Pj)j∈|s| ∈WΣ(X)s to (σ)ffj∈|s|Pj ∈
WΣ(X)s, where, for every (s, s) ∈ S?×S and every σ ∈ Σs,s, (σ) stands for (((σ, (s, s)), 0)),
which is the value at σ of the canonical mapping from Σs,s to (ä Σqä X)?.

Definition 25. The free Σ-algebra on an S-sorted set X, denoted by TΣ(X), is the Σ-algebra
determined by SgWΣ(X)(({(x) | x ∈ Xs})s∈S), the subalgebra of WΣ(X) generated by ({(x) |
x ∈ Xs})s∈S, where, for every s ∈ S and every x ∈ Xs, (x) stands for (((x, s), 1)), which is the
value at x of the canonical mapping from Xs to (ä Σ qä X)?. We will denote by TΣ(X) the
underlying S-sorted of TΣ(X) and, for s ∈ S, we will call the elements of TΣ(X)s terms of type s
with variables in X or (X, s)-terms.

Remark 8. Since ({(x) | x ∈ Xs})s∈S is a generating subset of TΣ(X), to prove that a subset T
of TΣ(X) is equal to TΣ(X) it suffices, by Proposition 21, to show:

1. ({(x) | x ∈ Xs})s∈S ⊆ T (algebraic induction basis); and
2. T is a subalgebra of TΣ(X) (algebraic induction step).

In the many-sorted case we have, as in the single-sorted case, the following characteri-
zation of the elements of TΣ(X)s, for s ∈ S.

Proposition 12. Let X be an S-sorted set. Then, for every s ∈ S and every P ∈WΣ(X)s, we have
that P is a term of type s with variables in X if and only if P = (x), for a unique x ∈ Xs, or P = (σ),
for a unique σ ∈ Σλ,s, or P = (σ)ff(Pj)j|s|, for a unique s ∈ S? − {λ}, a unique σ ∈ Σs,s and
a unique family (Pj)j∈|s| ∈ TΣ(X)s. Moreover, the three possibilities are mutually exclusive. From
now on, for simplicity of notation, we will write x, σ and σ(P0, . . . , P|s|−1) or σ((Pj)j∈|s|) instead
of (x), (σ) and (σ)ff(Pj)j∈|s|, respectively. Thus, in particular, the structural operation Fσ (or,

more accurately, FTΣ(X)
σ ) associated to σ is identified with σ.

From the above proposition it follows, immediately, the universal property of the free
Σ-algebra on an S-sorted set X, as stated in the subsequent proposition.

Proposition 13. For every S-sorted set X, the pair (ηX, TΣ(X)), where ηX, the insertion of
(the S-sorted set of generators) X into TΣ(X), is the co-restriction to TΣ(X) of the canonical
embedding of X into WΣ(X), has the following universal property: for every Σ-algebra A and every
S-sorted mapping f : X // A, there exists a unique homomorphism f ] : TΣ(X) //A such that
f ] ◦ ηX = f .
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Proof. For every s ∈ S and every (X, s)-term P, the s-th coordinate f ]s of f ] is defined
recursively as follows: f ]s (x) = fs(x), if P = x; f ]s (σ) = σ, if P = σ; and, finally,
f ]s (σ(Pj)j∈|s|) = Fσ(( f ]sj(Pj))j∈|s|), if P = σ((Pj)j∈|s|).

The just stated proposition allows us to carry out definitions by algebraic recursion on
a free many-sorted algebra as indeed we will be doing throughout this paper.

Corollary 1. The functor TΣ, which sends an S-sorted set X to TΣ(X) and an S-sorted mapping
f from X to Y to f @(= (ηY ◦ f )]), the unique homomorphism from TΣ(X) to TΣ(Y) such that
f @ ◦ ηX = ηY ◦ f , is left adjoint for the forgetful functor GΣ from Alg(Σ) to SetS.

It is possible to give an internal characterization of the free algebras by means of the
Dedekind-Peano algebras.

Definition 26. Let A be a Σ-algebra. We will say that A is a Dedekind-Peano Σ-algebra,
abbreviated to DP Σ-algebra when this is unlikely to cause confusion, if the following axioms hold

DP1. For every (s, s) ∈ S? × S and every σ ∈ Σs,s, Fσ : As // As is injective.
DP2. For every s ∈ S and every σ, τ ∈ Σ·,s, if σ 6= τ, then Im(Fσ) ∩ Im(Fτ) = ∅.
DP3. SgA(A− (

⋃
σ∈Σ·,s Im(Fσ))s∈S) = A.

We call the S-sorted set A− (
⋃

σ∈Σ·,s Im(Fσ))s∈S the basis of Dedekind-Peano of A, and we
denote it by B(A).

We remark that the axioms DP1 and DP2 are equivalent to the following axiom

DP4. For every s ∈ S, σ, τ ∈ Σ·,s, a ∈ Aar(σ), b ∈ Aar(τ), if Fσ(a) = Fτ(b) then σ = τ and
a = b.

Moreover, if A is a DP Σ-algebra, then B(A) is
⋂{X ⊆ A | SgA(X) = A}

Proposition 14. Let A be a DP Σ-algebra. Then A is isomorphic to TΣ(B(A)).

Proposition 15. Let X be an S-sorted set. Then TΣ(X) is a DP Σ-algebra.

4. Many-sorted partial algebras

In this section we gather together the basic facts about many-sorted partial algebras
that we will need afterwards. Specifically, we define the notion of many-sorted partial
algebra, we introduce the homomorphisms between many-sorted partial algebra and
several classes of them, as e.g., the closed and the full homomorphisms. Moreover, we
define, in connection with the homomorphisms and their properties, several classes of
subobjects and quotient objects of the many-sorted partial algebras.

Definition 27. A structure of partial Σ-algebra on an S-sorted set A is a family (Fs,s)(s,s)∈S?×S,
denoted by F, where, for (s, s) ∈ S? × S, Fs,s is a mapping from Σs,s to Homp(As, As). If
Dom(Fs,s(σ)) = As, then Fs,s(σ) is a total operation from As to As. If Dom(Fs,s(σ)) = ∅,
then Fs,s(σ) is called a discrete operation or an empty (partial) operation from As to As. If
(s, s) = (λ, s), σ ∈ Σλ,s and Dom(Fλ,s(σ)) 6= ∅, then Fλ,s(σ) picks out an element of As.
Therefore a partial operation Fλ,s(σ) from Aλ to As, also called a partial constant Fλ,s(σ) from Aλ

to As, is either discrete or distinguishes exactly an element of As. For a pair (s, s) ∈ S? × S and a
formal operation σ ∈ Σs,s, in order to simplify the notation, the partial operation Fs,s(σ) from As to
As will be written as Fσ. A many-sorted partial Σ-algebra (or, to abbreviate, partial Σ-algebra)
is a pair (A, F), denoted by A, where A is an S-sorted set and F a structure of partial Σ-algebra on
A. A Σ-homomorphism (or, to abbreviate, homomorphism) from A to B, where B = (B, G),
is a triple (A, f , B), denoted by f : A // B, where f is an S-sorted mapping from A to B such
that, for every (s, s) ∈ S? × S, every σ ∈ Σs,s and every (aj)j∈|s| ∈ As, if (aj)j∈|s| ∈ Dom(Fσ),
then ( fsj(aj))j∈|s| ∈ Dom(Gσ) and fs(Fσ((aj)j∈|s|)) = Gσ( fs((aj)j∈|s|)). We will denote by
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PAlg(Σ) the category of partial Σ-algebras and homomorphisms and by PAlg(Σ) the set of objects
of PAlg(Σ).

Remark 9. The forgetful functor from the category PAlg(Σ) to the category SetS has a left adjoint,
denoted by DΣ, which sends an S-sorted set A to DΣ(A), the discrete partial Σ-algebra on A,
defined as follows: Its underlying S-sorted set is A, and, for every (s, s) ∈ S? × S and every
σ ∈ Σs,s, Dom(Fσ) = ∅.

Remark 10. The category Alg(Σ) is a full subcategory of the category PAlg(Σ). We shall
prove later that the canonical full embedding of Alg(Σ) into PAlg(Σ) has a left adjoint, the free
completion of a partial Σ-algebra, which will play a key role in this paper.

The following is a useful characterization of the isomorphisms (that is (partially)
analogous to that of the homeomorphisms, i.e., bijective and bicontinuous applications
between topological spaces). Later we will include additional characterizations of the
isomorphisms by using the notions of closed homomorphism and of full homomorphism.

Proposition 16. Let f be a homomorphism from A to B. Then the following statements are
equivalent:

1. f is an isomorphism from A to B, i.e., f is a section and a retraction.
2. f is bijective and (B, f−1, A), denoted by f−1 : B //A, is also a homomorphism from B to

A.

Remark 11. Let A be a partial Σ-algebra. Then (DΣ(A), idA, A) is a bijective homomorphism,
but it is an isomorphism if, and only if, A is discrete, too.

To establish some of the results that follow, it is useful to have the concept of product
of a family of many-sorted partial algebras.

Definition 28. Let (Ai)i∈I be a family of partial Σ-algebras, where we agree that, for every i ∈ I,
Ai = (Ai, Fi). Then

1. The product of (Ai)i∈I , ∏i∈I Ai, is the partial Σ-algebra which has as S-sorted underlying
set ∏i∈I Ai, and where, for every (s, s) ∈ S?× S and every σ ∈ Σs,s, the structural operation
Fσ is defined as follows:

(a) Dom(Fσ) = {(aj)j∈|s| ∈ (∏i∈I Ai)s | ∀ i ∈ I ((aj(i))j∈|s| ∈ Dom(Fi
σ))}.

(b)

Fσ

{
Dom(Fσ) // ∏i∈I Ai

s
(aj)j∈|s| 7−→ (Fi

σ((aj(i))j∈|s|)i∈I

2. For every i ∈ I, the i-th canonical projection is the homomorphism from ∏i∈I Ai to Ai

determined by the S-sorted mapping pri which, for every s ∈ S, is defined as follows

pri
s

{
∏i∈I Ai

s
// Ai

s
(ai)i∈I 7−→ ai

Proposition 17. Let (Ai)i∈I be a family of partial Σ-algebras. Then the pair (∏i∈I Ai, (pri)i∈I)
is a product in PAlg(Σ).

In what follows we define the notions of subalgebra, relative subalgebra and weak sub-
algebra of a partial Σ-algebra A and the subalgebra generating operator for A. Furthermore,
we characterize the subalgebras, the relative subalgebras and the weak subalgebras by
means of the closed homomorphisms, the full homomorphisms and the homomorphisms,
respectively.
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Definition 29. Let A be a partial Σ-algebra and X ⊆ A. Given (s, s) ∈ S? × S and σ ∈ Σs,s, we
will say that X is closed under the partial operation Fσ : As / As if, for every (aj)j∈|s| ∈ Xs,
if (aj)j∈|s| ∈ Dom(Fσ), then Fσ((aj)j∈|s|) ∈ Xs. We will say that X is a closed subset of A if X
is closed under the partial operations of A. We will denote by Cl(A) the set of all closed subsets of
A (which is an algebraic closure system on A) and by Cl(A) the algebraic lattice (Cl(A),⊆).

We will say that a partial Σ-algebra B = (B, G) is a subalgebra of A if B is a closed subset
of A, for every (s, s) ∈ S? × S and every σ ∈ Σs,s, Dom(Gσ) = Dom(Fσ) ∩ Bw and, for every
b ∈ Dom(Gσ), Gσ(b) = Fσ(b). We will denote by Sub(A) the set of all subalgebras of A and by
Sub(A) the ordered set (Sub(A),⊆). Since Cl(A) and Sub(A) are isomorphic, we shall feel free
to deal either with a closed subset of A or with the correlated subalgebra of A, whichever is most
convenient for the work at hand.

Remark 12. Let A and B be partial Σ-algebras such that B ⊆ A. Then B = (B, G) is a subalgebra
of A if and only if, for every (s, s) ∈ S? × S and every σ ∈ Σs,s, ΓGσ

= ΓFσ ∩ (Bs × As).

Remark 13. Let A be a partial Σ-algebra. If, for every s ∈ S and every σ ∈ Σλ,s, Dom(Fσ) = ∅,
then ∅S ∈ Cl(A). Let us note that, in such a case, ∅∅∅S, the subalgebra of A canonically associated
to ∅S, is such that, for every (s, s) ∈ S? × S and every σ ∈ Σs,s, the partial operation from ∅S

s to
∅S

s = ∅ associated to σ is discrete.

We next define the notion of closed homomorphism from a partial Σ-algebra to
another which will allow us, among other things, to provide another characterization of
the isomorphisms and of the subalgebras of a partial Σ-algebra.

Definition 30. Let A and B be partial Σ-algebras and f a homomorphism from A to B. We
will say that f is closed if, for every (s, s) ∈ S? × S, every σ ∈ Σs,s and every (aj)j∈|s| ∈ As,
if fs((aj)j∈|s|) ∈ Dom(Gσ), then (aj)j∈|s| ∈ Dom(Fσ), i.e., Dom(Fσ) ⊇ f−1

s [Dom(Gσ)]

(therefore Dom(Fσ) = f−1
s [Dom(Gσ)]).

Remark 14. A homomorphism is closed if and only if the domains of the partial operations in the
source are exactly the inverse images of the domains of the corresponding operations in the target.

Remark 15. Every homomorphism between Σ-algebras is a closed homomorphism.

Proposition 18. Let f be a homomorphism from A to B. Then the following statements are
equivalent:

1. f is an isomorphism from A to B, i.e., f is a section and a retraction.
2. f is bijective and closed, i.e., for every (s, s) ∈ S? × S, every σ ∈ Σs,s and every (aj)j∈|s| ∈

As, the following holds: (aj)j∈|s| ∈ Dom(Fσ) if, and only if, fs((aj)j∈|s|) = ( fsj(aj))j∈|s| ∈
Dom(Gσ).

Proposition 19. Let A and B be partial Σ-algebras, f a homomorphism from A to B and X and Y
closed subsets of A and B, respectively. Then:

1. f−1[Y] is a closed subset of A.
2. If f is closed, then f [X] is a closed subset of B.

Remark 16. For a homomorphism f from a partial Σ-algebra A to another B and a subset X of A,
we have that f [SgA(X)] ⊆ SgB( f [X]) (the converse inclusion does not holds in general; however,
if f is closed, then f [SgA(X)] = SgB( f [X]).

Proposition 20. Let A and B be partial Σ-algebras such that B ⊆ A. Then B is a subalgebra of A
if and only if inB,A = (B, inB,A, A) is a closed homomorphism from B to A.
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Definition 31. Let A be a partial Σ-algebra. Then we will denote by SgA the algebraic closure
operator canonically associated to the algebraic closure system Cl(A) on A and we call it the
subalgebra generating operator for A. Moreover, if X ⊆ A, then we call SgA(X) the subalgebra
of A generated by X, and if X is such that SgA(X) = A, then we will say that X is a generating
subset of A. Besides, SgA(X) denotes the partial Σ-algebra determined by SgA(X).

Remark 17. Let A be a partial Σ-algebra. Then the algebraic closure operator SgA is uni-
form, i.e., for every X, Y ⊆ A, if suppS(X) = suppS(Y), then we have suppS(SgA(X)) =
suppS(SgA(Y)).

Proposition 21 (Principle of Proof by Algebraic Induction). Let A be a partial Σ-algebra
generated by X. Then to prove that a subset Y of A is equal to A it suffices to show:

1. X ⊆ Y (algebraic induction basis); and
2. Y is a closed subset subalgebra of A (algebraic induction step).

We next state the principle of extension of identities. This principle, which is fun-
damental to elucidate the equality of two coterminal homomorphisms, will be used on
several occasions in this work.

Proposition 22. Let f , g : A // B be homomorphisms between partial Σ-algebras and let X be a
subset of A. If f�X= g�X , then f�SgA(X)= g�SgA(X). In particular, if X is a generating subset of A
and f�X= g�X , then f = g

Definition 32. Let A be a partial Σ-algebra. We will say that a partial Σ-algebra B = (B, G)
is a relative subalgebra of A if B ⊆ A and, for every (s, s) ∈ S? × S and every σ ∈ Σs,s,
Dom(Gσ) ⊆ Dom(Fσ) and, for every (bj)j∈|s| ∈ Bs, if (bj)j∈|s| ∈ Dom(Fσ) and Fσ((bj)j∈|s|) ∈
Bs, then (bj)j∈|s| ∈ Dom(Gσ) and Gσ((bj)j∈|s|) = Fσ((bj)j∈|s|). We will denote by Subr(A) the
set of all relative subalgebras of A.

Remark 18. Let A and B be partial Σ-algebras such that B ⊆ A. Then B = (B, G) is a relative
subalgebra of A if and only if, for every (s, s) ∈ S?× S and every σ ∈ Σs,s, ΓGσ

= ΓFσ ∩ (Bs× Bs).

Remark 19. Let A = (A, F) be a partial Σ-algebra and X ⊆ A. Then there exists a unique
structure of partial Σ-algebra LinX,A

(F) on X, the optimal lift of F with respect to inX,A, such
that, for every partial Σ-algebra C and every mapping h from C to X, if inX,A ◦ h is a homomorphism
from C to A, then h is a homomorphism from C to (X, LinX,A

(F)). In fact, it suffices to take, for
every (s, s) ∈ S? × S and every σ ∈ Σs,s, as partial operation associated to σ the partial mapping
LinX,A

(F)σ from Xs to Xs defined as follows:

Dom(LinX,A
(F)σ) = {x ∈ Xs | x ∈ Dom(Fσ) & Fσ(x) ∈ Xs}

and, for every x ∈ Dom(LinX,A
(F)σ), LinX,A

(F)σ(x) = Fσ(x). This shows that every subset X of
A is the underlying S-sorted set of exactly one relative subalgebra of A, and that the structure of
partial Σ-algebra on X is uniquely determined by the structure of partial Σ-algebra on A and the
specification of the subset X of A.

We next define the notion of full homomorphism from a partial Σ-algebra to an-
other which will allow us, among other things, to provide another characterization of the
isomorphisms and of the relative subalgebras of a Σ-algebra.

Definition 33. Let A and B be partial Σ-algebras and f a homomorphism from A to B. We
will say that f is full if, for every (s, s) ∈ S? × S, every σ ∈ Σs,s and every (aj)j∈|s| ∈ As,
if fs((aj)j∈|s|) ∈ Dom(Gσ) and Gσ( fs((aj)j∈|s|)) ∈ fs[As], then there exists an (a′j)j∈|s| ∈
Dom(Fσ) such that fs((a′j)j∈|s|) = fs((aj)j∈|s|).
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Remark 20. Those homomorphisms that are full and injective are characterizable as those that are
initial and injective, where a homomorphism f from a partial Σ-algebra A to another B is said to
be initial if, for every partial Σ-algebra C and every S-sorted mapping h from C to A, if f ◦ h is a
homomorphism from C to B, then h is a homomorphism from C to A.

Proposition 23. Let f be a homomorphism from A to B. Then the following statements are
equivalent:

1. f is an isomorphism from A to B, i.e., f is a section and a retraction.
2. f is bijective and full.

Proposition 24. Let A and B be partial Σ-algebras such that B ⊆ A. Then B is a relative
subalgebra of A if and only if inB,A = (B, inB,A, A) is a full homomorphism from B to A.

Definition 34. Let A be a partial Σ-algebra. We will say that a partial Σ-algebra B = (B, G) is a
weak subalgebra of A if B ⊆ A and, for every (s, s) ∈ S? × S, every σ ∈ Σs,s and every b ∈ Bs,
if b ∈ Dom(Gσ), then b ∈ Dom(Fσ) and Gσ(b) = Fσ(b). We will denote by Subw(A) the set of
all weak subalgebras of A.

Remark 21. Let A and B be partial Σ-algebras such that B ⊆ A. Then B = (B, G) is a weak
subalgebra of A if and only if, for every (s, s) ∈ S? × S and every σ ∈ Σs,s, ΓGσ

⊆ ΓFσ .

Proposition 25. Let A and B be partial Σ-algebras such that B ⊆ A. Then B is a weak subalgebra
of A if and only if inB,A = (B, inB,A, A) is a homomorphism from B to A.

Remark 22. Since every closed homomorphism is a full homomorphism and every full homomor-
phism is a homomorphism, it follows that every subalgebra is a relative subalgebra and every
relative subalgebra is a weak subalgebra. Moreover, every relative subalgebra on a closed subset is a
subalgebra.

Proposition 26. Let A and B be partial Σ-algebras and f : A // B a mapping from A to B.
Then:

1. If f : A // B is a homomorphism, then Γf is a closed subset of A× B.
2. If B is a Σ-algebra and Γf is a closed subset of A× B, then f is a homomorphism from A to B.

Remark 23. Notice the (partial) analogy of the just stated proposition and the closed graph theorem
in point-set topology.

Lemma 1. Let f : A // B be a homomorphism, X ⊆ A, g : X // B such that Γg ⊆ Γf and X
the relative subalgebra of A on X. Then:

1. g : X // B is a homomorphism.
2. Γg is a closed subset of A× B if and only if X is a closed subset of A.

Corollary 2. Let f : A // B be a homomorphism and X ⊆ A. Then the following statements are
equivalent:

1. SgA(X) = A.
2. SgA×B(Γf�X ) = Γf .

The following technical lemma will become quite useful later on.

Lemma 2. Let A, B, C and D be partial Σ-algebras, C a weak subalgebra of A such that SgA(C) =
A, D a relative subalgebra of B and f a homomorphism from C to D which allows a homomorphic
extension f from A to B. Then:
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1. SgA×D(Γf ) is the underlying function of a homomorphism f [ from Dom(SgA×D(Γf )) to D
(where Dom(SgA×D(Γf )) is the relative subalgebra of A whose underlying many-sorted set
is Dom(SgA×D(Γf ))) and Dom(SgA×D(Γf )) is generated by C.

2. If E is a C-generated relative subalgebra of A and g : E //D is a homomorphic extension of
f , then Γg ⊆ Γf [ .

3. If A is a Σ-algebra, then f [ is a closed homomorphism from Dom(SgA×D(Γf )) to D; and
if f [ is closed and g : E //D is any closed homomorphic extension of f such that E is a
C-generated relative subalgebra of A, then g = f [.

Definition 35. Let A and B be partial Σ-algebras and f a homomorphism from A to B. We will
say that f is dense if f [A] generates B, i.e., if SgB( f [A]) = B.

Lemma 3. Let A and B be partial Σ-algebras and f a homomorphism from A to B. Then f is an
epimorphism if and only if f is dense.

Remark 24. If a homomorphism between partial Σ-algebras is dense and closed, then it is surjective
(because the image of a closed homomorphism is a closed subset of the target).

Proposition 27. Let A and B be partial Σ-algebras and f a homomorphism from A to B. Then
there exists a unique epimorphism f e from A to SgB( f [A]) such that f = inSgB [ f [A]] ◦ f e, where
inSgB( f [A]) is the closed embedding of SgB( f [A]) into B. Moreover, (1) f e is an isomorphism if
and only if f is closed and injective; and (2) for every partial Σ-algebra C, every epimorphism g
from A to C and every closed injective homomorphism h from C to B, if f = h ◦ g, then there exists
a unique isomorphism k from SgB( f [A]) to C such that g = k ◦ f e and h ◦ k = inSgB( f [A]).

Therefore (Epimorphisms, Closed and injective homomorphisms) is a factorization
system in PAlg(Σ).

Congruences provide an internal description of the homomorphic images from a
partial Σ-algebra and closed congruences provide an internal description of the closed
homomorphic images from a partial Σ-algebra. Moreover, closed congruences are funda-
mental for the description of the varieties of partial Σ-algebras defined by existentially
conditional existence equations.

Definition 36. Let A be a partial Σ-algebra and Φ an S-sorted equivalence on A. We will say that
Φ is an S-sorted congruence on (or, to abbreviate, a congruence on) A if, for every (s, s) ∈ (S?−
{λ})× S, every σ ∈ Σs,s, and every (aj)j∈|s|, (bj)j∈|s| ∈ As, if, for every j ∈ |s|, (aj, bj) ∈ Φsj ,
(aj)j∈|s| ∈ Dom(Fσ) and (bj)j∈|s| ∈ Dom(Fσ), then (Fσ((aj)j∈|s|), Fσ((bj)j∈|s|)) ∈ Φs. We will
denote by Cgr(A) the set of all S-sorted congruences on A, which is an algebraic closure system
on A× A, by CgA the corresponding algebraic closure operator, by Cgr(A) the algebraic lattice
(Cgr(A),⊆), by ∇A the greatest element of Cgr(A) and by ∆A the least element of Cgr(A).

For a congruence Φ on A, the quotient partial Σ-algebra of A by Φ, denoted by A/Φ, is the
partial Σ-algebra (A/Φ, FA/Φ), where, for every (s, s) ∈ S? × S and every σ ∈ Σs,s, the domain
of the partial operation FA/Φ

σ , also denoted, to simplify, by Fσ, from (A/Φ)s to As/Φs is the set

{([aj]Φsj
)j∈|s| ∈ (A/Φ)s | ∃ (a′j)j∈|s| ∈ As ∀ j ∈ |s| ((aj, a′j) ∈ Φsj)},

and if ([aj]Φsj
)j∈|s| in Dom(Fσ), then

Fσ(([aj]Φsj
)j∈|s|) = [Fσ((aj)j∈|s|)]Φs ,

and the canonical projection from A to A/Φ, denoted by prΦ : A //A/Φ, is the full and sur-
jective homomorphism determined by the projection from A to A/Φ. The ordered pair (A/Φ, prΦ)
has the following universal property: Ker(prΦ) is Φ and, for every Σ-algebra B and every homo-
morphism f from A to B, if Ker( f ) ⊇ Φ, then there exists a unique homomorphism h from A/Φ
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to B such that h ◦ prΦ = f . In particular, if Ψ is a congruence on A such that Φ ⊆ Ψ, then we
will denote by pΦ,Ψ the unique homomorphism from A/Φ to A/Ψ such that pΦ,Ψ ◦ prΦ = prΨ.

We will say that Φ is an S-sorted closed congruence on (or, to abbreviate, a closed
congruence on) A if Φ is a congruence on A and, for every (s, s) ∈ (S? − {λ}) × S, every
σ ∈ Σs,s, and every (aj)j∈|s|, (bj)j∈|s| ∈ As, if, for every j ∈ |s|, (aj, bj) ∈ Φsj and (aj)j∈|s| ∈
Dom(Fσ), then (bj)j∈|s| ∈ Dom(Fσ). We will denote by Cgrc(A) the set of all S-sorted closed
congruences on A. The congruence ∆A is a closed congruence on A, while ∇A is closed if and only
if, for every (s, s) ∈ (S? × S and every σ ∈ Σs,s, Fσ is either total or discrete. If Φ and Ψ are closed
congruences on A, then CgA(Φ ∪Ψ), their supremum in Cgr(A), is a closed congruence on A
and it is the least equivalence relation containing them, i.e., CgA(Φ ∪Ψ) =

⋃
n∈N(Ψ ◦Φ)n (let us

point out that, in general, the supremum of two non-closed congruences is not necessarily the least
equivalence relation containing them). The set Cgrc(A) is a principal ideal of Cgr(A) precisely the
one determined by

⋃
Φ∈Cgrc(A) Φ, which is the largest closed congruence on A.

Remark 25. Let A be a partial Σ-algebra and Φ an S-sorted equivalence on A. Then Φ is a
congruence on A if and only if Φ is a subalgebra of A×A.

Remark 26. Let A be a partial Σ-algebra and Φ an S-sorted congruence on A, then the full and
surjective homomorphism prΦ from A to A/Φ is final and surjective, where a homomorphism f
from a partial Σ-algebra A to another B is said to be final if, for every partial Σ-algebra C and every
S-sorted mapping h from B to C, if h ◦ f is a homomorphism from A to C, then h is a homomorphism
from B to C. For a homomorphism f from a partial Σ-algebra A to another B the property of being
final is very interesting because it allows one to state that an S-sorted mapping h from B to C,
the underlying set of another partial Σ-algebra C, is a homomorphism if its composition with the
subjacent application of the homomorphism f is a homomorphism from A to C. Let us point out
that a homomorphism f from a partial Σ-algebra A = (A, F) to another B = (B, G) is final if and
only if, for every (s, s) ∈ S? × S and every σ ∈ Σs,s, ΓGσ

= ( fs × fs)[ΓFσ ].

Remark 27. Let A be a partial Σ-algebra. If Φ an S-sorted closed congruence on A, then
prΦ : A //A/Φ, is a closed and surjective homomorphism.

Remark 28. Let ClfdPAlg(Σ) be the category whose objects are the classified partial Σ-algebras,
i.e, the ordered pairs (A, Φ) where A is a partial Σ-algebra and Φ a congruence on A, and in which
the set of morphisms from (A, Φ) to (B, Ψ) is the set of all homomorphisms f from A to B such
that, for every s ∈ S and every (x, y) ∈ A2

s , if (x, y) ∈ Φs, then ( fs(x), fs(y)) ∈ Ψs. Let G be
the functor from PAlg(Σ) to ClfdPAlg(Σ) whose object mapping sends A to (A, ∆A) and whose
morphism mapping sends f : A // B to f : (A, ∆A) // (B, ∆B). Then, for every classified
partial Σ-algebra (A, Φ), there exists a universal mapping from (A, Φ) to G, which is precisely the
ordered pair (A/Φ, prΦ) with prΦ : (A, Φ) // (A/Φ, ∆A/Φ).

Remark 29. Let A = (A, F) be a partial Σ-algebra and Φ an S-sorted equivalence on A. Then
there exists a unique structure of partial Σ-algebra LprΦ(F) on A/Φ, the co-optimal lift of F with
respect to prΦ, such that, for every partial Σ-algebra C and every mapping h from A/Φ to C, if
h ◦ prΦ is a homomorphism from A to, C then h is a homomorphism from C to (A/Φ, LprΦ(F))
if and only if Φ is an S-sorted congruence on A. This shows that, for every S-sorted congruence
Φ on A A, A/Φ is the underlying S-sorted set of exactly one Σ-algebra, and that the structure of
partial Σ-algebra on A/Φ is uniquely determined by the structure of partial Σ-algebra on A and
the specification of the S-sorted congruence Φ on A. What we have just said is, in fact, a particular
case of the following: for a partial Σ-algebra A = (A, F) and an S-sorted mapping f from A to B,
there exists a co-optimal lift of F with respect to f if and only if Ker( f ) is a congruence on A.

We next state the weak homomorphism theorem.

Proposition 28. Let A, B and C be partial Σ-algebras, f a full and surjective homomorphism
from A to B and g a homomorphism from A to C. If Ker(g) ⊇ Ker( f ), then there exists a unique
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homomorphism h from B to C such that g = h ◦ f (obviously, if there exists a homomorphism h
from B to C such that g = h ◦ f , then Ker(g) ⊇ Ker( f )). Moreover,

1. h is a full homomorphism if and only if g is a full homomorphism;
2. h is an isomorphism if and only if g is a surjective and full homomorphism and Ker(g) =

Ker( f );
3. if g is closed, then h is closed;
4. if f is closed, then h is closed if and only if g is closed.

From the just stated proposition we obtain the weak isomorphism theorem.

Corollary 3. Let A and B be partial Σ-algebras and f a full and surjective homomorphism from A
to B. Then B and A/Ker( f ) are isomorphic.

Proposition 29. Let A and B be partial Σ-algebras and f a homomorphism from A to B. Then there
exists a unique injective homomorphism f m from A/Ker( f ) to B such that f = f m ◦ prKer( f ).
Moreover,

1. f m is an isomorphism if and only if f is full and surjective; and
2. for every partial Σ-algebra C, every full and surjective homomorphism g from A to C and

every injective homomorphism h from C to B, if f = h ◦ g, then there exists a unique
isomorphism k from C to A/Ker( f ) such that k ◦ g = prKer( f ) and f m ◦ k = h.

Therefore (Full and surjective homomorphisms, Monomorphisms) is a factorization
system in PAlg(Σ).

5. Partial Dedekind-Peano Algebras

We next define for many-sorted partial algebras the counterpart of the notion of
Dedekind-Peano algebra. Moreover, we state and prove the principle of definition by
algebraic recursion for free many-sorted algebras with respect to many-sorted partial
algebras and define a functor from a wide subcategory of PAlg(Σ) to Alg(Σ) which will
be used afterwards to obtain, from a subfunctor of that functor, an example of completion.

Definition 37. Let A be a partial Σ-algebra. We will say that A is a partial Dedekind-Peano
Σ-algebra, abbreviated to PDP-algebra when this is unlikely to cause confusion, if the following
axioms hold

PDP1.For every (s, s) ∈ S? × S and every σ ∈ Σs,s, Fσ : As / As is injective, i.e., for every
(aj)j∈|s|, (bj)j∈|s| ∈ Dom(Fσ), if Fσ((aj)j∈|s|) = Fσ((bj)j∈|s|), then (aj)j∈|s| = (bj)j∈|s|.

PDP2.For every s ∈ S and every σ, τ ∈ Σ·,s, if σ 6= τ, then Im(Fσ) ∩ Im(Fτ) = ∅, i.e.,
Fσ[Dom(Fσ)] ∩ Fτ [Dom(Fτ)] = ∅.

PDP3.SgA(A− (
⋃

σ∈Σ·,s Im(Fσ))s∈S) = A.

We call the S-sorted set A− (
⋃

σ∈Σ·,s Im(Fσ))s∈S the basis of Dedekind-Peano of A, and we
denote it by B(A).

Remark 30. A discrete partial Σ-algebra is always a PDP-algebra on its underlying S-sorted set.
Moreover, every weak subalgebra of a PDP-algebra is a PDP-algebra.

We next state the principle of the definition by algebraic recursion for many-sorted
PDP-algebras with respect to many-sorted algebras.

Proposition 30. Let A be a PDP-algebra, B(A) its basis, B a Σ-algebra and f a mapping from
B(A) to B. Then there exists a unique homomorphism f ] from A to B such that f ] ◦ inB(A),A = f .

Proof. It suffices to take as f ] precisely (A, Γf ] , B), where Γf ] , the underlying S-sorted

function of f ] is SgA×B(Γf ).
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We next state and prove the principle of definition by algebraic recursion for free
many-sorted Σ-algebras, i.e., many-sorted DP-algebras, with respect to many-sorted partial
Σ-algebras, which, for many-sorted partial algebras, is more important than the principle
of definition by algebraic recursion for PDP-algebras with respect to many-sorted algebras.

Proposition 31. Let X be an S-sorted set, A a partial Σ-algebra and f an S-sorted mapping from
X to A. Then there exists a unique homomorphism

f ∂ : ∂( f ) //A

such that

1. ηX [X] ⊆ ∂( f ), where ηX is the canonical embedding of X into TΣ(X).
2. ∂( f ) is an X(∼= ηX [X])-generated relative subalgebra of TΣ(X).
3. f ∂ ◦ inX,∂( f ) = f , where inX,∂( f ) is the canonical embedding of X into ∂( f ).
4. f ∂ is a closed homomorphism.
5. f ∂ is the largest homomorphic extension of f to an X-generated relative subalgebra of TΣ(X)

with codomain A.

Proof. Let A∞ be the Σ-algebra defined as follows: The underlying S-sorted set of A∞

is (As ∪ {As})s∈S and, for every (s, s) ∈ S? × S and every σ ∈ Σs,s, the operation
F∞

σ : A∞
s

// A∞
s associated to σ is defined as

F∞
σ


A∞

s
// A∞

s

(aj)j∈|s| 7−→
{

Fσ((aj)j∈|s|), if (aj)j∈|s| ∈ Dom(Fσ);
As, otherwise.

We will call A∞ the one-point per sort completion of the partial Σ-algebra A. Notice that A is
a relative subalgebra of A∞, that A∞ need not be generated by A (since some of the new
elements are not necessarily accessible from A) and that the canonical embedding inA,A∞

of A into A∞ is the underlying mapping of a full and injective homomorphism, denoted by
inA,A∞

, from A to A∞. Then, by the universal property of the free algebra, there exists a
unique homomorphism

(inA,A∞ ◦ f )] : TΣ(X) //A∞

such that (inA,A∞ ◦ f )] ◦ ηX = inA,A∞ ◦ f . Let ∂( f ) be ((inA,A∞ ◦ f )])−1[A] and let f ∂ be
(inA,A∞ ◦ f )]

∣∣A
( f ])−1[A]

, i.e., the birestriction of (inA,A∞ ◦ f )] to ((inA,A∞ ◦ f )])−1[A] and A.
Then ∂( f ), the relative subalgebra of TΣ(X) on ∂( f ), together with the homomorphism
determined by f ∂, which, with the customary abuse of notation, we denote by the same
symbol, satisfy the desired conditions.

To better understand the mappings at play, we provide the commutative diagram in
Figure 3.

Remark 31. Let us note that, by the Axiom of Regularity, we have that, for every s ∈ S, As ∩
{As} = ∅. Moreover, for every (s, s) ∈ S? × S and every σ ∈ Σs,s, Γ

F∂( f )
σ

, the underlying partial

function of F∂( f )
σ , the partial operation from ∂( f )s to ∂( f )s associated to σ, is

Γ
FTΣ(X)

σ
∩ (∂( f )s × ∂( f )s).

On the other hand, Γf ∂ = SgTΣ(X)×A((η
X × idA)[Γf ]), i.e., the underlying function of f ∂, is the

subalgebra of the partial Σ-algebra TΣ(X)×A generated by the image under the S-sorted mapping
ηX × idA : X× A // TΣ(X)×A, of the underlying function of f . Finally, we have that

1. For every s ∈ S and every x ∈ Xs, f ∂
s (x) = fs(x).

2. For every s ∈ S and every σ ∈ Σλ,s, if Dom(Fσ) 6= ∅, then σ ∈ ∂( f )s and f ∂
s (σ) = σA.
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X

f

##

ηX

&&

inX,∂( f )

$$
∂( f )

f ∂

��

in∂( f ),TΣ(X)
// TΣ(X)

(inA,A∞ ◦ f )]

��
A

inA,A∞
// A∞

Figure 3. Recursion Theorem for DP-algebras w.r.t. partial algebras.

3. For every (s, s) ∈ (S?−{λ})× S, every σ ∈ Σs,s and every (Pj)j∈|s| ∈ TΣ(X)s, if, for every
j ∈ |s|, Pj ∈ ∂( f )sj and the family ( f ∂

sj
(Pj))j∈|s| ∈ Dom(FA

σ ), then σ((Pj)j∈|s|) ∈ ∂( f )s

and it holds that f ∂
s (σ((Pj)j∈|s|)) = FA

σ (( f ∂
sj
(Pj)))j∈|s|).

The construction that assigns to a partial Σ-algebra A the Σ-algebra A∞ is not the object
mapping of a functor left adjoint to the inclusion functor InAlg(Σ) from Alg(Σ) to PAlg(Σ).
However, the just mentioned construction is the object mapping of a functor (·)∞ from the
category PAlg(Σ)c, of many-sorted partial Σ-algebras and closed homomorphisms, to the
category Alg(Σ). For later use, specifically, when we consider completions, we next prove
such a result.

Proposition 32. There exists a functor (·)∞ from the category PAlg(Σ)c of many-sorted partial
Σ-algebras and closed homomorphisms to the category Alg(Σ).

Proof. Let A = (A, F) and B = (B, G) be many-sorted partial Σ-algebras and f : A // B
a closed homomorphism. Then the many-sorted mapping f ∞ from A∞ to B∞ defined, for
every sort s ∈ S, as follows

f ∞
s


A∞

s
// B∞

s

z 7−→
{

fs(z), if z ∈ As;
Bs, if z = As,

is the underlying mapping of a homomorphism, also denoted by f ∞, which we will call
the one-point per sort completion of f , from A to B. In fact, let (s, s) be a pair in S? × S, σ an
operation symbol in Σs,s and (zj)j∈|s| a family of elements in A∞

s . Then it could be the case
that either (1) (zj)j∈|s| ∈ Dom(FA

σ ), or (2) (zj)j∈|s| 6∈ Dom(FA
σ ).

In Case (1), i.e., if (zj)j∈|s| ∈ Dom(Fσ), then we have that fs((zj)j∈|s|) ∈ Dom(Gσ).
Moreover, the following chain of equalities holds

f ∞
s

(
F∞

σ

((
zj
)

j∈|s|

))
= f ∞

s

(
Fσ

((
zj
)

j∈|s|

))
(1)

= fs

(
Fσ

((
zj
)

j∈|s|

))
(2)

= Gσ

(
fs

((
zj
)

j∈|s|

))
(3)

= Gσ

(
f ∞
s

((
zj
)

j∈|s|

))
(4)

= G∞
σ

(
f ∞
s

((
zj
)

j∈|s|

))
. (5)

In the just stated chain of equalities, the first equality follows from the definition of F∞
σ , as

stated in the proof of Proposition 31; the second equality follows from the fact that, since
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(zj)j∈|s| ∈ Dom(Fσ), Fσ((zj)j∈|s|) is an element of As and the image under f ∞
s of this last

element is identical to its image under fs; the third equality follows from the fact that, by
assumption, f is a homomorphism from A to B; the fourth equality follows from the fact
that (zj)j∈|s| ∈ Dom(Fσ), therefore the image under f ∞

s of this last family coincides with its
image under fs; finally, the last equality follows from the fact that fs((zj)j∈|s|) ∈ Dom(Gσ),
fs((zj)j∈|s|) = f ∞

s ((zj)j∈|s|) and the definition of G∞
σ , as stated in the proof of Proposition

31.
In Case (2), i.e., if (zj)j∈|s| 6∈ Dom(Fσ), then, since f is a closed homomorphism we

have, by Definition 30, that fs((zj)j∈|s|) 6∈ Dom(Gσ). Moreover, the following chain of
equalities holds

f ∞
s

(
F∞

σ

((
zj
)

j∈|s|

))
= f ∞

s (As) (1)

= Bs (2)

= G∞
σ

(
fs

(
(zj)j∈|s|

))
(3)

= G∞
σ

(
f ∞
s

(
(zj)j∈|s|

))
. (4)

The first equality follows from the definition of F∞
σ , as stated in the proof of Proposi-

tion 31, and the fact that we are assuming that (zj)j∈|s| 6∈ Dom(FA
σ ); the second equality

follows from the definition of f ∞; the third equality follows from the fact that fs((zj)j∈|s|) 6∈
Dom(Gσ); for the fourth equality, since fs((zj)j∈|s|) 6∈ Dom(Gσ), we have that f ∞

s ((zj)j∈|s|) 6∈
Dom(Gσ), thus we have that

G∞
σ

(
f ∞
s

(
(zj)j∈|s|

))
= Bs = G∞

σ

(
fs

(
(zj)j∈|s|

))
.

Therefore f ∞ is a homomorphism from A∞ to B∞.
Let us notice that the property of being closed of f has been crucial for the proof of

Case (2) and cannot be weakened.
We let (·)∞ stand for the pair of mappings that assign

1. to a partial Σ-algebra A, the Σ-algebra A∞, as defined in the proof of Proposition 31;
and

2. to a closed homomorphism f : A // B the homomorphism f ∞ : A∞ // B∞.

We next prove that the (·)∞ is a functor from PAlg(Σ)c to Alg(Σ).
Let A be a partial Σ-algebra. We want to prove that

(idA)
∞ = idA∞ ,

i.e., that the one-point per sort completion (idA)
∞ : A∞ //A∞ of idA is identical to the

identity at A∞.
Let s be a sort in S and z an element in A∞

s . It could be the case that either (1) z ∈ As
or (2) z = As.

In Case (1), i.e., if z ∈ As, then we have that

(idA)
∞
s (z) = idAs(z) (1)

= z (2)

= (idA∞)s(z). (3)

The first equality follows from the fact that z ∈ As and the definition of (idA)
∞
s (z); the

second equality gives the value of the mapping (idA)s at the element z ∈ As; and, finally,
the last equality recovers the value of the mapping (idA∞)s at the element z ∈ A∞

s .
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In Case (2), i.e., if z = As, then we have that

(idA)
∞
s (z) = (idA)

∞
s (As) (1)

= As (2)

= (idA∞)s(z). (3)

The first equality follows from the fact that z = As; the second equality follows from the
definition of (idA)

∞
s (As); and, finally, the last equality recovers the value of the mapping

(idA∞)s at the element z = As ∈ A∞
s .

In any case, we conclude that (idA)
∞ = idA∞ .

Now let f : A // B and g : B //C be two closed homomorphisms. Consider the
one-point per sort completions f ∞ : A∞ // B∞ and g∞ : B∞ //C∞. We want to prove
that

(g ◦ f )∞ = g∞ ◦ f ∞.

Let s be a sort in S and z an element in A∞
s . It could be the case that either (1) z ∈ As

or (2) z = As.
In Case (1), i.e., if z ∈ As, then we have that

(g ◦ f )∞
s (z) = (g ◦ f )s(z) (1)

= gs( fs(z)) (2)

= g∞
s ( f ∞

s (z)) (3)

= (g∞ ◦ f ∞)s(z). (4)

The first equality follows from the fact that z ∈ As and the definition of (g ◦ f )∞
s (z); the

second equality unravels the s-sorted component of the composition of two many-sorted
mappings; the third equality follows from the fact that z ∈ As, fs(z) ∈ Bs and the definitions
of f ∞

s (z) and g∞
s ( f ∞

s (z)); finally, the last equality recovers the s-sorted component of the
composition of two many-sorted mappings.

In Case (2), i.e., if z = As, then the following chain of equalities holds

(g ◦ f )∞
s (z) = (g ◦ f )∞

s (As) (1)

= Cs (2)

= g∞
s ( f ∞

s (As)) (3)

= (g∞ ◦ f ∞)s(z). (4)

The first equality follows from the fact that z = As; the second equality follows from the
definition of (g ◦ f )∞

s (As); the third equality follows from the fact that f ∞
s (As) = Bs and

the definitions of f ∞
s (As) and g∞

s ( f ∞
s (As)); finally, the last equality recovers the s-sorted

component of the composition of two many-sorted mappings.
In any case, we conclude that (g ◦ f )∞ = g∞ ◦ f ∞.
All in all, we conclude that (·)∞ is a functor from PAlg(Σ)c to Alg(Σ).

6. The free completion of a many-sorted partial Σ-algebra and the Schmidt
construction

We next prove, as a consequence of a well-known theorem about adjoint functors, that
the inclusion functor InAlg(Σ) from Alg(Σ) to PAlg(Σ) has a left adjoint, the (absolutely)
free completion functor. We point out that the free completion of a many-sorted partial
Σ-algebra is one of the most useful tools of the theory of partial algebras. Later on, once we
have defined the notion of completion and a suitable category Cmpl(Σ), of completions,
we will prove that the free completion is a weakly initial object of Cmpl(Σ). At the end of
this section, and related to the free completion functor, we state the generalized recursion
theorem of Schmidt (see [17]), which we will also call the Schmidt construction. This
construction, which, as stated in the introduction, is fundamental in the field of many-
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A G //
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V
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C

Figure 4. Conditions for the existence of a left adjoint.

Alg(Σ)
InAlg(Σ) //

GAlg(Σ) %%

PAlg(Σ)

GPAlg(Σ)
��

SetS

Figure 5. Conditions for the existence of the free completion.

sorted partial algebras, will be treated later from a more general point of view and, in
addition, will be functorialized.

Proposition 33. If the diagram of categories and functors in Figure 4 commutes and the following
conditions are satisfied:

1. A is complete, well-powered and co-well-powered,
2. G preserves limits,
3. U has a left-adjoint,
4. V is faithful,

then G has a left adjoint.

Corollary 4. The diagram in Figure 5 commutes and

1. Alg(Σ) is complete, well-powered and co-well-powered,
2. InAlg(Σ) preserves limits,
3. GAlg(Σ) has a left-adjoint (TΣ),
4. GPAlg(Σ) is faithful.

Therefore InAlg(Σ) has a left adjoint FΣ, the free completion functor.

We next provide an explicit construction of the free completion of a partial Σ-algebra.

Proposition 34. Let A be a partial Σ-algebra. Then there exists a Σ-algebra FΣ(A), the free
completion of A, and a homomorphism ηA from A to FΣ(A) such that, for every Σ-algebra B and
every homomorphism f from A to B, there exists a unique homomorphism f fc from FΣ(A) to B
such that f = f fc ◦ ηA.

Proof. Let TΣ(A) be the free Σ-algebra on A and, for every (s, s) ∈ S? × S and every
σ ∈ Σs,s, let Fσ be the mapping from TΣ(A)s to TΣ(A)s defined as:

Fσ


TΣ(A)s // TΣ(A)s

(Pj)j∈|s| 7−→
{

FA
σ ((Pj)j∈|s|), if (Pj)j∈|s| ∈ Dom(FA

σ );

FTΣ(A)
σ ((Pj)j∈|s|), otherwise.

Thus Fσ has been obtained by activating FA
σ , the partial operation of A associated to

σ, when this is possible, and when this is not the case, retrieving a syntactic term. Let
TΣ(A) be the resulting Σ-algebra. Then FΣ(A) = SgTΣ(A)(A), the subalgebra of TΣ(A)
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generated by A, together with ηA, the canonical embedding of A into FΣ(A) induced by the
corestriction of the mapping ηA : A // TΣ(A) to the underlying S-sorted set of FΣ(A), is a
universal morphism from A to InAlg(Σ). In fact, from FΣ(A) we obtain a partial Dedekind-
Peano Σ-algebra F∗Σ(A) = (FΣ(A), F∗) by defining, for every (s, s) ∈ S? × S and every
σ ∈ Σs,s, F∗σ to be the partial mapping from FΣ(A)s to FΣ(A)s whose domain of definition
is FΣ(A)s − Dom(FA

σ ). Then, by Proposition 30, there exists a unique homomorphism
f ] from F∗Σ(A) to B such that f ] ◦ ηA = f . We recall that Γ f ] = SgF∗Σ(A)×B(Γ f ). Since

f ] ◦ ηA = f is a homomorphism from A to B, f ] is a homomorphism from FΣ(A) to B.
Then it suffices to take as f fc the homomorphism f ] but considered as a homomorphism
from FΣ(A) to B.

Corollary 5. The functor FΣ from PAlg(Σ) to Alg(Σ), which sends a partial Σ-algebra A to
FΣ(A) and a homomorphism f from A to B to f @, the unique homomorphism (ηA ◦ f )fc from
FΣ(A) to FΣ(B) such that (ηB ◦ f )fc ◦ ηA = ηB ◦ f , is a left adjoint of the functor InAlg(Σ) from
Alg(Σ) to PAlg(Σ).

Remark 32. For every partial Σ-algebra A, the injective homomorphism ηA from A to FΣ(A), i.e.,
the value of the unit of the adjuction at A, is, in addition, an epimorphism, hence a bimorphism.
Therefore, the full subcategory Alg(Σ) of PAlg(Σ) is monoreflective and epireflective.

For later use, specifically, when we consider completions, we next show that there
exists a natural transformation from the restriction of the functor FΣ to PAlg(Σ)c to the
functor (·)∞ from PAlg(Σ)c to Alg(Σ).

Proposition 35. There exists a natural transformation from FΣ ◦ InPAlg(Σ)c , the restriction of the
functor FΣ to PAlg(Σ)c, to the functor (·)∞ from PAlg(Σ)c to Alg(Σ).

PAlg(Σ)c Alg(Σ)

FΣ ◦ InPAlg(Σ)c

(·)∞

α

Proof. Let A = (A, F) be a many-sorted partial Σ-algebra. Consider FΣ(A), the free
completion of A, and A∞, the one-point per sort completion of A and the canonical
embedding

inA,A∞
: A //A∞

which is a full and injective homomorphism. Then, by the universal property of the free
completion stated in Proposition 34, there exists a unique homomorphism

(inA,A∞
)fc : FΣ(A) //A∞

such that the following diagram commutes

A FΣ(A)

A∞

ηA

inA,A∞ (inA,A∞
)fc

We shall let αA stand for (inA,A∞
)fc.
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To show that α = (αA)A∈PAlg(Σ)c is a natural transformation from FΣ to (·)∞ we need
to check that, for every closed homomorphism f : A // B,

αB ◦ f @ = f ∞ ◦ αA

i.e., that the following diagram

FΣ(A) A∞

FΣ(B) B∞

αA

αB

f @ f ∞

commutes.
Since, by Proposition 34, FΣ(A) = SgTΣ(A)(A) it suffices to check that(

αB ◦ f @
)
◦ ηA =

(
f ∞ ◦ αA

)
◦ ηA. (†)

From the left hand side of (†) we obtain the following chain of equalities(
αB ◦ f @

)
◦ ηA = αB ◦

(
f @ ◦ ηA

)
(1)

= αB ◦
(

ηB ◦ f
)

(2)

=
(

αB ◦ ηB
)
◦ f (3)

= inB,B∞ ◦ f . (4)

In the just stated chain of equalities the first equality follows by the associativity of the
composition of S-sorted mappings; the second equality follows from Corollary 5; the
third equality follows by the associativity of the composition of S-sorted mappings; and,
finally, the last equality follows from the universal property of the free completion stated
in Proposition 34 for the homomorphism inB,B∞

.
From the right hand side of (†) we obtain the following chain of equalities(

f ∞ ◦ αA
)
◦ ηA = f ∞ ◦

(
αA ◦ ηA

)
(1)

= f ∞ ◦ inA,A∞
. (2)

In the just stated chain of equalities the first equality follows by the associativity of the
composition of S-sorted mappings and the last equality follows from the universal property
of the free completion stated in Proposition 34 for the homomorphism inA,A∞

.
Therefore, in order to check that (†) holds it suffices to check that

inB,B∞ ◦ f = f ∞ ◦ inA,A∞
. (‡)

Let s be a sort in S and a ∈ As, then we have the following chain of equalities(
f ∞ ◦ inA,A∞

)
s
(a) = f ∞

s

(
inA,A∞

s (a)
)

(1)

= f ∞
s (a) (2)

= fs(a) (3)

= inB,B∞

s ( fs(a)) (4)

=
(

inB,B∞ ◦ f
)

s
(a). (5)
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A

B

TΣ(A)

TΣ(B)

TΣ(A)

TΣ(B)

FΣ(A)

FΣ(B)

f f @ = (ηB ◦ f )]

ηA

ηB

inA

inB

(inA)]

(inB)]

ηA

ηB

f @ = (ηB ◦ f )fc

inFΣ(A)

inFΣ(B)

(ηA)]

(ηB)]

Figure 6. The free completion functor.

DΣ(X)

B

TΣ(X)

TΣ(B)

TΣ(B)

FΣ(B)

f f @ = (ηB ◦ f )]

ηB

inB

(inB)]

ηA

ηB

f @ = (ηB ◦ f )fc

inFΣ(B)

(ηB)]

Figure 7. The free completion functor on a discrete Σ-algebra.

In the just stated chain of equalities, the first equality applies the s-th component of the
composition of two S-sorted mappings; the second equality applies the s-th component of
the inclusion mapping on an element in As; the third equality follows from the definition
of f ∞ in the proof of Definition 32; the fourth equality recovers the image of the s-th
component of the inclusion mapping on an element in Bs; finally, the last equality recovers
the s-th component of the composition of two S-sorted mappings.

It follows that (‡) holds.
Thus, α is a natural transformation from FΣ ◦ InPAlg(Σ)c to (·)∞.

Remark 33. Let X be an S-sorted set. Then, for DΣ(X), the discrete many-sorted partial Σ-algebra
associated to an S-sorted set X, the three many-sorted Σ-algebras FΣ(DΣ(X)), TΣ(DΣ(X)) and
TΣ(DΣ(X)) are equal to TΣ(X), the free many-sorted Σ-algebra on X. Moreover, for every many-
sorted partial Σ-algebra B, we have that every mapping f from X to the underlying S-sorted set of
B is a homomorphism f from DΣ(X) to B.

To better understand the working of the functor FΣ, we provide the commutative
diagram in Figure 6. Let us note that for f : DΣ(X) // B the diagram in Figure 6 becomes
the commutative diagram in Figure 7.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 September 2021                   doi:10.20944/preprints202109.0445.v1

https://doi.org/10.20944/preprints202109.0445.v1


30 of 53

A

f

$$

ηA

&&

inA,Sch( f )

%%
Sch( f )

f Sch

��

inSch( f )
// FΣ(A)

f @

��
B

ηB
// FΣ(B)

Figure 8. The Schmidt homomorphisn relative to a partial algebra.

DΣ(X)

B

Sch( f ) TΣ(X)

FΣ(B)

f

ηDΣ(X)

inDΣ(X),Sch( f )

ηB

inSch( f )

f Sch f @

Figure 9. The Schmidt homomorphism for the discrete case.

Remark 34. If A is a Σ-algebra, then A together with idA is a free completion of A. Moreover, for
every S-sorted set X, TΣ(X) together with ηX is a free completion of DΣ(X).

In the following proposition we state that the free completion of a partial Σ-algebra
can also be characterized internally.

Proposition 36. Let A be a partial Σ-algebra and B a Σ-algebra such that A is a weak subalgebra
of B. Then B together with inA,B, the canonical embedding of A into B, is a free completion of A if,
and only if, the following conditions hold:

FC1. For every (s, s) ∈ S? × S, every σ ∈ Σs,s and every (bi)i∈|s| ∈ Bs, if FB
σ ((bi)i∈|s|) ∈

As, then FB
σ ((bi)i∈|s|) = FA

σ ((bi)i∈|s|) (thus, in particular, (bi)i∈|s| ∈ Dom(FA
σ )). This

condition, as Burmeister, in [17] on p. 80, says “means that no value of a fundamental
operation which lies in A ‘can come from the outside’ ”.

FC2. For every s ∈ S, every σ, τ ∈ Σ·,s, every (bi)i∈|s| ∈ Bs, where s = ar(σ), and every
(cj)j∈|t| ∈ Bs, where t = ar(τ), if FB

σ ((bi)i∈|s|) = FB
τ ((cj)j∈|t|) 6∈ As, then σ = τ and

(bi)i∈|s| = (cj)j∈|t| (i.e., “outside of A” the second axiom of the notion of partial Dedekind-
Peano is satisfied).

FC3. SgB(A) = B.

Remark 35. The condition FC1 in Proposition 36 entails that the weak subalgebra A of B is even
a relative subalgebra of B. Relative subalgebras satisfying the condition FC1 will be called normal
according to Schmidt [17].

In connection with the functor FΣ from PAlg(Σ) to Alg(Σ) we have the following
generalized recursion theorem, which we will also call the Schmidt construction. This
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fundamental construction will be later dealt with from a more general standpoint and, in
addition, it will be functorialized.

Proposition 37 (The Schmidt construction). Let f be a homomorphism from the partial Σ-
algebra A to the partial Σ-algebra B. Then there exists an A-generated relative subalgebra Sch( f )
of FΣ(A), the free completion of A, and a closed homomorphism f Sch : Sch( f ) // B such that
the diagram in Figure 8 commutes, where inA,Sch( f ) is the canonical inclusion of A into Sch( f ).
Moreover, f Sch is the largest homomorphic extension of f to an A-generated relative subalgebra of
FΣ(A), and it is the only closed one of this kind. In honour of J. Schmidt, who introduced these
concepts in [17], we will call f Sch : Sch( f ) // B the Schmidt closed A-initial extension of
f or, for simplicity, the Schmidt homomorphism of f , Sch( f ) the Schmidt algebra of f , and
Ker( f Sch), denoted by SKer( f ), the Schmidt kernel of f .

Proof. It suffices to take as f Sch precisely (Sch( f ), Γf Sch , B), where Γf Sch , the underlying

S-sorted function of f Sch, is SgFΣ(A)×B(Γf ) and Sch( f ) = ( f @)−1[B], where, with the
customary abuse of notation, we have identified B with ηB[B].

Remark 36. The canonical inclusion inA,Sch( f ) of A into Sch( f ) is an Alg(Σ)-extendable epi-
morphism, where, we recall, a homomorphism f : C //D of the category PAlg(Σ) is called
Alg(Σ)-extendable if, for every Σ-algebra E of the category Alg(Σ) and every homomorphism
g : C // E, there exists a homomorphism h : D // E such that h ◦ f = g.

From Proposition 37 we obtain, for a homomorphism whose source is a discrete
many-sorted partial algebra, the following corollary.

Corollary 6. Let X be an S-sorted set, B a partial Σ-algebra and f an S-sorted mapping from X
to B or, what is equivalent, a homomorphism from DΣ(X) to B. Then there exists an X-generated
relative subalgebra Sch( f ) of TΣ(X), the free completion of DΣ(X), and a closed homomorphism
f Sch : Sch( f ) // B such that the diagram in Figure 9 commutes, where inDΣ(X),Sch( f ) is the
canonical inclusion of X into Sch( f ). Moreover, f Sch : Sch( f ) // B is the largest homomorphic
extension of f to an X-generated relative subalgebra of FΣ(X), and it is the only closed one of this
kind.

Let us note that for f : DΣ(X) // B the diagram in Figure 8 becomes the diagram
in Figure 9. Moreover, in this particular case, we have that f @ = (ηB ◦ f )] and Sch( f ) =
((ηB ◦ f )])−1[ηB[B]].

Remark 37. We would like to highlight that in the proof of Proposition 37 as well as in Corollary
6, we have made use of the free completion both in the domain and in the codomain. One of the key
points for the development of this work—which aims to show the functoriality of a generalization
of the Schmidt construction—has been to understand that these free completions can be replaced
by others with similar behavior. This has led us, after defining a suitable category of completions
and morphisms between them, to state and prove a generalization of the Schmidt construction. The
reader can go to Proposition 42 to become aware of the generalisation of the Schmidt construction
and to check the similarities between its proof and that of Proposition 37.

7. Σ-Completions

In this section we define a category Cmpl(Σ), of Σ-completions, and prove that
(PAlg(Σ), FΣ, η), the Σ-completion associated to the free completion functor FΣ and the
unit η of the adjunction FΣ a InAlg(Σ), is a weakly initial object of Cmpl(Σ).

Assumption 3. From now on we will assume that the category PAlg(Σ) is equipped with a
factorization system (E, M).

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 September 2021                   doi:10.20944/preprints202109.0445.v1

https://doi.org/10.20944/preprints202109.0445.v1


32 of 53

C

PAlg(Σ)

Alg(Σ)

InC

F

InAlg(Σ)η

Figure 10. A Σ-completion.

Before defining the notion of Σ-completion that will be used in this paper, it is worth
recalling that in [6], on p. 216, Burmeister says “. . . it cannot be denied that the topic
of completions of partial algebras or questions about their weak, full or even normal
embeddability into a total algebras of some prespecified kind are very important, in
particular in computer science, but also in mathematics in general”, and in [6], on p. 217,
Burmeister says that a Σ-algebra B is a weak completion of a partial Σ-algebra A, if A is
a weak subalgebra of B, a completion, if A is a relative subalgebra of B, and a normal
completion, if A is a normal in B (for the notion of normal subalgebra see Remark 35). If
A generates its (weak) completion B, then Burmeisteir says that B is a minimal (weak or
normal) completion of A.

Definition 38 (Σ-completion). A Σ-completion is an ordered triple (C, F, η), depicted in Figure
10, where

1. C is a wide subcategory of PAlg(Σ), i.e., a subcategory of PAlg(Σ) such that Ob(C) =
Ob(PAlg(Σ)), satisfying that

1.1 for every homomorphism f of C if f = h ◦ g, for some (g, h) ∈ E×M, then h is a
homomorphism of C.

2. F is a functor from C to Alg(Σ).
3. η is a natural transformation from InC to InAlg(Σ) ◦ F, i.e., for every homomorphism

f : A // B between partial Σ-algebras of C, we have that

F( f ) ◦ ηA = ηB ◦ f ,

satisfying that

3.1 for every partial Σ-algebra A, ηA : A // F(A) is a dense injective homomorphism.

Although in the definition of the notion of Σ-completion the first coordinate is univocally
determined by the second, since it is the domain of the latter, and is therefore redundant, we prefer,
for the sake of clarity in the formal definition, to keep it.

We warn the reader that to simplify notation from now on we will write F, F0, . . . , G,
G0, . . . , H, H0, . . . instead of (C, F, η), (C0, F0, η0), . . . , (D, G, ρ), (D0, G0, ρ0),. . . , (E, H, τ),
(E0, H0, τ0), . . .

Remark 38. The conditions set forth in the third item of Definition 38 state, using the terminology
of Eilenberg&Mac Lane [9], that InC is a subfunctor of the functor InAlg(Σ) ◦ F. Regarding the
use of the term “completion”, it would be convenient to recall that the explanation of why Ẑ, the
profinite completion of Z, is a completion is that Ẑ is equipped with a topology such that Z is a
dense subgroup of Ẑ.

7.1. Examples of completions

Examples 1. The following ordered triples are Σ-completions.
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1. (PAlg(Σ), FΣ, η), where, we recall, FΣ is the functor dedfined in Corollary 5 and η the unit
of the adjunction FΣ a InAlg(Σ), where InAlg(Σ) is the canonical inclusion of Alg(Σ) in
PAlg(Σ).
Before setting up the second example we recall that, by Proposition 32, from PAlg(Σ)c to
Alg(Σ) we have the functor

(·)∞ : PAlg(Σ)c //Alg(Σ).

2. (PAlg(Σ)c, (·)◦, ι), where (·)◦ is the functor

(·)◦ : PAlg(Σ)c //Alg(Σ)

defined as follows:

1. for every partial Σ-algebra A, A◦ is SgA∞(A), the subalgebra of A∞ generated by A,
an we will call it the normal sub-one-point per sort completion of A,

2. for every homomorphism f : A // B between partial Σ-algebras, f ◦ is the homomor-
phism from A◦ to B◦ defined as the birestriction of f ∞ to A◦ and B◦ (this definition
is correct because from f ∞[A] = f [A] ⊆ B and, by Remark 6, f ∞[SgA∞(A)] ⊆
SgB∞( f ∞[A]) and then, taking into account that the operator SgB∞ is isotone, it
follows that f ∞[A◦] ⊆ B◦),

and ι the natural transformation from InPAlg(Σ)c to InAlg(Σ) ◦ (·)◦ which assigns to a partial
Σ-algebra A precisely inA,A◦ , the canonical dense injective homomorphism from A to A◦.

Let us notice that (·)◦ is a subfunctor of (·)∞ and that (PAlg(Σ)c, (·)∞, ι) is not a Σ-completion
because it does not necessarily satisfies condition 3.1 of Definition 38.

7.2. Morphisms between completions

We now introduce the notion of morphism between Σ-completions.

Definition 39 (Morphisms between Σ-completions). Let F = (C, F, η) and G = (D, G, ρ)
be two Σ-completions. A morphism from F to G is an ordered triple (F, (K, γ, α),G), denoted
by (K, γ, α) : F //G and depicted in Figure 11, where

1. K is a functor from D to C (note that the direction of the functor K is the opposite of that of
the morphism (K, γ, α)).

2. γ is a natural transformation from InD to InC ◦ K, i.e., for every homomorphism f : A // B
of D, K( f ) ◦ γA = γB ◦ f (see the commutative inner left diagram in Figure 12), such that

(2.1) for every many-sorted partial Σ-algebra A, γA : A // K(A) is a dense injective
homomorphism of PAlg(Σ).

3. α is a natural transformation from F ◦ K to G, i.e., for every homomorphism f : A // B of
D, G( f ) ◦ αA = αB ◦ F(K( f )) (see the commutative inner right diagram in Figure 12).

4. (idInAlg(Σ)
∗ α) ◦ (η ∗ idK) ◦ γ = ρ, or, what is equivalent, for every many-sorted partial

Σ-algebra A, the following equality holds

αA ◦ ηK(A) ◦ γA = ρA.

i.e., the upper diagram in Figure 12 commutes.

We warn the reader that to simplify notation from now on we will write α, α0, . . . , β,
β0, . . . , instead of (K, γ, α) : F //G, (K0, γ0, α0) : F0 //G0, . . . , (L, δ, β) : G //H,
(L0, δ0, β0) : G0 //H0, . . .

We next define the composition of morphisms of Σ-completions and state that the
composition of morphisms of Σ-completions is a Σ-completion.
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C

PAlg(Σ)

Alg(Σ)

PAlg(Σ)

Alg(Σ)

D

InC InD

G

K

F

InAlg(Σ) InAlg(Σ)η ρ

γ

α

Figure 11. A morphism between Σ-completions.

A

B

K(A)

K(B)

F(K(A))

F(K(B))

G(A)

G(B)

γA ηK(A)
αA

ρA

γB ηK(B) αB

ρB

f K( f ) F(K( f )) G( f )

Figure 12. Detail of a morphism of Σ-completions on partial Σ-algebras.

Definition 40. Given morphisms α : F //G and β : G //H between Σ-completions, its
composition, denoted by β � α, is defined as

β � α = (K ◦ L, (γ ∗ idL) ◦ δ, β ◦ (α ∗ idL)),

where idL : L =⇒ L is the identity natural transformation at L, ◦ denotes both the composition
of functors and the vertical composition of natural transformations and ∗ denotes the horizontal
composition of natural transformations.

Proposition 38. Given morphisms α : F //G and β : G //H between Σ-completions, then
the composition, β � α, is a morphism from F to H.

We next state that the composition of morphisms of Σ-completions is associative.

Proposition 39. The composition of morphism of Σ-completions is associative.

In the following proposition we state that every Σ-completion has univocally associ-
ated an identity morphism.

Proposition 40. Let F = (C, F, η) be a Σ-completion. Then the ordered triple (IdC, idInC , idF),
denoted by IdF , is the identity morphism at F.

Definition 41. We denote by Cmpl(Σ) the category of Σ-completions and morphisms between
Σ-completions.

We next prove that (PAlg(Σ), FΣ, η), the free completion, is a weakly initial object of
Cmpl(Σ), where, we recall, an object x of a category C is said to be weakly initial if, for
every object y of C there exists al least one morphism from x to y.

Proposition 41. (PAlg(Σ), FΣ, η) is a weakly initial object of Cmpl(Σ).
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Proof. Let (D, G, ρ) be a Σ-completion. We will prove that there exists a unique morphism
from (PAlg(Σ), FΣ, η) to (D, G, ρ) by gradually constructing it.

By Definition 38, D is a subcategory of PAlg(Σ), therefore we have the inclusion
functor InD from D to PAlg(Σ).

Moreover, we have the identity natural transformation of the functor InD, i.e., idInD ,
which is a natural transformation from InD to IdPAlg(Σ) ◦ InD, this last composition being
equal to InD. And, for every many-sorted partial Σ-algebra A, idInD is such that (idInD)

A,
which is equal to idA, is a dense injective endomorphism of A.

We next define a natural transformation α from FΣ ◦ InD to G. Let A be a partial
Σ-algebra. Consider G(A), the completion of A, according to the Σ-completion (D, G, ρ).
Then, by the universal property of the free completion, there exists a unique homomor-
phism

(ρA)fc : FΣ(A) // G(A)

such that the following diagram commutes

A FΣ(A)

G(A)

ηA

ρA (ρA)fc

We let αA stand for
(
ρA)fc. Then to show that α = (αA)A∈D is a natural transformation we

need to check that, for every homomorphism f : A // B of D, the following diagram in
Alg(Σ) commutes

FΣ(A) G(A)

FΣ(B) G(B)

αA

αB

f @ G( f )

But, to check that
αB ◦ f @ = G( f ) ◦ αA,

since, by Proposition 34, FΣ(A) = SgTΣ(A)(A), it suffices to check that(
αB ◦ f @

)
◦ ηA =

(
G( f ) ◦ αA

)
◦ ηA. (†)

However, the following chain of equalities holds(
αB ◦ f @

)
◦ ηA = αB ◦

(
f @ ◦ ηA

)
(1)

= αB ◦
(

ηB ◦ f
)

(2)

=
(

αB ◦ ηB
)
◦ f (3)

= ρB ◦ f (4)

= G( f ) ◦ ρA (5)

= G( f ) ◦
(

αA ◦ ηA
)

(6)

=
(

G( f ) ◦ αA
)
◦ ηA. (7)

In the just stated chain of equalities the first equality follows from the associativity of
the composition of S-sorted mappings; the second equality follows by Corollary 5; the
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PAlg(Σ)

PAlg(Σ)

Alg(Σ)

PAlg(Σ)

Alg(Σ)

D

InD

G

InD

FΣ

InAlg(Σ) InAlg(Σ)η ρ

idInD

α

Figure 13. The free completion is a weakly initial object of Cmpl(Σ).

third equality follows from the associativity of the composition of S-sorted mappings; the
fourth equality follows by Proposition 34; the fifth equality follows by Definition 38; the
sixth equality follows by Proposition 34; and, finally, the last equality follows from the
associativity of the composition of S-sorted mappings.

Therefore (†) holds.
Thus α is a natural transformation from FΣ ◦ InD to G.
Finally, for every partial Σ-algebra A, the following chain of equalities holds

αA ◦ ηInD(A) ◦
(
idInD

)A
= αA ◦ ηA ◦ idA =

(
ρA
)fc
◦ ηA = ρA.

Therefore (InD, idInD , α) is a morphism from (PAlg(Σ), FΣ, η) to (D, G, ρ). This mor-
phism is depicted in the diagram of Figure 13.

Remark 39. For the Σ-completion (PAlg(Σ)c, (·)◦, ι) (see Example 1), the morphism from
(PAlg(Σ), FΣ, η) to (PAlg(Σ)c, (·)◦, ι) is (InPAlg(Σ)c , idInPAlg(Σ)c

, ν), where ν is the natural
transformation from FΣ ◦ InPAlg(Σ)c to (·)◦ whose component at A, for A a partial Σ-algebra,
is (inA,A◦)fc, i.e., the unique homomorphism

(inA,A◦)fc : FΣ(A) //A◦

such that the following diagram commutes

A FΣ(A)

A◦

ηA

inA,A◦ (inA,A◦)fc

Let us note that the subalgebra Im(νA) = Im(inA◦ ,A∞ ◦ νA) of A∞, where inA◦ ,A∞
is

the canonical injection from A◦ to A∞, is such that A ⊆ Im(νA), thus, since Im(νA) ⊆ A◦,
Im(νA) = A◦. Therefore FΣ(A)/Ker(νA) ∼= A◦. Moreover, Ker(νA) = ∆A ∪ ((FΣ(A)s −
As)2)s∈S. In addition, the vertical composition of the natural transformation ν from FΣ ◦ InPAlg(Σ)c
to (·)◦ and the natural transformation from (·)◦ to (·)∞ is precisely α, the natural transformation
from FΣ ◦ InPAlg(Σ)c to (·)∞ in Proposition 35.

Moreover, if a Σ-completion (D, G, ρ) is such that, for every Σ-algebra A of D, G(A) is a
minimal normal completion of Im(ρA) ∼= A or, what is equivalente, by a result of Burmeister
contained in [6] on p. 220, Ker((ρA)fc) ⊆ Ker((inA,A◦)fc), and Im((ρA)fc) = G(A), then there
exists a unique homomorphism coastG(A)((in

A,A◦)fc), the coastriction of (inA,A◦)fc to G(A), from
G(A) to A◦ such that the following diagram commutes
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FΣ(A) G(A)

A◦

(ρA)fc

(inA,A◦)fc
coastG(A)((in

A,A◦)fc)

8. The Schmidt homomorphism associated to a pair formed by a morphism of
Σ-completions and a homomorphism

In this section we begin to realize our project of showing the functionality of the
Schmidt construction. To do it, we begin by associating to an ordered pair (α, f ), where
α = (K, γ, α) is a morphism of Σ-completions from F = (C, F, η) to G = (D, G, ρ)
and f a homomorphism of D from the partial Σ-algebra A to the partial Σ-algebra B,
a homomorphism ΥG,0

α ( f ) : Schα( f ) // B. This construction, actually, generalizes the
Schmidt construction. We then prove that there exists an endofunctor, denoted ΥG,0

α , of
Mortw(D), the twisted morphism category of D, thus showing the naturalness of the
Schmidt construction.

Proposition 42 (The Schmidt homomorphism). Let α = (K, γ, α) be a morphism of Σ-
completions from F = (C, F, η) to G = (D, G, ρ) and f a homomorphism of D from the partial
Σ-algebra A to the partial Σ-algebra B. Then there exists an ηK(A)[γA[A]]-generated relative
subalgebra Schα( f ) of F(K(A)), the Σ-completion of K(A) associated to F, and a homomorphism
of D from Schα( f ) to B, denoted by ΥG,0

α ( f ) : Schα( f ) // B such that the diagram in Figure 14
commutes, where, with the customary abuse of notation, the same symbol is used for the homomor-
phism ηK(A) ◦ γA from A to F(K(A)) and its corestriction to Schα( f ). Moreover, ΥG,0

α ( f ) is the
largest homomorphic extension of f to an ηK(A)[γA[A]]-generated relative subalgebra of F(A).

We will call ΥG,0
α ( f ) : Schα( f ) // B the initial extension of f with respect to α and

G or the Schmidt homomorphism of f with respect to α and G and Schα( f ) the Schmidt
partial Σ-algebra associated to f with respect to α.

Proof. Let us recall that, since α is a natural transformation from F ◦ K to G, for the
homomorphism f : A // B of D, the diagram in Figure 15 commutes. We let ΥG,0

α ( f )
stand for (Schα( f ), ΓΥG,0

α ( f ), B), where

1. Schα( f ), the domain of ΥG,0
α ( f ), is given by

(
G( f ) ◦ αA)−1[

ρB[B]
]
, and

2. ΓΥG,0
α ( f ), the underlying S-sorted function of ΥG,0

α ( f ), is

SgF(K(A))×B

(((
ηK(A) ◦ γA

)
× idB

)
[Γ f ]

)
where

(
ηK(A) ◦ γA

)
× idB is the homomorphism from A× B to F(K(A))× B that,

for every s ∈ S, sends (a, b) in As × Bs to
(
η

K(A)
s

(
γA

s (a)
)
, b
)

in F(K(A))s × Bs.

Since ηK(A) and γA are dense homomorphisms, the many-sorted Σ-algebra F(K(A))
is ηK(A)[γA[A]]-generated. Since Schα( f ) is a relative subalgebra of F(K(A)), we conclude
that Schα( f ) is also ηK(A)[γA[A]]-generated.

We next prove that the image of the composition ηK(A) ◦ γA is included in Schα( f ). In
order to obtain this result we will prove the following equality

G( f ) ◦ αA ◦ ηK(A) ◦ γA = ρB ◦ f .

Let us note that the following chain of equalities holds

G( f ) ◦ αA ◦ ηK(A) ◦ γA = G( f ) ◦ ρA (1)

= ρB ◦ f . (2)
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A

B

Schα( f ) F(K(A))

G(B)

f

ηK(A) ◦ γA

ηK(A) ◦ γA

ρB

inSchα( f )

ΥG,0
α ( f ) G( f ) ◦ αA

Figure 14. The Schmidt homomorphism of f with respect to α and G (and relatives).

F(K(B))

F(K(A)) G(A)

G(B)
αB

αA

F(K( f )) G( f )

Figure 15. The natural transformation α at f .

In the just stated chain of equalities the first equality follows from the fact that α is a
morphism from F to G, thus, for every many-sorted partial Σ-algebra A, it holds that
αA ◦ ηK(A) ◦ γA = ρA; finally, the last equality follows from the fact that ρ is a natural
transformation from InD to InAlg(Σ) ◦ G.

We conclude that the image of ηK(A) ◦ γA is included in Sch(K,γ,α)( f ).
According to the definition of ΥG,0

α ( f ), the next equality follows

ΥG,0
α ( f ) ◦ ηK(A) ◦ ηA = f .

This completes the proof.

Our next aim is to prove that there exists an endofunctor, denoted ΥG,0
α , of Mortw(D),

the twisted morphism category of D, thus showing the naturalness of the previous con-
struction. For this purpose we first recall the definition of Mortw(D).

Definition 42. Let D be a category. Then we denote by Mortw(D) the category defined as follows

1. Ob(Mortw(D)) = Mor(D), i.e., the objects of Mortw(D) are the homomorphisms of D.
2. Morphisms from the object f : A // B to the object f ′ : A′ // B′: the ordered triples

( f , (g, h), f ′), denoted by (g, h) : f // f ′, where g is a homomorphism of D from A to A′

and h a homomorphism of D from B′ to B such that f = h ◦ f ′ ◦ g, i.e., such that the diagram
in Figure 16 commutes.

We will call Mortw(D) the twisted category of morphisms of D.

Proposition 43. Let α = (K, γ, α) be a morphism of Σ-completions from F = (C, F, η) to
G = (D, G, ρ), f : A // B and f ′ : A′ // B′ two objects of the category Mortw(D) and (g, h)
a morphism from f to f ′. Then the following equation holds

F(K(g)) ◦
(

ηK(A) ◦ γA
)
=
(

ηK(A′) ◦ γA′
)
◦ g.
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A A′

B B′

f f ′

g

h

Figure 16. Morphism (g, h) from f to f ′ of the category Mortw(D).

Proof. The following chain of equalities holds

F(K(g)) ◦
(

ηK(A) ◦ γA
)
=
(

F(K(g)) ◦ ηK(A)
)
◦ ηA (1)

=
(

ηK(A′) ◦ K(g)
)
◦ γA (2)

= ηK(A′) ◦
(

K(g) ◦ γA
)

(3)

= ηK(A′) ◦
(

γA′ ◦ g
)

(4)

=
(

ηK(A′) ◦ γA′
)
◦ g. (5)

In the just stated chain of equalities, the first equality follows by associativity of the
composition of S-sorted mappings; the second equality follows from the fact that F is
a Σ-completion, therefore F(K(g)) ◦ ηK(A) = ηK(A′) ◦ K(g); the third equality follows by
associativity of the composition of S-sorted mappings; the fourth equality follows from
the fact that α is a morphism from F to G therefore, since γ is a natural transformation
from InD to InC ◦ K, it holds that K(g) ◦ γA = γA′ ◦ g; finally, the last equality follows by
associativity of the composition of S-sorted mappings.

This completes the proof of Proposition 43.

Remark 40. We suggest the reader to retain the equality presented in Proposition 43 because it
will be used to justify certain equalities in the proof of the following proposition. In addition, the
reader will find all the homomorphisms involved in the just mentioned equality, as well as their
interrelationships with other homomorphisms, in Figure 17.

We next prove that the construction associated to a morphism of Σ-completions
presented in Proposition 42 is in fact functorial. But before proceeding to do so, we
establish the following auxiliary definition.

Definition 43. Let α = (K, γ, α) be a morphism of Σ-completions from F = (C, F, η) to
G = (D, G, ρ). Then we denote by ΥG,0

α the mapping that sends

1. an object f : A // B of Mortw(D) to ΥG,0
α ( f ) : Schα( f ) // B, which is an object of the

same category, and
2. a morphism (g, h) of Mortw(D) from the object f to the object f ′ to the morphism (F(K(g)) ◦

inSchα( f ), h) from the object ΥG,0
α ( f ) to the object ΥG,0

α ( f ′), which is a morphism of the same
category.

The transformations associated to the morphism of Σ-completions α are represented in Figure
18.

Proposition 44. Let α = (K, γ, α) be a morphism of Σ-completions from F = (C, F, η) to
G = (D, G, ρ). Then ΥG,0

α is an endofunctor of Mortw(D) which we will call the Schmidt
endofunctor relative to α and G.
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Schα( f ) F(K(A))

B G(B)

A

G( f ) ◦ αA

inSchα( f )

ρB

ηK(A) ◦ γA

ηK(A) ◦ γA

f

Schα( f ′) F(K(A′))

B′ G(B′)

A′

ΥG,0
α ( f ′)

inSchα( f ′)

ρB′

ηK(A′) ◦ γA′

ηK(A′) ◦ γA′

f ′

g

G(h)
ΥG,0

α ( f )

G( f ′) ◦ αA′

F(K(g))
h

Figure 17. Pasting partial diagrams.

A A′

B B′

f f ′

g

h

ΥG,0
α

Schα( f ) Schα( f ′)

B B′

ΥG,0
α ( f ) ΥG,0

α ( f ′)

F(K(g)) ◦ inSchα( f )

h

Figure 18. The functor associated to α.
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Proof. We have divided the proof into a series of claims.

Claim 1. Let f : A // B and f ′ : A′ // B′ be two objects of Mortw(D) and (g, h) a morphism
from f to f ′. Then the homomorphism F(K(g)) ◦ inSchα( f ) from Schα( f ) to F(K(A′)) is such
that

F(K(g))
[
inSchα( f )[Schα( f )]

]
⊆ Schα( f ′).

In fact, by definition, we have that

Schα( f ′) =
(

G( f ′) ◦ αA′
)−1[

ρB′[B′]].
Hence, to prove that the image of F(K(g)) ◦ inSchα( f ) is included in Schα( f ′) it suffices to
prove that (

G( f ′) ◦ αA′
)[

F(K(g))
[
inSchα( f )[Schα( f )]

]]
⊆ ρB′[B′].

But, since, by Proposition 42, the many-sorted partial Σ-algebra Schα( f ) is ηK(A)[γA[A]]-
generated and G( f ′) ◦ αA′ , F(K(g)) and inSchα( f ) are homomorphisms, it suffices to prove
that, for every sort s ∈ S and every a ∈ As, the following statement holds(

G( f ′) ◦ αA′
)

s

(
F(K(g))s

(
inSchα( f )

s

(
η

K(A)
s

(
γA

s (a)
))))

∈ ρB′
s
[
B′s
]
. (Cl1)

But we have that the following chain of equalities holds

G( f ′) ◦ αA′ ◦ F(K(g)) ◦ inSchα( f ) ◦ ηK(A) ◦ γA

= G( f ′) ◦ αA′ ◦ F(K(g)) ◦ ηK(A) ◦ γA (1)

= G( f ′) ◦ αA′ ◦ ηK(A′) ◦ γA′ ◦ g (2)

= ρB′ ◦ f ′ ◦ g. (3)

In the just stated chain of equalities, the first equality follows from the fact that, by Proposi-
tion 42, inSchα( f ) ◦ ηK(A) ◦ γA = ηK(A) ◦ γA; the second equality follows from the fact that,
by Proposition 43, F(K(g)) ◦ ηK(A) ◦ γA = ηK(A′) ◦ γA′ ◦ g; finally, the last equality follows
from the fact that, by Proposition 42, we have that G( f ′) ◦ αA′ ◦ ηK(A′) ◦ γA′ = ρB′ ◦ f ′.

Therefore, to prove (Cl1) is equivalent to prove that, for every sort s ∈ S and every
a ∈ As, the following statement holds

ρB′
s
(

f ′s(gs(a))
)
∈ ρB′

s
[
B′s
]
.

But, for every sort s ∈ S and every a ∈ As, we have that f ′s(gs(a)) ∈ B′s. From which
it follows that ρB′

s ( f ′s(gs(a))) ∈ ρB′
s [B′s]. Thus we can affirm that the image of the ho-

momorphism F(K(g)) ◦ inSchα( f ) from Schα( f ) to F(K(A′)) is included in Schα( f ′). To
shorten notation, we let F(K(g)) ◦ inSchα( f ) stand for coresSchα( f ′)(F(K(g)) ◦ inSchα( f )), the

corestriction of F(K(g)) ◦ inSchα( f ) to Schα( f ′). This homomorphism is represented in the
diagram of Figure 17 as an unnamed dashed arrow.

Claim 1 follows.

Claim 2. Let f : A // B and f ′ : A′ // B′ be two objects of Mortw(D) and (g, h) a morphism
from f to f ′. Then we have that (F(K(g)) ◦ inSchα( f ), h) is a morphism from ΥG,0

α ( f ) to ΥG,0
α ( f ′)

of Mortw(D), i.e.,
ΥG,0

α ( f ) = h ◦ ΥG,0
α ( f ′) ◦ F(K(g)) ◦ inSchα( f ).

In fact, since, by Proposition 42, the many-sorted partial Σ-algebra Schα( f ) is ηK(A)[γA[A]]-
generated and h, ΥG,0

α ( f ), F(K(g)) and inSchα( f ) are homomorphisms, to prove Claim 2 it
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suffices to prove that

ΥG,0
α ( f ) ◦ ηK(A) ◦ γA = h ◦ ΥG,0

α ( f ′) ◦ F(K(g)) ◦ inSchα( f ) ◦ ηK(A) ◦ γA. (Cl2)

Starting from the right hand side of the above equation, we have that the following chain
of equalities holds

h ◦ ΥG,0
α ( f ′) ◦ F(K(g)) ◦ inSchα( f ) ◦ ηK(A) ◦ γA

= h ◦ ΥG,0
α ( f ′) ◦ F(K(g)) ◦ ηK(A) ◦ γA (1)

= h ◦ ΥG,0
α ( f ′) ◦ ηK(A′) ◦ γA′ ◦ g (2)

= h ◦ f ′ ◦ g (3)

= f (4)

= ΥG,0
α ( f ) ◦ ηK(A) ◦ γA. (5)

In the just stated chain of equalities, the first equality follows from the fact that, by Proposi-
tion 42, inSchα( f ) ◦ ηK(A) ◦ γA = ηK(A) ◦ γA; the second equality follows from the fact that,
by Proposition 43, F(K(g)) ◦ ηK(A) ◦ γA = ηK(A′) ◦ γA′ ◦ g; the third equality follows from
the fact that, by Proposition 42, ΥG,0

α ( f ′) ◦ ηK(A′) ◦ γA′ = f ′; the fourth equality follows
from the fact that (g, h) is a morphism of Mortw(D) from f to f ′; finally, the last equality
follows from the fact that, by Proposition 42, ΥG,0

α ( f ) ◦ ηK(A) ◦ γA = f .
Claim 2 follows.
Therefore ΥG,0

α maps objects to objects and morphisms to morphisms. We next prove
that ΥG,0

α preserves identities.

Claim 3. Let f : A // B be a homomorphism between partial Σ-algebras of D. Then

ΥG,0
α (id f ) = idΥG,0

α ( f ).

We recall that id f , the identity at f in Mortw(D), is (idA, idB). Let us note, that, on the
one hand, we have that

ΥG,0
α (id f ) = ΥG,0

α (idA, idB) =
(

F(K(idA)) ◦ inSchα( f ), idB

)
,

and, on the other hand, we have that

idΥG,0
α ( f ) =

(
idSchα( f ), idB

)
.

Hence, to check that ΥG,0
α (id f ) = idΥG,0

α ( f ), it suffices to prove that

F(K(idA)) ◦ inSchα( f ) = idSchα( f ).

But, by Proposition 42, the many-sorted partial Σ-algebra Schα( f ) is ηK(A)[γA[A]]-
generated and F(K(idA)), inSchα( f ), and inSchα( f ) are homomorphisms. Therefore, it suf-
fices to prove that

F(K(idA)) ◦ inSchα( f ) ◦ ηK(A) ◦ γA = idSchα( f ) ◦ ηK(A) ◦ γA. (Cl3)
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Schα( f ) Schα( f ′) Schα( f ′′)

B B′ B′′

F(K(g′ ◦ g)) ◦ inSchα( f )

h ◦ h′

F(K(g′)) ◦ inSchα( f ′)F(K(g)) ◦ inSchα( f )

ΥG,0
α ( f ) ΥG,0

α ( f ′)

h

ΥG,0
α ( f ′′)

h′

Figure 19. The functor associated to the morphism α on compositions.

However, the following chain of equalities holds

F(K(idA)) ◦ inSchα( f ) ◦ ηK(A) ◦ γA = F(K(idA)) ◦ ηK(A) ◦ γA (1)

= ηK(A) ◦ γA ◦ idA (2)

= ηK(A) ◦ γA (3)

= idSchα( f ) ◦ ηK(A) ◦ γA. (4)

In the just stated chain of equalities, the first equality follows from the fact that, by Proposi-
tion 42, inSchα( f ) ◦ ηK(A) ◦ γA = ηK(A) ◦ γA; the second equality follows from the fact that,
by Proposition 43, F(K(idA)) ◦ ηK(A) ◦ γA = ηK(A) ◦ γA ◦ idA; the third equality follows
from the fact that idA is an identity; finally the last equality follows from the fact that, by
Proposition 42, the image of ηK(A) ◦ γA is included in Schα( f ) and idSchα( f ) is an identity.

Claim 3 follows.
We next prove that ΥG,0

α preserves the composition of morphisms of Mortw(D).

Claim 4. Let f : A // B, f ′ : A′ // B′ and f ′′ : A′′ // B′′ be homomorphisms between par-
tial Σ-algebras of D. Let (g, h) and (g′, h′) be morphisms of Mortw(D) from f to f ′ and from f ′

to f ′′, respectively. Then

ΥG,0
α ((g′, h′) ◦ (g, h)) = ΥG,0

α (g′, h′) ◦ ΥG,0
α (g, h).

We recall that (g′, h′) ◦ (g, h), the composition of (g′, h′) with (g, h) in Mortw(D), is
(g′ ◦ g, h ◦ h′). Let us note that, on the one hand, we have that

ΥG,0
α ((g′, h′) ◦ (g, h)) = ΥG,0

α (g′ ◦ g, h ◦ h′) =
(

F(K(g′ ◦ g)) ◦ inSchα( f ), h ◦ h′
)

,

and, on the other hand, we have that

ΥG,0
α (g′, h′) ◦ ΥG,0

α (g, h) =
(

F(K(g′)) ◦ inSchα( f ′), h′
)
◦
(

F(K(g)) ◦ inSchα( f ), h
)

=
(

F(K(g′)) ◦ inSchα( f ′) ◦ F(K(g)) ◦ inSchα( f ), h ◦ h′
)

.

(The reader is advised to consult Figure 19 for a better understanding of the homo-
morphisms under consideration.)

Thus, to check that

ΥG,0
α ((g′, h′) ◦ (g, h)) = ΥG,0

α (g′, h′) ◦ ΥG,0
α (g, h),
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it suffices to prove that

F(K(g′ ◦ g)) ◦ inSchα( f ) = F(K(g′)) ◦ inSchα( f ′) ◦ F(K(g)) ◦ inSchα( f ).

But, since, by Proposition 42, the many-sorted partial Σ-algebra Schα( f ) is ηK(A)[γA[A]]-
generated and F(K(g′ ◦ g)), inSchα( f ), F(K(g′)), inSchα( f ′) and F(K(g)) are homomor-
phisms, it suffices to prove that

F(K(g′ ◦ g)) ◦ inSchα( f ) ◦ ηK(A) ◦ γA

= F(K(g′)) ◦ inSchα( f ′) ◦ F(K(g)) ◦ inSchα( f ) ◦ ηK(A) ◦ γA. (Cl4)

Now, starting from the right hand side of the above equation, we have that the
following chain of equalities holds

F(K(g′)) ◦ inSchα( f ′) ◦ F(K(g)) ◦ inSchα( f ) ◦ ηK(A) ◦ γA

= F(K(g′)) ◦ inSchα( f ′) ◦ F(K(g)) ◦ ηK(A) ◦ γA (1)

= F(K(g′)) ◦ inSchα( f ′) ◦ ηK(A′) ◦ γA′ ◦ g (2)

= F(K(g′)) ◦ ηK(A′) ◦ γA′ ◦ g (3)

= ηK(A′′) ◦ γA′′ ◦ g′ ◦ g (4)

= F(K(g′ ◦ g)) ◦ ηK(A) ◦ γA (5)

= F(K(g′ ◦ g)) ◦ inSchα( f ) ◦ ηK(A) ◦ γA. (6)

In the just stated chain of equalities, the first equality follows from the fact that, by Proposi-
tion 42, inSchα( f ) ◦ ηK(A) ◦ γA = ηK(A) ◦ γA; the second equality follows from the fact that,
by Proposition 43, F(K(g)) ◦ ηK(A) ◦ γA = ηK(A′) ◦ γA′ ◦ g; the third equality follows from
the fact that, by Proposition 42, inSchα( f ′) ◦ ηK(A′) ◦ γA′ = ηK(A′) ◦ γA′ ; the fourth equality
follows from the fact that, by Proposition 43, F(K(g′)) ◦ ηK(A′) ◦ γA′ = ηK(A′′) ◦ γA′′ ◦ g′;
the fifth equality follows from the fact that, by Proposition 43, F(K(g′ ◦ g)) ◦ ηK(A) ◦ γA =

ηK(A′′) ◦ γA′′ ◦ g′ ◦ g; finally, the last equality follows from the fact that, by Proposition 42,
inSchα( f ) ◦ ηK(A) ◦ γA = ηK(A) ◦ γA.

Claim 4 follows.
This completes the proof of Proposition 44.

9. Functoriality of the Schmidt construction

In this section we finally reach the objective expressed in the title of the paper. Specif-
ically, we will prove that, for every Σ-completion G, there exists a functor ΥG from
the comma category (Cmpl(Σ)↓G) to End(Mortw(D)), the category of endofunctors
of Mortw(D), such that ΥG,0, the object mapping of ΥG, sends an object α : F //G of
(Cmpl(Σ)↓G), i.e., a morphism of Σ-completion of Cmpl(Σ) with codomain G, to the
Schmidt endofunctor ΥG,0

α in End(Mortw(D)).
To obtain the result just mentioned we first recall the definition of the comma category

(Cmpl(Σ)↓G).

Definition 44. Let G be a Σ-completion of Cmpl(Σ). Then we let (Cmpl(Σ)↓G) denote the
comma category of objects overG. Thus (Cmpl(Σ)↓G) is the category whose objects are morphisms
α of Cmpl(Σ) whose codomain is G and whose morphisms from the object α0 : F0 //G to the
object α1 : F1 //G are the ordered triples (α0, β, α1), which to shorten notation we identify with
β, where β is a morphism from F0 to F1 such that

α1 � β = α0,
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G

F0 F1

α0 α1

β

Figure 20. Morphism β from α0 to α1 of the category (Cmpl(Σ)↓G).

C0

PAlg(Σ)

Alg(Σ)

PAlg(Σ)

Alg(Σ)

C1 C1 D

PAlg(Σ)

Alg(Σ)

InC0 InC1InC1 InD

F1 G

L

F0 F1

K1In Inη0 η1

δ

β

γ1

α1

η1 ρ

Figure 21. The composable morphisms of Σ-completions β and α1.

i.e., such that the diagram in Figure 20 commutes.
Let us point out that, as a morphism of (Cmpl(Σ)↓G), the domain of β is α0 and its codomain

is α1.

We will next show how to associate to a morphism β of (Cmpl(Σ)↓G) from an object
α0 of (Cmpl(Σ)↓G) to another object α1 of (Cmpl(Σ)↓G) a natural transformation from
ΥG,0

α0 , the Schmidt functor at Mortw(D) associated to its domain, to ΥG,0
α1 , the Schmidt

functor at Mortw(D) associated to its codomain.

Proposition 45. Let F0, F1 and G be Σ-completions of Cmpl(Σ). Let α0 be a morphism of
Cmpl(Σ) from F0 to G, α1 a morphism of Cmpl(Σ) form F1 to G, and β a morphism of
(Cmpl(Σ)↓G) from α0 to α1, thus α1 � β = α0. Then there exists a natural transformation from
ΥG,0

α0 to ΥG,0
α1 .

Proof. Let F0, F1 and G stand for

F0 = (C0, F0, η0), F1 = (C1, F1, η1) and G = (D, G, ρ), respectively,

and let α0, α1 and β stand for

α0 = (K0, γ0, α0), α1 = (K1, γ1, α1) and β = (L, δ, β), respectively.

The reader is advised to consult the diagrams in Figures 21 and 22 for a better understanding
of the entities under consideration.

On the other hand, from α1 � β = α0, we conclude that

K0 = L ◦ K1; (†1)

γ0 = (δ ∗ idK1) ◦ γ1; (†2)

α0 = α1 ◦ (β ∗ idK1). (†3)

Moreover, by Proposition 44, the Schmidt endofunctors ΥG,0
α0 and ΥG,0

α1 relatives to α0
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C0

PAlg(Σ)

Alg(Σ)

PAlg(Σ)

Alg(Σ)

D

InC InD

GF0

K0In Inη0 ρ

γ0

α0

Figure 22. The morphism of Σ-completions α0.

A A′

B B′

g

f

h

f ′

Schα0( f ) Schα0( f ′)

B B′

F0(K0(g)) ◦ inSchα0 ( f )

ΥG,0
α0 ( f )

h

ΥG,0
α0 ( f ′)

Schα1( f ) Schα1( f ′)

B B′

F1(K1(g)) ◦ inSchα1 ( f )

ΥG,0
α1 ( f )

h

ΥG,0
α1 ( f ′)

ΥG,0
α0

ΥG,0
α1

Figure 23. The functors ΥG,0
α0 and ΥG,0

α1 .

and G and to α1 and G, respectively, associate, to each object f : A // B of Mortw(D), the
morphisms

ΥG,0
α0

( f ) : Schα0( f ) // B and ΥG,0
α1

( f ) : Schα1( f ) // B, respectively,

and, to each morphism (g, h) of Mortw(D) from the object f : A // B to the object
f ′ : A′ // B′, the morphisms

ΥG,0
α0

(g, h) =
(

F0(K0(g)) ◦ inSchα0 ( f ), h
)

and

ΥG,0
α1

(g, h) =
(

F1(K1(g)) ◦ inSchα1 ( f ), h
)

, respectively.

The reader is advised to consult, in this respect, the diagrams in Figure 23.
After these preliminary remarks, we proceed, in what follows, to define a natural

transformation ΥG,1
β from the functor ΥG,0

α0 to the functor ΥG,0
α1 , as shown in the diagram

of Figure 24. To do it we should assign, in a natural way, to every object f : A // B in
Mortw(D) a morphism ΥG,1

β, f of Mortw(D) from the homomorphism ΥG,0
α0 ( f ) to the homo-

morphism ΥG,0
α1 ( f ), which will be the component of the natural transformation ΥG,1

β at f .

Since, to define the morphisms of type ΥG,1
β, f , we will make use both of the definition and

the properties of the homomorphisms of type ΥG,0
α0 and ΥG,0

α1 , the reader is advised to bear
in mind Proposition 42.
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Mortw(D) Mortw(D)

ΥG,0
α0

ΥG,0
α1

ΥG,1
β

Figure 24. The natural transformation ΥG,1
β from ΥG,0

α0 to ΥG,0
α1 .

K1(A)

K1(B)

K1( f )

F0(L(K1(A)))

F0(L(K1(B)))

F1(K1(A))

F1(K1(B))

F0(L(K1( f ))) F1(K1( f ))

βK1(A)

βK1(B)

Figure 25. The natural transformation β at K1( f ).

To begin with, let us consider the value of the natural transformation β, from F0 ◦ L
to F1, at K1(A), i.e., the homomorphism βK1(A) from F0(L(K1(A))) to F1(K1(A)). This
homomorphism is such that

βK1(B) ◦ F0(L(K1( f ))) = F1(K1( f )) ◦ βK1(A),

and we depict it in the diagram of Figure 25.
Let us recall that, by (†1), K0 = L ◦ K1. Therefore, βK1(A) is a homomorphism from

F0(K0(A)) to F1(K1(A)). Moreover, by Proposition 42, Schα0( f ) is a relative subalgebra of
F0(K0(A)) and Schα1( f ) is a relative subalgebra of F1(K1(A)).

The following claim explains how the subalgebras Schα0( f ) and Schα1( f ) are related
by means of βK1(A).

Claim 5. The homomorphism βK1(A) : F0(K0(A)) // F1(K1(A)) is such that βK1(A)[Schα0( f )] ⊆
Schα1( f ).

In fact, by Proposition 42, we have that

Schα0( f ) =
(

G( f ) ◦ αA
0

)−1[
ρB[B]

]
and Schα1( f ) =

(
G( f ) ◦ αA

1

)−1[
ρB[B]

]
.

Therefore, to prove that, for every s ∈ S and every z ∈ Schα0( f )s β
K1(A)
s (z) ∈ Schα1( f )s, it

suffices to prove that

G( f )s

(
αA

1,s

(
β

K1(A)
s (z)

))
∈ ρB

s [Bs]. (Cl5)

Let us note that the following chain of equalities holds

G( f ) ◦ αA
1 ◦ βK1(A) = G( f ) ◦

(
α1 ◦

(
β ∗ idK1

))A (1)

= G( f ) ◦ αA
0 . (2)

In the just stated chain of equalities, the first equality recovers the A-th component of the
natural transformation α1 ◦ (β ∗ idK1); finally, the last equality follows according to (†3).
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Schα0( f )

B

Schα1( f )

B

ΥG,0
α0 ( f ) ΥG,0

α1 ( f )

βK1(A)

idB

Figure 26. The morphism ΥG,1
β at f .

Taking this into account and the definition of Schα0( f ), previously introduced, we
conclude that (Cl5) holds.

This concludes the proof of Claim 5.

Notation 1. Let f : A // B be any homomorphism of D. Then, to shorten notation we let βK1(A)

stand for biresSchα0 ( f ),Schα1 ( f )(βK1(A)), the birestriction of βK1(A) to Schα0( f ) and Schα1( f ).

Now, let ΥG,1
β be the mapping from Mor(D) to Mor(D)2, defined as follows: Let

f : A // B be a homomorphism, then ΥG,1
β, f =

(
βK1(A), idB

)
.

From here to the end of this proof, we proceed to show that ΥG,1
β , so defined, is, in fact,

a natural transformation.
The following claim asserts that, for any homomorphism f : A // B of D, ΥG,1

β, f is

a morphism of Mortw(D) from ΥG,0
α0 ( f ) to ΥG,0

α1 ( f ), i.e., that the diagram in Figure 26
commutes. From this it will follow that ΥG,1

β is a mapping from the set of objects of
Mortw(D) to the set of morphisms of Mortw(D).

Claim 6. Let f : A // B be a homomorphism of D, then ΥG,1
β, f is a morphism of Mortw(D) from

ΥG,0
α0 ( f ) to ΥG,0

α1 ( f ).

In the proof of this Claim we take into account Claim 5. (The reader is advised
to consult the diagram in Figure 26 for a better understanding of the elements under
consideration.)

We need to prove that

ΥG,0
α0

( f ) = idB ◦ ΥG,0
α1

( f ) ◦ βK1(A).

But, by Proposition 42, the many-sorted partial Σ-algebra Schα0( f ) is η
K0(A)
0 [γA

0 [A]]-
generated and idB, ΥG,0

α1 ( f ), βK1(A) and ΥG,0
α0 ( f ) are homomorphisms. Therefore, it suffices

to prove that the following equality holds

ΥG,0
α0

( f ) ◦ η
K0(A)
0 ◦ γA

0 = idB ◦ ΥG,0
α1

( f ) ◦ βK1(A) ◦ η
K0(A)
0 ◦ γA

0 . (Cl6)

Starting from the right hand side of the above equation, we have that the following
chain of equalities holds
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idB ◦ ΥG,0
α1 ( f ) ◦ βK1(A) ◦ η

K0(A)
0 ◦ γA

0

= ΥG,0
α1

( f ) ◦ βK1(A) ◦ η
K0(A)
0 ◦ γA

0 (1)

= ΥG,0
α1

( f ) ◦ βK1(A) ◦ η
K0(A)
0 ◦

(
(δ ∗ idK1) ◦ γ1

)A (2)

= ΥG,0
α1

( f ) ◦ βK1(A) ◦ η
K0(A)
0 ◦ δK1(A) ◦ γA

1 (3)

= ΥG,0
α1

( f ) ◦ βK1(A) ◦ η
L(K1(A))
0 ◦ δK1(A) ◦ γA

1 (4)

= ΥG,0
α1

( f ) ◦ η
K1(A)
1 ◦ γA

1 (5)

= f (6)

= ΥG,0
α0

( f ) ◦ η
K0(A)
0 ◦ γA

0 . (7)

In the just stated chain of equalities, the first equality applies the identity mapping at B;
the second equality follows from (†2); the third equality recovers the A-th component
of the natural transformation (δ ∗ idK1) ◦ γ1; the fourth equality follows from (†1); the
fifth equality follows from the fact that β is a morphism from the Σ-completion F0 to the
Σ-completion F1; the sixth equality follows from Proposition 42 at ΥG,0

α1 ( f ); finally, the last
equality follows from Proposition 42 at ΥG,0

α0 ( f ).
This completes the proof of Claim 6.
We can now prove that ΥG,1

β is the desired natural transformation.

Claim 7. ΥG,1
β is a natural transformation from ΥG,0

α0 to ΥG,0
α1 .

To prove Claim 7, we need to show that, for every pair of homomorphisms f : A // B
and f ′ : A′ // B′ of D and every morphism (g, h) from f to f ′ of Mortw(D), the following
equality holds

ΥG,1
β, f ′ ◦ ΥG,0

α0
(g, h) = ΥG,0

α1
(g, h) ◦ ΥG,1

β, f .

But, taking into account the definitions of the four components of the above equality, to
show that it is fulfilled is equivalent to showing that the following equalities are satisfied

F1(K1(g)) ◦ inSchα1 ( f ) ◦ βK1(A) = βK1(A′) ◦ F0(K0(g)) ◦ inSchα0 ( f );

idB ◦ h = h ◦ idB′ .

The reader is advised to consult the diagram in Figure 27 for a better understanding of the
elements under consideration.

The equation idB ◦ h = h ◦ idB′ trivially holds. Therefore, it suffices to prove the
first equation. In this regard, since, by Proposition 42, the partial Σ-algebra Schα0( f ) is

η
K0(A)
0 [γA

0 [A]]-generated and since F1(K1(g)), inSchα1 ( f ), βK1(A), βK1(A′), F0(K0(g)), and
inSchα0 ( f ) are homomorphisms, it suffices to prove that

F1(K1(g)) ◦ inSchα1 ( f ) ◦ βK1(A) ◦ η
K0(A)
0 ◦ γA

0

= βK1(A′) ◦ F0(K0(g)) ◦ inSchα0 ( f ) ◦ η
K0(A)
0 ◦ γA

0 . (Cl7)

Starting from the left hand side of the above equation, we have that the following
chain of equalities holds

F1(K1(g)) ◦ inSchα1 ( f ) ◦ βK1(A) ◦ η
K0(A)
0 ◦ γA

0

= F1(K1(g)) ◦ inSchα1 ( f ) ◦ βK1(A) ◦ η
K0(A)
0 ◦

((
δ ∗ idK1

)
◦ γ1

)A (1)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 September 2021                   doi:10.20944/preprints202109.0445.v1

https://doi.org/10.20944/preprints202109.0445.v1


50 of 53

Schα0( f )

Schα0( f ′)

B

B′

F0(K0(g)) ◦ inSchα0 ( f )

ΥG,0
α0 ( f )

h
ΥG,0

α0 ( f ′)

Schα1( f )

Schα1( f ′)

B

B′

βK1(A)

βK1(A′)
F1(K1(g)) ◦ inSchα1 ( f )

idB

idB′

ΥG,0
α1 ( f )

h
ΥG,0

α1 ( f ′)

Schα1( f )

Figure 27. The natural transformation ΥG,1
β at a morphism (g, h) from f to f ′ of Mortw(D).

= F1(K1(g)) ◦ inSchα1 ( f ) ◦ βK1(A) ◦ η
K0(A)
0 ◦ δK1(A) ◦ γA

1 (2)

= F1(K1(g)) ◦ inSchα1 ( f ) ◦ βK1(A) ◦ η
L(K1(A))
0 ◦ δK1(A) ◦ γA

1 (3)

= F1(K1(g)) ◦ inSchα1 ( f ) ◦ η
K1(A)
1 ◦ γA

1 (4)

= F1(K1(g)) ◦ η
K1(A)
1 ◦ γA

1 (5)

= η
K1(A′)
1 ◦ K1(g) ◦ γA

1 (6)

= βK1(A′) ◦ η
L(K1(A′))
0 ◦ δK1(A′) ◦ K1(g) ◦ γA

1 (7)

= βK1(A′) ◦ η
L(K1(A′))
0 ◦ L(K1(g)) ◦ δK1(A) ◦ γA

1 (8)

= βK1(A′) ◦ F0(L(K1(g))) ◦ η
L(K1(A))
0 ◦ δK1(A) ◦ γA

1 (9)

= βK1(A′) ◦ F0(K0(g)) ◦ η
K0(A)
0 ◦ δK1(A) ◦ γA

1 (10)

= βK1(A′) ◦ F0(K0(g)) ◦ η
K0(A)
0 ◦

((
δ ∗ idK1

)
◦ γ1

)A (11)

= βK1(A′) ◦ F0(K0(g)) ◦ η
K0(A)
0 ◦ γA

0 (12)

= βK1(A′) ◦ F0(K0(g)) ◦ inSchα0 ( f ) ◦ η
K0(A)
0 ◦ γA

0 . (13)

In the just stated chain of equalities, the first equality follows from (†2); the second equality
recovers the A-th component at the natural transformation (δ ∗ idK1) ◦ γ1; the third equality
follows from (†1); the fourth equality follows from the fact that β is a morphism from
the Σ-completion F0 to the Σ-completion F1; the fifth equality follows from Proposition
42; the sixth equality follows from the fact that η1 is a natural transformation from InC1
to InAlg(Σ) ◦ F1; the seventh equality follows from the fact that β is a morphism from the
Σ-completion F0 to the Σ-completion F1; the eighth equality follows from the fact that δ
is a natural transformation from InC1 to InC0 ◦ L; the ninth equality follows from the fact
that η0 is a natural transformation from InC0 to InAlg(Σ) ◦ F0; the tenth equality follows
from (†1); the eleventh equality recovers the A-th component at the natural transformation
(δ ∗ idK1) ◦ γ1; the twelfth equality follows from (†2); and finally, the last equality follows
from Proposition 42.

This concludes the proof of Claim 7.
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F0 F1

G

β

α0 α1
ΥG

Mortw(D) Mortw(D)

ΥG,0
α0

ΥG,0
α1

ΥG,1
β

Figure 28. The functor ΥG.

This completes the proof of Proposition 45.

The result established in Proposition 45 leads us to consider it reasonable that, for
every Σ-completion G = (D, G, ρ) of Cmpl(Σ), there exists a functor from (Cmpl(Σ)↓G)
to End(Mortw(D)). The remainder of this section will be devoted to prove this statement.

Definition 45. Let C be a category. We denote by End(C) the category whose objects are the
endofunctors of C and whose morphisms are the natural transformations between these endofunctors
(the vertical composition of natural transformations is indeed associative, and there is an identity
natural transformation from every endofunctor to itself).

Definition 46. Let G = (D, G, ρ) be a Σ-completion. Let ΥG denote the ordered pair (ΥG,0, ΥG,1)
where

1. ΥG,0 is the mapping that sends an object α : F //G of (Cmpl(Σ)↓G), i.e., a morphism of
Σ-completion of Cmpl(Σ) with codomain G, to the endofunctor ΥG,0

α of End(Mortw(D)),
and

2. ΥG,1 is the mapping that sends a morphism β of (Cmpl(Σ)↓G) from the object α0 : F0 //G
to the object α1 : F1 //G, i.e., a morphism of Σ-completions β : F0 //F1 satisfying
the equation α1 � β = α0, to the natural transformation ΥG,1

β from ΥG,0
α0 to ΥG,0

α1 defined in
Proposition 45.

The transformation associated to the morphism β (from the object α0 to the object α1) of (Cmpl(Σ)↓G)
is represented in the diagram of Figure 28.

In the following proposition we prove that ΥG is, indeed, a functor.

Proposition 46. Let G = (D, G, ρ) be a Σ-completion. Then ΥG, as introduced in Definition 46,
is a functor from (Cmpl(Σ)↓G) to End(Mortw(D)).

Proof. We have divided the proof into a series of claims.

Claim 8. ΥG preserves identities.

Let α = (K, γ, α) be a morphism of Σ-completions from F = (C, F, η) to G.
We need to prove that the following equality holds

ΥG,1
idα

= idΥG,0
α

.

But, idα, the identity morphism at α in (Cmpl(Σ)↓G), is

IdF = (IdC, idInC , idF),

the identity morphism at F (recall the convetion stated in Definition 44).
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Moreover, for a homomorphism f : A // B of D, we have that

ΥG,1
idα , f =

(
idK(A)

F , idB

)
,

where, by Proposition 45, idK(A)
F stands for the birestriction of idK(A)

F to Schα( f ). Therefore,

ΥG,1
idα , f =

(
idSchα( f ), idB

)
= id f

ΥG,0
α

.

This completes the proof of Claim 8.

Claim 9. ΥG preserves compositions.

Let α0, α1 and α2 be objects of (Cmpl(Σ)↓G) of the form

α0 : F0 //G, α1 : F1 //G and α2 : F2 //G,

where α0, α1 and α2 stand for

α0 = (K0, γ0, α0), α1 = (K1, γ1, α1) and α2 = (K2, γ2, α2), respectively,

and let β0 and β1 be morphisms in (Cmpl(Σ)↓G) of the form

β0 : F0 //F1 and β1 : F1 //F2,

where β0 and β1 stand for

β0 = (L0, δ0, β0) and β1 = (L1, δ1, β1), respectively.

We need to prove that the following equality holds

ΥG,1
β1�β0

= ΥG,1
β1
◦ ΥG,1

β0
.

But the composition of two morphisms in (Cmpl(Σ)↓G) is given by the composition
of the morphisms in Cmpl(Σ) which, by Definition 40, is

β1 � β0 = (L1, δ1, β1) � (L0, δ0, β0) = (L0 ◦ L1, (δ0 ∗ idL1) ◦ δ1, β1 ◦ (β0 ∗ idL1)).

Thus, for a morphism f : A // B of D, we have that

ΥG,1
β1�β0, f =

((
β1 ◦ (β0 ∗ idL1)

)K2(A), idB

)
=
(

β
K2(A)
1 ◦ β

L1(K2(A′))
0 , idB

)
.

Moreover, we have that

ΥG,1
β1, f =

(
β

K2(A)
1 , idB

)
and ΥG,1

β0, f =
(

β
K1(A)
0 , idB

)
.

But, since β1 is a morphism of (Cmpl(Σ)↓G) from α1 to α2, we have, in particular, that
K1 = L1 ◦ K2.

Thus, the following chain of equalities holds

ΥG,1
β1, f ◦ ΥG,1

β0, f =
(

β
K2(A)
1 , idB

)
◦
(

β
K1(A)
0 , idB

)
=
(

β
K2(A)
1 ◦ β

L1(K2(A′))
0 , idB

)
.

This completes the proof of Claim 9.
This concludes the proof of Proposition 46.

In view of the above, it seems natural to ask the following question: Is the family of
functors (ΥG)G∈Ob(Cmpl(Σ)) the object mapping of a functor from Cmpl(Σ)? We think that

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 September 2021                   doi:10.20944/preprints202109.0445.v1

https://doi.org/10.20944/preprints202109.0445.v1


53 of 53

this is not the case and that we are facing a situation similar to the one that occurs in group
theory, in which, e.g., the centre of a group does not determine a subfunctor of the identity
functor at the category of groups (it is true that if one chooses to restrict Grp, the category
of groups, by using as morphisms the surjective homomorphisms, one obtains a functor,
but, for the case at hand, such a solution does not seem likely to work). In this case, the
most we can say is that the objects G of the category Cmpl(Σ) play the role of parameters
for the functors ΥG, while the morphisms of Cmpl(Σ) are used to act as morphisms of
(Cmpl(Σ)↓G), the comma categories which are the domains of such functors.
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