
Neutrino Masses and Lepton Flavor
Physics Beyond the Standard Model

Tesi Doctoral
Programa de Doctorat en Física - 3126

Pablo Escribano Valiente

Director: Dr. Avelino Vicente Montesinos

IFIC - CSIC/Universitat de València
Departament de Física Teòrica

València, juny de 2023





A mis padres, por su apoyo incondicional.
A mi abuelo, por su aliento constante,
aunque nunca entendiera lo que hacía.
A Paloma, por lo mismo y por todo lo
demás.



Dr. Avelino Vicente Montesinos,
Investigador Ramón y Cajal en la Universitat de València

como director de tesis y tutor,

CERTIFICA:

Que la presente memoria, Neutrino Masses and Lepton Flavor Physics Beyond the Standard
Model, ha sido realizada bajo su dirección en el Instituto de Física Corpuscular, centro mixto
de la Universitat de València y del Consejo Superior de Investigaciones Científicas, por Pablo
Escribano Valiente, y constituye su Tesis para optar al grado de Doctor por la Universitat de
València una vez cursados los estudios en el Doctorado en Física.

Y para que así conste, en cumplimiento de la legislación vigente, presenta en el Departament
de Física Teòrica de la Universidad de Valencia la referida Tesis Doctoral, y firma el presente
certificado.

Valencia, a día 12 de junio de 2023.

Avelino Vicente Montesinos



Agradecimientos

Podría comenzar este breve texto de muchas maneras, pero no encuentro ninguna mejor que
citar a Gandalf, en aquel entonces conocido como el Gris, quien en una ocasión pronunció estas
palabras: “Es peligroso... cruzar tu puerta. Pones tu pie en el camino, y si no cuidas tus pasos,
nunca sabes a dónde te pueden llevar”. No estoy seguro de si fui lo suficientemente cuidadoso,
pero el camino me ha llevado hasta la etapa final de un doctorado que parece haber comenzado
ayer. De esta manera, me encuentro escribiendo las últimas líneas de la tesis (aún apareciendo
al principio) y es el momento de hacer memoria. De rememorar para agradecer a todas aquellas
personas que de una manera u otra han aportado a este momento. Sin ellas, esta experiencia
no habría resultado tan maravillosa.

Al plasmar estas palabras y reflexionar sobre los últimos años, soy más consciente de la función
que mi familia ha desempeñado en este proceso. A pesar de no siempre ver las cosas desde la
misma perspectiva, han sido un apoyo constante. Les agradezco a mis padres por todo lo que
me han aportado, por sus esfuerzos, por la educación que me han proporcionado y por haberme
ayudado a elegir libremente cada paso de mi camino. Igualmente, agradezco a mi hermano, que
siempre estará ahí cuando necesite su ayuda.

Rápidamente me viene a la mente Avelino cuando pienso en quienes más me han ayudado en
esta fase de mi vida. Todo lo que he aprendido durante estos cuatro años de tesis no habría
sido posible sin la supervisión de mi director. Muchísimas gracias por siempre haber encontrado
tiempo para charlar, para aconsejarme y para enseñarme, especialmente durante los meses de
confinamiento en los que estuviste constantemente presente. No podría haber tenido un director
mejor.

Asimismo, quisiera agrader a todos los miembros de la familia AHEP por el excepcional ambi-
ente que han creado. Estoy especialmente agradecido con Pablo II por haberme acompañado de
principio a fin. Agradezco de corazon todas las conversaciones, el intercambio de inquietudes y,
en especial, la presión indirecta que me motivó a no posponer la tesis hasta el último momento.
Gracias a Pablo IV, Jorge y Mario por el tiempo compartido en el despacho, actualmente cono-
cido como Pabloficina. También a Omar, Rebeca, Antonio, Víctor, Gonzalo, Julio y Valentina
por todos los buenos ratos. A cada uno de vosotros y a todos los demás, ha sido un auténtico
placer cruzar caminos.

III



IV

Por supuesto, el doctorado me ha brindado la posibilidad de entablar vínculos y colaborar con
personas realmente increíbles, así como viajar mucho. Nunca olvidaré los tres meses que pasé
en París (tres años desde el sistema de referencia del Colegio de España). Estoy profundamente
agradecido con Asmaa por lo mucho que se involucró con mi llegada al IJCLab. También con
Gio, por por su paciencia al responder mis dudas repetidas veces, y con el resto del grupo, que
fue muy acogedor. Imborrable será todo lo vivido en el Colegio de España, así como las personas
que tuve la fortuna de conocer. Gracias infinitas a Adri, Alberto, Carlos, Elena, Íñigo, Josemi,
Josep, Josetrón, Maru, Rubén y Samu por hacer de París una experiancia mágica e irrepetible
(también surrealista).

A vosotros, Lloria, David, Celia y Pilar, os agradezco que sigáis ahí después de tanto tiempo,
que se pueda contar con vosotros para cualquier cosa y que siempre intentéis encontrar un hueco
para que nos veamos. Es un auténtico privilegio teneros.

Llegar hasta aquí no habría sido posible sin la persona más importante en mi vida. Gracias
Paloma por tu apoyo inagotable en todo momento. Por escucharme y aconsejarme siempre que
lo he necesitado. Por todo lo vivido a lo largo de tantos años. Gracias infinitas por ser parte de
mi vida.

One of the final steps of the doctoral journey is the evaluation of the manuscript by the members
of the jury. Therefore, I want to thank all of them for their time and dedication. Además,
agradezo al Ministerio de Ciencia, Innovación y Universidades (MICIU) por su apoyo económico
mediante las ayudas para contratos predoctorales para la formación de doctores con referencia
PRE2018-084599.

Me gustaría agradecerle también al COVID-19 por haberme hecho sentir como en casa durante
el inicio de mi doctorado. Asimismo, doy las gracias a Lupe y Emilio por adoptarme durante
esos primeros meses de pandemia.

Así pues, quisiera poner el punto final agradeciéndole a todo aquel que haya tenido el valor (o
la obligación) de leerse esta tesis. ¡Gracias!



List of scientific publications

This thesis is based on the following publications:

1. Generalizing the Scotogenic model
P. Escribano, M. Reig, A. Vicente
Journal: JHEP 07 (2020) 097
Preprint: 2004.05172

2. Ultralight scalars in leptonic observables
P. Escribano, A. Vicente
Journal: JHEP 03 (2021) 240
Preprint: 2008.01099

3. (g− 2)e,µ in an extended inverse type-III seesaw
P. Escribano, J. Terol-Calvo, A. Vicente
Journal: Physical Review D 103 (2021), 115018
Preprint: 2104.03705

4. An ultraviolet completion for the Scotogenic model
P. Escribano, A. Vicente
Journal: Physics Letters B 823 (2021) 136717
Preprint: 2107.10265

5. Observable flavor violation from spontaneous lepton number breaking
P. Escribano, Martin Hirsch, Jacopo Nava, A. Vicente
Journal: JHEP 01 (2022) 098
Preprint: 2108.01101

6. Collider Searches for Heavy Neutral Leptons: beyond simplified scenarios
A. Abada, P. Escribano, X. Marcano, G. Piazza
Journal: EPJ C 82, 1030 (2022)
Preprint: 2208.13882

V

https://link.springer.com/article/10.1007/JHEP07(2020)097
https://arxiv.org/abs/2004.05172
https://link.springer.com/article/10.1007/JHEP03(2021)240
https://arxiv.org/abs/2008.01099
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.115018
https://arxiv.org/abs/2104.03705
https://www.sciencedirect.com/science/article/pii/S0370269321006572?via%3Dihub
https://arxiv.org/abs/2107.10265
https://link.springer.com/article/10.1007/JHEP01(2022)098
https://arxiv.org/abs/2108.01101
https://link.springer.com/article/10.1140/epjc/s10052-022-11011-7
https://arxiv.org/abs/2208.13882


7. Neutrino masses, flavor anomalies and muon g− 2 from dark loops
R. Cepedello, P. Escribano, A. Vicente
Journal: Physical Review D 107 (2023), 035034
Preprint: 2209.02730

8. Ultraviolet extensions of the Scotogenic model
D. Portillo-Sánchez, P. Escribano, A. Vicente
Journal: JHEP 08 (2023) 023
Preprint: 2301.05249

Other publications not included here:

1. A Scotogenic explanation for the 95 GeV excesses
P. Escribano, V. M. Lozano, A. Vicente
Preprint: 2306.03735

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.107.035034
https://arxiv.org/abs/2209.02730
https://link.springer.com/article/10.1007/JHEP08(2023)023
https://arxiv.org/abs/2301.05249
https://arxiv.org/abs/2306.03735


Contents

Agradecimientos III

List of scientific publications V

List of Acronyms XIII

Introduction 1

I Introduction and Motivation 3

1 The Standard Model of particle physics 5
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Particle content and their interactions . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Gauge Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.2 Charged and neutral vector currents . . . . . . . . . . . . . . . . . . . . . 12

1.3 The Higgs Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.1 Spontaneous Symmetry Breaking . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.2 The Higgs Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.3 Masses in the Standard Model . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4 Flavor in the Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5 Anomalies in the SM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Neutrino masses 25
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Neutrino oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.1 Neutrino oscillations in vacuum . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.2 Current experimental status . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Lepton Flavor Violation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4 Dirac or Majorana neutrinos? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.5 Neutrino mass models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5.1 Tree-level scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

VII



2.5.2 Radiative scenarios: The Scotogenic model . . . . . . . . . . . . . . . . . 42
2.5.3 Casas-Ibarra parametrization . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.6 Spontaneous Lepton Number Breaking: The Majoron . . . . . . . . . . . . . . . 46

II Leptonic Observables and Standard Model Anomalies 49

3 Ultralight scalars in leptonic observables 51
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2 Effective Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3 Bounds on leptonic flavor conserving couplings . . . . . . . . . . . . . . . . . . . 54

3.3.1 Stellar cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3.2 1-loop coupling to photons . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4 Leptonic observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.4.1 `α → `β φ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.4.2 `α → `β γ φ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.4.3 `α → `β γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4.4 `−α → `−β `

−
β `

+
β . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4.5 `−α → `−β `
−
γ `

+
γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4.6 `−α → `+β `
−
γ `
−
γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.4.7 Lepton magnetic and electric dipole moments . . . . . . . . . . . . . . . . 66
3.5 Phenomenological discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.5.1 Searches for `α → `β φ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.5.2 `α → `β γ φ at the MEG experiment . . . . . . . . . . . . . . . . . . . . . 70
3.5.3 `α → `β γ vs `α → `β`β`β . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.5.4 Lepton magnetic and electric dipole moments . . . . . . . . . . . . . . . . 77

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4 (g− 2)e,µ in an extended inverse type-III seesaw 81
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.2 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.3 Charged lepton anomalous magnetic moments . . . . . . . . . . . . . . . . . . . . 85
4.4 Phenomenological discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4.1 Experimental constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.4.2 (g − 2)e,µ in the ISS3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.4.3 (g − 2)e,µ in the ISS3VL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5 Neutrino masses, flavor anomalies and muon g− 2 from dark loops 99
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.2 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100



5.3 Observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6 Observable flavor violation from spontaneous lepton number breaking 109
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.2 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.2.1 Scalar sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.2.2 Lepton masses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.3 Majoron couplings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.4 Phenomenology of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

III Model Building 129

7 Generalizing the Scotogenic model 131
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.2 The general Scotogenic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.3 Neutrino masses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.3.1 Particular case 1: (nN , nη) = (3,1) . . . . . . . . . . . . . . . . . . . . . 137
7.3.2 Particular case 2: (nN , nη) = (1,2) . . . . . . . . . . . . . . . . . . . . . 137

7.4 High-energy behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
7.5 Summary and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

8 Ultraviolet extensions of the Scotogenic model 147
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
8.2 Ultraviolet extensions of the Scotogenic model . . . . . . . . . . . . . . . . . . . . 148

8.2.1 General considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
8.2.2 Topologies I-IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
8.2.3 Topology V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

8.3 An UV extended Scotogenic model with one σ field: First example . . . . . . . . 155
8.3.1 Ultraviolet theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
8.3.2 Effective theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

8.4 An UV extended Scotogenic model with one σ field: Second example . . . . . . . 162
8.4.1 Ultraviolet theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
8.4.2 Effective theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

8.5 An UV extended Scotogenic model with two σ fields . . . . . . . . . . . . . . . . 166
8.5.1 Ultraviolet theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
8.5.2 Effective theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169



8.6 Phenomenology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
8.6.1 Majoron coupling to charged leptons . . . . . . . . . . . . . . . . . . . . . 172
8.6.2 Collider signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
8.6.3 Dark matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

8.7 Summary and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

IV Collider Searches 179

9 Collider Searches for Heavy Neutral Leptons:

Beyond Simplified Scenarios 181
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
9.2 Status of HNL searches at high-energy colliders . . . . . . . . . . . . . . . . . . . 182
9.3 Beyond the single mixing assumption . . . . . . . . . . . . . . . . . . . . . . . . . 188
9.4 Beyond the single HNL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
9.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

V Final Remarks 201

Final Thoughts 203

Summary of the Thesis 207

Resum de la Tesi 219

VI Appendices 233

A Ultralight scalar parametrization in terms of derivative interactions 235

B Extended inverse type-III seesaw couplings 239

C Charged lepton anomalous magnetic moments: full expressions 243

D Proof of the pseudoscalar nature of the majoron couplings 247

E Effective coefficients for flavor violating observables 251

F Rhµµ analytical expression 257

G Boundedness from below 259



H UV extensions of the Scotogenic model: Accidental Z2 symmetries 263
H.1 Topologies I-IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
H.2 Topology V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

I W boson decays in the presence of two HNL 269
I.1 Same sign leptons: W+ → `+α `

+
β q
′q̄ . . . . . . . . . . . . . . . . . . . . . . . . . . 269

I.2 Different sign leptons: W+ → `+α `
−
β q
′q̄ . . . . . . . . . . . . . . . . . . . . . . . . 271

References 273





List of Acronyms

AMM Anomalous Magnetic Moment
ALP Axion-Like Particle
BFB Bounded From Below
CKM Cabibbo-Kobayashi-Maskawa
CP Charge Conjugation times Parity
DM Dark Matter
EDM Electric Dipole Moment
EW Electroweak
HNL Heavy Neutral Lepton
IO Inverted Ordering
ISS1 Inverse Type-I Seesaw
ISS3 Inverse Type-III Seesaw
NO Normal Ordering
LHC Large Hadron Collider
LFV Lepton Flavor Violation
LNC Lepton Number Conservation
LNV Lepton Number Violation
LSS Linear Seesaw
NP New Physics
OS Opposite Sign
OSSF Opposite-Sign Same-Flavor
PMNS Pontecorvo-Maki-Nakagawa-Sakata
QCD Quantum Chromodynamics
QED Quantum Electrodynamics
QFT Quantum Field Theory
RGEs Renormalization Group Equations
SM Standard Model
SS Same Sign
SSSF Same-Sign Same-Flavor
SSB Spontaneous Symmetry Breaking

XIII



SS1 Type-I seesaw
SS2 Type-II Seesaw
SS3 Type-III Seesaw
UV Ultraviolet
VEV Vacuum Expectation Value
VEB Valor d’Expectació del Buit
VL Vector-Like
ME Model Estàndard
BSM Beyond the Standard Model
ISS3VL Inverse Type-III Seesaw plus 2 Vector-Like Leptons



Introduction

The study of fundamental particles and their interactions has been one of the most fascinating
and captivating fields of scientific research over the last century. Currently, our understanding
of matter is described by the Standard Model of particle physics, which provides an incredibly
accurate picture of Nature at the subatomic level. Nevertheless, even with its remarkable success,
the model falls short of explaining certain crucial experimental results. Thus, Beyond the
Standard Model physics is an active area of research where physicists are searching for a more
comprehensive theory that can explain the existing discrepancies between the Standard Model
predictions and the experimentally measured quantities.

One of the most notable shortcomings of the Standard Model is its prediction of massless neu-
trinos, which contradicts the experimental detection of neutrino oscillations. The experimental
observation of this phenomenon undoubtedly confirms the existence of non-zero neutrino masses
and Lepton Flavor Violation. However, whether neutrinos are Dirac or Majorana particles and
which is the mechanism behind the generation of their tiny masses, remain a mystery. This
motivates researchers to delve deeper and go beyond the currently established theory in order
to provide an explanation to the open questions.

Moreover, it is particularly appealing to connect the neutrino mass mechanism to other
unresolved questions that also deserve attention. These include the long-standing discrepancy
between the Standard Model prediction for the muon anomalous magnetic moment and its ex-
perimentally determined value and the more recent deviation for the electron case, the measure-
ments of observables involving B-meson decays that do not align with the theoretical predictions,
as well as the nature of the Dark Matter of the Universe.

The work presented in the present thesis has primarily focused on studying and proposing
models that include neutrino mass mechanisms. The thesis can be divided into four parts, each
covering a specific aspect of the research. The first part comprises Chapters 1 and 2. Chapters 1
introduces the Standard Model, focusing on the electroweak theory and the Higgs mechanism,
and discusses some of the problems of the model. In Chapter 2, neutrino flavor oscillations and
the possible nature of these particles are discussed, along with a review of some of the most
important neutrino mass mechanisms.

The second part begins with Chapter 3, where the possible contributions of new ultralight
scalars to many leptonic observables are computed, taking a model-independent approach. In
Chapters 4, 5, and 6, we propose different neutrino mass models aimed at accommodating some

1



of the other anomalies presented above, although the main goal of the model in Chapter 6 was
to include sizable Lepton Flavor Violating signatures.

Part three includes Chapters 7 and 8, which are based on some model-building works. Chap-
ter 7 introduces the general Scotogenic model with arbitrary numbers of generations of the Sco-
togenic states, while Chapter 8 classifies all possible ultraviolet extensions of the Scotogenic
model satisfying specific requirements.

Chapter 9 constitutes the fourth part of the thesis. Here, we discuss how the available exper-
imental bounds on the mixings of hypothetical Heavy Neutral Leptons with the Standard Model
neutrinos from LHC searches can be recast when considering more generic mixing patterns.

Finally, several appendices can be found at the end of the document with details on many
topics discussed throughout the whole thesis. These appendices may be valuable for readers
interested in the technical details of the works.
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Chapter 1

The Standard Model of particle
physics

“Never underestimate the joy people
derive from hearing something they
already know.”

– Enrico Fermi

1.1 Introduction

Throughout the latter half of the 20th century, a comprehensive theory describing the behavior
of subatomic particles and the interactions among them through the exchange of other particles
known as bosons was developed. This framework, known as the Standard Model of particle
physics (SM) [1–3], is considered one of the most successful theories ever constructed, offering
an excellent description of numerous experimental results that physicists have measured over
the years. Nevertheless, the SM has some open questions that must be addressed.

The SM is the culmination of a collective effort by many researchers working in different
areas, such as theoretical particle physics and experimental physics. Its construction was a
gradual process that took place over several decades, arguably with its origins dating back to
1918. That was when Hermann Weyl introduced the concept of gauge symmetry [4], which
played a significant role in the development of the SM. But it was not important just for
the SM but also for the development of Quantum Electrodynamics (QED) [5–8]. QED is a
relativistic quantum field theory (QFT) of the electromagnetic force describing how charged
particles interact between them and with the electromagnetic field. Although its principles were
proposed during the 1920s, it was in the late 1940s that it was fully developed and refined
independently by Richard P. Feynman, Julian S. Schwinger and Shin’ichirō Tomonaga [5–8].

5



6 Chapter 1. The Standard Model of particle physics

Later on, in the early 1950s, Chen Ning Yang and Robert Mills proposed the Yang-Mills
(YM) theory [9], consisting of an extension of the QED theory. Similar to the theory of electro-
dynamics, where the electromagnetic interaction is mediated by photons, the YM theory allows
for new interactions between subatomic particles also mediated by the exchange of other parti-
cles. These particles were named gauge bosons. This framework turned out to constitute the
foundation of the SM.

In the 1970s, Sheldon Glashow, Abdus Salam, and Steven Weinberg proposed the elec-
troweak (EW) theory, successfully unifying both electromagnetic and weak nuclear forces into
a single framework [1, 2, 10, 11]. This theory is, precisely, a YM theory based on the gauge
group SU(2)×U(1) and is generally regarded as a milestone for the development of the SM.
Creating the EW theory was already a breakthrough; however, another fundamental force of
Nature remained to be unified. Of course, we are talking about the strong nuclear force.

The theoretical framework describing the properties of the strong force was presented in
the 1970s and received the name of Quantum Chromodynamics (QCD) [12–14]. It took nearly
a decade for it to be considered complete and self-consistent. QCD was heavily influenced by
other theories, such as the YM theory and QED, being itself an extension of the former based on
the SU(3) gauge group. It was built upon the quark model independently developed by Murray
Gell-Mann and George Zweig in the 1960s [15, 16]. 1 In summary, the model assumed that
hadrons 2 are made up of combinations of more fundamental particles, the quarks. In contrast
to hadrons, such as protons and neutrons, quarks have a fractional electric charge and are held
together within composite particles thanks to the strong force. The model could explain the
large number of baryons and mesons that experiments observed back then. It was even able to
make precise predictions that were verified by comparison with experimental data.

Therefore, the SM is the unification of the electroweak theory and quantum chromodynamics
as a coherent theory obeying an intricate set of symmetries. However, in the first stages of the
theory, there was a big problem related to the masses of the bosons mediating the weak force, the
weak gauge bosonsW and Z. The model predicted both of them to be massless, in contrast with
what the experiments showed. That is why Peter Higgs, Robert Brout and François Englert and
Gerald Guralnik, C. Richard Hagen and Tom Kibble, independently proposed what nowadays is
known as the Higgs mechanism [17–19]. The underlying idea is that particles in the SM acquire
their mass by interacting with a new field called the Higgs field. Its associated particle, the
so-called Higgs boson, was discovered in 2012 at CERN’s Large Hadron Collider (LHC) [20,21],
completing the SM puzzle.

1Gell-Mann’s proposal was more succesful than Zweig’s, being the one adopted by the physics community.
However, both physicists were considered the fathers of the model.

2Hadrons are particles that interact strongly. There are two types of hadrons: baryons, composed by three
quarks, and mesons, composed by just two quarks.
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1.2 Particle content and their interactions

The majority of what we know about matter and its interactions at the most fundamental level is
summarised in the Standard Model of particle physics. This theoretical framework can describe
three of the four fundamental forces present in Nature. It includes electromagnetism and weak
and strong interactions, but not gravity. Being a gauge theory, the SM is based on the symmetry
group

SU(3)C × SU(2)L ×U(1)Y . (1.1)

The forces are mediated by the exchange of spin-1 gauge bosons: the strong sector is charac-
terized by the group SU(3)C and its associated 8 massless gauge fields, the gluons, while the
electroweak block relies on the SU(2)L×U(1)Y symmetry, with 3 SU(2)L W gauge bosons and 1
U(1)Y B gauge boson. The strong SU(3)C piece is out of the scope of this thesis but a detailed
discussion can be found, for instance, in Refs. [22, 23].

Regarding the matter content of the model, it includes 12 spin-1/2 fermions plus their associ-
ated antiparticles. Depending on whether they are charged under SU(3)C or not, these fermions
can be classified into six flavors of quarks (up u, down d, charm c, strange s, top t, and bottom
b) and six flavors 3 of leptons (electron e, electron neutrino νe, muon µ, muon neutrino νµ,
tau τ , and tau neutrino ντ ). Each quark flavor can have three different colors (red, green, and
blue), resulting in 3 × 6 = 18 types of quarks. Despite having a large number of particles, the
classification can be easily simplified by casting the particles as SU(2)L doublets and singlets.
For quarks,

qL =
(
u

d

)
L

,

(
c

s

)
L

,

(
t

b

)
L

,

uR = uR , cR , tR , dR = dR , sR , bR ,

(1.2)

while for leptons,

`L =
(
νe

e

)
L

,

(
νµ

µ

)
L

,

(
ντ

τ

)
L

, eR = eR , µR , τR . (1.3)

Notice that the SM is a chiral theory, left-handed fields transform as SU(2)L doublets while
their right-handed partners are SU(2)L singlets. Therefore, both left- and right-handed fields
transform differently under the gauge group of the model. The three families encompassed in the
multiplets have identical properties differing only by their masses and flavor numbers. Notice,
however, that there are no right-handed neutrinos in the theory. This will have important
consequencies later. In the following, we will use eR to refer to the three generations of right-
handed leptons.

3We will talk about flavor in Section 1.4.
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Field Generations Spin SU(3)C SU(2)L U(1)Y

qL 3 1/2 3 2 1/6

uR 3 1/2 3 1 2/3

dR 3 1/2 3 1 -1/3

`L 3 1/2 1 2 -1/2

eR 3 1/2 1 1 -1

H 1 0 1 2 1/2

B boson 1 1 1 1 0

W bosons 1 1 1 3 0

gluons 1 1 8 1 0

Table 1.1: Lepton, scalar, and boson particle content of the SM, including the number of
generations, the spin and the representations under the gauge symmetries. qL and `L and uR,
dR, and eR are the SM left- and right-handed fermions, respectively, and H is the SM Higgs
boson. B and W are the SU(2)L ×U(1)Y bosons while the gluons are the SU(3)C bosons.

Finally, a well-known problem of Yang-Mills theories is that particles transforming non-
trivially under the gauge group cannot have a mass in the traditional sense. Gauge invariance
forbids mass terms. Instead, masses of fermions and gauge bosons arise from interactions be-
tween particles after the symmetry is broken. For this to happen, a scalar SU(2)L doublet
must be added to the particle content of the model. Once it acquires a vacuum expectation
value (VEV), the electroweak gauge symmetry is spontaneously broken to the electromagnetic
subgroup, generating the masses of the weak gauge bosons and fermions. This mechanism is
known as Spontaneous Symmetry Breaking (SSB) and the new scalar added to the model is the
so-called Higgs doublet.

The complete particle content of the model as well as the quantum numbers under the SM
symmetries are shown in Table 1.1.

1.2.1 Gauge Invariance

We have previously mentioned the concept of gauge invariance and, in this section, we will delve
deeper into its meaning. Gauge invariance is a fundamental concept in physics. It refers to the
symmetry of a physical system under a particular type of local transformations, known as gauge
transformations. Indeed, it is a fundamental pillar for the SM. In the following, we will show
how QED and the EW theory were constructed using this principle.

1.2.1.1 Quantum Electrodynamics

We will now see the method of deriving the QED Lagrangian from the current perspective, that
is, through gauge symmetries. We will start from the free Dirac Lagrangian for an arbitrary
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fermion
Lψ = ψ̄(i/∂ −m)ψ , (1.4)

where ψ is the spinor of the fermion, m is its mass, and /∂ ≡ γµ∂µ. Although this Lagrangian is
invariant under global phase transformations, the derivative term prevents the symmetry from
being local. However, it is this local symmetry that we aim to impose on our Lagrangian.

Let us hypothesize a local U(1) transformation, that is, a local phase transformation,

ψ(x)→ ψ′(x) = e−iQα(x)ψ(x) , (1.5)

where α(x) is an arbitrary real function and Q an arbitrary constant. After applying it to the
free Lagrangian we obtain

Lψ → L′ψ = Lψ +Q [∂µα(x)] ψ̄γµψ . (1.6)

This implies that once we choose a phase convention at a specific reference point in space-time,
the same convention must be consistently applied at all space-time points for the physics of the
system to be consistent. The requirement that the U(1) phase invariance should hold locally
is referred to as the gauge principle. Therefore, if we want the transformation to leave the
Lagrangian invariant, we must add an extra field transforming in such a way as to cancel the
∂µα (x) in Eq. (1.6),

Aµ → A′µ = Aµ + 1
e
∂µα(x) . (1.7)

We also define the covariant derivative

Dµ ≡ ∂µ + i eQAµ , (1.8)

that is introduced in the free Dirac Lagrangian by replacing the usual partial derivative with
the covariant derivative,

Lψ = ψ̄(i /D −m)ψ . (1.9)

With the new field and its transformation, it is straightforward to check that the Lagrangian
is now invariant. What happens, and that is the reason why the covariant derivative is truly
useful, is that Dµψ transforms exactly as ψ.

This symmetry transformation is known as the gauge symmetry of the U(1) group, and the
field we have introduced is a gauge field. In particular, if the constant eQ introduced in the
covariant derivative is the electric charge of the fermion ψ, the new field Aµ corresponds to the
electromagnetic field, with the photon its associated particle. Note that the interaction between
the Dirac fermion and the electromagnetic field, which is nothing but the usual QED vertex,
has been generated by the gauge principle.
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To complete the construction of the gauge invariant Lagrangian, we need to add a gauge
invariant kinetic term for the gauge field,

LKin = −1
4FµνF

µν , (1.10)

where Fµν = ∂µAν − ∂νAµ is the electromagnetic field tensor as in classical electrodynamics.
Notice that a possible mass term for the gauge field, Lm = 1

2m
2
AA

µAµ is forbidden because it
would violate the local U(1) symmetry. This feature is common to any gauge theory. 4 As a
result, gauge bosons are predicted to be massless.

The complete Lagrangian of QED is then expressed as

LQED = −1
4FµνF

µν + ψ̄(i/∂ −m)ψ − eQ ψ̄γµψAµ . (1.11)

1.2.1.2 Electroweak Theory

By the time the EW framework was established, weak charged currents were already well-known,
and they hinted at the existence of a vectorial charged boson along with its conjugate, W±, as
the mediator of weak interactions. QED, mediated by the photon, a massless gauge boson, was
also familiar to theoretical physicists. Therefore, to unify both the electromagnetic and weak
interactions within a single theory, the simplest symmetry with three generators, SU(2), was
sought. The idea was to utilize the gauge symmetry principle, which had proven successful for
the electromagnetic interaction, but now with a much more ambitious goal.

Considering the Lie algebra of the group, the charges associated with the hypothesized gauge
bosons should obey some specific commutation relations. This, however, was not the case and
was considered as an indication for the existence of a fourth gauge boson associated with the
missing charge. Notably, both weak currents were of the V −A form, while the electromagnetic
current was vectorial.

It is reasonable to check the next to the most straightforward option that would provide
us with the four desired gauge bosons: SU(2) × U(1) [2]. However, the right-handed fields eR,
uR, and dR are only present in the electromagnetic current and do not interact with the SU(2)
gauge fields. They are singlets under a new quantum number associated with SU(2), called weak
isospin. On the contrary, left-handed fields should appear in doublets, as shown in Eqs. (1.2)
and (1.3). On the other hand, the electric charge Q could not be the generator of the remaining
gauge group U(1) because the SU(2) doublets do not possess a unique electric charge. We require
a new quantum number. As seen in Table 1.2, it is clear that both components of `L and qL,
separately, share the same number of Y = Q − T3, where T3 is the weak isospin. This Y is
referred to as hypercharge and will be the generator of the U(1) group. Then, the electroweak

4This is, however, strictly only true for non-Abelian gauge groups. An Abelian gauge theory can be made
massive while still preserving gauge invariance by introducing a new scalar field. This is known as the Stueckelberg
mechanism [24].
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Q T3 → Y = Q− T3 νe

e

 0

−1

+1/2

−1/2

−1/2

−1/2 u

d

 +2/3

−1/3

+1/2

−1/2

+1/6

+1/6

Table 1.2: Derivation of the U(1) quantum number. Q and T3 are the electric charge and weak
isospin of the particles, respectively.

symmetry group to consider is
G ≡ SU(2)L ×U(1)Y , (1.12)

where the L refers to left-handed fields and Y to hypercharge.
We are now able to apply the gauge principle to the model. We will focus on a single fermion

family for the sake of simplicity. The model includes two types of fields: those transforming as
doublets under SU(2)L, and those that transform as singlets.

Doublets: ψD(x) =
(
u(x)
d(x)

)
L

,

(
νe(x)
e(x)

)
L

,

Singlets: ψS(x) = eR(x) , uR(x) , dR(x) .

Following what we did for QED, we begin by constructing the free Dirac Lagrangian. Then, we
impose gauge transformations for the fields according to the symmetry group,

ψD(x)→ ψ′D(x) = eiY β(x)UL(x)ψD(x) ,

ψS(x)→ ψ′S(x) = eiY β(x)ψS(x) ,
(1.13)

where UL = exp
[
iσi2 αi(x)

]
, σi being the Pauli matrices, generators of the SU(2) group.

To ensure that these transformations truly preserve the symmetry of our Lagrangian, the
introduction of the covariant derivative becomes necessary once again. However, this time we
will need to include four gauge fields. Also, depending on how the fields transform under the
symmetries, the covariant derivatives will be different,

DµψD(x) =
[
∂µ − ig

~σ

2
~Wµ(x)− ig′Y Bµ(x)

]
ψD(x) ,

DµψS(x) = [∂µ − ig′Y Bµ(x)]ψS(x) .
(1.14)
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Imposing now that DµψX(x) transforms exactly as ψX , it is straightforward to find what trans-
formations the gauge fields satisfy,

Bµ → B′µ = Bµ + 1
g′
∂µβ(x)

~σ

2
~Wµ →

~σ

2
~W ′µ = UL(x)

[
~σ

2
~Wµ

]
U †L(x) + i

g
UL(x)∂µU †L.

(1.15)

Notice that ~W are the generators of a non-Abelian gauge group, and their transformation is not
as simple as that of B.

Similar to what we have seen for QED, the kinetic terms of the gauge bosons are given by

LKin = −1
4BµνB

µν − 1
4W

i
µνW

µν
i , (1.16)

where
Bµν = ∂µBν − ∂νBµ ,

W i
µν = ∂µW

i
ν − ∂νW i

µ + gεijkW j
µW

k
ν ,

(1.17)

are the field tensors. The latter is the generalization for a non-Abelian symmetry.
As a final note for this part, it is worth mentioning that not only the gauge boson mass terms

violate gauge invariance, but fermionic mass terms do as well. These terms are proportional to
ψ̄ψ and, in the SM, left- and right-handed fields transform differently. So, we have constructed
a theory containing both massless vector bosons and fermions.

1.2.2 Charged and neutral vector currents

We already know that the interactions between fermions and gauge bosons are determined by
the additional terms included in the covariant derivatives. For the first family of fermions, these
are

Lint = g
∑
D

ψ̄Dγ
µσ

i

2 W
i
µψD + g′Bµ

∑
j=S,D

Yjψ̄jγ
µψj , (1.18)

where S,D refer to singlet and doublet, respectively. Using the expressions of the Pauli matrices
we have

σi

2 W
i
µ = 1

2

(
W 3
µ W 1

µ − iW 2
µ

W 1
µ + iW 2

µ −W 3
µ

)
≡ 1

2

(
W 3
µ

√
2W+

µ√
2W−µ −W 3

µ

)
, (1.19)

where we have defined the fields W±µ ≡ 1√
2

(
W 1
µ ∓ iW 2

µ

)
, which correspond to the charged

bosons mediating the weak interaction. Taking just the terms with the charged weak bosons
from Eq. (1.18), we can write the Lagrangian of charged currents describing the coupling between
fermions and these bosons,

LCC = g√
2

{
W+
µ [ūγµ (1− γ5) d+ νeγµ (1− γ5) e] + h.c.

}
. (1.20)
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Regarding neutral currents, there is a mixing between the gauge neutral bosons W 3 and B. The
mixing is described by the electroweak mixing angle, also known as the Weinberg angle, θW , 5

(
W 3
µ

Bµ

)
=
(

cos θW sin θW
− sin θW cos θW

)(
Zµ

Aµ

)
, (1.21)

where Zµ is the neutral weak boson and Aµ is the photon. The value of this angle determines
the extent to which the weak and electromegnetic forces are mixed. Then, from the remaining
terms in Eq. (1.18), we get the neutral electroweak interactions

LANC =
∑
i

ψ̄i(x)γµ
[
gT3 sin θW + g′Y cos θW

]
ψi(x)Aµ(x) ,

LZNC =
∑
i

ψ̄i(x)γµ
[
gT3 cos θW − g′Y sin θW

]
ψi(x)Zµ(x) ,

(1.22)

where T3 = σ3/2 when acting on the doublets, and zero when it does on the singlets. Obviously,
the first interaction must be identical to that obtained in the last term of Eq. (1.11) for QED.
Therefore, using the relation Q = Y + T3, we identify

e = g sin θW = g′ cos θW . (1.23)

Finally, we can express the neutral currents in a more simplified form using the previously
established relation between the coupling constants and the weak mixing angle.

LANC =
∑
i

ψ̄i(x)γµ[eQ]ψi(x)Aµ ,

LZNC = e

sin θW cos θw

∑
i

ψ̄i(x)γµ
(
T3 −Q sin2 θW

)
ψi(x)Zµ(x) .

(1.24)

To summarize, we have successfully unified the weak and electromagnetic interactions using the
gauge principle. However, instead of a single symmetry group, we have two, each with its own
independent coupling constant. And this does not consider the strong interaction represented
by the QCD part. As a result, the unification is not considered entirely satisfactory. A large
number of theoretical physicists are working on the search for Grand Unified Theories, models
in which, at high energies, the three SM gauge interactions are merged into a single force,
and also for the so-called Theory of Everything, which aims to describe not only the weak and
electromagnetic interactions with a single free coupling constant but all the fundamental forces
of Nature, including gravity.

We will present in the next section the Higgs mechanism of spontaneous symmetry breaking,
which provides a natural explanation for the masses of the particles in the SM.

5Although the mixing angle is known as the Weinberg angle, it was first proposed by Sheldon Lee Glashow,
Abdus Salam, and Steven Weinberg, independently, in the 1970s.
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1.3 The Higgs Mechanism

So far, we have seen how QED can be incorporated into the same theoretical framework that
describes weak interactions. However, the model for electroweak interactions that we constructed
has very little to do with reality. Our gauge bosons do not possess a mass. While this, of course,
is not a problem for the photon, which is known to be massless, the weak bosons W± and Z

should be massive.
Before proceeding to the main topic of the section, the Higgs mechanism, we will introduce a

crucial concept to understand the Higgs mechanism. Although symmetries play a fundamental
role in particle physics, it is not always the case that they are observed in Nature. This is the
case for the EW theory. In order for the gauge bosons to get a mass, we need the SU(2)L×U(1)Y

to be broken.

1.3.1 Spontaneous Symmetry Breaking

Symmetry breaking in quantum field theories can happen in two ways: explicitly or sponta-
neously.

Explicit symmetry breaking occurs when adding a term to the Lagrangian that does not
preserve the symmetry. If that term is small, the symmetry is approximately conserved, and
the violation of the associated conserved current can only be observed with high experimental
precision. However, breaking a gauge symmetry explicitly can lead to several inconsistencies,
such as unitarity violation and non-renormalizability. 6 7 The former may lead to negative
probabilities and non-unitary time evolution, meaning that the probability of observing a process
is not conserved over time. Fortunately, there is a second possibility to break a symmetry
compatible with gauge symmetries: spontaneous symmetry breaking.

Spontaneous symmetry breaking is one of the crucial concepts in the construction of the SM.
Unlike explicit symmetry breaking, where there is no exact symmetry from the beginning, the
Lagrangian remains invariant under the symmetry in the spontaneous breaking case, but the
ground state of the theory does not. In the following, we will refer to the ground state as the
vacuum. Depending on the nature of the symmetry, SSB may have different implications. In
our case, we are interested in the spontaneous breaking of continuous symmetries.

Let us consider the presence of a continuous global symmetry in our Lagrangian. According
to the Goldstone theorem [26, 27], if there is at least one generator, G, of the symmetry not
preserving the vacuum, meaning that it does not maintain the minimum energy state (G 〈0〉 6=
〈0〉), then the symmetry is said to be spontaneously broken and one massless spin-0 particle will
exist for each of the broken generators. These particles are known as Goldston bosons.

6A renormalizable theory is one in which the infinities that emerge during calculations can be absorbed into a
finite number of parameters of the theory, such as masses and coupling constants. Therefore, one can remove the
infinities just by redefining those parameters. On the contrary, a non-renormalizable theory does not allow for
the absorption of the infinities in a finite number of quantities. These theories are considered effective theories
and have limited validity.

7Note that the SM, being constructed upon a gauge symmetry with SSB, is fully renormalizable [25].
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In summary, the EW symmetry must be broken to explain particle masses, and it can only
be broken spontaneously. However, the experiments have not observed any of the predicted
Goldstone bosons associated with the spontaneous EW symmetry breaking. As we will see
below, the Higgs mechanism uses these massless scalars to give mass to some particles in the
model.

1.3.2 The Higgs Mechanism

It may seem that the Goldstone theorem, far from solving the mass problem in the EW sym-
metry, complicates it, as it predicts new massless states rather than massive ones. However, the
situation changes if the continuous global symmetry is local, that is, gauge.

We aim to give mass to the W± and Z bosons through SSB, while the photon must remain
massless. Therefore, we need three degrees of freedom to become the longitudinal modes of
the weak mediators. With this in mind, we introduce a new field with a scalar potential that
preserves the gauge symmetry and makes the vacuum not invariant under it. We want these new
degrees of freedom to have weak charge and hypercharge to break the gauge group. It should
also be a neutral field that acquires a non-zero expectation value in the vacuum, breaking the
SU(2)L × U(1)Y group down to electromagnetism, U(1)Q. The simplest way to achieve this is
by defining a doublet under SU(2)L with hypercharge Y = 1/2, known as the Higgs doublet:

H =
(
H+

H0

)
. (1.25)

The most general Lagrangian we can build for this doublet, while ensuring that the theory
remains renormalizable, is

LH = (DµH)† (DµH)− VH + LY with VH = µ2H†H + λ
(
H†H

)2
, (1.26)

with λ a positive real number, LY is the Yukawa interaction Lagrangian that we will see below,
and the covariant derivative is the same we defined in Eq. (1.14), substituting the hypercharge
operator by its eigenvalue, 1/2,

DµH(x) =
[
∂µ − ig

~σ

2
~Wµ(x)− ig′2 Bµ(x)

]
H(x) . (1.27)

We want the potential to be bounded from below to have a ground state. This is why λ > 0.
However, for the quadratic coupling µ there are two possibilities, as shown in Fig. 1.1.

(a) µ2 > 0

This potential only has a minimum at |H| = 0 (Fig. 1.1a), which preserves the symmetry.
This configuration describes just a massive scalar doublet with mass µ and quartic coupling
λ, which does not lead to SSB.
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(a) µ2 > 0 , λ > 0 (b) µ2 < 0 , λ > 0

Figure 1.1: The well-known Higgs potential in the SM for the two possible scenarios: (a) µ2 > 0
and (b) µ2 < 0. In the former, the potential has just one minimum at |H| = 0, while in the
latter, the minimum occurs for |H| 6= 0, leading to the spontaneous breaking of the gauge group
of the model. λ is always taken to be positive in order for the potential to be bounded from
below.

(b) µ2 < 0

In this scenario, the minimum of the potential is obtained for the field configurations
satisfying

H†H = −µ
2

2λ ≡
v2

2 , (1.28)

where H† represents the Hermitian conjugate of the field H and we have defined v2 =
−µ2/λ (Fig. 1.1b).

The set of points that minimizes the potential is invariant under gauge group transforma-
tions, but if we choose one of these minima as the vacuum expectation value of H(x), we
will have spontaneously broken the symmetry.

Focusing on the second possibility, the most appropriate choice for the VEV is

〈H〉 ≡ 〈0|H|0〉 = 1√
2

(
0
v

)
. (1.29)

This VEV keeps the photon massless as it remains invariant under the QED gauge symmetry.
Using

Q = T3 + Y = 1
2σ3 + 1

2I =
(

1 0
0 0

)
, (1.30)
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it is straightforward to see that electric charge is not a broken generator:

Q〈H〉 =
(

1 0
0 0

)
1√
2

(
0
v

)
=
(

0
0

)
, (1.31)

meaning that the vacuum remains invariant under U(1)Q transformations and the photon will
not get a mass. Therefore, the addition of the Higgs doublet breaks the symmetry SU(2)L×U(1)Y

spontaneously to U(1)Q. Notice that, according to the Goldstone theorem, three massless scalars
should appear in the theory.

To understand how the Higgs mechanism will give masses to the W and Z bosons, it proves
convenient to parametrize the scalar doublet in the general form

H(x) = 1√
2

exp
(
i
~σ

2 ·
~θ(x)
v

)(
0

v + h(x)

)
, (1.32)

which makes the particle content manifest. The crucial point for this transformation is that the
gauge of the theory under SU(2)L allows us to eliminate any dependence on the θi(x) fields,
which are precisely the three would-be Goldstone bosons associated with the SSB mechanism.
The field h(x) is the physical Higgs boson field, which stays in the particle spectrum of the
model.

It is possible to eliminate the non-physical fields θi(x) through the gauge transformation

H → H ′ = exp
(
−i~σ2 ·

~θ(x)
v

)
H = 1

2

(
0

v + h(x)

)
, (1.33)

which is known as the unitary gauge and can be interpreted as if the Goldstone bosons have
been absorbed by the gauge bosons.

1.3.3 Masses in the Standard Model

Gauge bosons masses can be identified after substituting Eq. (1.33) into the kinetic term of the
scalar potential. Starting with the covariant derivative in Eq. (1.27) we get,

DµH =
[
∂µ − i

g

2

(
W 3
µ

√
2W+

µ√
2W−µ −W 3

µ

)
− ig

′

2 Bµ

]
1√
2

(
0

v + h

)

=

 −ig2W
+
µ (v + h)

1√
2∂µh+ i

2
√

2

(
gW 3

µ − g′Bµ
)

(v + h)

 . (1.34)

Then, using the weak rotation introduced in Eq. (1.21), it is not difficult to verify that the second
term appearing in the lower component of the derivative is nothing else than the Z boson field,

Zµ = cos θWW 3
µ − sin θWBµ = 1√

g2 + g′2

(
gW 3

µ − g′Bµ
)
. (1.35)
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Finally, the kinetic term of the Higgs boson becomes

(DµH)† (DµH) = 1
2∂µh ∂

µh+ (v + h)2
(
g2

4 W
+
µ W

−µ + g2 + g′2

8 ZµZ
µ

)
. (1.36)

This result shows that by including the Higgs boson and using spontaneous symmetry breaking,
we have successfully given mass to the gauge bosons of the weak interaction, their masses being
given, at tree-level, by

mW = gv

2 , mZ =
√
g2 + g′2 v

2 = mW

cos θW
. (1.37)

Notice that, as expected, there is no mass term for the photon.
Regarding the fermions, it is the previously introduced Yukawa interaction Lagrangian of

Eq. (1.26) the one providing the masses of these particles, as well as their interaction with the
Higgs boson. It is defined as

LSM
Y = −(Yd)ij Q̄iLH djR − (Yu)ij Q̄iLH̃ ujR − (Ye)ij ¯̀i

LH ejR + h.c. , (1.38)

where Yu,d,e are 3 × 3 Yukawa matrices in flavor space, and we have introduced the field H̃ ≡
iσ2H

∗, which transforms exactly as H under SU(2)L, to construct an interaction term that leads
to masses for the positively charged quarks. Note that there is only one Yukawa matrix for the
lepton sector. Since right-handed neutrinos do not exist in the model, neutrinos do not get a
mass from Yukawa interactions with the SM Higgs doublet.

The Yukawa matrices that appear are 3× 3 complex matrices with many parameters, 54 in
total, although we only want to provide masses for 9 particles: the 3 charged leptons and the
6 quarks. Fortunately, many of these parameters are unphysical, and after several changes of
basis and phase transformations, as detailed in [28], the Lagrangian can be written in what is
known as the mass basis,

LSM
Y = −

(
1 + h

v

)(
ēLm̂eeR + d̄Lm̂ddR + ūLm̂uuR

)
+ h.c. , (1.39)

where the m̂ matrices are the diagonal mass matrices whose values must be measured experi-
mentally. It follows that the strength of the interaction between the physical Higgs boson and
the SM fermions is proportional to the fermion masses, such that

mq = v√
2
Yq , (1.40)

with q = u, d, e.
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1.4 Flavor in the Standard Model

Through experiments, we have learnt that there exist three different copies, known as flavors,
of each of the SM fermions: for the up-type quarks u, c, t; for the down-type quarks d, s, b;
for the charged leptons e, µ, τ ; and for the neutrinos νe, νµ, ντ . All of the species of the same
fermion group share the same quantum numbers and only differ in their mass. Interestingly,
the mass hierarchy in the families (except perhaps in the neutrino sector) is such that the third
generation is much heavier than the second one, and so is the second generation with respect to
the first. For instance, me � mµ � mτ . The question of why each fundamental fermion comes
in three flavors together with the huge differences in the masses of the copies and in the mixings
of different fermions is known as the Standard Model flavor puzzle.

In this section, we will provide more details about the derivation of the fermion mass eigen-
states and the possible mixing among flavors. In the previous section, we saw that the mass
matrices of the charged fermions are related to the Yukawa couplings and the Higgs VEV through
Eq. (1.40). However, the Yukawa matrices are not diagonal in general, and in order to go to the
mass basis, we must rotate the gauge eigenstates to the mass fields via

qgL = V q
L q

m
L , (1.41)

qgR = V q
R q

m
R , (1.42)

where, again, q = u, d, e and V q
L,R are 3 × 3 unitary matrices. The superindices g and m

denote gauge and mass basis, respectively. Therefore, after applying these transformations to
Eq. (1.38) (where the superindex g was omitted for simplicity from all the fields), the diagonal
mass matrices of the SM fermions defined in Eq. 1.39 are given by

m̂q = V q
L mq (V q

R)† . (1.43)

The states participating in the physical processes are those with well-defined mass, that is,
the mass eigenstates. This implies that the interaction eigenstates in the kinetic terms of the
fermions must be rotated to the mass basis. The neutral currents given in Eq. (1.24) remain
unaffected because they do not mix up- and down-type quarks nor charged and neutral leptons,
and the change of basis matrices cancel due to their unitary nature. However, weak currents in
Eq. (1.20) are sensitive to flavor rotations. The charged current Lagrangian in the new basis is

LCC = g√
2
W+
µ (ūLγµVCKMdL + ν̄Lγ

µeL) + h.c. , (1.44)

where VCKM is the famous Cabibbo-Kobayashi-Maskawa (CKM) matrix [29,30] defined as

VCKM = V u
L

(
V d
L

)†
=


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 . (1.45)
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It is a 3×3 non-diagonal unitary matrix that is typically parametrized in a convenient way that
is based on some mathematical considerations. Any complex n×n matrix has a total of 2n2 free
real parameters. However, if the matrix is unitary, the condition V †CKMVCKM = 1 imposes n2

constraints, reducing the number of independent parameters to n2. Then, the free parameters
can be split into n(n − 1)/2 mixing angles and n(n + 1)/2 phases. For the case of the SM,
with just three quark families, this leaves us with 3 angles and 6 phases, though not all of the
latter are observable. Five of these phases can be set to zero using the U(1)6 symmetry under
which the quark masses are invariant. The non-removable phase is of great physical significance
as it is capable of explaining the observed CP (charge conjugation times parity) violation in
experiments. Therefore, we are left with 4 degrees of freedom: three angles and one phase. The
CKM matrix can, then, be parametrized as [31]

VCKM =


c12c13 s12c13 s13e

−iδ

−c12s23s13e
iδ − s12c23 c12c13 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 , (1.46)

where we have defined sij ≡ sin θij and cij ≡ cos θij , and i and j are generation indices. Af-
ter a global fit combining different experimental results (see [32] and references therein), the
magnitude of the Cabibbo-Kobayashi-Maskawa matrix elements become

|VCKM| =


0.97435± 0.00016 0.22500± 0.00067 0.00369± 0.00011
0.22486± 0.00067 0.97349± 0.00016 0.04182+0.00085

−0.00074
0.00857+0.00020

−0.00018 0.04110+0.00083
−0.00072 0.999118+0.000031

−0.000036

 , (1.47)

which, as mentioned above, is non-diagonal, although it is very hierarchical. Finally, the fit
result for the CP-violating phase is δ = 1.144± 0.027.

It is important to note that, in the SM, there is no lepton mixing matrix equivalent to the
VCKM matrix. This is due to the fact that the theory does not include right-handed neutrinos,
therefore, neutrinos remain massless. We have then the freedom to redefine the neutrino fields
in such a way as to eliminate the mixing in the lepton sector. Therefore, the three leptonic
flavors are exactly conserved and a global accidental symmetry U(1)e × U(1)µ × U(1)τ exists.
In Chapter 2, we will see that, according to neutrino oscillations, neutrinos are massive and a
lepton mixing matrix must exist, leading to lepton flavor violation (LFV).

1.5 Anomalies in the SM

Although the Standard Model of particle physics has earned its place among the best theories
ever created by humanity, it still faces some important unresolved questions that require atten-
tion. In the works on which this thesis is based, we have focused only on anomalies that are
currently hinting at the presence of New Physics (NP) in the lepton sector of the SM. In the
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following, we will introduce some of the most relevant anomalies. While not all of them are
equally important, each one is relevant for this thesis.

Neutrino masses

First of all, neutrino oscillation experiments have clearly established that neutrinos are massive.
This is arguably the most robust evidence of NP beyond the SM. Right-handed neutrinos do not
exist in the model, and the scalar potential is minimal. Therefore, a neutrino mass term is not
allowed by gauge invariance at the renormalizable level. This definitely calls for an extension of
the SM lepton and/or scalar sectors with new degrees of freedom which, in most scenarios, lead
to deviations in other observables, directly associated to leptons or not. Neutrino masses are a
central topic of this thesis and will be discussed in detail in Chapter 2.

Dark matter

Another problem of the SM is related to some important astronomical observations that suggest
the presence of dark matter (DM) [33]. One of the most important pieces of evidence of DM
comes from observations of the rotation curves of galaxies [34, 35]. The stars orbit around the
center of the galaxy, and the speed at which they are moving should decrease with increasing
distance from the center due to the gravitational pull of the matter in the galaxy. However,
observations show that the rotation curves of galaxies remain roughly constant with increasing
distance from the center, indicating the presence of additional matter that has no electromag-
netic interaction, hence the name of this mysterious matter. Other evidences for DM include
observations of gravitacional lensing [36], the study of the cosmic microwave background radia-
tion [37], or the fact that DM is necessary to explain the formation of galaxies and large-scale
structures of the Universe [38]. However, the nature of the DM that constitutes ∼ 27% of the
energy content of the Universe is still a mystery [39]. Many new physics models include DM
candidates, sometimes relating them to other open questions in particle physics or even being
instrumental in their resolution.

Charged lepton anomalous magnetic and electric moments

The charged lepton anomalous magnetic moments (AMMs),

a` = g` − 2
2 , (1.48)

with ` = e, µ, τ , are known to be powerful probes of NP effects, potentially hidden in loop
contributions. Interestingly, there is a discrepancy between the Standard Model prediction
for the electron and muon anomalous magnetic moments and their experimentally determined
values [40–46]. In the case of the electron g−2, the significance is slightly below ∼ 3σ, and hence
not very notable at the moment. In contrast, the deviation has become particularly relevant
in the case of the muon g − 2, in particular after the Muon g − 2 experiment at Fermilab has
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published its long-awaited first results [47]. Their measurement of aµ perfectly agrees with
the result obtained by the E821 experiment at Brookhaven [48] and disagrees with the SM.
Their combination leads to a 4.2σ discrepancy with the SM prediction compiled by the theory
community in [49]. In summary, the current status of the electron and muon g − 2 can be
quantified as 8

∆ae = aexp
e − aSM

e = (−87± 36)× 10−14 ,

∆aµ = aexp
µ − aSM

µ = (25.1± 5.9)× 10−10 . (1.49)

New measurements and more refined theoretical calculations are definitely required to assess
the relevance of these anomalies and confirm whether these intriguing deviations are hints of
NP [52], SM contributions not correctly taken into account, or just statistical fluctuations. 9

However, it is tempting to interpret them as a signal of the presence of new states beyond the
SM (BSM). In this case, the g − 2 anomalies may hide valuable information about the shape of
the underlying model. In particular, the sign difference between ∆ae and ∆aµ and the sizable
value of |∆ae| would indicate that the NP contributions do not scale with the square of the
charged lepton masses [66]. This calls for a non-trivial extension of the SM.

The muon g−2 has been considered in a wide variety of contexts, in many cases in connection
to neutrino mass generation. This includes models based on the inverse seesaw mechanism [67–
75] and/or with VL leptons [76–96]. See also [97] for a recent work in the context of a radiative
neutrino mass model including triplet fermions. Finally, we note that the muon g − 2 has also
been considered as a motivation for a muon collider [98–100].

In what concerns the electric dipole moments (EDMs) of the charged leptons, the SM pre-
dicts tiny values well beyond the experimental prospects in the near future. Therefore, any
measurement of a non-zero charged lepton EDM would be a clear indication of CP-violating
new physics effects. The current best limits for the electron and muon EDMs, at 95% C.L.,
are [101,102]

|de| < 1.1× 10−29 e cm , (1.50)

|dµ| < 1.5× 10−19 e cm . (1.51)
8The status of the electron g−2 has recently changed by a new measurement of the fine-structure constant [50].

The new value differs by more than 5σ to the previous one and affects the electron g − 2 anomaly, which gets
reduced to just 1.6σ and flips sign, see [51]. We will not include these results in the chapters below. We also point
out that this change in the fine-structure constant value has little impact on the muon g − 2.

9The theoretical calculation of the electron and muon anomalous magnetic moments is a challenging task
and has led to some controversies over the years. Indeed, the SM prediction for the muon is currently under
debate due to recent lattice results [53–55]. For instance, a recent calculation of the hadronic vacuum polarization
contribution by the Budapest-Marseilles-Wuppertal collaboration [53] brings the SM prediction for the muon
g−2 into agreement with the experimental value, hence ruling out any discrepancy. However, it has been pointed
out that this result, in turn, leads to some tension with electroweak data [56–59]. Other subsequent lattice
calculations [60–65] go in the same direction as [53].
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Both charged lepton magnetic and electric moments can be described by the effective Hamilto-
nian [103]

H = cij `j σµν PR `i F
µν + h.c. , (1.52)

where PR = (1 + γ5)/2 is the usual right-handed chiral projector, Fµν the electromagnetic field
strength tensor and `i denote the SM charged lepton mass eigenstates. The anomalous magnetic
moment is given in terms of the real components of the diagonal c coefficients as

ai = −2mi

e
(cii + c∗ii) = −4mi

e
Re cii , (1.53)

whereas the imaginary components would, in turn, induce electric dipole moments as

di = i (cii − c∗ii) = −2 Im cii . (1.54)

B flavor anomalies

At present, there are several measurements of observables involving B-meson decays that do not
align with the predictions of the SM. These discrepancies are commonly referred to as the B
flavor anomalies and are categorized into two types: the neutral-current anomalies, which arise
in processes involving b→ s `` decays, and the charged-current anomalies, observed in b→ c `ν`

decays.
In 2013, the LHCb Collaboration announced at the EPS conference in Stockholm the first

observation of the b → s `` anomaly [104]. They measured a deviation from the SM prediction
at the level of 3.7σ in the observable P ′5, a parameter that characterizes the angular distribution
of the decay products in B0 → K∗0µ+µ− decays. Since this measurement, there has been
a significant increase in the number of measured observables involving b → s `` decays, and
many of these also exhibit important deviations from the predictions of the SM. Among all
these discrepancies, some of them merit more attention. On the one hand, we have the possible
violation of lepton flavor universality in B-meson decays [105–108] encoded in the RK(∗) ratios,
defined as

RK(∗) = BR(B → K(∗)µµ̄)
BR(B → K(∗)eē)

. (1.55)

For these ratios, the theoretical uncertainties of the SM predictions are at the percent level [109],
which strengthens the relevance of the anomalies. Indeed, in the SM, these ratios are known to
be 1, except for minor electromagnetic corrections and kinematic mass effects. Another impor-
tant discrepancy between theory and experiment was found in the branching ratio BR(Bs →
µµ̄) [110–113].

However, we note that very recently, some new results from the experimental collaborations
have reduced the discrepancy between some of the most important neutral-current anomalies in
B meson decays and the SM predictions. For instance, the recent CMS result [114] suggests that
the experimental branching ratio BR(Bs → µµ̄) is in good agreement with the SM. Also, the
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LHCb collaboration announced that they have discovered misidentified hadronic backgrounds
which had not been taken into account in previous RK and RK∗ measurements, which affected
the electron mode and pushed the results away from the SM expectations [115]. Taking these
backgrounds into account resulted in values compatible with the predictions of the SM. Never-
theless, in this thesis we use the results of the global fit in [116], which was performed before
the latest results on the anomalies were published.

The operators that govern the b→ s `` transitions are collected in the effective Lagrangian

Leff = 4GF√
2
VtbV

∗
ts

∑
i

(
CiOi + C ′iO′i

)
+ h.c. , (1.56)

with Vij being the elements of the CKMmatrix and Ci are the Wilson coefficients of the operators

O7 = e
16π2mbs̄σ

µνPRbFµν , O8 = gs
16π2mbs̄ασ

µνPRT
a
αβbβG

a
µν ,

O9 = αEM
4π (s̄γµPLb) (µ̄γµµ) , O10 = αEM

4π (s̄γµPLb) (µ̄γµγ5µ) ,
OS = αEM

4π (s̄PRb) (µ̄µ) , OP = αEM
4π (s̄PRb) (µ̄γ5µ) ,

OT = αEM
4π (s̄σµνb) (µ̄σµνPRµ) ,

(1.57)

where e is the electron charge, αEM is the fine structure constant, and gs is the strong coupling
constant. Also, the primed operators are obtained just by interchanging PL and PR. Complete
and general analytical 1-loop expressions for the Wilson coefficients of a given model can be
found in [82]. Note that we do not aim to provide a thorough description of effective field
theories. Instead, we refer to [117] for a nice introduction.

Regarding the charged-current anomalies in b → c `ν` processes, the first measurement was
taken in 2012, when the BaBar Collaboration measured RD(∗) ≡ BR(B̄ → D(∗)τντ )/BR(B̄ →
D(∗)`ν`), with ` = e, µ. They found values for both RD and RD(∗) that, when taken together,
exceed the SM expectation by 3.4σ [118]. New measurements of these observables have been
repeated over the years, with the results seemingly confirming the anomaly [119–121]. However,
the latest results from the LHCb Collaboration, presented very recently, indicate a deviation of
just 1.9σ from the SM [122]. Nevertheless, their measurement is not precise enough to signifi-
cantly reduce the uncertainty on the combined value of the other measurements, consequently
resulting in a combined deviation of 3.2σ. Subsequent measurements of additional b→ c `ν` ob-
servables have been made, although far fewer in number compared to the b → s `` case. These
have also shown other deviations from the SM predictions.

We propose a model in Chapter 5 to fit all the anomalies discussed in this Section. However,
there we just focused on the neutral-current B flavor anomalies since a vector leptoquark (or a
combination of two different scalar leptoquarks), as well as an extended gauge symmetry, would
be required to simultaneously address both types of anomalies [123–126].



Chapter 2

Neutrino masses

“Is it not a strange fate that we should suffer so much
fear and doubt for so small a thing? So small a thing!”

– J.R.R. Tolkien, The Fellowship of the Ring

2.1 Introduction

Neutrinos were first postulated in 1930 by the physicist Wolfgang Pauli in an open letter ad-
dressed to a group of radioactive people at the Gauverein meeting in Tübingen [127]. He proposed
the existence of these particles as a theoretical solution to the apparent non-conservation of en-
ergy, momentum and spin in β decays. However, Pauli initially thought that the neutrino would
never be detected because it is an electrically neutral particle with an extremely small mass
that rarely interacts with other particles. Fortunately, and despite the pessimism of Pauli, the
first successful detection of neutrinos occurred in 1956 [128]. The breakthrough discovery was
made by Frederick Reines and Clyde Cowan, who used a detector filled with water and cadmium
chloride to detect antineutrinos emitted by a nuclear reactor in Savannah River. Since then,
numerous neutrino detectors have been constructed, and neutrinos have been detected from
different sources, including the Sun, supernovae, and cosmic rays.

Later on, in the 1960s, John Bahcall and Ray Davis headed the Homestake experiment, which
began measuring the flux of neutrinos coming from the Sun using different techniques [129].
Bahcall performed the corresponding theoretical calculations, whereas Davis designed the ex-
periment. What is interesting about this is that the number of neutrinos predicted to be detected
on Earth by Bahcall was about three times higher than what Davis observed. This discrepancy
between the predicted and observed number of solar neutrinos was known as the solar neutrino
problem.

Luckily, at that time, there was already a hypothesis that could solve the problem: neutrino
oscillations. The first idea of neutrino oscillations was brightly proposed by Bruno Pontecorvo

25
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back in 1957 and 1958, although he originally thought of ν−ν̄ oscillations [130,131]. The concept
was refined with time, but the idea is that neutrinos might change from one type to another as
they travel through space. The first experimental evidence for neutrino oscillations came from
the Super-Kamiokande experiment in Japan in 1998 [132]. They reported that atmospheric
neutrinos produced in the atmosphere of the Earth were oscillating between different flavors.
Further experiments, including the Sudbury Neutrino Observatory (SNO) in Canada [133] and
the KamLAND experiment conducted in Japan [134], confirmed the hypothesis of the oscillation
of solar neutrinos as well.

In the rest of the chapter, we provide a brief review of neutrino physics, emphasizing neutrino
flavor oscillations and their impact on lepton flavor violation. We will also delve into some of the
most relevant neutrino mass models. Additionally, we will explore the possibility of spontaneous
lepton number violation (LNV). For a comprehensive overview of the current status of neutrino
physics, see, for instance, [135].

2.2 Neutrino oscillations

The phenomenon of neutrino flavor oscillations was initially proposed by Pontecorvo in 1957.
He was thinking of neutrino-antineutrino transitions, analogous to the neutral kaon oscillations,
K0 − K̄0. However, five years later, the muon neutrino was discovered [136], and the idea of
Pontecorvo was refined by Ziro Maki, Masami Nakagawa, and Shoichi Sakata. They proposed
a model that allowed for oscillations between the electron and muon neutrinos [137]. This was
made possible by assuming that the mass eigenstates, ν1 and ν2, and the weak 1 eigenstates, νe
and νµ, were not the same. Thus, the weak neutrinos needed to be redefined by the relation

νe = ν1 cos θ − ν2 sin θ ,

νµ = ν1 sin θ + ν2 cos θ ,
(2.1)

and the presence of the mixing parameter θ is responsible for the oscillations between the known
flavor eigenstates. 2

2.2.1 Neutrino oscillations in vacuum

The SM accounts for the presence of three different flavors of neutrinos, one for each lepton
doublet. Similarly to the CKM matrix in the quark sector, the neutrino mixing between the
mass and flavor basis is described by the 3× 3 unitary matrix known as the Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) mixing matrix. Then, the mass eigenstates νi (i = 1, 2, 3), with
well-defined masses mi, can be expressed as a linear combination of the weak eigenstates να
(α = e, µ, τ), or vice versa. In the basis where there is no mixing between the charged leptons,

1The neutrino weak eigenstates are also referred to as the neutrino gauge or flavor eigenstates.
2We note that a Majorana phase should be present in Eq. (2.1). However, it is irrelevant to the neutrino

oscillation phenomenon and we do not consider it here.
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that is, where the leptonic Yukawa matrix is diagonal, the neutrino flavor and mass eigenstates
relate through

|να〉 = Uαi |νi〉 , (2.2)

where U is the PMNS mixing matrix and the convention of summing over repeated indices is
assumed. Taking this into account, the leptonic charged current in Eq. (1.44) becomes

LCC = g√
2
W+
µ

(
ūLγ

µVCKMdL + ν̄Lγ
µU †eL

)
+ h.c. , (2.3)

where both the neutrinos and the charged leptons correspond to states in the mass basis.
Repeating the discussion performed in Section 1.4 for the CKM matrix and taking into

account that there are just three lepton families, the PMNS mixing matrix, U , is also left with 3
angles and 6 phases. If neutrinos are Dirac particles, it is possible to rephase the charged leptons
and two neutrinos to absorb five of the six phases from the PMNS mixing matrix. This is because
of a global symmetry related to the conservation of lepton number. In contrast, if neutrinos
are of the Majorana type, their mass terms are not invariant under the phase transformations,
and the phases of the PMNS matrix cannot be eliminated by redefining the neutrino fields.
In this case, we can only eliminate three of the phases by redefining the charged lepton fields.
Therefore, we are left with three mixing angles and one Dirac phase (or one Dirac plus two
Majorana phases). The PMNS matrix can, thus, be parametrized as [32]

U =


1 0 0
0 c23 s23

0 −s23 c23

 ·


c13 0 s13e
−iδCP

0 1 0
−s13e

iδCP 0 c13

 ·


c12 s12 0
−s12 c12 0

0 0 1

 ·

eiη1 0 0
0 eiη2 0
0 0 1


(2.4)

where cij ≡ cos θij and sij ≡ sin θij . The angles θij can be taken to lie in the first quadrant
without loss of generality. δCP is the Dirac CP phase, which is relevant for understanding CP
violation in neutrino oscillations, and ηi are the Majorana phases. The latter are zero in the
case of neutrinos being Dirac particles, and do not affect neutrino flavor oscillations but are
important for neutrinoless double beta decay.

Now, we are prepared to see the derivation of the probability for neutrinos to oscillate.
Assuming the existence of an underlying mechanism that gives mass to neutrinos, a physical
neutrino, that is, a mass eigenstate, traveling in vacuum will be an eigenstate of the free Hamil-
tonian,

H0 |νi〉 = Ei |νi〉 , (2.5)

with well-defined mass mi and energy given by the relativistic relation E2
i = ~p 2

i +m2
i , where ~pi

are the neutrino trimomenta. As the Hamiltonian is diagonal in the neutrino mass basis, it is
straightforward to obtain the time evolution of the neutrinos:

|νi(t)〉 = |νi(t = 0)〉 e−iEit . (2.6)
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Combining this equation with Eq. (2.2), we can express the flavor eigenstates at a time t as

|να(t)〉 = Uαi |νi(t = 0)〉 e−iEit , (2.7)

and we can calculate the amplitude of an initial neutrino of flavor α oscillating to a flavor β at
a given time t,

A(να → νβ)(t) = 〈νβ(t)|να(0)〉 = 〈νβ(t)|νj(t)〉 〈νj(t)|νj(0)〉 〈νj(0)|να(0)〉 = U∗βjUαje
−i Ej t ,

(2.8)
where we have used the completeness relation |νi(t)〉 〈νi(t)| = 1 twice. In the expression above
one can identify the three stages in the evolution of neutrinos. The leftmost term involves the
projection of the final mass eigenstate onto the flavor neutrinos, the middle term represents the
propagation of the initial energy eigenstate, and the rightmost term projects the initial neutrino
onto the flavor eigenstates. Therefore, the probability of the oscillation is given by the modulus
squared of the previous amplitude,

P (να → νβ)(t) = |A(να → νβ)(t)|2 = U∗αiUβiU
∗
βjUαje

−i(Ej−Ei)t . (2.9)

Note that neutrino oscillations conserve probability, satisfying
∑
β P (να → νβ) = 1. Assum-

ing ultrarelativistic neutrinos and the equal momentum approximation, we can simplify the
expression using

Ej − Ei =
√
~p 2 +m2

j −
√
~p 2 +m2

i ≈ |~p|+
1
2
m2
j

|~p|
− |~p| − 1

2
m2
i

|~p|
=
m2
j −m2

i

2E ≡
∆m2

ij

2E , (2.10)

where we have defined E ≡ |~p|. Finally, given that neutrinos travel at speeds very close to that
of light, we can consider t to be equal to L, in natural units, with L the total distance traveled
by the neutrino since it is produced until it is detected. Therefore, Eq. (2.11) takes the form

P (να → νβ)(t) = |〈νβ|να(t)〉|2 = U∗αiUβiU
∗
βjUαje

−i
∆m2

ij
2E L . (2.11)

Finally, the oscillation probability can be simplified to [135]

P (να → νβ) = δαβ − 4
∑
i>j

Re
(
U∗αiUαjUβiU

∗
βj

)
sin2

(
∆m2

ijL

4E

)

+ 2
∑
i>j

Im
(
U∗αiUαjUβiU

∗
βj

)
sin
(

∆m2
ijL

2E

)
.

(2.12)

Some important features can be extracted from this expression. First, these oscillations violate
the conservation of lepton flavor number but still conserve the total lepton number. Second,
antineutrinos can also be described by the PMNS matrix, but with the substitution of U by its
complex conjugate, U∗. Therefore, the phases in the mixing matrix induce CP-violation since
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P (να → νβ)(t) 6= P (ν̄α → ν̄β)(t) in general. Third, neutrino oscillations are not sensitive to the
absolute mass scale of neutrinos but only to the difference of the squared masses. Finally, they
are not sensitive to Majorana phases.

2.2.2 Current experimental status

Currently, three different neutrino flavors have been observed. This implies that their oscillations
depend on the three mixing angles θ12, θ13, and θ23, as well as on the CP phase δCP, defined
in (2.4), and also on the two mass differences ∆m2

21 and ∆m2
31. While the values of the three

mixing angles, the mass splitting ∆m2
21, and the absolute value of ∆m2

31 have been measured
with good precision, there are still important quantities that require further investigation. For
instance, the sign of the mass splitting ∆m2

31 is unknown, and the mass hierarchy of the neutrinos
is compatible with two scenarios:

• Normal Ordering (NO): m1 < m2 < m3

• Inverted Ordering (IO): m3 < m1 < m2

As mentioned above, the absolute neutrino mass scale of neutrinos is not directly accessible
through neutrino oscillation experiments. Therefore, other experiments are needed to set bounds
to this value. Cosmological observations offer the most stringent limits on the neutrino mass
scale by studying the large-scale structure of the Universe. The existence of massive neutrinos
affects the formation and evolution of structures over time. Although the bounds depend on
specific assumptions made about the expansion history of the Universe and on the data analyzed,
the Planck Collaboration has set the current strongest bound on the sum of the neutrino masses,∑
mν < (0.11− 0.54) eV (95%C.L.) [39].
Combining and exploiting the complementarity between the data samples, the authors

of [138] manage to perform a global fit of neutrino oscillation data in the simplest three-neutrino
framework and including all the currently available neutrino physics inputs. The numerical val-
ues of their analysis for each of the parameters are shown in Table 2.1.

2.3 Lepton Flavor Violation

In the Standard Model, lepton flavor is an accidental symmetry. However, the presence of the
PMNS mixing matrix in Eq. (2.3), combined with the fact that it is not the identity matrix,
implies that lepton flavor is violated. Despite this, no experimental evidence of lepton flavor
violation has been observed in the leptonic charged sector. Many BSM extensions providing
a theoretical explanation for neutrino masses and mixings include additional states that may
enhance the LFV processes. Therefore, setting experimental bounds on these possible LFV
channels is crucial to constrain the parameter space of BSM models.

Experimental searches for charged LFV are of great interest and lepton flavor physics is
about to live a golden age. Several state-of-the-art experiments recently started taking data
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Parameter Best fit ± 1σ 2σ range 3σ range

∆m2
21

[
10−5 eV2

]
7.50+0.22

−0.20 7.12− 7.93 6.94− 8.14∣∣∆m2
31
∣∣ [10−3 eV2

]
(NO) 2.55+0.02

−0.03 2.49− 2.60 2.47− 2.63∣∣∆m2
31
∣∣ [10−3 eV2

]
(IO) 2.45+0.02

−0.03 2.39− 2.50 2.37− 2.53

sin2 θ12/10−1 3.18± 0.16 2.86− 3.52 2.71− 3.69

sin2 θ23/10−1 (NO) 5.74± 0.14 5.41− 5.99 4.34− 6.10

sin2 θ23/10−1 (IO) 5.78+0.10
−0.17 5.41− 5.98 4.33− 6.08

sin2 θ13/10−2 (NO) 2.200+0.069
−0.062 2.069− 2.337 2.000− 2.405

sin2 θ13/10−2 (IO) 2.225+0.064
−0.070 2.086− 2.356 2.018− 2.424

δCP/π (NO) 1.08+0.13
−0.12 0.84− 1.42 0.71− 1.99

δCP/π (IO) 1.58+0.15
−0.16 1.26− 1.85 1.11− 1.96

Table 2.1: Neutrino oscillation parameters summary determined from the global fit [138].

and a few more are about to begin [139, 140]. These include new searches for lepton flavor
violating processes, forbidden in the SM, as well as more precise measurements of lepton flavor
conserving observables, such as charged lepton anomalous magnetic moments. The search for
LFV in processes involving charged leptons is strongly motivated by the observation of LFV
in the neutral sector. In what concerns muon observables, the search for the radiative LFV
decay µ → eγ was the pioneering effort in the quest for LFV processes. The strongest upper
limit for its branching ratio comes from the MEG experiment at the PSI laboratory, setting
BR (µ→ eγ) < 4.2 × 10−13 at 90 % C.L. [141]. The second phase of the MEG experiment,
MEG-II [142,143], expects to reach a sensitivity of ∼ 10−14 with 3 years of data taking. Another
interesting possibility for LFV in muon decays is the process µ→ eee. Currently, the best limit,
BR (µ→ eee) < 1.0 × 10−12 at 90 % C.L., was set by the SINDRUM experiment at PSI [144],
while the long-awaited Mu3e experiment will aim at an impressive sensitivity to branching ratios
for the 3-body decay as low as 10−16 [143,145]. A plethora of promising experiments looking for
neutrinoless µ− e conversion in nuclei is also planned [146–148].

Regarding τ leptons, they have the drawback of being produced far less frequently than
muons at colliders as well as having lifetimes significantly shorter, complicating their study.
Flavor factories and experiments aiming at a broad spectrum of flavor observables, such as
Belle II and LHCb, will also contribute to this era of lepton flavor, mainly due to their high
sensitivities in the measurement of tau lepton observables [149,150].

In addition to the low-energy LFV observables mentioned earlier, or others such as B-
meson or pion decays [139] and some exotic signatures like `α → `βγγ [151], LFV can be
explored in high-energy processes as well. However, the searches mentioned above, like the
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one for µ → eγ, put stringent limits on the LFV expectations in many BSM scenarios, usually
precluding the observation of this phenomenon at high-energy colliders. Nevertheless, large LFV
rates compatible with the existing bounds can be obtained in some scenarios for the Higgs boson
decaying into τµ [152]. Another possibility consists in the production of right-handed neutrinos
via a Z ′ portal which are only allowed to decay via small LFV couplings [153]. This leads to an
unsuppressed rate that can be visible despite the stringent constraints.

2.4 Dirac or Majorana neutrinos?

Some of the most fundamental unknown questions of neutrino physics include whether neutrinos
are Dirac or Majorana particles, what is the value of the CP -violating phase δCP, what is the real
neutrino mass ordering, or how many neutrinos exist in nature. The answer to these problems
is crucial for understanding the origin of the masses of these particles. In this section, however,
we will focus on the Dirac or Majorana nature of neutrinos. 3

The possible conservation of lepton number L can be used to characterize the nature of
neutrinos. When L is conserved, the neutrino mass eigenstates (νi) and their corresponding
antineutrinos (ν̄i) share the same masses but have different lepton numbers: L(νi) = −L(ν̄i) = 1.
They are, hence, distinguishable, and neutrinos are Dirac particles. On the other hand, neutrinos
are of the Majorana type if there is no conserved symmetry that differentiates between particle
and antiparticle. It is important to note that this discussion is specific to neutrinos and does
not apply to other SM fermions, as their electric charge makes it possible to distinguish them
from their antiparticles.

In the case of Majorana neutrinos, one can construct a mass term of the form

−LM = 1
2mM (ν̄cLνL + ν̄Lν

c
L) , (2.13)

where νcL ≡ C νL with C ≡ i γ2 γ0 is the charge conjugated neutrino, which breaks all the U(1)
symmetries but not Z2n parities 4. While for the Majorana case the mass term does not need a
new particle to give mass to the left-handed neutrino, the Dirac neutrino scenario requires the
addition of another state. This new state, which has to be right-handed, is usually denoted as
νR or N . The mass term, in this case, is written as

−LD = mD (ν̄LνR + ν̄RνL) . (2.14)

The scientific community generally finds the Majorana neutrinos hypothesis to be more appeal-
ing for several aesthetic reasons. First, as previously discussed, Dirac neutrinos require the
introduction of a right-handed partner, νR, to generate a mass term. However, if the addition
is done without any further symmetry constraints, then a Majorana mass term is automatically

3See [154] for a nice review on the subject.
4Zn parities are discrete symmetries under which the states transform as X → ei 2πk/nX, with k = 1, . . . , n.
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allowed as well. The resulting Lagrangian for the neutrino mass is given by:

−Lmν = mD ν̄LνR + 1
2 mL ν̄Lν

c
L + 1

2 mR ν̄Rν
c
R + h.c. . (2.15)

Therefore, to ensure that neutrinos remain as Dirac particles, it is necessary to impose a pro-
tective symmetry that forbids the existence of Majorana mass terms. The most natural choice
for this symmetry is lepton number, which is already a global accidental symmetry in the SM.
Another concern that arises is the fact that neutrinos have extremely small masses compared
to the EW scale. If neutrinos acquire their mass through the SM Higgs mechanism, then the
associated Yukawa couplings would be of the order of 10−12. 5 For these reasons, the Majo-
rana neutrino hypothesis tends to be more appealing than the Dirac one, as it typically requires
fewer new fields and symmetries. Furthermore, Majorana neutrinos have a richer phenomenology
compared to Dirac neutrinos, mainly due to the breaking of lepton number.

Observationally, the nature of neutrinos remains a mystery. The phenomenon of neutrino os-
cillations is unable to distinguish between Dirac and Majorana neutrinos since the probabilities
of oscillations do not depend on the Majorana phases. One potential avenue for distinguishing
between these two options is to search for lepton number violating processes, with neutrinoless
double beta decay being the most promising candidate. In this hypothetical nuclear process,
two neutrons in a nucleus simultaneously decay into two protons, emitting two electrons and
no neutrinos. If neutrinos turn out to be Majorana particles, then this decay can occur, vio-
lating lepton number conservation (LNC). However, if neutrinos are Dirac particles, then this
decay process would not be possible without the emission of two neutrinos, hence conserving
lepton number. Thus, the observation of neutrinoless double beta decay would provide direct
evidence for the Majorana nature of neutrinos, while the non-observation of the process would
not necessarily rule out the Majorana hypothesis, since its actual rate may be below the current
experimental sensitivities [156].

2.5 Neutrino mass models

The experimental observation of neutrino flavor oscillations constitutes a milestone in particle
physics and proves that the Standard Model is an incomplete theory. Although many questions
remain open, such as the Majorana or Dirac nature of neutrinos or the possible violation of CP
in the leptonic sector, the SM must certainly be extended to include a mechanism that accounts
for non-zero neutrino masses and mixings. In the rest of the thesis we will work under the
assumption of neutrinos being Majorana particles, implying that lepton number will be broken.

From a model-independent perspective, one of the most useful theoretical constructions
that have emerged in the search for a mechanism to explain neutrino masses is the well-known

5This is, however, technically natural in the sense of ’t Hooft [155]. This means that in the limit of the parameter
going to zero, a symmetry is restored. In this case, the chiral symmetry. Therefore, any loop correction to the
parameter must be proportional to the parameter itself, implying that if it is small at a certain scale, it will
remain small across all scales.
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Weinberg operator [157]. Proposed by Steven Weinberg in 1979, this operator, which is the
lowest dimensional operator that violates lepton number, is a dimension-5 effective operator
that generates Majorana masses for neutrinos. It can be expressed as:

OW = Cαβ5
Λ

¯̀c
Lα `Lβ H̃

†H + h.c. (2.16)

where, as usual, H̃ ≡ iσ2H
∗. Here, Λ is the scale at which the NP responsible for the lepton

number violating effects becomes relevant, while C5 is the model-dependent Wilson coefficients
matrix, which is symmetric in flavor space. After EW symmetry breaking, the VEV of the Higgs
generates the Majorana mass matrix in Eq. (2.13):

mN = Cαβ5 v2

Λ . (2.17)

The smallness of neutrino masses, as implied by the Weinberg operator, corresponds to choosing
a very large scale Λ. For instance, if the Wilson coefficients Cαβ5 are of order one, we would
need Λ ∼ O(1014) GeV to obtain mν ∼ 0.1 eV. However, it is also possible to have Cαβ5 much
smaller than one, as this would result in lower values of the energy scale Λ. This can be achieved
through models in which neutrino masses are generated radiatively and the loop factors naturally
suppress the coefficients. Alternatively, small couplings can be achieved due to nearly conserved
symmetries in some models.

The Weinberg operator can be realized in three possible ways at tree-level, resulting in three
distinct UV completions known as the type I, type II, and type III seesaw mechanisms [158–164].
These mechanisms involve different messenger fields in the generation of neutrino masses, and all
of them require a large NP scale to account for the smallness of the masses, as long as we want
the C5 coefficients to be of the order of unity. However, other scenarios have to be considered
when small Wilson coefficients are wanted. For instance, the inverse seesaw mechanisms are
good examples of models with nearly conserved symmetries. Additionally, there are radiative
neutrino mass models, with the Scotogenic model being a popular example. These models offer
alternative ways to explain the smallness of neutrino masses but require different mechanisms
and symmetries compared to the usual seesaw mechanisms. We will briefly review these models
in the remainder of this section.

2.5.1 Tree-level scenarios

As expected, the simplest way to generate the Weinberg operator is at tree-level. We will start
by introducing the standard seesaw scenarios, and then we will move to the more interesting
inverse seesaws.
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2.5.1.1 Type-I seesaw

The topology of the type-I seesaw (SS1) [158] is obtained by contracting `L and H in such a
way that their product transforms as an SU(2)L singlet in the Weinberg operator,

OW = Cαβ5
Λ

(
¯̀c
LαH

) (
H̃† `Lβ

)
+ h.c. . (2.18)

Therefore, the new field involved in the neutrino mass generation must be a singlet under that
symmetry, colorless and with zero hypercharge.

H H

N N

νL νL

Figure 2.1: Type-I seesaw neutrino mass mechanism. This Feynman diagram shows the relevant
gauge eigenstates involved in the tree-level contribution to neutrino masses.

Such a model is an extension of the SM that includes n copies of a new gauge singlet fermion,
commonly known as a right-handed neutrino, NR, with a Majorana mass term MR � v. The
number of families of the singlet lepton is arbitrary, but at least two copies are required to fit
oscillation data from experiments [165]. The most general renormalizable Lagrangian is given
by

LSS1 = LSM + i

2N̄R /DNR − Yν N̄R H̃
† `L −

1
2MR N̄RN

c
R + h.c. , (2.19)

where Yν is a general n×3 matrix andMR a symmetric n×n matrix that can be chosen diagonal
without loss of generality.

The right-handed neutrinos play a crucial role in generating neutrino masses through the
Feynman diagram depicted in Fig. 2.1. After electroweak symmetry breaking, the neutral Ma-
jorana leptons mass term is given by

−Lν = 1
2
(
ν̄cL N̄R

)
MN

(
νL

N c
R

)
+ h.c. , (2.20)

with the (3 + n)× (3 + n) symmetric matrixMN defined as

MN =
(

0 mT
D

mD MR

)
. (2.21)
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H H

∆

νL νL

Figure 2.2: Type-II seesaw neutrino mass mechanism. This Feynman diagram shows the relevant
gauge eigenstates involved in the tree-level contribution to neutrino masses.

In the previous expression, mD = Yνv/2. Then, the resulting Majorana mass matrix corresponds
to the standard type-I seesaw matrix. If mD �MR, the light and heavy neutrino mass matrices
are given by the well-known approximate formulae

mSS1
ν ≈ −mT

DM
−1
R mD ,

mR ≈MR .
(2.22)

It is worth noting that the hierarchy mD � MR arises naturally from v � MR if the Yukawa
couplings are perturbative. As shown by the equation above, explaining light neutrino masses
at a scale of around 0.1 eV with order one Yukawa couplings requires right-handed neutrino
masses of the order of 1014 GeV. While this mechanism offers a natural and viable explanation
for the smallness of neutrino masses, the NR masses are well beyond the detection capabilities
of current and near-future experiments.

2.5.1.2 Type-II seesaw

In the case of the type-II seesaw (SS2) [166], the topology is obtained by contracting both `L

and H doublets, independently, such that their product transforms as a SU(2)L triplet in the
Weinberg operator,

OW = Cαβ5
Λ

(
¯̀c
Lα ~σ `Lβ

) (
H̃† ~σH

)
+ h.c. , (2.23)

where ~σ ≡
(
σ1, σ2, σ3). This implies that, in this mechanism, the new field required for the

neutrino mass generation must be an SU(2)L triplet.
Therefore, the standard type-II seesaw extends the SM particle content with a scalar triplet

with hypercharge 1, usually denoted as ∆ =
(
∆1, ∆2, ∆3). It can be conveniently written in

the usual 2× 2 notation,

∆ = 1√
2
σi∆i =

(
∆+/
√

2 ∆++

∆0 −∆+/
√

2

)
, (2.24)
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where ∆++ ≡ (∆1 − i∆2)/
√

2, ∆+ ≡ ∆3, and ∆0 ≡ (∆1 + i∆2)/
√

2. The complete Yukawa
Lagrangian of the model is given by

LSS2
Y = LSM

Y + i

2∆̄ /D∆−
(
Y∆ ¯̀c

L∆ `L + h.c.
)
, (2.25)

whereas the scalar potential, which includes new terms involving the scalar triplet, can be written
as

V = m2
HH

†H +m2
∆Tr

(
∆†∆

)
+ λH

(
H†H

)2
+ λ1

∆

[
Tr
(
∆†∆

)]2
+ λ2

∆Tr
(
∆†∆

)2

+ λ1
H∆

(
H†H

)
Tr
(
∆†∆

)
+ λ2

H∆H
†∆ ∆†H +

(
µH̃†∆†H + h.c.

)
.

(2.26)

Of course, since neutrinos are Majorana in this model, lepton number is broken in two units
by the simultaneous presence of the new Yukawa and scalar potential trilinear terms. Also, the
trilinear term is responsible for ∆ acquiring an induced VEV, 〈∆0〉 = v∆/

√
2, once the EW

symmetry is broken. This can be easily seen from the tadpole equations,

dV
dH0

∣∣∣∣
〈H0〉= v√

2
,〈∆0〉= v∆√

2

= v√
2

[
m2
H + λH v

2 +
(
λ1
H∆ + λ2

H∆

) v∆
2 +

√
2µ v∆

]
= 0 , (2.27)

dV
d∆0

∣∣∣∣
〈H0〉= v√

2
,〈∆0〉= v∆√

2

= v∆√
2

[
m2

∆ +
(
λ1

∆ + λ2
∆

)
v2

∆ +
(
λ1
H∆ + λ2

H∆

) v2

2 + µ v2
√

2v∆

]
= 0 . (2.28)

In the limit where v is much smaller than the mass of the ∆ triplet,

v∆ = µ v2
√

2m2
∆

+O
(
v4

m4
∆

)
. (2.29)

Then, from the new Yukawa interaction in Eq. (2.25), we obtain the neutrino mass matrix in
the type II seesaw model

mSS2
ν = Y∆

v∆√
2
. (2.30)

This relation can also be seen from the Feynman diagram shown in Fig. 2.2. In the mass matrix,
the seesaw relation is manifest: the larger the mass of the triplet is, the more the neutrino masses
are suppressed. Actually, ∆ being a heavy particle is well motivated by the allowed range for
its VEV,

O(1)GeV > v∆ > O(10−2)eV . (2.31)

The lower bound comes from the requirement of having perturbative Yukawa couplings, while
the upper limit comes from electroweak precision data [167].
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H H

Σ Σ

νL νL

Figure 2.3: Type-III seesaw neutrino mass mechanism. This Feynman diagram shows the rele-
vant gauge eigenstates involved in the tree-level contribution to neutrino masses.

2.5.1.3 Type-III seesaw

The topology of the type-III seesaw (SS3) [164] is obtained by contracting `L and H in such a
way that their product transforms as an SU(2)L triplet in the Weinberg operator,

OW = Cαβ5
Λ

(
¯̀c
Lα ~σH

) (
H̃† ~σ `Lβ

)
+ h.c. , (2.32)

This mechanism is completely analogous to the type-I seesaw but instead of the right-handed
neutrinos NR, here we have n triplet fermions Σ =

(
Σ+, Σ0, Σ−

)
with hypercharge 0. As in the

type-II mechanism, the triplet fermions can be written as

Σ =
(

Σ0/
√

2 Σ+

Σ− −Σ0/
√

2

)
, (2.33)

and the complete Lagrangian of the minimal type-III mechanism is given by

LSS3 = LSM + i

2Σ̄ /DΣ−
√

2YΣ Σ̄ H̃† `L −
1
2MΣ Σ̄Σc + h.c. , (2.34)

where YΣ is a general n× 3 matrix and MΣ a symmetric n× n matrix that can be chosen to be
diagonal without losing generality.

Neutrino masses are generated here through the Feynman diagram depicted in Fig. 2.3 and
after electroweak symmetry breaking, the neutral leptons mass term in the Lagrangian is given
by

−Lν = 1
2
(
ν̄cL Σ̄0

)
MN

(
νL

Σ0c

)
+ h.c. . (2.35)

The n× n symmetric matrixMN is defined as in Eq. (2.21) but substituting Yν by YΣ and MR

by MΣ. Equivalently, if mD � MΣ, the light and heavy neutrino mass matrices are given by
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the well-known approximations

mSS3
ν ≈ −mT

DM
−1
Σ mD ,

mR ≈MΣ .
(2.36)

Although the results regarding the neutral fermions are the same in both type-I and type-III
mechanisms, their phenomenology differs. In contrast to the right-handed neutrinos that are
singlets, the triplet Σ in the type-III seesaw has gauge interactions and charged components.
These charged states induce mixings of the SM charged leptons with the NP states through the
new Yukawa term, which are much easier to probe experimentally compared to the mixing of
neutral states. As a result, direct searches impose stringent lower bounds on the mass of the
triplet [168].

2.5.1.4 Inverse type-I seesaw

The inverse type-I seesaw (ISS1) [169–172] was proposed to bring the standard seesaw closer
to the EW scale. It is a non-minimal variant of the type-I seesaw mechanism with additional
lepton singlets.

H

N

νL

H

N

νL

S S

µ

Figure 2.4: Inverse type-I seesaw neutrino mass mechanism. This Feynman diagram shows
the relevant gauge eigenstates involved in the tree-level contribution to neutrino masses. The
smallness of the parameter µ is closely linked to the smallness of neutrino masses.

The model extends the SM with nN copies of a right-handed gauge singlet fermion N and
with nS extra sterile fermions S, with lepton numbers 1 and -1, respectively, although this choice
is not unique. 6 The numbers of families of the singlets are, in principle, arbitrary, but at least
two copies of each are required to fit oscillation data from experiments [173]. The most general
renormalizable Lagrangian is given by

LISS1 = LSM − Yν N̄ H̃† `L − YL S̄ H̃† `L −
1
2mN̄N c − 1

2µ S̄S
c −M N̄Sc + h.c. , (2.37)

where Yν and YL are general nN × 3 and nS × 3 Yukawa matrices, respectively, while m, µ, and
M are symmetric nN × nN , nS × nS , and nN × nS Majorana mass matrices, respectively. The
Majorana mass term for the N singlet has been included here for the sake of generality, but it

6Notice that in the case nS = 0, we recover the standard type-I seesaw mechanism. In this case, nR ≥ 2 would
be required for the model to be phenomenologically viable.
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is normally set to zero since it does not contribute to the SM neutrino masses at leading order.
Therefore, we will not include it in the following discussion. Notice, then, that both M and µ
can be chosen diagonal without loss of generality. In this realization, µ and YL are responsible
for breaking lepton number in two units. In addition, both right-handed and sterile fermions
are identical in this general version of the model. The possible difference between them could
only be observed in some UV theory from which this model comes. Indeed, some terms in the
Lagrangian can be absent depending on the high energy theory, leading to different realizations,
as we will see below.

After electroweak symmetry breaking, the neutral Majorana leptons mass term is given by

−Lν = 1
2
(
ν̄cL N̄ S̄

)
MN


νL

N c

Sc

+ h.c. , (2.38)

with the (3 + nN + nS)× (3 + nN + nS) symmetric matrixMN defined as

MN =


0 mT

D mT
L

mD 0 M

mL MT µ

 . (2.39)

In the previous expression, mD = Yν v/2, as usual, and mL = YL v/2. However, the inverse
type-I seesaw takes mL = 0.7 Considering the natural hierarchy µ � mD � M , 8 one can
diagonalise the neutral leptons mass matrix, finding

mISS1
ν = mT

D

(
MT

)−1
µM−1mD , (2.41)

for the light neutrinos. Their masses are generated in this realization as illustrated in the
Feynman diagram in Fig. 2.4. What makes the inverse seesaw mechanism distinguish from
the other seesaws is that the additional parameter µ allows us to accommodate small neutrino
masses with a low seesaw scale and O(1) Yukawa couplings.

2.5.1.5 Inverse type-III seesaw

The inverse type-III seesaw model (ISS3) is obtained by replacing the fermionic SU(2)L sin-
glets in the original inverse type-I seesaw by SU(2)L triplets. This variant has already been
studied [177–183], although not extensively, and many of its phenomenological features are still

7The mechanism with mL 6= 0 and µ = 0 is called the linear seesaw (LSS) [174–176]. Here the light neutrinos
mass matrix is given by

mLSS
ν = mT

LM
−1mD +mT

D(MT )−1mL . (2.40)

8A small µ is considered to be natural in this scenario since its presence is responsible for breaking lepton
number.
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to be investigated. 9 In fact, there are several phenomenological directions of interest in the
ISS3. The fact that triplets couple to the SM gauge bosons allows for new production mech-
anisms at the LHC, where one can also look for lepton number violating signatures. Lepton
flavor violation might also be an interesting subject to explore in this model, which may offer
some differences with respect to the more common ISS1. Finally, the potentially sizable mixing
between the charged components of the type-III triplet and the SM charged leptons may also
lead to observable Z → `+i `

−
j decays with i 6= j. We refer to [190] for a recent analysis of these

and other relevant observables in the presence of light fermion triplets. In Chapter 4, we will
study an extension of this model along the lines of what is stated here.

Since the derivation of the neutrino masses in this mechanism is completely analogous to
that shown for the inverse type-I seesaw, here we will only provide the relation between them.
The singlets N and S are replaced by the triplets Σ and Σ′, respectively, and the Lagrangian
takes the form

LISS3 = LSM −
√

2YΣ Σ̄ H̃† `L −
1
2µ Σ̄′Σ′c −MΣ Σ̄ Σ′c + h.c. , (2.42)

where a similar Yukawa term for Σ′ has been omitted here exactly as we did in the ISS1 with
YL = 0. Also, the Majorana mass term for Σ is not included either since it will not affect
neutrino masses. Then, the neutral leptons and light neutrinos mass matrices will be given by
Eqs.(2.39) and (2.41), respectively, with the redefinitions mD = YΣ v/2 and M →MΣ.

2.5.1.6 Decoupling the small from the large seesaw scales

Sometimes it may be convenient to decouple the heavy from light fermion fields. The authors
in [191] proposed a simple yet powerful method that allows decoupling the small from the large
scales in the case of seesaw-type mass matrices. It allows us to obtain an approximate expression
for the mass matrices to arbitrary order as well as for the unitary matrices that block-diagonalize
them. We will illustrate this for the case of the neutral fields in the inverse type-I (or inverse
type-III).

The mass matrix for the neutral fermions can be brought to diagonal form as

M̂N = V νMNV
νT , (2.43)

where V ν is a unitary matrix, and the idea is to obtain an approximate expression for V ν using
a perturbative expansion in powers of the inverse of the largest scale present in MN . We can
express the unitary matrix V ν as

V ν = W Dν , (2.44)
9See also [172,184] for discussions of generalized inverse seesaw models, including versions with Dirac neutrinos,

[185–188] for four references studying the phenomenology of light fermion triplets and [189] for a recent work on
the inverse seesaw with spontaneous violation of lepton number.
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where both W and Dν are unitary matrices. While W will be responsible for the block-
diagonalization ofMN , Dν will diagonalize the light and heavy sub-blocks independently. The
latter can be expressed as

Dν =
(
Dν
l 0

0 Dν
h

)
, (2.45)

with the non-zero entries being unitary matrices. On the other hand, we impose that W decou-
ples the neutral states such that 

νL

N c

Sc

 = W

(
νlight

Nheavy

)
, (2.46)

and we further require that

W TMNW = W T

(
ML MT

D

MD MR

)
W =

(
M light
N 0
0 Mheavy

N

)
, (2.47)

where we have defined

ML = 0 , MD =
(
mD

0

)
, MR =

(
0 M

MT µ

)
, (2.48)

for our particular model. In the case of the general ISS1, with nN copies of the right-handed
singlets N and nS sterile fermions S, the matrices ML, MD, and MR are 3× 3, (nN + nS)× 3,
and (nN + nS)× (nN + nS) matrices, respectively. Now, as explained in [191], we can make the
ansätze

W =

 √
13 −BB† B

−B†
√

1(nN+nS) −B†B

 , (2.49)

where 1n is the n × n identity matrix and B is a 3 × (nN + nS) matrix that can be fixed
perturbatively as a function of the parameters inMN by expanding in powers of m−1

R , which is
the scale of the eigenvalues of

√
M †RMR. Therefore,

B = B1 +B2 +B3 + · · · , (2.50)

with the Bi matrices being proportional to M−i. In addition, the square roots in Eq. (2.49)
must also be Taylor-expanded, resulting in√

13 −BB† = 13 −
1
2BB

† − 1
8BB

†BB† + · · · , (2.51)√
1(nN+nS) −B†B = 1(nN+nS) −

1
2B
†B − 1

8B
†BB†B + · · · . (2.52)
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Then, the coefficients Bi are computed recursively as indicated in [191]. At leading order, this
procedure leads to

W =


13 −m†D

(
M †

)−1
µ† (M∗)−1 m†D

(
M †

)−1(
MT

)−1
µM−1mD 1nN 0

−M−1mD 0 1nS

+O
(
m−2
R

)
, (2.53)

where we have used that B ≈ B1 = M †D

(
M †R

)−1
. In addition, the light and heavy neutral

fermion mass matrices are approximated, again at leading order, to

M light
N =−MT

D (MR)−1MD +O
(
m−2
R

)
= mT

D

(
MT

)−1
µM−1mD +O

(
m−2
R

)
,

Mheavy
N =MR + 1

2
(
MDM

†
D (M∗R)−1 + (M∗R)−1M∗DM

T
D

)
+O

(
m−2
R

)
.

(2.54)

It can be seen that M light
N ≡ mISS1

ν coincides at leading order with the previous result in
Eq. (2.41).

A similar procedure can be followed for the charged lepton mass matrix, as indicated in [191].
We will follow that method in Chapter 6 for a variant of the type-I seesaw.

2.5.2 Radiative scenarios: The Scotogenic model

Among all the neutrino mass models that have been proposed over the years, radiative models
are particularly appealing. After the pioneer models developed in the 80’s [192–195], count-
less radiative models have been proposed and extensively studied [196]. These models offer
several advantages over traditional tree-level scenarios: the suppression introduced by the loop
factors allows for the accommodation of the observed solar and atmospheric mass scales with
sizable couplings and relatively light (TeV scale) mediators. This typically leads to a richer
phenomenology, with the new mediators possibly accessible to current colliders. Furthermore,
some radiative models provide a straightforward solution to a completely independent problem:
the nature of the dark matter in the Universe. Discrete symmetries, linked to the radiative
origin of neutrino masses, may be utilized to stabilize viable DM candidates, resulting in very
economical scenarios [197].

Arguably, the most popular model of this class is the Scotogenic model [198, 199].10 It is
a famous extension of the Standard Model that addresses two of the currently most important
open questions in physics: the origin of neutrino masses and the nature of the dark matter
of the Universe. Its popularity stems from its simplicity. The model extends the SM particle
content with three singlet fermions, N1,2,3, and a scalar doublet, η, all odd under a new dark
Z2 symmetry under which the SM fields are even. These ingredients suffice to induce Majorana

10While the Scotogenic model is widely credited to Ernest Ma in 2006 [199], it has been noted recently that the
first person linking neutrino masses to DM in this scenario was Zhijian Tao in 1996 [198].
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Field Generations SU(3)c SU(2)L U(1)Y Z2

`L 3 1 2 -1/2 +

eR 3 1 1 -1 +

N 3 1 1 0 −

H 1 1 2 1/2 +

η 1 1 2 1/2 −

Table 2.2: Lepton and scalar particle content and representations under the gauge and discrete
symmetries in the Scotogenic model. `L and eR are the SM left- and right-handed leptons,
respectively, and H is the SM Higgs doublet.

neutrino masses at the 1-loop level and provide a viable DM candidate, namely the lightest
Z2-odd state. The lepton and scalar particle content of the model are shown in Table 2.2.

The model contains two scalar doublets: the usual Higgs doublet H and the new doublet
η, only distinguished by their Z2 charges. They can be decomposed in terms of their SU(2)L

components as

H =
(
H+

H0

)
, η =

(
η+

η0

)
. (2.55)

Once specified the particle content and symmetries of the model, we can write down the La-
grangian, which contains the terms

LY = y N η̃† `L + 1
2MN N

c
N + h.c. , (2.56)

where y is a general complex 3×3 matrix and MN is a symmetric 3×3 mass matrix. The scalar
potential of the model is given by

VUV = m2
HH

†H +m2
ηη
†η + λ1

2 (H†H)2 + λ2
2 (η†η)2

+ λ3(H†H)(η†η) + λ4(H†η)(η†H) +
[
λ5
2 (H†η)2 + h.c.

]
,

(2.57)

where all the parameters are real except for λ5, which is complex. Also, m2
H and m2

η are
parameters with dimensions of mass2. We assume that the minimization of the scalar potential
leads to a vacuum defined by

〈H0〉 = v√
2
, 〈η0〉 = 0 . (2.58)

This may be achieved with a proper choice of the parameters of the scalar potential, certainly
requiring m2

H < 0 and m2
η > 0. This vacuum configuration breaks the electroweak symmetry

in the usual way but preserves the Z2 symmetry of the model. As a consequence, the lightest
Z2-odd state (either N1 or η0) is completely stable and can play the role of the DM of the
Universe. Furthermore, neutrinos acquire non-zero Majorana masses at the 1-loop level, as
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νL νL

H0 H0

η η

N N

Figure 2.5: Neutrino mass generation in the Scotogenic model. This Feynman diagram shows
the relevant gauge eigenstates involved in the 1-loop contribution to neutrino masses.

shown in Fig. 2.5. The resulting 3× 3 neutrino mass matrix is given by

(mν)αβ = λ5 v
2

32π2

∑
n

ynα ynβ
MNn

 M2
Nn

m2
0 −M2

Nn

+
M4
Nn(

m2
0 −M2

Nn

)2 log
M2
Nn

m2
0

 , (2.59)

where m2
0 = m2

η + (λ3 + λ4) v2/2 and MNn are the diagonal elements of the MN matrix, with
n = 1, 2, 3. For the derivation of Eq. (2.59), we have assumed that all the scalar potential
parameters are real, hence conserving CP in the scalar sector. We note that the stability of DM
and the radiative origin of neutrino masses are both a consequence of the Z2 conservation. One
can easily estimate that in order to obtain neutrino masses of the order of 0.1 eV with Scotogenic
states in the TeV scale and Yukawas of order 1, λ5 must be of order ∼ 10−10. The smallness
of this parameter is protected by lepton number and thus is technically natural [155]. However,
it is not explained in the context of the Scotogenic model. In Chapter 8, we will provide a
set of ultraviolet extensions of the model in which the smallness of this parameter is naturally
explained.

2.5.3 Casas-Ibarra parametrization

In Majorana neutrino mass models, the neutrino mass matrices are generated through the
Yukawa interaction between the left-handed neutrinos of the Standard Model and other states.
The precise form of these Yukawa couplings plays a crucial role in determining the neutrino
mixing parameters and masses, ensuring that they are consistent with experimental oscillation
data. However, while it is often not complicated to find isolated points in the parameter space
of a given model that explain the data, a comprehensive exploration of the complete parameter
space can be a challenging task in many cases.
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Luckily, in 2001, Alberto Casas and Alejandro Ibarra proposed a powerful parametrization,
currently known as the Casas-Ibarra parametrization [200], which provides a convenient and
intuitive way to describe the neutrino Yukawa couplings. Their parametrization allows for a
direct connection between the observed neutrino mixing angles and masses and the neutrino
Yukawa couplings. Although it was originally presented in the framework of the type-I seesaw
mechanism, it can be easily adapted to any model including a neutrino mass matrix of the form

mν = yT M y , (2.60)

with M a symmetric matrix and y the Yukawa couplings [201, 202]. On the other hand, the
authors of [203, 204] generalized the parametrization to apply it to any Majorana mass model
where the contributions to the neutrino mass matrix can always be expressed in the form:

mν = yT1 M y2 + yT2 M
T y1 , (2.61)

where y1 6= y2 in general.
The cases we are interested in always lie in the y1 = y2 scenario, and then it is enough to

present here the results for the adapted Casas-Ibarra parametrization. As explained in [201–204],
the Yukawa matrices can be written in full generality as

y = i V †Σ−1/2RD√m U
† . (2.62)

Here, U is the 3×3 PMNS unitary matrix, defined by the Takagi decomposition of the neutrino
mass matrix

UT mν U = diag (m1,m2,m3) , (2.63)

with mi the three physical neutrino masses. R is a general orthogonal matrix whose dimensions
are model dependent, and we have defined D√m = diag

(√
m1,
√
m2,
√
m3
)
. Finally, Σ and V

are determined by the matrix M , defined implicitly by the general expression mν = yT M y.
Σ = diag (σ1, σ2, σ3) is a diagonal matrix containing the eigenvalues of M , while V is a unitary
matrix such that M = V T ΣV . With these definitions, Eq. (2.62) ensures compatibility with
neutrino oscillation data.

As an example, we can consider the neutrino mass matrix in the Scotogenic model that we
showed in Eq. (2.59). In this framework, the matrix M will be a 3×3 diagonal matrix given by

Mmn = λ5 v
2
H

32π2
1

MNn

 M2
Nn

m2
0 −M2

Nn

+
M4
Nn(

m2
0 −M2

Nn

)2 log
M2
Nn

m2
0

 δmn , (2.64)
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with V being the 3× 3 identity matrix and

R =


cosβ cos γ − cosα sin γ − sinα sin β cos γ sinα sin γ − cosα sin β cos γ
cosβ sin γ cosα cos γ − sinα sin β sin γ − sinα cos γ − cosα sin β sin γ

sin β sinα cosβ cosα cosβ

 , (2.65)

where α, β, and γ are arbitrary complex angles.

2.6 Spontaneous Lepton Number Breaking: The Majoron

In Section 2.4, we saw that neutrino masses may be non-zero due to the violation of lepton
number, in which case, neutrinos are Majorana particles. The literature contains numerous Ma-
jorana neutrino mass models which simply add explicit lepton number violating interactions or
mass terms to the Lagrangian. However, it is also possible for the violation of U(1)L to be spon-
taneous in origin. The spontaneous breaking of a global continuous quantum number generates
a massless Goldstone boson, in the case of lepton number usually called the majoron [205,206],
J . The original majoron of [205,206] is a gauge singlet. Nonetheless, it is also possible to break
lepton number spontaneously using larger multiplets, resulting in the doublet and triplet ma-
jorons [207–209]. In general, the majoron can be an admixture of these three representations or
even more exotic possibilities exist.

The presence of a massless boson in the particle spectrum certainly will affect phenomenology.
However, the extent to which these changes are relevant for explicit lepton number violating
models depends strongly on the specific model and on the nature of the majoron. For instance,
the pure singlet majoron interacts so weakly with all of the SM particles that it is highly unlikely
it will ever be observed experimentally. In the other extreme, pure doublet and triplet majorons
have been ruled out by LEP [210]. Nevertheless, majorons with a sufficiently large singlet
admixture can escape this constraint.

The interaction of the majoron with charged leptons can be described in a model-independent
way as [211],

L``J = J ¯̀
β

(
SβαL PL + SβαR PR

)
`α + h.c. , (2.66)

where `α,β are the standard light charged leptons and PL,R are the usual chiral projectors. The
SL,R couplings are dimensionless coefficients, and we consider all flavor combinations: βα =
{ee, µµ, ττ, eµ, eτ, µτ}. Due to the pseudoscalar nature of majorons, the diagonal Sββ = SββL +
Sββ∗R couplings are purely imaginary. In Chapter 3, we will derive upper bounds to these
couplings.

While the values of the couplings between the majoron and the charged leptons have to be
obtained for one particular model realization, it is possible to discuss some general features qual-
itatively. The SL,R couplings of the majoron with the charged leptons, introduced in Eq. (2.66),
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can be generically written as
SL,R ∼ a

m̂e

v
+ b Y . (2.67)

Here, Y is a general matrix in flavor space and m̂e is the diagonal charged lepton mass matrix,
m̂e = diag(me,mµ,mτ ). The coefficients a and b depend on the model under consideration. In
the case of a type-I seesaw and a pure singlet (or doublet) majoron, both a and b are zero at
tree-level but generated at 1-loop [206, 212, 213]. The 1-loop diagram is further suppressed by
the small mixing between the right-handed neutrinos and the active states, and one expects that
decays such as µ→ e J are unobservable. For the triplet majoron, on the other hand, a is non-
zero at tree-level. It is generated via the mixing of the triplet with the SM Higgs due to a coupling
of the form λσH∆H, where σ is the scalar singlet, H the SM Higgs, and ∆ the triplet scalar. b
again can be generated only radiatively, and LFV interactions with majorons are expected to be
tiny. How about the type-III seesaw? In the type-III seesaw, the charged leptons of the SM are
mixed with the charged components of the fermionic triplet Σ. In the spontaneous version of
this setup, one would thus expect some non-diagonal coupling of the majoron to charged leptons
to appear in the mass eigenstate basis [214]. However, the corresponding mixing is related to
the small neutrino masses and, in the end, the rates for `α → `β J decays are typically very
small.

This discussion can serve as a basis to establish the criteria a model has to fulfill in order
to have sizeable off-diagonal couplings between the majoron and charged leptons. First of all,
if the majoron couplings to charged leptons are induced via majoron mixing with the SM Higgs
doublet, they will be exactly diagonal in the charged lepton mass basis. Therefore, in order to
obtain sizable off-diagonal couplings, the majoron must couple directly to the charged lepton
sector. This coupling can be either to the light charged leptons themselves or to some additional
heavy charged leptons which, after symmetry breaking, mix with them. In the first case, sizeable
off-diagonal couplings can be obtained with a non-universal lepton number assignment, whereas
in the second case, it is crucial that the light-heavy mixing is not suppressed by neutrino masses.
We refer to [215] for a discussion along similar lines.
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Chapter 3

Ultralight scalars in leptonic
observables

In the realm of particle physics, the quest to discover new physics effects beyond the Standard
Model is both an exciting and ongoing endeavor. From a theoretical perspective, one interesting
avenue consists in exploring the potential contributions of new states and interactions to different
observables. If these observables are predicted by the Standard Model, two scenarios emerge:
either the theory agrees with the experimental results, limiting the new contributions, or the
model is in tension with the measured values, indicating the possibility of using these new fields
to reconcile both outcomes. Additionally, the new states may contribute to observables strictly
forbidden in the Standard Model, motivating the need to search for them experimentally to
probe the hypotheses.

3.1 Introduction

There is an exciting experimental perspective in the near future, as hinted in Section 2.3, so it
is natural to question the potential for new physics discoveries. In this Chapter, based on [211],
we will focus on the study of ultralight scalars that couple to charged leptons and examine
their impact on leptonic observables. In this context, the term ultralight scalar refers to a
generic scalar φ much lighter than the electron, such that mφ � me, allowing φ to be produced
on-shell in charged lepton decays. In practice, the scalar can be treated as an approximately
massless particle in all the physical processes considered here. In the following, we will adopt
a model-independent approach and neglect the mass mφ in our analytical computations. This
is, however, not an approximation in the case of an exactly massless scalar such as a Goldstone
boson whose mass is protected by a spontaneously broken global continuous symmetry.

Many physics scenarios contain these ultralight scalars. Majorons, which are the Goldstone
bosons associated to the breaking of global lepton number [206–209], as discussed above in
Section 2.6, constitute a well-motivated example of this type of particle. Besides majorons, the
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apparent absence of CP violation in the strong interactions may be explained by the Peccei-
Quinn mechanism [216], suggesting the existence of a new ultralight pseudoscalar: the axion [217,
218]. Nevertheless, the mass of the axion is not predicted by the theory and can range over a
broad spectrum [219], although a significant portion of the parameter space (corresponding to
large axion decay constants) results in an ultralight axion. Interestingly, this low mass axion
could potentially play a role as a component of the DM of the Universe [220–222]. Axion-like
particles (ALPs) generalize this scenario by allowing the mass and decay constant to be two
independent parameters. This expands the parameter space, including again a large portion
with really low-mass ALPs. An alternate ultralight scalar is the familon, a Goldstone boson
resulting from the spontaneous breaking of global family symmetry. Additionally, the Universe
may contain ultralight scalars as fuzzy cold dark matter [223].

While the examples mentioned previously are pseudoscalar states, the ultralight scalar we
are interested in can also have scalar couplings. This would be the case for a massless Goldstone
boson if the associated broken symmetry is non-chiral. Consequently, limiting the phenomeno-
logical exploration just to pseudoscalars would exclude many well-motivated scenarios. This
has frequently been the situation in recent works [224–234], which were mainly interested in the
phenomenological implications of flavored axions (or ALPs) and majorons [213].

Driven by the principle of generalization, we consider a generic scenario not determining
the CP nature of the scalar and exploring several leptonic observables of interest. In most of
the cases, we will generalize previous results present in the literature, commonly obtained for
pure pseudoscalars or for the case of a massive φ. Some examples of the observables include
the possibility of φ being produced in the final state, as in `α → `β φ or `α → `β φγ. In other
processes that we will study, φ will not be produced but act as a mediator. One of the finest
examples of this category is `−α → `−β `

−
β `

+
β . To the extent of our knowledge, the mediation of this

decay by an ultralight scalar has only been previously considered in [224]. Here we will extend
the previous work to a more general scalar state, providing an analytical expression for the decay
width of the process. The analogous processes `−α → `−β `

−
γ `

+
γ and `−α → `+β `

−
γ `
−
γ will be addressed

as well, though for the first time here. Finally, other interesting examples of observables induced
by the ultralight φ can be found in the anomalous magnetic and electric moments of charged
leptons.

3.2 Effective Lagrangian

We are interested in studying low-energy charged leptons processes in the presence of the ultra-
light real scalar φ. Even though we treat φ as exactly massless for practical purposes, our results
apply for a massive φ, as long as mφ � me holds. This is a natural situation for Goldstone or
pseudo Nambu-Goldstone bosons, but it may require fine-tuning in the case of CP-even scalars.
The interaction between φ and a pair of charged leptons `α and `β, where α, β = e, µ, τ , can be
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generally parametrized by

L``φ = φ `β
(
SβαL PL + SβαR PR

)
`α + h.c. , (3.1)

where PL,R = 1
2(1 ∓ γ5) are the standard chiral projectors, and no sum over the α and β

charged lepton flavor indices is performed. Lastly, SL and SR are dimensionless coefficients and
we consider all possible flavor combinations: βα = {ee, µµ, ττ, eµ, eτ, µτ}. Eq. (3.1) describes
the most general effective interaction between the ultralight scalar φ and a pair of charged
leptons, including both scalar and pseudoscalar interactions as well as flavor violating and flavor
conserving interactions. It is a generalization of Eq. (2.66), since the diagonal interactions
are allowed to have here pure scalar couplings. In Appendix A, we present an alternative
parametrization for this effective Lagrangian based on the introduction of derivative interactions,
only applicable to the case of pseudoscalar interactions.

Some of the observables that we analyze below receive contributions from the usual dipole
and 4-fermion operators. Therefore, the full effective Lagrangian 1 we have to use is given by

L = L``φ + L``γ + L4` , (3.2)

with

L``γ = emα

2 `β σ
µν
[(
KL

2

)βα
PL +

(
KR

2

)βα
PR

]
`αFµν + h.c. , (3.3)

L4` =
∑

I=S,V,T
X,Y=L,R

(
AIXY

)βαδγ
`βΓIPX`α `δΓIPY `γ + h.c. , (3.4)

where Fµν is the electromagnetic field strength tensor introduced in Eq. (1.10), and we have
defined ΓS = 1, ΓV = γµ and ΓT = σµν . No sum over the α, β, γ and δ charged lepton flavor
indices is performed in Eqs. (3.3) and (3.4). The coefficients KX

2 and AIXY , with I = S, V, T

and X,Y = L,R, have dimensions of mass−2. We assume mα > mβ and therefore normalize the
Lagrangian in Eq. (3.3) by including the mass of the heaviest charged lepton in the process of
interest. Eq. (3.3) contains the usual photonic dipole operators, which contribute to `α → `βγ

and lead to
Γ (`α → `βγ) = e2m5

α

16π

[∣∣∣∣(KL
2

)βα∣∣∣∣2 +
∣∣∣∣(KR

2

)βα∣∣∣∣2
]
, (3.5)

while Eq. (3.4) contains 4-lepton operators. To summarize, the effective Lagrangian shown in
Eq. (3.2) corresponds to the one in [235], but including the new operators with the ultralight
scalar φ introduced in Eq. (3.1).

In the following, we will focus on purely leptonic observables and ignore interactions of φ with
quarks. These processes include the LFV decays `α → `β φ or `α → `β`β`β, and the electron

1In this context, we use the term effective to refer to generic operators not necessarily of dimension larger than
4.
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and muon anomalous magnetic and electric dipole moments. Although φ couplings to quarks
are possible in specific realizations of our general scenario, for instance, for the QCD axion, they
introduce a significant model dependence. Nevertheless, leptophilic ultralight scalars, such as the
majoron, are also well-motivated possibilities that naturally appear in models with spontaneous
violation of global lepton number.

3.3 Bounds on leptonic flavor conserving couplings

Before moving to the computation of the observables, let us comment on the current experimental
constraints on the lepton flavor conserving couplings of the scalar φ. We will start by discussing
the stellar cooling mechanism. Since this subject has been extensively studied in the literature,
and we do not want to delve further into the topic, we will only present a brief outline. Then we
will discuss another source of constraints, the 1-loop coupling between φ and a pair of photons.

3.3.1 Stellar cooling

The production of scalar particles inside stars, followed by their subsequent emission, may
constitute a powerful stellar cooling mechanism. If this process occurs at a high rate, it may
alter star evolution, eventually leading to conflict with astrophysical observations [236]. This
sets stringent constraints on the φ couplings. The dominant cooling mechanisms are scalar
bremsstrahlung in lepton-nucleus scattering, `− + N → `− + N + φ, and the Compton process
γ+`− → `−+φ, with their relative importance depending on the density and temperature of the
medium, that is, on the astrophysical scenario. In particular, the Compton process dominates
only in low-density and high-temperature environments, like red giants. Limits can also be
derived from ultralight scalar production in supernovae. In these astrophysical scenarios, the
scalar φ can be efficiently produced and, since it will typically escape without interacting with
the medium, it will take place a net transport of energy out of the supernova. Such an energy loss
may dramatically affect other processes that may take place in the supernova, such as neutrino
production.

Plenty of works have recently studied the question of astrophysical cooling by the emission
of ultralight scalars [219, 234, 237–239]. However, to the best of our knowledge, all of them
consider axions or ALPs. These are low-mass pseudoscalars and thus, their impact on stellar
evolution can only be used to constrain pseudoscalar couplings. Even though we will not provide
a detailed calculation to support this statement, we will argue that similar bounds can be set
on the scalar couplings.

To make the pure scalar and pseudoscalar interactions explicit, we can use a redefinition of
our Lagrangian in Eq. (3.1) which, for the diagonal terms, can be written as

Ldiag
``φ = φ `β

(
SββPL + Sββ∗PR

)
`β = φ `β

[
ReSββ − i ImSββ γ5

]
`β , (3.6)
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with Sββ = SββL + Sββ∗R . For a pure pseudoscalar, only ImSββ is present.
Currently the most stringent limit on the pseudoscalar couplings to electrons is derived from

white dwarfs. Specifically, the limit is obtained by considering the bremsstrahlung process,
which can be very efficient in the dense core of a white dwarf. Using data from the Sloan Digital
Sky Survey and the SuperCOSMOS Sky Survey, Ref. [234] found (at 90% C.L.)

ImSee < 2.1× 10−13 . (3.7)

The coupling with muons has been recently studied in some works [234, 237, 238]. In this case
the process ultimately used to set the constraint is neutrino production, clearly suppressed if
energy is transported out of the supernova by scalars produced in µ + γ → µ + φ. Using the
famous supernova SN1987A, Ref. [238] has found

ImSµµ < 2.1× 10−10 . (3.8)

Setting precise limits for the scalar parts of the couplings would require a complete analysis
implying the calculation of the cross sections and the energy-loss rates per unit mass. Instead,
one can gauge the relevance of the bounds on the scalar couplings by making the following
arguments. First, we note that if we neglect the charged lepton mass, the scalar and pseudoscalar
couplings contribute exactly in the same way to the relevant cross sections. However, this is not
an accurate approximation due to the low energies involved in the astrophysical scenarios that
set the limits. Hence, one must keep the charged lepton mass. We have numerically integrated
the cross sections for a wide range of low energies and found that, for the same numerical value
of ReS and ImS, the scalar interaction always results in larger cross sections. Therefore, the
constraints on the scalar couplings will be stronger and we can conclude that

ReSββ .
[
ImSββ

]
max

, (3.9)

with β = e, µ. Nevertheless, we point out again that a detailed analysis of the cooling mechanism
with pure scalars is required to fully determine the corresponding bounds.

As a final remark, one should note that these limits are based on the (reasonable) assumption
that the scalar properties are not altered in the astrophysical medium. In particular, its mass
and couplings are assumed to be the same as in vacuum. However, some mechanisms have been
recently proposed [240,241] (see also previous work in [242]) that would render this assumption
invalid. These works were mainly motivated by the XENON1T results, which included a 3.5σ
excess of low-energy electron recoil events [243]. An axion explaining this excess would violate
the astrophysical constraints, since the required coupling to electrons would be larger than the
limit in Eq. (3.7), see for instance [239]. This motivates the consideration of mechanisms that
alter the effective couplings to electrons or the axion mass in high-density scenarios. If any of
these mechanisms are at work, larger diagonal couplings would be allowed. However, we note
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`
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Figure 3.1: Loop induced coupling of φ to a pair of photons.

that additional bounds, not derived from astrophysical observations, can be set on the diagonal
couplings. This is precisely what we proceed to discuss.

3.3.2 1-loop coupling to photons

The interaction of the scalar φ with a pair of photons is described by the effective Lagrangian

Lφγγ = gSγγ φFµνF
µν + gAγγ φFµνF̃

µν , (3.10)

where gSγγ and gAγγ are the couplings for a pure scalar and a pure pseudoscalar, respectively,
and F̃µν is the dual electromagnetic tensor, defined as

F̃µν = 1
2 ε

µναβ Fαβ . (3.11)

The couplings gSγγ and gAγγ can be generated at the 1-loop level from diagrams involving
charged leptons, as depicted in Fig. 3.1. Since gSγγ and gAγγ are constrained by a variety of
experimental sources, this can be used to set indirect constraints on the φ couplings to charged
leptons introduced in Eq. (3.1). In particular, we will exploit this connection to impose additional
limits on the lepton flavor conserving couplings of φ. The 1-loop analytical expression for gSγγ
and gAγγ can be written as [244] 2

|gIγγ |2 = α2

64π2

∣∣∣∣∣∣
∑
β

gIββ
mβ

AI1/2 (τβ)

∣∣∣∣∣∣
2

, (3.12)

where I = S,A and we sum over β = e, µ, τ . Here gIββ denote the φ couplings to the charged
leptons, and their relation to SL and SR is given below. AS1/2 and AA1/2 are 1-loop fermionic
functions defined as

AS1/2(τβ) = 2 [τβ + (τβ − 1) f (τβ)] τ−2
β (3.13)

2It is important to highlight the disagreement between the results presented in Ref. [244] and Ref. [245].
Nevertheless, the latter work obtains the 1-loop couplings to photons under the assumption that the scalar is
much heavier than the QCD scale, so the ultralight scalar limit cannot be recovered.



3.3. Bounds on leptonic flavor conserving couplings 57

for the scalar coupling and
AA1/2(τβ) = 2τ−1

β f (τβ) (3.14)

for the pseudoscalar case, with τβ = m2
φ/4m2

β. The function f (τ) can be found for instance
in [246]. It is given by

f(τ) ≡

 arcsin2√τ τ ≤ 1
−1

4

[
log 1+

√
1−τ−1

1−
√

1−τ−1 − iπ
]2

τ > 1
. (3.15)

In this work, we consider the case of an ultralight scalar. In the limit mφ → 0, the loop functions
reduce simply to AS1/2 (0) = 4

3 and AA1/2 (0) = 2, and then we can write

|gSγγ |2 = α2

36π2

∣∣∣∣∣∣
∑
β

gSββ
mβ

∣∣∣∣∣∣
2

,

|gAγγ |2 = α2

16π2

∣∣∣∣∣∣
∑
β

gAββ
mβ

∣∣∣∣∣∣
2

,

(3.16)

with the couplings to the charged leptons being given by

gSββ = ReSββ ,

gAββ = ImSββ .
(3.17)

We are now in a position to compare to the current experimental limits on the coupling to
photons, which are of two types. First, let us consider astrophysical limits. Magnetic fields
around astrophysical sources of photons may cause the photons to transform into scalars, pro-
viding a way to set constraints on their coupling. Ref. [247] provides a comprehensive overview
of limits from astrophysical observations. Ref. [248] finds that for scalar masses in the range
mφ � 1 peV (1neV), astrophysical constraints imply

gIγγ . 10−12
(
10−11

)
GeV−1 (3.18)

for both scalar and pseudoscalar couplings. Taking this into account, we can find the relations∣∣∣∣∣∣
∑
β

ReSββ

mβ

∣∣∣∣∣∣
2

= 36π2

α2 g2
Sγγ < 6.7× 10−16 GeV−2 ,

∣∣∣∣∣∣
∑
β

ImSββ

mβ

∣∣∣∣∣∣
2

= 16π2

α2 g2
Aγγ < 3.0× 10−16 GeV−2 ,

(3.19)

which translate into very stringent bounds on the diagonal couplings to charged leptons, See .
10−11 and Sµµ . 10−9. The OSQAR experiment [249], a light-shining-through-a-wall experi-
ment, has also derived limits for massless scalars. Again, these are valid for both scalar and
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pseudoscalar couplings,
gIγγ < 5.76× 10−8 GeV−1 , (3.20)

and therefore, ∣∣∣∣∣∣
∑
β

ReSββ

mβ

∣∣∣∣∣∣
2

= 36π2

α2 g2
Sγγ < 3.8× 10−8 GeV−2 ,

∣∣∣∣∣∣
∑
β

ImSββ

mβ

∣∣∣∣∣∣
2

= 16π2

α2 g2
Aγγ < 1.7× 10−8 GeV−2 .

(3.21)

These relations also imply strong constraints on the diagonal couplings to charged leptons, but
milder than in the previous case with astrophysical observations, See . 10−7 and Sµµ . 10−5.

Finally, we point out that these indirect limits are strictly only valid if the diagrams in
Fig. 3.1 are the sole contributions to the φ coupling to photons. If additional contributions
exist, possible cancellations among them may reduce the total coupling so that the constraints
are satisfied for larger couplings to charged leptons. We should also note that astrophysical
constraints are subject to the same limitations discussed above. They rely on the assumption
that the properties of φ in the astrophysical medium are the same as in vacuum.

3.4 Leptonic observables

3.4.1 `α→ `β φ

Using the effective Lagrangian in Eq. (3.1), it is straightforward to obtain the branching ratio
of the LFV decays `α → `β φ,

Γ (`α → `β φ) = mα

32π

(∣∣∣SβαL ∣∣∣2 +
∣∣∣SβαR ∣∣∣2) , (3.22)

where terms proportional to the small ratio mβ/mα have been neglected. 3 The off-diagonal
SβαA scalar couplings, with A = L,R, can be directly constrained from these processes.

3.4.2 `α→ `β γ φ

The decay width for the 3-body LFV process `α → `β γ φ can be written as

Γ (`α → `β γ φ) = αmα

64π2

(∣∣∣SβαL ∣∣∣2 +
∣∣∣SβαR ∣∣∣2) I (xmin, ymin) , (3.23)

3We must notice that this approximation is not equally good for all `α → `β φ cases. This is because the
ratio mµ/mτ ∼ 0.1 is not completely negligible. Therefore, while the approximation is very good for µ → e φ
and τ → e φ, it may lead to an error of the order of 20% in τ → µφ. This deviation is acceptable, but can be
accounted for by including additional terms proportional to mµ/mτ , hence leading to a much more complicated
analytical expression. Completely analogous comments can be made for the rest of the observables discussed in
this section.
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where terms proportional to mβ/mα have been neglected. Here I (xmin, ymin) is a phase space
integral given by

I (xmin, ymin) =
∫

dx dy (x− 1) (2− xy − y)
y2 (1− x− y) , (3.24)

and we have introduced the usual dimensionless parameters x and y, defined as

x = 2Eβ
mα

, y = 2Eγ
mα

, (3.25)

which, together with z = 2Eφ/mα, must fulfill the kinematical condition x+y+z = 2. We point
out that our analytical results match those in [250], except for redefinitions in the couplings. 4

The phase space integral in Eq. (3.24) depends on xmin and ymin, the minimal values of
the x and y parameters. While one could naively think that kinematics dictate their values,
they are actually determined by the minimal `β lepton and photon energies measured in a given
experiment. This properly adapts the calculation of the phase space integral to the physical
region explored in a real experiment and also eliminates the kinematical divergences that would
otherwise appear. In fact, we note that the integral in Eq. (3.24) becomes divergent when the
photon energy vanishes (y → 0) as, in this case, the photon would not be observable by any
detector. This is the well-known infrared divergence that also appears, for instance, in the
radiative SM decay µ→ eνν̄γ. Another divergence appears when the photon and the `β lepton
in the final state are emitted in the same direction. The angle between their momenta is given
by

cos θβγ = 1 + 2− 2(x+ y)
xy

. (3.26)

Since we work in the limit mβ = 0, one finds a colinear divergence in configurations in which
the photon and the `β lepton have their momenta aligned (θβγ → 0). Again, if these two
particles are emitted parallel to each other, the lack of energy resolution in the detector makes
it impossible to distinguish between them. Therefore, infrared and collinear divergences can
be effectively canceled by considering other processes that are not distinguishable in practice.
This includes both processes in which soft photons are emitted and those where the massless
particles are produced in parallel. This approach provides a more comprehensive treatment of
the interactions and ensures that the final result is free from infrared divergences. However, any
experimental setup has a finite resolution, which implies a non-zero minimum measurable Eγ
and a non-zero minimum θβγ angle. Therefore, by restricting the phase space integration to the
kinematical region explored in a realistic situation, all divergences disappear.

On the other hand, direct comparison with Eq. (3.22) allows one to establish the relation

Γ (`α → `β γ φ) = α

2π I (xmin, ymin) Γ (`α → `β φ) , (3.27)

4In the model considered in [250], the right-handed coupling was suppressed and hence neglected.
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γ

ℓγ ℓγ

ℓβφℓα

γα βγ

Figure 3.2: 1-loop Feynman diagram contributing to the process `α → `βγ described by the
effective Lagrangian in Eq. (3.1). The flavor indices of the couplings contributing to the diagram
have been specified in the vertices.

which tells us that `α → `β γ φ is suppressed with respect to `α → `β φ due to an additional
α coupling and a phase space factor. In fact, the latter turns out to be the main source of
suppression.

3.4.3 `α→ `β γ

The amplitude for the `α → `β γ radiative decay only receives contributions from dipole operators
and takes the general form

Mφ = −e ūβ
{
mα σ

µνqν

[(
KL

2

)βα
PL +

(
KR

2

)βα
PR

]}
uα ε

∗
µ , (3.28)

where u and v are spinors and qµ and εµ are the photon 4-momentum and polarization vector,
respectively. The KL

2 and KR
2 coefficients are induced at the 1-loop level, as shown in Fig. 3.2,

and we find the expressions

(
KL

2

)βα
= 1

32π2m5
αm

3
β (mα +mβ) (mα −mβ)2

[
CγαL CβγL f1 (mα,mβ,mγ)

+CγαL CβγR f2 (mα,mβ,mγ) + CγαR CβγL f2 (mβ,mα,mγ)
]
,

(3.29)

(
KR

2

)βα
= 1

32π2m5
αm

3
β (mα +mβ) (mα −mβ)2

[
CγαR CβγR f1 (mβ,mα,mγ)

+CγαL CβγR f2 (mβ,mα,mγ) + CγαR CβγL f2 (mα,mβ,mγ)
]
,

(3.30)
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where a sum over γ is implicit and the fi loop functions are defined as

f1 (mα,mβ,mγ) = 2mαmβmγ

[
m2
β

(
m2
α −m2

β

) (
m2
α −m2

γ

)
log

m2
γ

m2
γ −m2

α

+m2
α

(
m2
β −m2

α

) (
m2
β −m2

γ

)
log

m2
γ

m2
γ −m2

β

+m2
αm

2
β

(
m2
α −m2

β

)2
C0
(
0,m2

α,m
2
β,mγ ,mγ , 0

)]
,

(3.31)

f2 (mα,mβ,mγ) =m3
α

(
m2
β −m2

γ

) [
2m2

βm
2
γ +m2

α

(
m2
β −m2

γ

)]
log

m2
γ

m2
γ −m2

β

−m3
αm

2
β

(
m2
α −m2

β

) (
m2
β +m2

γ

)
−mαm

4
β

(
m4
α −m4

γ

)
log

m2
γ

m2
γ −m2

α

− 2m3
αm

4
βm

2
γ

(
m2
α −m2

β

)
C0
(
0,m2

α,m
2
β,mγ ,mγ , 0

)
,

(3.32)

and we have introduced here the usual scalar Passarino-Veltman three-point function

C0
(
0,m2

α,m
2
β,mγ ,mγ , 0

)
= 1

2
(
m2
α −m2

β

)[log2
(
−
m2
γ

m2
α

)

− log2
(
−
m2
γ

m2
β

)
+ 2Li2

m2
γ

m2
α

− 2Li2
m2
γ

m2
β

]
.

(3.33)

The CL,R couplings that appear in Eqs. (3.29) and (3.30) are related to the SL,R couplings
introduced in the effective Lagrangian in Eq. (3.1). The relation depends on the particular
diagram under consideration:

CηρL =


SηρL mη < mρ

Sρη∗R mη > mρ

Sηη η = ρ

, (3.34)

and

CηρR =


SηρR mη < mρ

Sρη∗L mη > mρ

Sηη∗ η = ρ

. (3.35)
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It proves convenient to find approximate expressions for the KL,R
2 coefficients, obtained at

leading order in mβ. We find

(
KL

2

)βα
= Sββ SβαR

32π2m2
α

− SβαL
[
Sαα

(
π2 − 6

)
+ Sαα∗

(
π2 − 9

)]
96π2m2

α

+ 1
32π2mα


SβγL SγαR
mα

mα � mγ � mβ

Sγβ∗R SγαR
mα

mα � mβ � mγ

−SβγL Sαγ∗R
mγ

mγ � mα

(3.36)

and

(
KR

2

)βα
= Sββ∗ SβαL

32π2m2
α

− SβαR
[
Sαα

(
π2 − 9

)
+ Sαα∗

(
π2 − 6

)]
96π2m2

α

+ 1
32π2mα


SβγR SγαL
mα

mα � mγ � mβ

Sγβ∗L SγαL
mα

mα � mβ � mγ

−SβγR Sαγ∗L
mγ

mγ � mα

.

(3.37)

We must emphasize, however, that these approximate expressions may only serve as a rough
estimate for the order of magnitude of theKL,R

2 coefficients, as large errors (∼ 50%) are obtained
in some cases due to the presence of large logs. Finally, upon substitution in Eq. (3.5), one
obtains the total decay width of the process. 5 Then, we can compare our analytical results with
those found in [227]. Assuming that the only non-vanishing couplings are the ones involving the
µµ and eµ flavor combinations, and making the replacements

Sµµ = i
mµ cµµ
f

, SeµL = i
mµ (ke)eµ

f
, SeµR = i

mµ (kE)eµ
f

, (3.38)

full agreement is recovered.

3.4.4 `−α → `−β `
−
β `

+
β

Complete expressions for the `−α → `−β `
−
β `

+
β decay width in the absence of φ can be found in [251].

Here we are interested in the new contributions mediated by the scalar φ, which are given by
the Feynman diagrams shown in Fig. 3.3. The relative sign is due to the interchange of charged

5For completeness, we note that the expression for the `α → `β γ decay width without neglecting m2
β is

Γ (`α → `βγ) =
e2 (m2

α −m2
β

)3
16πmα

[∣∣∣(KL
2
)βα∣∣∣2 +

∣∣∣(KR
2
)βα∣∣∣2] .
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Figure 3.3: Tree-level Feynman diagrams contributing to the process `−α → `−β `
−
β `

+
β described

by the effective Lagrangian in Eq. (3.1).

leptons. It is straightforward to derive the associated amplitude, given by

Mφ = ū (p3) i
(
SββPL + Sββ∗PR

)
v (p4) i

q2 + iε
ū (p2) i

(
SβαL PL + SβαR PR

)
u (p1)

− ū (p2) i
(
SββPL + Sββ∗PR

)
v (p4) i

k2 + iε
ū (p3) i

(
SβαL PL + SβαR PR

)
u (p1) .

(3.39)

Here q = p1 − p2 and k = p1 − p3 are the φ virtual momenta and we have explicitly indicated
the flavor indices of the SL,R coefficients. The total decay width can then be written as

Γ
(
`−α → `−β `

−
β `

+
β

)
= Γφ̄

(
`−α → `−β `

−
β `

+
β

)
+ Γφ

(
`−α → `−β `

−
β `

+
β

)
, (3.40)

where Γφ̄ is the decay width in the absence of φ, given in [251], and

Γφ
(
`−α → `−β `

−
β `

+
β

)
=

mα

512π3

{(∣∣∣SβαL ∣∣∣2 +
∣∣∣SβαR ∣∣∣2){∣∣∣Sββ∣∣∣2(4 log mα

mβ
− 49

6

)
− 2

6

[(
Sββ∗

)2
+
(
Sββ

)2
]}

− m2
α

6

{
SβαL SββAS∗LL + 2SβαL Sββ∗AS∗LR + 2SβαR SββAS∗RL + SβαR Sββ∗AS∗RR

− 12
(
SβαL SββAT∗LL + SβαR Sββ∗AT∗RR

)
− 4

(
SβαR SββAV ∗RL + SβαL Sββ∗AV ∗LR

)
+ 6e2

[
SβαR Sββ

(
KL

2

)βα∗
+ SβαL Sββ∗

(
KR

2

)βα∗]
+ c.c.

}}
,

(3.41)

where in this expression AIXY =
(
AIXY

)βββα
. In writing Eq. (3.41) we have only kept the lowest

order terms in powers of mβ for each possible combination of couplings. This is equivalent to
the 0th order for all terms, except for the ones in the first line, where the factor log mα

mβ
avoids

the appearance of an infrared divergence. An expression including terms up to first order in mβ

is given in Appendix A.
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Figure 3.4: Tree-level Feynman diagrams contributing to the process `−α → `−β `
−
γ `

+
γ described

by the effective Lagrangian in Eq. (3.1).

3.4.5 `−α → `−β `
−
γ `

+
γ

Again, complete expressions for the `−α → `−β `
−
γ `

+
γ decay width in the absence of φ can be

found in [251]. The new contributions mediated by the scalar φ are obtained from the Feynman
diagrams shown in Fig. 3.4. The relative sign is due to the interchange of charged leptons. While
the diagram on the left involves a flavor conserving (γγ) and a flavor violating (βα) vertex, both
vertices in the diagram on the right violate flavor (γα and γβ). The associated amplitude is
slightly different from that of the previous process and is given by

Mφ = ū (p3) i (SγγPL + Sγγ∗PR) v (p4) i

q2 + iε
ū (p2) i

(
SβαL PL + SβαR PR

)
u (p1)

− ū (p2) i
(
SγβL PL + SγβR PR

)
v (p4) i

k2 + iε
ū (p3) i (SγαL PL + SγαR PR)u (p1) .

(3.42)

Finally, the total decay width can be written as

Γ
(
`−α → `−β `

−
γ `

+
γ

)
= Γφ̄

(
`−α → `−β `

−
γ `

+
γ

)
+ Γφ

(
`−α → `−β `

−
γ `

+
γ

)
, (3.43)

where Γφ̄ is the decay width in the absence of φ, given in [251], and

Γφ
(
`−α → `−β `

−
γ `

+
γ

)
=

mα

512π3

{(∣∣∣SβαL ∣∣∣2 +
∣∣∣SβαR ∣∣∣2){|Sγγ |2(4 log mα

mγ
− 23

3

)
− 1

3
[
(Sγγ∗)2 + (Sγγ)2

]}

+
(
|SγαL |

2 + |SγαR |
2
)(∣∣∣SγβL ∣∣∣2 +

∣∣∣SγβR ∣∣∣2)
(

2 log mα

mmax
f

− 3
)

− 1
2
[
Sγγ

(
SβαL Sγα∗L Sγβ∗L + Sβα∗R SγαR SγβR

)
+ c.c.

]
+ m2

α

6

{
SγαL SγβL AS∗LL

+ SγαR SγβR AS∗RR − 2Sγγ
(
SβαL AS∗LL + Sβα∗L ASLR + SβαR AS∗RL + Sβα∗R ASRR

)
+ 4

(
SγαL SγβR AV ∗LR + SγαR SγβL AV ∗RL

)
+ 12

(
SγαL SγβL AT∗LL + SγαR SγβR AT∗RR

)
−6e2

[
SγαL SγβR

(
KR

2

)βα∗
+ SγαR SγβL

(
KL

2

)βα∗]
+ c.c.

}}
,

(3.44)
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Figure 3.5: Tree-level Feynman diagrams contributing to the process `−α → `+β `
−
γ `
−
γ described

by the effective Lagrangian in Eq. (3.1).

where in this expression AIXY =
(
AIXY

)γγβα
. Also, here mmax

f = max (mβ,mγ) and then the
expression depends on the process in question. Once again, we have only kept the lowest order
terms in powers of mβ and mγ for each possible combination of couplings.

3.4.6 `−α → `+
β `
−
γ `
−
γ

Also for this process, complete expressions for the `−α → `+β `
−
γ `
−
γ decay width in the absence of

φ can be found in [251]. The relative sign is due to the interchange of charged leptons. The new
contributions mediated by the scalar φ are given by the Feynman diagrams shown in Fig. 3.5.
We note that both vertices are necessarily flavor violating. The associated amplitude is given
in this case by

Mφ = ū (p4) i
(
SγβL PL + SγβR PR

)
v (p2) i

q2 + iε
ū (p3) i (SγαL PL + SγαR PR)u (p1)

− ū (p3) i
(
SγβL PL + SγβR PR

)
v (p2) i

k2 + iε
ū (p4) i (SγαL PL + SγαR PR)u (p1) .

(3.45)

Here q = p1 − p3 and k = p1 − p4 are different from their definitions in the processes above.
Writing one more time the decay width as the sum of two contributions,

Γ
(
`−α → `+β `

−
γ `
−
γ

)
= Γφ̄

(
`−α → `+β `

−
γ `
−
γ

)
+ Γφ

(
`−α → `+β `

−
γ `
−
γ

)
, (3.46)
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γ

ℓα ℓα

ℓβφℓβ

αβ βα

Figure 3.6: Feynman diagram for the 1-loop contribution to the anomalous magnetic moment
of charged leptons given by the interaction in Eq. (3.1). The flavor indices of the couplings
contributing to the diagram have been specified in the vertices. The relation between these
couplings, which we generically denote as CL,R and C̃L,R, and the SL,R couplings in the effective
Lagrangian of Eq. (3.1) depends on the flavor states involved in the diagram. See the text for a
detailed explanation.

where Γφ̄ is the decay width in the absence of φ, given in [251], we find that

Γφ
(
`−α → `+β `

−
γ `
−
γ

)
=

mα

512π3

{(
|SγαL |

2 + |SγαR |
2
)(∣∣∣SγβL ∣∣∣2 +

∣∣∣SγβR ∣∣∣2)
(

2 log mα

mmax
f

− 3
)

− 1
2

(
|SγαL |

2
∣∣∣SγβL ∣∣∣2 + |SγαR |

2
∣∣∣SγβR ∣∣∣2)

+ m2
α

6

[
−SγαL SγβL AS∗LL − S

γα
R SγβR AS∗RR − 2

(
SγαL SγβR AS∗RL + SγαR SγβL AS∗LR

)
+4
(
SγαL SγβR AV ∗RL + SγαR SγβL AV ∗LR

)
+ 12

(
SγαL SγβL AT∗LL + SγαR SγβR AT∗RR

)
+ c.c.

]}
,

(3.47)

where in this expression AIXY =
(
AIXY

)γβγα
and mmax

f = max (mβ,mγ).

3.4.7 Lepton magnetic and electric dipole moments

We finally consider the magnetic and electric dipole moments of the charged leptons, which can
be described by the effective Lagrangians

LAMM = e

2mα
aα `α σ

µνFµν `α , (3.48)

LEDM = − i2dα `α σ
µνFµν γ5 `α . (3.49)
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The charged lepton dipole moments receive contributions mediated by the scalar φ, as shown
in Fig. 3.6. 6 In the following we denote the chiral couplings in the ¯̀

α − `β − φ vertex as CαβL
and CαβR , whereas the chiral couplings in the ¯̀

β − `α − φ vertex are denoted as C̃βαL and C̃βαR .
The CL,R and C̃L,R couplings are related to the SL,R couplings in the effective Lagrangian of
Eq. (3.1), but this relation depends on the flavor states involved in the diagram, as discussed
below. The amplitude associated to the diagram in Fig. 3.6 can be written as

iM =
∫ d4q

(2π)4u`
(
p′,mα

) [
i
(
CαβL PL + CαβR PR

)] i (/p′ + /q +mβ

)
(p′ + q)2 −m2

β

(−i e γµ)

i
(
/p+ /q +mβ

)
(p+ q)2 −m2

β

[
i
(
C̃βαL PL + C̃βαR PR

)] i
q2u` (p,mα) ε∗µ (k) , (3.50)

where mα and mβ are the masses of the external and internal leptons, respectively, and we
sum over the index β. One must now compare to the equivalent amplitude obtained with the
effective Lagrangians in Eqs. (3.48) and (3.49). After some algebra, one finds that the scalar φ
induces the contributions to the anomalous magnetic moments and electric dipole moments of
the charged leptons

∆aα = −1
32π2m4

α

(3.51)
m2

α

(
m2
α − 2m2

β

)
− 2m2

β

(
m2
α −m2

β

)
log

m2
β∣∣∣m2

β −m2
α

∣∣∣
 (CαβL C̃βαR + CαβR C̃βαL

)

−2mαmβ

m2
α +

(
m2
α −m2

β

)
log

m2
β∣∣∣m2

β −m2
α

∣∣∣
 (CαβL C̃βαL + CαβR C̃βαR

) , (3.52)

and

dα = i emβ

32π2m4
α

(
CαβL C̃βαL − C

αβ
R C̃βαR

)m2
α +

(
m2
α −m2

β

)
log

m2
β∣∣∣m2

β −m2
α

∣∣∣
 . (3.53)

These analytical results have been checked with the help of Package-X [253]. We note again
that a sum over the index β is performed in Eqs. (3.52) and (3.53). Therefore, they include
both flavor diagonal as well as flavor off-diagonal contributions to the dipole moments. We now
consider these contributions separately and study their behavior in specific limits:

1. Flavor off-diagonal contribution with mβ � mα

6Two-loop Barr-Zee contributions [252] to the charged leptons AMMs and EDMs can also be considered.
However, while these might be relevant in some cases, we will assume that the SL,R couplings can at most
have mild hierarchies among different flavors, hence making them numerically irrelevant compared to the 1-loop
contributions considered here.
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In this case the CL,R and C̃L,R couplings are related to the SL,R couplings in Eq. (3.1) as
C̃βαL,R = SβαL,R and CαβL,R = Sβα∗R,L and the expressions simplify to

∆aα = 1
32π2mα

[
−mα

(∣∣∣SβαL ∣∣∣2 +
∣∣∣SβαR ∣∣∣2)

+ 4mβ Re
(
SβαR Sβα∗L

)(
1 + log

m2
β

m2
α

)]
+O

(
m2
β

)
, (3.54)

and

dα = emβ

16π2m2
α

Im
(
SβαR Sβα∗L

)(
1 + log

m2
β

m2
α

)
+O

(
m3
β

)
. (3.55)

2. Flavor off-diagonal contribution with mβ � mα

In this case the generic CL,R and C̃L,R couplings are related to the SL,R couplings as
C̃βαL,R = Sαβ∗R,L and CαβL,R = SαβL,R, giving us

∆aα = mα

16π2mβ

[
Re
(
SαβR Sαβ∗L

)
+ mα

6mβ

(∣∣∣SβαL ∣∣∣2 +
∣∣∣SβαR ∣∣∣2)]+O

(
m3
α

)
, (3.56)

and
dα = e

32π2mβ
Im
(
SαβR Sαβ∗L

)
+O

(
m2
α

)
. (3.57)

3. Flavor diagonal contribution, i.e. mβ = mα

Finally, in this case we have CααL = C̃ααL = Sαα and CααR = C̃ααR = Sαα∗, and we find the
simple expression

∆aα = 1
16π2

[
3 (ReSαα)2 − (ImSαα)2

]
(3.58)

for the AMM of the charged lepton `α, which agrees with previous results in the literature.
In particular, it matches exactly the expression given in [254] in the limit of a massless
scalar, with the equivalence

−mα

v
aSα = 1

2 (Sαα + Sαα∗) , −i mα

v
bSα = −1

2 (Sαα − Sαα∗) . (3.59)

Regarding the expression for the EDM, it also acquires a very simple form in this case,

dα = − e

8π2mα
(ReSαα) (ImSαα) . (3.60)

This expression agrees with the one given in [255] just by identifying ReSαα = −λ`S and
ImSαα = λ`P . Notice that Eqs. (3.58) and (3.60) are both exact results for the diagonal
contributions to the dipole moments.
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3.5 Phenomenological discussion

After deriving analytical expressions for several leptonic observables of interest, we now discuss
their associated phenomenology.

3.5.1 Searches for `α→ `β φ

Several searches for `α → `β φ have been performed and used to set experimental constraints
on the off-diagonal SβαA effective couplings. Let us start with muon decays. The strongest limit
on the branching ratio for the 2-body decay µ+ → e+ φ was obtained at TRIUMF, finding
BR (µ→ e φ) < 2.6× 10−6 at 90% C.L. [256]. However, as explained in [250], this experimental
limit must be applied with care to the general scenario considered here. The reason is that the
experimental setup in [256] uses a muon beam that is highly polarized in the direction opposite
to the muon momentum and concentrates the search in the forward region. This reduces the
background from the SM process µ+ → e+νe ν̄µ, which is strongly suppressed in this region,
but also reduces the µ+ → e+ φ signal unless the φ − e − µ coupling is purely right-handed.
Therefore, we obtain a limit valid only when SeµL = 0:

SeµL = 0 ⇒ |SeµR | < 2.7× 10−11 . (3.61)

A more general limit can also be derived from [256]. Using the spin processed data shown in
Fig.(7) of [256], the authors of [250] obtained the conservative bound BR (µ→ e φ) . 10−5, valid
for any chiral structure of the SeµA couplings. This bound is similar to the more recent limit
obtained by the TWIST collaboration [257], also in the ∼ 10−5 ballpark. With this value, one
finds an upper limit on the e− µ flavor violating couplings of 7

|Seµ| < 5.3× 10−11 . (3.62)

where we have defined the convenient combination

∣∣∣Sβα∣∣∣ =
(∣∣∣SβαL ∣∣∣2 +

∣∣∣SβαR ∣∣∣2)1/2
. (3.63)

Several strategies can be followed for newer µ→ e φ searches. The authors of [234] advocate for
a new phase of the MEG-II experiment, reconfigured to search for µ → e φ by placing a Lyso
calorimeter in the forward direction. Also, as pointed out in [258, 259] and recently discussed
in [234] as well, the limit in Eq. (3.62) can be substantially improved by the Mu3e experiment
by looking for a bump in the continuous Michel spectrum, that is, in the µ→ e ν̄e νµ spectrum.
The detailed analysis in [259] shows that µ → e φ branching ratios above 7.3 × 10−8 can be

7See also the recent [234] for a comprehensive discussion of the experimental limit of [256] and how this gets
altered for different chiral structures of the SeµA couplings.
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ruled out at 90% C.L.. This would imply a sensitivity to an |Seµ| effective coupling as low as
4.5× 10−12, improving an order of magnitude with respect to the limit in Eq. (3.62).

Turning to τ decays, the previous best experimental limits were set by the ARGUS col-
laboration [260]. Currently, these bounds have been improved by Belle II [261], which found

BR (τ → e φ )
BR (τ → e ν ν̄) < 5.3× 10−3 ,

BR (τ → µφ)
BR (τ → µ ν ν̄) < 3.4× 10−3 ,

(3.64)

at 95% C.L.. These limits are weaker than those for muon decays, but still lead to stringent
constraints on the LFV τ couplings with the scalar φ. It is straightforward to find

|Seτ | < 3.5× 10−7 ,

|Sµτ | < 2.7× 10−7 .
(3.65)

In addition, new methods for τ → ` φ searches at this experiment have been recently pro-
posed [262].

3.5.2 `α→ `β γ φ at the MEG experiment

In order to illustrate the calculation of the phase space integral for a specific case, let us focus
on the µ → e γ φ decay and consider the MEG experiment [263]. This experiment has been
designed to search for µ → e γ and therefore concentrates on Ee ' mµ/2 and cos θeγ ' −1
(positron and photon emitted back to back). However, due to the finite experimental resolution,
these cuts cannot be imposed with full precision, which makes MEG also sensitive to µ→ e γ φ.
The final MEG results were obtained with the cuts [263]

cos θeγ < −0.99963 , 51.0 < Eγ < 55.5MeV , 52.4 < Ee < 55.0MeV . (3.66)

This defines the MEG kinematical region for the calculation of the phase space integral in
Eq. (3.24) since µ→ e γ φ events that fall in this region can be detected by the experiment. For
instance, events with cos θeγ < −0.99963, or equivalently θeγ > θmin

eγ = 178.441◦, were at the
reach of MEG. The kinematical region can be divided into two subregions:

ymin =
2Emin

γ

mµ
< y < yint ,

xinf < x < xmax = 1 ,
(3.67)
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Figure 3.7: Illustration of the allowed phase space region for the process µ → e γ φ in a given
experiment. The blue continuous lines correspond to cos θeγ = ±1 and therefore delimit the
total phase space that would be, in principle, available due to kinematics. The red dashed
line represents xinf(y) and corresponds to the minimal θeγ angle measurable by the experiment,
excluding the region below it. The green dotted straight lines at xmin and ymin are the minimal
positron and photon energy, respectively, that the experiment can measure, while yint is the
value of y for which xmin and xinf intersect. Finally, the yellow surface is the region where we
must integrate.

and

yint < y < ymax = 1 ,

xmin = 2Emin
e

mµ
< x < xmax ,

(3.68)

where xinf = xinf(y) is the value of x such that cos θeγ = cos θmin
eγ for each value of y. This can

be easily found by solving Eq. (3.26):

xinf = 2 (1− y)
2− y

(
1− cos θmin

eγ

) . (3.69)

Finally yint is the value of y for which xmin and xinf coincide. These two subregions are illustrated
in Fig. 3.7, where the experimental restrictions have been modified for the sake of clarity by
enlarging the kinematical region of interest. A realistic representation obtained with the MEG
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Figure 3.8: Realistic version of the phase space region limited by the experimental cuts of the
MEG experiment, given in Eq. (3.66). The figure on the right shows a zoom of the figure on the
left, centered on the colored surface.

cuts in Eq. (3.66) is shown in Fig. 3.8. This clearly illustrates the strong suppression due to the
phase space integral.

Having explained how to compute the phase space integral and illustrated the strong suppres-
sion it introduces, we can obtain results for the MEG experiment. Using the cuts in Eq. (3.66),
the phase space integral in Eq. (3.24) can be numerically computed to find

I (xmin, ymin)MEG = 3.8× 10−8 . (3.70)

Combining this result with Eq. (3.23), we obtain the branching ratio of µ→ e γ φ restricted to
the MEG phase space, obtaining

BRMEG (µ→ e γ φ) = 1.5× 105
(
|SeµL |

2 + |SeµR |
2
)
. (3.71)

MEG results require BR (µ→ e γ) < 4.2 × 10−13 [263], a bound that must also be satisfied by
BRMEG (µ→ e γ φ). This leads to

|Seµ| < 1.6× 10−9 . (3.72)

This bound is notably worse than the one given in Eq. (3.62), as expected due to the strong phase
space suppression at MEG, an experiment that is clearly not designed to search for µ → e γ φ.
Similarly, a dedicated run of the MEG-II experiment with a modified trigger should yield a
sensitivity that surpasses the current bounds by one order of magnitude [264].

More stringent bounds were obtained at the Crystal Box experiment at LAMPF [265–267].
They performed several searches with different experimental cuts and branching ratio bounds.
These result in different limits on the |Seµ| effective coupling, as shown in Table 3.1. Adapting
the limit from the µ→ eγ search in [265] along the lines followed in the previous discussion for
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References θmin
eγ Emin

γ [MeV] Emin
e [MeV] I (xmin, ymin) BR bound Limit on |Seµ|

[265] 160◦ 40 44 1.3× 10−3 4.9× 10−11 9.5× 10−11

[266,267] 140◦ 38 38 1.1× 10−2 1.1× 10−9 1.6× 10−10

Table 3.1: Results in the search for µ→ e γ φ at the Crystal Box experiment.

MEG, we find
|Seµ| < 9.5× 10−11 . (3.73)

This bound is still not better than the one given in Eq. (3.62), but it is in the same ballpark. A
very similar bound is obtained with the results of a later analysis, in this case, more specific to
µ→ e γ φ [266,267].

Finally, the Mu3e experiment is not well equipped to detect the photon in µ → e γ φ and
therefore cannot improve on these limits. As explained in [259], a future Mu3e-Gamma experi-
ment including a photon conversion layer could increase the sensitivity to µ→ e γ φ.

3.5.3 `α→ `βγ vs `α→ `β`β`β

The LFV decays `α → `β γ and `α → `β`β`β constitute complementary probes of the nature
of the underlying physics [139, 268]. While `α → `β γ only receives contributions from dipole
operators, `α → `β`β`β is induced by dipole as well as non-dipole operators. Their relative
importance can be studied through the ratio

Rαβ = BR(`α → `β`β`β)
BR(`α → `β γ) . (3.74)

In models in which the `α → `β`β`β amplitude is dominated by dipole contributions, the two
branching ratios are strongly correlated, and one can make a definite prediction for Rµe. In
fact, since `α → `β`β`β involves an additional electromagnetic coupling constant, one expects
Rαβ � 1. Departures from this prediction would clearly point towards a non-dipole dominant
contribution. We now consider this issue in the presence of an ultralight scalar, which contributes
at tree-level to `α → `β`β`β via scalar (and hence non-dipole) operators. Contrary to the above-
mentioned dipole-dominated scenarios, in this case, one generally expects Rαβ � 1, as shown
below.

However, before we move on to the discussion of the interplay between `α → `β γ and
`α → `β`β`β, we would like to point out that light scalars may offer additional experimental
handles in `α → `β`β`β. In particular, the authors of [269] showed that a light scalar produced
on-shell in `−α → `−β φ that later decays as φ → `−β `

+
β may lead to observable displaced vertices.

This interesting possibility is, however, not possible in the ultralight scalar scenario considered
here because φ is considered to be much lighter than the electron.
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General dipole contributions

First, we consider the general case of a scenario in which dipole contributions are independent
of the non-dipole ones induced by the ultralight scalar φ. This would be the case of a model
containing additional LFV sources not related to φ. To evaluate the relevance of the new
contributions to `α → `β`β`β mediated by the scalar φ, we drop the 4-fermion operators in
Eq. (3.4) and consider a simplified effective Lagrangian containing only left-handed photonic
dipole and scalar-mediated operators

Lsimp
LFV =

emα

(
KL

2

)βα
2 `β σ

µν PL `αFµν + SβαL φ `β PL `α + h.c. . (3.75)

Then, inspired by [270], we parametrize the KL
2 and SL coefficients as

e
(
KL

2

)βα
≡ 1

(κ+ 1) Λ2 , SβαL ≡ mα
κ

(κ+ 1) Λ . (3.76)

Λ is a dimensionful parameter that represents the NP energy scale at which these coefficients
are induced, while κ is a dimensionless parameter that accounts for the relative intensity of
these two interactions. 8 In the case of κ � 1, the dipole operator dominates, while the scalar
mediated contribution dominates for κ� 1. We point out that mα in Eqs. (3.75) and (3.76) is a
global factor given by the mass of the heaviest charged lepton in the process and that Eq. (3.76)
assumes SβαL = SββL .

Fig. 3.9 shows contours of BR(µ → eγ) and BR(µ → eee) in the κ-Λ plane. Our results
are compared to the current bounds and the future sensitivities for the MEG-II and Mu3e
experiments. We observe that for κ� 1 and BR(µ→ eee) > 10−16, Λ must be necessarily below
∼ 3000 TeV. A slightly lower upper limit for Λ is found when κ� 1 and BR(µ→ eγ) > 10−14.
These are precisely the final expected sensitivities in MEG-II and Mu3e. Furthermore, we note
that the search for the scalar mediated contribution in Mu3e will actually be very constraining
in all the parameter space. Similar results are shown for τ decays in Fig. 3.10. In this case, the
current experimental limits are expected to be improved by about one order of magnitude by
the LHCb and Belle II collaborations, which will search for the τ → `βγ and τ → `β`β`β decays,
with `β = e, µ. This figure has been obtained using the expected sensitivities by the Belle II
experiment presented in [150]. We find that for low values of κ, i.e. κ� 1, the current limit on
BR(τ → eγ) implies the non-observation of τ → eee at Belle II. This would therefore require
a larger value of κ, to enhance the relative weight of the 3-body decay. Qualitatively similar
results are obtained for τ → µ transitions.

8We normalize SL by introducing the mass of the heaviest charged lepton involved in each process. However,
this is done only for the purpose of this analysis. In the rest of the section, we do not assume any hierarchy among
the couplings proportional to the charged lepton masses.
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Figure 3.9: Contours of BR(µ → eγ) and BR(µ → eee) in the κ-Λ plane. The lowest values
correspond to the future sensitivities for the MEG-II and Mu3e experiments, while colored
regions are excluded due to the current bounds BR(µ→ eγ) < 4.2 · 10−13 and BR(µ→ eee) <
10−12 [271]. These results have been obtained with the effective Lagrangian in Eq. (3.1) and the
parametrization in Eq. (3.76).

φ-induced dipole contributions

We now consider the generation of dipole operators by loops involving the ultralight scalar φ, as
discussed in Section 3.4.3 and shown in Fig. 3.2. In this scenario, we assume that φ provides the
dominant (or, of course, the only) contribution to dipole operators. For the sake of simplicity,
the couplings See and SeµL,R will be the only ones allowed to be different from zero in the analysis
that follows. They will also be taken to be real. In this case, the general expressions for KL

2

and KR
2 given in Eqs. (3.29) and (3.30) lead to

(
KL

2

)eµ
= See

96π2m3
µ

{
3mµ S

eµ
R +me

(
−6SeµL + 2π2 SeµL + 3SeµR

)
+ 3meS

eµ
L log

(
−m

2
e

m2
µ

)[
1 + log

(
−m

2
e

m2
µ

)]}
, (3.77)

(
KR
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96π2m3
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3mµ S
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L +me

(
−6SeµR + 2π2 SeµR + 3SeµL

)
+ 3meS

eµ
R log

(
−m

2
e

m2
µ

)[
1 + log

(
−m

2
e

m2
µ

)]}
, (3.78)
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Figure 3.10: Contours of BR(τ → eγ) and BR(τ → eee), on the left, and BR(τ → µγ) and
BR(τ → µµµ), on the right, in the κ-Λ plane. The lowest values correspond to the expected
future sensitivities of the Belle II experiment [150], while colored regions are excluded due to the
current bounds BR(τ → eγ) < 3.3·10−8, BR(τ → µγ) < 4.4·10−8, BR(τ → eee) < 2.7·10−8 and
BR(τ → µµµ) < 2.1 ·10−8 [271]. These results have been obtained with the effective Lagrangian
in Eq. (3.1) and the parametrization in Eq. (3.76).

where we have expanded at first order in me. These expressions allow us to compute the Rµe
ratio defined in Eq. (3.74). Defining the mass ratio r = m2

µ

m2
e
, we do that for some simplified

scenarios:

• Scenario 1: SeµL = 0 or SeµR = 0

R(1)
µe ≈

4π r
3α

12 log r − 53
| log(−r)|4 + r

≈ 3.2 · 104 . (3.79)

• Scenario 2: SeµL = SeµR

R(2)
µe ≈

4π r
3α

12 log r − 53
| log2(−r) +

√
r|
≈ 1.9 · 104 . (3.80)

• Scenario 3: SeµL = −SeµR

R(3)
µe ≈

4π r
3α

12 log r − 53
| log2(−r)−

√
r|
≈ 1.1 · 105 . (3.81)

We find that Rµe � 1 in these scenarios. This, however, was expected, since `α → `β`β`β is
induced at tree-level by φ exchange, while `α → `β γ can only take place at loop order. More
interestingly, different scenarios for the φ couplings lead to very different predictions for Rµe.
This would, in principle, allow us to determine the nature of the scalar φ if positive signals are
observed for both µ→ eγ and µ→ eee processes.
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3.5.4 Lepton magnetic and electric dipole moments

As discussed in Section 1.5, the deviation observed in the experimental determination of the
electron and muon AMMs compared to their SM predicted values has attracted the attention of
the physics community. On the other hand, the SM predicts tiny values for the charged leptons
EDMs, so any non-zero measurement of these observables would be a clear signal of new physics
effects.

Fig. 3.11 shows favored regions for the diagonal coupling See due to the electron AMM and
EDM. As shown on the left panel, the bound on the electron EDM strongly constrains the See

coupling, which must be essentially purely real or purely imaginary. However, one can find
regions in the parameter space that explain the (g − 2)e anomaly, compatible with the bound
on the electron EDM. Given the low significance of the (g − 2)e anomaly, one stays within the
3σ region even if See = 0, but if ReSee . 10−13, a value of about ImSee ∼ 10−5 would actually
achieve agreement at the 1σ level. The deviation in (g − 2)µ is more significant, implying that
one must introduce larger Sµµ values in order to reconcile the theoretical prediction with the
experimental measurement. This is shown in Fig. 3.12. In this case, the bound from the muon
EDM does not impose strong restrictions on the parameter space, as can be seen in the left
panel. However, larger Sµµ couplings, of the order of 10−4, are necessary to explain the current
deviation between theory and experiment. In both cases, the required values for See and Sµµ

are in conflict with the bounds discussed in Section 3.3, see Eqs. (3.7) and (3.8), and therefore
a mechanism to suppress the processes from which they are derived would be necessary for the
ultralight scalar φ to be able to explain the current g − 2 anomalies.

Finally, we have explored whether the electron and muon AMM anomalies can be explained
by purely off-diagonal contributions. In the following, we consider vanishing diagonal couplings
and real non-zero off-diagonal couplings. In this scenario, the contribution to the charged
leptons EDMs vanish and the AMMs strongly correlate with LFV observables. The bounds
derived in Section 3.4.7 from the non-observation of `α → `β φ imply that an explanation to the
observed deviations cannot be achieved. In particular, we find that SeµL ∼ −S

eµ
R ∼ 2× 10−4 or

SeτL ∼ −SeτR ∼ 7×10−4 are needed in order to explain the (g − 2)e deviation. Regarding the muon
AMM anomaly, only with the µ−τ−φ coupling one can obtain a positive contribution, requiring
SµτL ∼ SµτR ∼ 3 × 10−3 to explain the (g − 2)µ deviation. In all cases, the required off-diagonal
couplings are several orders of magnitude larger than the limits in Eqs. (3.62) and (3.65). We
therefore conclude that the explanation of the electron and muon AMMs anomalies must come
from diagonal contributions, whereas the off-diagonal ones can only play a subdominant role.

3.6 Conclusions

Ultralight scalars appear in a wide variety of SM extensions, either as very light states or as
exactly massless particles, like Goldstone bosons. These states can be produced in many leptonic
processes or act as their mediators, leading to many exotic signatures. Examples of such scalars



78 Chapter 3. Ultralight scalars in leptonic observables

Figure 3.11: Favored region for the diagonal coupling See, due to the electron anomalous mag-
netic and electric dipole moments. Within the light (dark) green region, the deviation in the
electron AMM is explained at the 3σ (1σ) level. The region delimited by the orange continuous
lines is the parameter space allowed by the current experimental upper bound of the electron
EDM. In the figure on the right, the abscissa axis has been zoomed.

Figure 3.12: Favored regions for the diagonal coupling Sµµ, due to the muon anomalous magnetic
and electric dipole moments. In the figure on the left, it is seen that the bound from the muon
EDM (yellow continuous curves) does not restrict too much the AMM of the muon (orange
dashed curves). On the right figure, only the muon AMM is represented and within the light
(dark) region, the current experimental deviation is explained at the 3σ (1σ) level.

include the majoron and the axion, two well-motivated hypothetical particles at the core of
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Coupling Upper limit References

ImSee 2.1× 10−13 [234]

ReSee [ImSee]max

ImSµµ 2.1× 10−9 [238]

ReSµµ [ImSµµ]max

|Seµ| 5.3× 10−11 [211]

|Seτ | 3.5× 10−7 [211]

|Sµτ | 2.7× 10−7 [211]

Table 3.2: Current limits on the ultralight scalar couplings to charged leptons. The limit on
ImSee is at 90% C.L. [234]. The limit on ImSµµ has been obtained by performing a simulation
of the supernova SN1987A [238]. An alternative and more stringent limit ImSµµ < 2.1× 10−10

can be derived with more aggressive assumptions in the simulation.

two fundamental problems: the origin of neutrino masses and the conservation of CP in strong
interactions.

In this Chapter, we delve into the effects of ultralight scalars in many leptonic observables
using a model-independent general approach. Our analysis takes into account both scalar and
pseudoscalar interactions to charged leptons, therefore going beyond most existing studies. First,
we briefly reviewed the current bounds imposed by stellar cooling on the diagonal couplings and
discussed indirect limits from the 1-loop generation of a coupling to photons. Then, we derived
analytical expressions for a wide variety of leptonic observables. We have revisited the decays
`α → `β φ and `α → `β γ φ, in which the scalar φ is produced, and provided complete expressions
for the radiative LFV decays `α → `β γ, as well as for the 3-body decays `−α → `−β `

−
β `

+
β , `−α →

`−β `
−
γ `

+
γ and `−α → `+β `

−
γ `
−
γ , in which φ contributes as a mediator. The effect of ultralight scalars

on the charged leptons anomalous magnetic and electric dipole moments was also discussed.
Finally, several phenomenological aspects of this scenario have been explored. After deriving
limits on the off-diagonal couplings from lepton flavor violating observables, we have shown that
an explanation to the (g − 2)e and (g − 2)µ anomalies is possible in this scenario. Furthermore,
we have also shown that the observables discussed in this Chapter are indeed complementary.
A compilation of the current limits on the ultralight scalar couplings to charged leptons can be
found in Table 3.2.

The phenomenology of ultralight scalars is very rich since they are kinematically accessible
in most high- and low-energy processes. We have discussed many purely leptonic observables,
but if φ couples to quarks too, many hadronic and semi-leptonic channels open. This could
give rise to many signatures at kaon factories [272]. Furthermore, ultralight scalars may leave
their footprints in other processes. For instance, they can be produced and emitted in tritium
beta decay [273] or µ− e conversion in nuclei [274], have a strong impact in leptogenesis [275],
and give rise to non-resonant phenomena at colliders [276]. In our opinion, this diversity of
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experimental signatures and their potential to unravel some of the most important problems in
particle physics through their connection to ultralight scalars merits further investigation.



Chapter 4

(g− 2)e,µ in an extended inverse
type-III seesaw

The electron and muon g−2 experiments have yielded results that are at odds with the Standard
Model theoretical predictions (see Section 1.5 for a detailed discussion). This is particularly
relevant in the case of the muon g−2, which has attracted a remarkable interest in the community
after the long-awaited announcement of the first results by the Muon g − 2 collaboration at
Fermilab, which confirms a previous measurement by the E821 experiment at Brookhaven and
enlarges the statistical significance of the discrepancy, now at 4.2σ. Therefore, the development
of BSM models to address the discrepancy, if finally confirmed, may be required. Actually, it
is crucial for these models not only to explain the anomalous magnetic moments of the charged
leptons but also to provide solutions to other open questions within the Standard Model while
remaining consistent with all relevant experimental constraints.

4.1 Introduction

Although the main motivation of the inverse type-III seesaw model is to induce non-zero masses
for neutrinos, it is natural to investigate whether the model can also account for the experimental
values of the electron and muon anomalous magnetic moments in regions of the parameter space
that reproduce the measured neutrino masses and leptonic mixing angles while being compatible
with the bounds obtained at colliders and low-energy experiments. In this chapter, however,
we show that the latter constraints preclude the ISS3 from inducing large contributions to
(g − 2)e,µ. More importantly, the ISS3 contributions are negative, making it impossible to
address the existing discrepancy in the muon g − 2. This motivates a minimal extension of
the model that introduces a pair of vector-like (VL) lepton doublets with sizable couplings to
electrons and muons. This extension provides the necessary ingredients to generate the required
contributions to both g − 2 anomalies while keeping the relevant features of the original model

81
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and satisfying all the experimental constraints. The aim of this chapter, which is based on [277],
is, then, to study the electron and muon g − 2 in this model, which we denote as the ISS3VL.

4.2 The model

The ISS3VL is an extension of the leptonic sector of the SM with the addition of six right-
handed Weyl fermion SU(2)L triplets with vanishing hypercharge, ΣA and Σ′A (A = 1, 2, 3), and
VL copies of the SM lepton doublet, LL and LR. The ΣA and Σ′A triplets are introduced in
order to generate neutrino masses via the inverse type-III seesaw mechanism. 1 They can be
distinguished by their different lepton numbers, with L(Σ) = +1 and L(Σ′) = −1. Neverthe-
less, lepton number will be explicitly broken in the ISS3VL and, therefore, this lepton number
assignment is arbitrary. The new fermionic fields LL and LR have the same representations
under the SU(3)× SU(2)×U(1) gauge group, and both are doublets under SU(2)L. The scalar
and lepton particle content of the ISS3VL model and the representations of all fields under the
SU(3)× SU(2)×U(1) gauge group are shown in Table 4.1.

The Σ and Σ′ triplets can be decomposed into SU(2)L components. With ΣA = (Σ1,Σ2,Σ3)A,
they can be conveniently written in the usual 2× 2 matrix notation according to

ΣA = 1√
2
~σ · ~ΣA =

(
Σ0
A/
√

2 Σ+
A

Σ−A −Σ0
A/
√

2

)
, (4.1)

where σA are the usual Pauli matrices and the states with well-defined electric charge are given
by

Σ0
A = Σ3

A , Σ±A = Σ1
A ∓ iΣ2

A√
2

. (4.2)

The same holds for the primed states. Finally, the VL leptons LL,R can be decomposed as

LL,R =
(
N

E

)
L,R

. (4.3)

Under the above working assumptions, the most general Yukawa Lagrangian allowed by all
symmetries can be written as

LY = LSM
Y + LISS3

Y + LVL
Y , (4.4)

where LSM
Y is the usual SM Lagrangian that we defined in Eq. (1.38). The terms in

−LISS3
Y =

√
2 ΣYΣ `L H̃

† +MΣ Σ Σ′c + 1
2 µΣ′Σ′c + h.c. , (4.5)

1In order to simplify the notation, we will not denote the chirality of the ΣA ≡ ΣRA and Σ′A ≡ Σ′RA
fermions

explicitly.
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Field Generations SU(3)c SU(2)L U(1)Y

`L 3 1 2 −1/2

eR 3 1 1 −1

Σ 3 1 3 0

Σ′ 3 1 3 0

LL 1 1 2 −1/2

LR 1 1 2 −1/2

H 1 1 2 1/2

Table 4.1: Scalar and lepton particle content of the ISS3VL. `L, eR, and H are the usual SM
fields.

correspond to the usual ISS3 extension. YΣ, MΣ and µ are 3 × 3 matrices, the latter two with
dimensions of mass. Here and in the following we omit SU(2)L contractions and flavor indices
to simplify the notation. Finally, the VL leptons allow for additional Lagrangian terms, given
by

−LVL
Y =

√
2 ΣλL LL H̃

† + eR λR LL H̃
† + LLML LR + `L ε LR + h.c. , (4.6)

where λL and λR are dimensionless 3 × 1 vectors, and ML is a parameter with dimensions of
mass. The 1× 3 vector ε has dimensions of mass and will be assumed to vanish for simplicity. 2

The guiding principle when writing the Yukawa Lagrangian in Eq. (6.2), in particular the piece
in Eq. (4.5), is the conservation of lepton number, only allowed to be broken by the Σ′ µΣ′c

term. In fact, in the absence of the Majorana mass µ, the Lagrangian would have an additional
U(1)L global symmetry. In the following, we will consider µ� MΣ, corresponding to a slightly
broken lepton number, in the spirit of the original inverse seesaw mechanism. 3

The scalar potential of the model is the same as in the SM, and it was defined in Eq. (1.26). 4

After electroweak symmetry breaking, several terms in the Yukawa Lagrangian in Eq. (6.2) in-
duce mixings in the neutral and charged lepton sectors. In the bases n ≡ nL =

(
νL, (Σ0)c, (Σ′0)c, NL, N

c
R

)
,

fL = (eL, (Σ+)c, (Σ′+)c, EL) and fR = (eR,Σ−,Σ′−, ER), the neutral and charged fermion mass
terms read

−Lm = 1
2n

cMN n+ fLMC fR + h.c. , (4.7)

2The ε term contributes to the electron, muon, and tau masses and is therefore constrained to be small.
3In principle, a term of the form Σµ′ Σc is also allowed by all symmetries. However, it is well known that

such a term would contribute to neutrino masses in a subdominant way if µ and µ′ are of the same order, see for
instance [172]. Therefore, we neglect this term in the following.

4Note that the symbol µ has been used in both Eqs. (1.26) and (4.5). However, the Higgs potential is not
relevant to the discussion of this chapter, and, in the remainder of it, µ will refer to the mass parameter in
Eq. (4.5).
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with the mass matrices given by

MN =



0 mT
D 0 0 0

mD 0 MΣ mL 0
0 MT

Σ µ 0 0
0 mT

L 0 0 ML

0 0 0 ML 0


, (4.8)

and

MC =


me

√
2mT

D 0 0
0 0 MΣ 0
0 MT

Σ µ 0
mT
R

√
2mT

L 0 −ML

 . (4.9)

Here we have defined

mD = v√
2
YΣ , me = v√

2
Ye , mL = v√

2
λL and mR = v√

2
λR . (4.10)

We note that the neutral lepton mass matrix MN is 11 × 11, whereas the charged lepton
mass matrix MC is 10 × 10. They can be brought to diagonal form by means of the unitary
transformations U , VL, and VR, defined by

U∗MN U† = diag (mNi) , (4.11)

VL ∗MC VR † = diag (mχi) , (4.12)

resulting in the 11 neutral (Majorana) fermion masses mNi and the 10 charged (Dirac) fermion
masses mχj , with i = 1, . . . , 11 and j = 1, . . . , 10. In the following, we will assume the hierarchy
of energy scales

µ� mD,mL,mR �MΣ,ML , (4.13)

which allows one to obtain approximate expressions for the physical lepton masses. We note that
a small µ parameter is justified through ’t Hooft naturalness criterion [155]. In the case of the
charged leptons, we fix the Ye Yukawa matrix to its SM values, neglecting the corrections from
the mixings with the NP states, as we will comment below. On the other hand, for the neutral
leptons, one finds 3 light states, to be identified with the standard light neutrinos, whereas the
other states are heavy BSM particles. Their mass matrix in this extension is obtained in the
same way as in the original ISS3 model. Using Eq.(2.48), with the new definition of MR,

MR =


0 MΣ mL 0
MT

Σ µ 0 0
mT
L 0 0 ML

0 0 ML 0

 , (4.14)
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Figure 4.1: Feynman diagrams that contribute to the charged lepton anomalous magnetic mo-
ment at the 1-loop level in the ISS3VL. Here χi and Nj denote any of the charged and neutral
lepton mass eigenstates, respectively. Momenta are shown in blue.

the neutrino mass matrix is approximately given by

mν ≈ mT
D

(
MT

Σ

)−1
µM−1

Σ mD , (4.15)

with corrections of the order of the small ratios (mD/MΣ)2 and (mL/ML)2. As expected, this
result is proportional to the µ parameter. It is then clear that sizable YΣ Yukawa couplings and
triplets at the TeV scale are consistent with light neutrino masses due to the suppression by the
µ term. This is the inverse seesaw mechanism.

4.3 Charged lepton anomalous magnetic moments

The ISS3VL has the ingredients to induce large charged lepton anomalous magnetic moments,
namely, relatively light new particles with sizable couplings to the charged leptons. In the
ISS3VL, new contributions to the charged lepton anomalous magnetic moments are induced at
the 1-loop level, as shown in Fig. 4.1. While these diagrams also exist in the SM, in the ISS3VL,
the mass eigenstates Ni and χi include new heavy states beyond the SM leptons. Moreover,
the couplings of the SM states get modified due to mixings with the new BSM states, changing
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their SM contributions. The amplitudes of these Feynman diagrams are given by 5

iMW
` =

∫
d4q

(2π)4 ū`
(
p′
)
i γβ

[(
gLχNW

)
`j
PL +

(
gRχNW

)
`j
PR

]
i
/q +mNj

q2 −m2
Nj

i γα
[(
gLχNW

)
j`
PL +

(
gRχNW

)
j`
PR

] −i(gαα̃ − (p−q)α(p−q)α̃
m2
W

)
(p− q)2 −m2

W

iΓµα̃β̃

−i
(
gββ̃ −

(p′−q)β(p′−q)β̃
m2
W

)
(p′ − q)2 −m2

W

u` (p) εµ , (4.16)

iMZ
` =

∫
d4q

(2π)4 ū`
(
p′
)
i γβ

[(
gLχZ

)
i`
PL +

(
gRχZ

)
i`
PR
]
i

(
/p′ − /q

)
+mχi

(p′ − q)2 −m2
χi

i γµ
[(
gLχγ

)
ii
PL +

(
gRχγ

)
ii
PR
]
i

(
/p− /q

)
+mχi

(p− q)2 −m2
χi

i γα
[(
gLχZ

)
`i
PL +

(
gRχZ

)
2i
PR
]

−i
(
gαβ −

qαqβ
m2
Z

)
q2 −m2

Z

u` (p) εµ , (4.17)

iMh
` =

∫
d4q

(2π)4 ū`
(
p′
)
i
[(
gLχh

)
i`
PL +

(
gRχh

)
i`
PR
]
i

(
/p′ − /q

)
+mχi

(p′ − q)2 −m2
χi

i γµ
[(
gLχγ

)
ii
PL +

(
gRχγ

)
ii
PR
]
i

(
/p− /q

)
+mχi

(p− q)2 −m2
χi

i
[(
gLχh

)
`i
PL +

(
gRχh

)
`i
PR
]

i

q2 −m2
h

u` (p) εµ . (4.18)

Here εµ is the photon polarization 4-vector and the couplings gL,RχNW , gL,RχZ , gL,Rχγ , gL,Rχh and Γ are
defined in Appendix B. A sum over the indices i, j is implicit in these expressions, while ` is the
index of the external charged lepton. We have computed the amplitudes in Eqs. (4.16)-(4.18)
with the help of Package-X [253]. After projecting onto the operator in Eq. (1.52), one obtains
analytical expressions for the contributions to the c coefficient, which can then be translated
into contributions to the charged leptons g − 2 thanks to the relation in Eq. (1.53). The total
ISS3VL contribution to ∆a` can be written as 6

∆a` = ∆a` (W ) + ∆a` (Z) + ∆a` (h) . (4.19)
5In order to obtain the correct sign for the ISS3VL contributions to the electron and muon g − 2 one must

use a consistent set of sign conventions for the Feynman rules of the model. We used the useful Ref. [278] to
guarantee the consistency of the amplitudes in Eqs. (4.16)-(4.18).

6Higher-order contributions, such as those induced by 2-loop Barr-Zee diagrams [252], will be neglected in the
following.
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Assuming that the ISS3VL states Ni and χi are much heavier than the SM states (assuming
the mass hierarchy mNi ,mχi � mh,mW ,mZ � m` with i > 3), one can find approximate
expressions for the three contributions:

∆a` (W ) ' m`

32π2m2
W

{
4
3 m`

[
1− 3m2

W

4m2
Ni

(
11 + 6 log m

2
W

m2
Ni

)](
C2
χNW

)
i`

−mNi

[
1− 3m2

W

m2
Ni

(
3 + 2 log m

2
W

m2
Ni

)](
D2
χNW

)
i`

}
, (4.20)

∆a` (Z) ' m`

32π2m2
Z

{
−5

3 m`

(
C2
χZ

)
i`

+ mχi

(
D2
χZ

)
i`

}
, (4.21)

∆a` (h) ' m`

32π2m2
χi

{
1
3 m`

(
C2
χh

)
i`

+mχi

(
D2
χh

)
i`

}
. (4.22)

Here we have defined the coupling combinations
(
C2
Y

)
i`
≡
∣∣∣(gLY )

i`

∣∣∣2 +
∣∣∣(gRY )

i`

∣∣∣2 and
(
D2
Y

)
i`
≡
(
gLY

)
i`

(
gRY

)∗
i`

+
(
gLY

)∗
i`

(
gRY

)
i`
, (4.23)

with Y = χNW,χZ, χh. Again, the indices i and ` denote the BSM particle running in the
loop and the charged lepton, respectively. We have checked that Eqs. (4.20), (4.21) and (4.22)
reproduce the ISS3VL contributions to the charged leptons anomalous magnetic moments in
very good approximation. Nevertheless, full expressions are given in Appendix C and used in
the numerical analysis presented in the next section. In fact, the approximated expressions can
not be used in the case of SM fermions running in the loop, and the exact formulae must be
employed. We note that ∆a`(W ), ∆a`(Z) and ∆a`(h) contain contributions proportional to
mN g

L
χNW gRχNW , mχ g

L
χZ g

R
χZ , and mχ g

L
χh g

R
χh, respectively, that is, proportional to the mass of

the fermion in the loop. These terms are usually called chirally-enhanced contributions, and they
typically dominate due to the large masses of the heavy fermions running in the loop. Although
it may look like particles with masses well above the EW scale will not decouple, this is not
the case. Small mixings between the SM charged leptons and the BSM particles would appear,
resulting in the new physics contributions vanishing.

4.4 Phenomenological discussion

We proceed now to present our phenomenological exploration of the parameter space of the
ISS3VL.

4.4.1 Experimental constraints

Let us first discuss how we fix the parameters of the model in order to reproduce the measured
lepton masses and mixings. The Ye Yukawa matrix will be fixed to the same values as in the
SM, hence neglecting corrections from the mixing between the SM charged lepton states and
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the charged components of the Σ and Σ′ triplets. These corrections are multiplicative and enter
at order ∼ (mD/MΣ)2 and can thus be safely neglected. The same argument applies to the
mixing with the charged components of the VL leptons, which enter at order ∼ (mR/ML)2.
Without loss of generality, we will work in the basis in which MΣ is diagonal and µ is a general
complex symmetric matrix. In this case, YΣ and µ must be properly fixed in order to reproduce
neutrino oscillation data [138]. In principle, one can set the entries of µ to some input values
and express the YΣ Yukawa matrix by means of the master parametrization [203, 204], which
in this case reduces to a modified Casas-Ibarra parametrization [200]. While this is perfectly
valid, one generically obtains YΣ matrices with sizable off-diagonal entries unless some input
parameters are very finely tuned. Due to the strong constraints from the non-observation of
lepton flavor violating processes, this excludes most of the parameter points. Therefore, we take
the alternative choice of fixing YΣ to specific input values, diagonal for simplicity, and computing
µ by inverting Eq. (4.15) as

µ = MT
Σ

(
mT
D

)−1
mνm

−1
D MΣ , (4.24)

where mν = U∗ν m̂ν U
†
ν .

Here Uν is the leptonic mixing matrix measured in oscillation experiments, given in terms of
3 mixing angles and 3 CP-violating phases, while m̂ν is a diagonal matrix containing the physical
neutrino mass eigenvalues. Eq. (4.24) guarantees that all the parameter points considered in
our numerical analysis are compatible with neutrino oscillation data. In our analysis, we use
the results of the global fit in [138], and we consider both normal and inverted neutrino mass
orderings.

In order to ensure compatibility with constraints from flavor and electroweak precision data,
we use the bounds derived in [190], where a global analysis is performed in the context of general
type-III seesaw models. The limits provided in this reference are given for the 3 × 3 matrix η,
defined in our case in terms of the matrices

MD =
(
mD

0

)
and M =

(
0 MΣ

MT
Σ µ

)
, (4.25)

as

η = 1
2M

†
D

(
M †

)−1
M−1MD

= 1
2m
†
D

(
M †Σ

)−1
[
I3 + µ∗ (M∗Σ)−1

(
MT

Σ

)−1
µ

]
M−1

Σ mD (4.26)

≈ 1
2m
†
D

(
M †Σ

)−1
M−1

Σ mD .

In our analysis, we make sure that the bounds are respected by computing the η matrix in all
the parameter points considered. As we will explain below, these limits imply very small BSM
contributions in the ISS3, thus motivating our ISS3VL extension. Furthermore, we also consider
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the decay widths for the processes Z → `+`− and h → `+`−, with ` = e, µ, which are also
affected due to the mixing of the light charged leptons with the heavy states in our model. They
are computed as

Γ(Z → `+`−) = m3
Z

12πv2

[∣∣∣(gVχZ)
``

∣∣∣2 +
∣∣∣(gAχZ)

``

∣∣∣2] , (4.27)

Γ(h→ `+`−) = mh

8π

[∣∣∣(gLχh)
``

∣∣∣2 +
∣∣∣(gRχh)

``

∣∣∣2] , (4.28)

with gVχZ = gLχZ + gRχZ and gAχZ = gRχZ − gLχZ . The Z → `+`− decay turns out to provide an
important constraint in our setup. In fact, it has been recently pointed out that this process
potentially correlates with the charged leptons g − 2 [279]. We define the ratios

RZ`` = Γ(Z → `+`−)
ΓSM(Z → `+`−) , (4.29)

with ΓSM(Z → `+`−) the SM predicted decay width, and impose that RZ`` lies within the 95%
CL range, which we estimate to be 0.995 < RZee < 1.003 and 0.993 < RZµµ < 1.006 [31].
Regarding the Higgs boson decays, no constraints are actually obtained from them since, at
present, there is no hint for h → e+e− and evidence for h → µ+µ− was only obtained re-
cently [280]. Therefore, they will be considered as predicted observables, potentially correlated
with ∆a` [279,281].

Finally, we also impose bounds from collider searches. The type-III seesaw triplets have been
searched for at the LHC in multilepton final states, both by ATLAS [282] and CMS [283, 284].
No excess above the expected SM backgrounds has been found, hence allowing the experimental
collaborations to set limits on the triplet mass and couplings. Using a data sample obtained with
proton collisions at

√
s = 13 TeV and an integrated luminosity of 35.9 fb−1, CMS reports a lower

bound on the triplet mass of 840 GeV at 95% confidence level if the triplet couplings are assumed
to be lepton flavor universal [284]. While the flavor structure of the triplet couplings to leptons
does not affect the heavy triplet pair production cross-sections, driven by gauge interactions,
it has an impact on the flavor composition of the multilepton signature. The limit changes if
the assumption of lepton flavor universal couplings is dropped, resulting in a more stringent
bound when the triplet couples mainly to electrons and a more relaxed bound when the triplet
couples mainly to taus, with values ranging between 390 and 930 GeV. The bounds from the
CMS collaboration in [284] are applied in our analysis. However, since the CMS analysis focuses
on the standard type-III seesaw scenario, and does not consider the particular features of the
ISS3VL model, several simplifying assumptions must be made. We define

BAα = Γ(Σ0
A → `α + boson) + Γ(Σ+

A → `α + boson)∑
α

[
Γ(Σ0

A → `α + boson) + Γ(Σ+
A → `α + boson)

] , (4.30)
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Figure 4.2: Dominant W contribution in the ISS3. Mass insertions are represented by white
blobs.

where Σ0
A and Σ+

A are the quasi-Dirac pairs approximately formed by the mass eigenstates
Ni + Nj and χi + χj , respectively. An implicit sum over the bosons in the final states is also
assumed, including decays to W±, Z, and h. For instance, in a parameter point in which the
lightest BSM states are mainly composed of the components of the Σ1 triplet, we have i = 4,
j = 5 and Γ(Σ0

1 → `α + boson) ≡ Γ(N4 → W±`∓) + Γ(N4 → Zνα) + Γ(N4 → hνα) + Γ(N5 →
W±`∓)+Γ(N5 → Zνα)+Γ(N5 → hνα). We note that BAe+BAµ+BAτ = 1. This is the quantity
that we use to confront each quasi-Dirac pair with the limits given in Figure 3 of [284]. Our
approach approximates the total heavy triplet pair production to pp→ Σ0

AΣ+
A, which is known

to give the dominant contribution at the LHC [285]. Furthermore, we apply two additional
simplifications. First, since CMS assumes the neutral and charged components of the triplet to
be mass degenerate, we adopt a conservative approach and take the lowest of them as the triplet
mass to be used in the analysis. And second, we do not apply the CMS bounds to quasi-Dirac
triplet pairs that are largely mixed with the VL leptons, since their production cross-section
is clearly reduced with respect to the pure triplet case. 7 We believe that our assumptions
conservatively adapt the CMS limits in [284] to our scenario. We note that ATLAS finds a
similar bound on the triplet mass in the flavor universal scenario, ruling out (at 95% confidence
level) values below 790 GeV [282]. Finally, LHC limits on VL leptons strongly depend on their
decay modes, namely the flavor of the charged leptons produced in the final states [286]. In our
analysis, we will consider ML ≥ 500 GeV, a conservative value that guarantees compatibility
with current LHC searches. These limits are expected to be improved by the end of the LHC
Run-III [287].

4.4.2 (g− 2)e,µ in the ISS3

Before studying the electron and muon g−2 in the ISS3VL, let us discuss these observables in the
context of the pure ISS3 and show that this model is unable to address the existing discrepancies.

7In practice, we do not apply the CMS bounds in cases with large mixings. For instance, they are not applied
to χi Dirac states that combine a left-handed fermion that is mostly a type-III triplet with a right-handed fermion
that is mostly a VL lepton, or vice versa.
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One can easily reach this conclusion by estimating the size of the dominant contributions to the
charged lepton g− 2. Fig. 4.2 shows the dominant W contribution. Assuming that the chirally-
enhanced term in Eq. (4.20) dominates, one finds the estimate

∆a`(W ) ∼ − 1
32π2

mN m`

m2
W

g2
(
mD

MΣ

)2

``

m`

v
∼ −10−3 mN m

2
`

m3
W

η`` . (4.31)

First of all, we notice that this contribution is always negative since η`` > 0. Therefore, it cannot
accommodate the muon g−2 anomaly, which requires ∆aµ > 0. This result was already found in
early studies of the charged leptons anomalous magnetic moments in seesaw scenarios [288–290],
as well as in [291]. Furthermore, the absolute value of ∆a`(W ) is also too small to account for
the anomalies. This implies that the electron g − 2 cannot be explained either in the ISS3.
In this regard, we highlight the relevance of the m`/v factor in Eq. (4.31). This factor is not
apparent when inspecting the analytical expressions for the couplings in Appendix B. In fact,
the individual contributions to ∆a`(W ) by the neutral fermions in the loop are larger than their
sum, ∆a`(W ), by a factor ∼ v/m`. Therefore, a strong cancellation among them takes place.
This cancellation can be easily understood due to the chirality-flipping nature of the dipole
moment operator in Eq. (1.52). The factor m`/v is required to flip the chirality of the fermion
line and induce a contribution to a dipole moment. One can now consider mN = 1 TeV to obtain

∆ae(W ) ∼ −5 · 10−13 ηee , (4.32)

∆aµ(W ) ∼ −2 · 10−8 ηµµ . (4.33)

Since ηee and ηµµ are constrained to be smaller than ∼ 10−4 [190], these contributions fail
to address the electron and muon g − 2 anomalies by several orders of magnitude. The same
argument can be applied to the Z and h contributions to find that they are actually even more
suppressed. In summary, the suppression by the m`/mW chirality flip and the stringent bounds
on η`` imply that the ISS3 cannot induce sizable contributions. This, added to the fact that the
contributions to the muon g − 2 have the wrong sign, implies that the ISS3 cannot explain the
deviations in the electron and muon anomalous magnetic moments.8 We now proceed to show
that the additional ingredients in our extended model can alter this conclusion.

4.4.3 (g− 2)e,µ in the ISS3VL

As already discussed, the ISS3 cannot explain the experimental anomalies in the electron and
muon anomalous magnetic moments. Therefore, we now consider its ISS3VL extension. In
this case, one has W contributions such as the one shown in Fig. 4.3. We can now derive an

8One should note, however, that if the calculations of the hadronic vacuum polarization by lattice collaborations
turn out to be correct, the muon g − 2 prediction will not be in tension with the experimental measurements.
Therefore, the ISS3 will be a viable model.
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Figure 4.3: Dominant W contribution in the ISS3VL. Mass insertions are represented by white
blobs.

analogous estimate along the same lines as in the case of the ISS3. One finds

|∆a`(W )| ∼ 1
32π2

mN m`

m2
W

g2
(
mD

MΣ

)
``

mL

ML

mR

ML
∼ 10−3 mN m`mLmR

m2
W M2

L

√
η`` . (4.34)

Note that in this scenario, the contributions to the magnetic moments are not proportional to
m2
` but m`. This is because in the ISS3VL, the chirality-flip takes place thanks to the VL lepton.

One can now choose mN = 1 TeV, ML = 500 GeV, mL = 200 GeV, and mR = 10 GeV to obtain

|∆ae(W )| ∼ 6 · 10−10√ηee , (4.35)

|∆aµ(W )| ∼ 10−7√ηµµ . (4.36)

Therefore, even after the suppression given by √η`` . 10−2 these W contributions can address
the current discrepancies with the electron and muon g − 2 measurements. Furthermore, the
signs of these contributions are not fixed and can be properly adjusted by fixing the signs
of the relevant Yukawa couplings. We note that the loop in Fig. 4.3 is proportional to the
product YΣ λL λR, which, as shown below, will be crucial for the resulting values for ∆a` in
the ISS3VL model. Similar h contributions are also found, again proportional to the YΣ λL λR

product. Therefore, the model is, in principle, capable of producing sizable contributions to the
electron and muon g − 2. We now proceed to confirm this by performing a detailed numerical
analysis of the parameter space of the model. Since we are interested in ∆ae and ∆aµ, we fix
(λL)3 = (λR)3 = 0 and randomly scan within the following parameter ranges:
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Parameter Min Max

(MΣ)ii 850 GeV 1.5 TeV

ML 500 GeV 1.5 TeV

(YΣ)ii 0.05 0.2

(λL)1 −
√

4π −0.1

(λL)2 0.1
√

4π

(λR)1 0.05 0.5

(λR)2 0.05 0.5

Some comments about the chosen ranges are in order. First, the ranges for the mass parameters
(MΣ)ii and ML have been selected following the discussion on LHC bounds of Section 4.4.1.
Many of the parameter points in our scan were ruled out due to LHC searches for triplets, but
we also find that a substantial fraction pass the test. The ranges for the Yukawa couplings have
been chosen in order to maximize the resulting ∆a`. The usual ISS3 Yukawas (YΣ)ii have been
scanned around their maximal values compatible with the ηii bounds. A relative sign between
(λL)1 and (λL)2 has been introduced in order to obtain ∆ae < 0 and ∆aµ > 0, as required
by the experimental hints. Also, the corrections to Γ(Z → `+`−) tend to be too large unless
(λR)1,2 . 0.5. Finally, we emphasize again that these ranges allow us to neglect the corrections to
the SM charged lepton masses. As we mentioned in Section 4.4.1, those corrections coming from
the mixing to the triplets and the VL leptons would enter at most at order ∼ (mD/MΣ)2 ≈ 0.002
and ∼ (mR/ML)2 ≈ 0.03, respectively.

Our results are obtained through a private code in Wolfram Mathematica. They are based
on a random scan with 50.000 parameter points, out of which about 12% − 13% pass all the
experimental tests. We have selected normal neutrino mass ordering. However, we have also
run a second scan with inverted ordering and found the same qualitative results. As already
explained, we consider a scenario with diagonal YΣ and MΣ matrices. In this case, the lepton
mixing angles encoded in the matrix Uν are generated by the off-diagonal entries of the µ matrix,
and all lepton flavor violating processes are strongly suppressed. For this reason, the bounds on
the ηij entries, with i 6= j, are easily satisfied. In contrast, the bounds on the diagonal elements
of the η matrix turn out to be very important, removing a significant amount of the parameter
points considered and implying the approximate bounds (YΣ)11 . 0.2 and (YΣ)22 . 0.15 for
triplet masses of the order of the TeV. These limits come from constraints imposed by various
phenomena, such as the decay rate of µ→ eνiν̄j , the invisible decay of the Z boson, the decay
of the Z boson into charged leptons, measurements of the Z-pole asymmetries, tests of weak
interaction universality, and the unitarity of the CKM matrix [190]. Another very important
constraint in our setup is provided by the decay Z → `+`−. The mixing between the SM
charged leptons and the new charged BSM states from the Σ and Σ′ triplets and LL,R VL
doublets reduces Γ(Z → `+`−) with respect to its SM value. This has a strong impact on
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Figure 4.4: ∆ae (left) and ∆aµ (right) as a function of the product (YΣ)ii (λL)i (λR)i. Blue dots
correspond to parameter points that pass all the experimental constraints, whereas gray points
are experimentally excluded. The horizontal dashed lines represent the central values for ∆ae
and ∆aµ, whereas 1σ (3σ) regions are displayed as yellow (green) bands.

Figure 4.5: ∆aµ as a function of the combination (YΣ)22 (λL)2 (λR)2 /
[
(MΣ)2 M

2
L

]
. Dashed

line, horizontal bands and color code as in Fig. 4.4.

the mD/MΣ and mR/ML ratios. Since these ratios must be sizable in order to induce large
contributions to ∆a`, see Fig. 4.3, this limit is crucial for the correct evaluation of our scenario.
Finally, the CMS limits discussed in Section 4.4.1 also have an impact, discarding some of the
parameter points in our scan.

Our choice of a diagonal YΣ (in the basis in which MΣ is diagonal too) implies that the
mixing among different triplets is typically very small. In this case, and unless there is a large
mixing with the VL neutral leptons, two of the heavy neutral mass eigenstates are given in
good approximation by the Σ1 −Σ′1 quasi-Dirac pair and couple mainly to electrons. Similarly,
two of the heavy neutral mass eigenstates are approximately given by the Σ2 − Σ′2 quasi-Dirac
pair and couple mainly to muons. Therefore, the discussion in the previous section implies
that one expects a strong correlation between ∆ae and the product (YΣ)11 (λL)1 (λR)1, as well
as between ∆aµ and the product (YΣ)22 (λL)2 (λR)2. This is clearly shown in Fig. 4.4. The
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left side of this figure shows ∆ae, whereas the right side displays results for ∆aµ, in both
cases, as a function of the said parameter combinations. Here, and in the following figures,
parameter points that pass all the experimental constraints are displayed in blue color, whereas
gray points are excluded for one or several of the reasons explained above, but included in the
figure for illustration purposes. The horizontal dashed line represents the central value for ∆a`,
while 1σ (3σ) regions are displayed as yellow (green) bands. The first and most important
result shown in this figure is that the ISS3VL can indeed explain the electron and muon g − 2
anomalies. In the case of the electron, one can easily find fully valid parameter points within
the 1σ region, corresponding to values of − (YΣ)11 (λL)1 (λR)1 in the ballpark of ∼ 0.01− 0.05.
In fact, one can even exceed the experimental hint. In contrast, the muon g − 2 can only be
explained within 1σ in a narrow region of the parameter space, with (YΣ)22 (λL)2 (λR)2 ∼ 0.1.
This is due to the combination of constraints that apply to our setup. Fig. 4.4 also confirms
the correlations with the product (YΣ)ii (λL)i (λR)i, as we expected from the arguments given
in the previous section. The correlation is even more pronounced in terms of the combination
(YΣ)ii (λL)i (λR)i /

[
(MΣ)i M2

L

]
, as shown in Fig. 4.5 for the case of the muon g−2. This implies

that the Feynman diagram in Fig. 4.3 indeed provides one of the dominant contributions to ∆a`.
An example parameter point that achieves ∆ae and ∆aµ values in the 1σ regions indicated

in Eq. (1.49) is given by
(MΣ)ii = 1TeV , ML = 630GeV , (4.37)

and

(YΣ)ii = 0.117 , (λL)1 = −0.6 , (λL)2 =
√

4π , (λR)1 = 0.1 , (λR)2 = 0.25 . (4.38)

We note that a large (λL)2, close to the non-perturbativity regime, is required to obtain a muon
g − 2 close to the measured central value. While, in principle, this is perfectly fine, one can
relax this restriction with additional contributions to the muon g − 2. For instance, we expect
this to happen in a non-minimal version of our model with more than just one generation of VL
leptons or including singlet VL leptons.

Fig. 4.6 shows the dependence of ∆a` on (MΣ)ii. On the left side, ∆ae is shown as a function
of (MΣ)11, whereas the right side panel shows ∆aµ as a function of (MΣ)22. As explained above,
these are the parameters determining the masses of the triplets that couple mainly to electrons
and muons, respectively. Therefore, as expected, the NP contributions decrease for larger values
of (MΣ)ii. However, given the limited range over which these parameters were scanned, the
reduction is not very strong. A lower bound (MΣ)11 & 930 GeV is clearly visible on the left-side
panel. This is due to the fact that lower (MΣ)11 values would lead to lighter triplets, excluded
by CMS searches. The dependence on ML, the VL mass, is shown in Fig. 4.7 for the case of the
muon g − 2. One can clearly see in this plot, as well as in the previous ones, that the density
of valid parameter points gets reduced for low masses. This is because low (MΣ)ii and/or ML

often lead to exclusion due to the Γ(Z → `+`−) constraints.
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Figure 4.6: ∆ae (left) and ∆aµ (right) as a function of (MΣ)11 and (MΣ)22, respectively. Dashed
line, horizontal bands and color code as in Fig. 4.4.

Figure 4.7: ∆aµ as a function ofML. Dashed line, horizontal bands and color code as in Fig. 4.4.

Figure 4.8: Rhee (left) and Rhµµ (right) as a function of ∆ae and ∆aµ, respectively. The vertical
dashed lines represent the central values for ∆ae and ∆aµ, whereas 1σ (3σ) regions are displayed
as yellow (green) bands.

We now turn our attention to the predictions of our setup. Fig. 4.8 shows the predicted
values for the ratios

Rh`` = Γ(h→ `+`−)
ΓSM(h→ `+`−) , (4.39)
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where ΓSM(h→ `+`−) is the SM decay width, as a function of ∆a`. In both cases, the reductions
are small, at most of about ∼ 2% in the parameter points that pass all the experimental bounds.
This is due the fact that the Rh`` ratios correlate with the corresponding RZ`` ratios, and are thus
strongly constrained. Therefore, our setup predicts SM-like Higgs boson decays into charged
leptons.

Finally, we have focused on a scenario with diagonal YΣ couplings, as this enhances the
contributions to the muon g − 2 from diagonal entries. By doing so, we are able to strongly
suppress all lepton flavor violating signals, which can only take place via the off-diagonal entries
of the small µ parameter. We believe this to be a generic prediction of our model when the
muon g− 2 anomaly is addressed. However, we cannot discard the possibility of very fine-tuned
parameter regions with large off-diagonal YΣ couplings that accidentally suppress flavor violating
transitions.

4.5 Discussion

The recent announcement of the first results of the Muon g−2 collaboration at Fermilab has
sparked a renewed interest in a long-standing anomaly. Together with the analogous discrepancy
in the anomalous magnetic moment of the electron, they constitute a pair of intriguing deviations
with respect to the SM predictions. If confirmed, new BSM states with masses not much above
the electroweak scale will be required in order to address the discrepancies.

We have analyzed the electron and muon g − 2 in an extended version of the ISS3 model
that includes a pair of VL doublet leptons. This model is motivated by the need to generate
neutrino masses, which in this setup are induced at the electroweak scale. This naturally leads to
a rich phenomenology in multiple fronts. Our analysis has taken into account the most relevant
experimental bounds in our scenario. This includes limits from direct searches at the LHC,
deviations in Z → `+`− decays, and a compilation of electroweak limits. These are the main
conclusions of our work:

• The pure ISS3 cannot address the electron and muon g−2 anomalies due to the combination
of the constraints on the mD/MΣ ratio derived from a variety of electroweak data and a
strong chiral suppression of the order of m`/v. In addition, the contributions to the muon
g − 2 have the wrong sign.

• The inclusion of a VL lepton doublet pair to the ISS3 particle content suffices to enhance
the contributions to the muon g − 2, allows one to adjust its sign conveniently and fully
addresses the observed discrepancy.

• The electron g − 2 anomaly can also be explained, in this case in a wider region of the
parameter space.

• No significant change in the h→ `+`− decays is found, and then these stay SM-like.
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In this Chapter, we have focused on a minimal extension of the ISS3, containing only one
VL lepton doublet pair. In principle, one may introduce additional copies of LL,R or VL lepton
singlets, see for instance [76]. These non-minimal variations may reduce the impact of some of
the bounds or enlarge the parameter space compatible with the current experimental hints in the
muon g − 2. Furthermore, lepton number is explicitly broken in our model. Alternatively, one
may consider the spontaneous breaking of a global U(1)L lepton number symmetry, leading to the
appearance of a massless Goldstone boson, the majoron. However, a pure massless pseudoscalar
state gives negative (lepton flavor conserving) contributions to the electron and muon anomalous
magnetic moments, as can be seen in Section 3.4.7 and 3.5.4, hence being unable to solve the
tension in the case of the muon g − 2.

Exciting times are ahead of us. The muon g−2 anomaly, now hinted by a second experiment,
joins the list of results that have recently attracted attention to muons. It is natural to speculate
about this anomaly together with the RK and RK∗ anomalies found by the LHCb collaboration,
as well as with the set of deviations observed in recent years in semileptonic b → s and b → c

transitions. In the upcoming chapter, we will study this possibility, although excluding b → c

anomalies from the discussion. New experimental results, that may finally confirm an emerging
picture beyond the SM, are eagerly awaited.



Chapter 5

Neutrino masses, flavor anomalies
and muon g− 2 from dark loops

The lepton sector of the Standard Model faces a number of intriguing anomalies that demand
attention. These include an emerging pattern of deviations in b → s`` processes, with hints of
lepton flavor universality violation in observables like RK(∗) , a discrepancy in the muon anoma-
lous magnetic moment, and possibly the origin of dark matter. Moreover, the model fails to
account for the observed phenomenon of neutrino oscillations, which implies the existence of
non-zero neutrino masses and lepton mixings. While these new physics indications might have
different origins, and some of them are still hints to be confirmed with further experimental
data and improved theoretical calculations, it is tempting to consider a common explanation.
We already had this goal in Chapter 4, but only taking into account neutrino masses and the
anomalous magnetic moments of the charged leptons. Here we wanted to be more ambitious.

5.1 Introduction

In this Chapter, we introduce an economical yet powerful model that provides an explanation
for all these new physics indications. This is achieved thanks to the addition of a dark sector
composed by a fermion singlet N , two generations of inert doublets η, a doublet leptoquark S
and a singlet scalar φ. The η and S doublets can be decomposed as

ηa =
(
η+
a

η0
a

)
, S =

 S 2
3

S− 1
3

 , (5.1)

where a = 1, 2 and the subindex in the components of the S leptoquark denotes the electric
charge of the state. The model also includes a dark Z2 parity, under which all the new fields are
assumed to be odd while the SM fields are even. This characterizes the dark sector of the model.1

The scalar and lepton particles of the model, along with their representations under the gauge
1We use the term dark to refer to any particle charged under the Z2 symmetry.
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Field Generations SU(3)c SU(2)L U(1)Y Z2

`L 3 1 2 −1/2 +

eR 3 1 1 −1 +

N 1 1 1 0 −

H 1 1 2 1/2 +

η 2 1 2 1/2 −

S 1 3 2 1/6 −

φ 1 1 1 −1 −

Table 5.1: Lepton and scalar particle content of the model and their representations under the
gauge symmetries. `L, eR, and H are the usual SM fields.

group SU(3)c×SU(2)L×U(1)Y and the Z2 parity are shown in Table 5.1. These ingredients are
enough to induce neutrino masses, accommodate the b→ s`` and (g−2)µ anomalies, and provide
a viable DM candidate while being compatible with all the relevant experimental constraints.
To the best of our knowledge, our economical model is the first to take into account all these
unresolved issues in the lepton sector simultaneously and, as a by-product, also address the
long-standing DM problem. In our scenario, all NP contributions to the observables of interest
are induced at the 1-loop level, with Z2-odd particles running in the loop. These dark loops
characterize our setup.

The connection between neutrino masses and the anomalies in b → s transitions has been
explored in several works. In most cases, neutrino masses are generated radiatively with lep-
toquarks participating in the loop. These leptoquarks are then responsible for explaining at
tree-level the flavor anomalies [292–294], and the (g − 2)µ [295–302]. Ref. [303] proposes an ex-
planation for the b→ s`` anomalies via loops, also linked to the generation of neutrino masses,
while Ref. [304] considers a left-right model with neutrino masses generated through an inverse
seesaw. Finally, the b→ s anomalies have also been discussed in connection to the dark matter
problem. We would like to highlight Refs. [96, 305–307], which also address the b → s`` and
(g − 2)µ anomalies via loops involving DM, and refer to the review [308] for other works in this
direction.

5.2 The model

The new states in our model allow us to write the additional Lagrangian terms:

−LNP = YN N `L η + YS qL S N + κN c eR φ
† + 1

2 MN N cN + h.c. . (5.2)
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Here YN is a 3 × 2 matrix, YS and κ are both 3-components vectors, while MN is a parameter
with dimensions of mass. Additional Yukawa couplings not written here are forbidden by the
dark Z2 parity. For instance, this is the case of the N `LH or dR `L S terms. The scalar potential
of the model also contains new terms involving the η, S, and φ fields. It can be written as

V = VH + Vη + VS + Vφ + Vmix , (5.3)

where VH is the standard Higgs potential defined in Eq. (1.26).

Vη = m2
η|η|2 + λ2

2 |η|
4 , (5.4)

VS = m2
S |S|2 + λ

(1)
S

2 |S|4(1) + λ
(2)
S

2 |S|4(2) , (5.5)

Vφ = m2
φ|φ|2 + λφ

2 |φ|
4 , (5.6)

and

Vmix = λ3 |H|2 |η|2 + λ4H
† η η†H + λ

(1)
HS |H|

2 |S|2 + λ
(2)
HS H

† S S†H

+ λ
(1)
ηS |η|

2 |S|2 + λ
(2)
ηS η

† S S† η + λHφ |H|2 |φ|2 + ληφ |η|2 |φ|2 + λSφ |S|2 |φ|2

+
[
λ5
2
(
H† η

)2
+ µH η φ+ h.c.

]
. (5.7)

Here m2
H , m2

η, m2
S and m2

φ have dimensions of mass2, m2
η is a 2× 2 matrix that can be chosen

diagonal without losing generality, and we note the presence of two quartic |S|4 terms, due to the
two possible SU(3)c invariant contractions of four S leptoquarks (denoted as |S|4(1) and |S|4(2)).
Nevertheless, only two terms will be relevant for the discussion:

VNP ⊃
λ5
2
(
H† η

)2
+ µH η φ+ h.c. . (5.8)

We remind the reader that two η doublets are added to the field inventory of the model. There-
fore, µ is a 2-component vector with dimensions of mass, while λ5 is a 2× 2 symmetric matrix.
In the following, only the SM scalar doublet H will be assumed to acquire a non-zero vacuum
expectation value, H0 = v/

√
2, where v ' 246 GeV is the electroweak VEV. This preserves the

Z2 dark parity.

Scalar masses In the following, we will assume that all the parameters in the scalar potential
are real, then conserving CP in the scalar sector. In this case, the real and imaginary components
of η0

a,
η0
a = 1√

2
(ηRa + i ηIa) , (5.9)
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do not mix. After the electroweak symmetry breaking, the 2 × 2 mass matrices for both real
and imaginary components are given by

M2
R =

(
(mη)2

11 +
(
λ11

3 + λ11
4 + λ11

5
)
v2

2
(
λ12

3 + λ12
4 + λ12

5
)
v2

2(
λ12

3 + λ12
4 + λ12

5
)
v2

2 (mη)2
22 +

(
λ22

3 + λ22
4 + λ22

5
)
v2

2

)
, (5.10)

and

M2
I =

(
(mη)2

11 +
(
λ11

3 + λ11
4 − λ11

5
)
v2

2
(
λ12

3 + λ12
4 − λ12

5
)
v2

2(
λ12

3 + λ12
4 − λ12

5
)
v2

2 (mη)2
22 +

(
λ22

3 + λ22
4 − λ22

5
)
v2

2

)
, (5.11)

respectively. Here λabX ≡ (λX)ab and we have used that λ3,4 are Hermitian matrices. We also
note that both mass matrices are the same in the limit (λ5)ab → 0. Regarding the charged
scalars, the charged components of the η doublets mix with φ. In the basis

(
η+

1 , η
+
2 , φ

+
)
, their

mass matrix is written as

M2
ch =


(mη)2

11 + λ11
3

v2

2 λ12
3

v2

2 −µ1 v√
2

λ12
3

v2

2 (mη)2
22 + λ22

3
v2

2 −µ2 v√
2

−µ1 v√
2 −µ2 v√

2 m2
φ + λHφ v

2

2

 . (5.12)

Finally, the leptoquark masses are given by the expressions

m2
S−1/3

= m2
S +

(
λ

(1)
HS + λ

(2)
HS

) v
2 , (5.13)

and
m2
S2/3

= m2
S + λ

(1)
HS

v

2 . (5.14)

Neutrino masses The conservation of Z2 prevents the generation of neutrino masses at tree-
level. However, the simultaneous presence of YN , MN , and λ5 in Eqs. (5.2) and (5.8) implies
the explicit breaking of lepton number by two units. Majorana neutrino masses are induced
at the 1-loop level a la Scotogenic [198, 199], as shown in Fig. 5.1. The states running in the
loop belong to the dark sector, a feature enforced by the Z2 symmetry and common to all NP
contributions discussed below. The resulting neutrino masses in the limit of small λ5 is given
by [309]

(mν)αβ ≈
1

32π2 v
2 ∑
a,b

(YN )αa(YN )βb λab5
MN

m2
b −M2

N

[
m2
b

m2
a −m2

b

log m
2
a

m2
b

− M2
N

m2
a −M2

N

log m2
a

M2
N

]
,

(5.15)
werema,b are the masses of the two η doublets. This mass matrix correesponds to the one we will
obtain for the (1, 2) Scotogenic model in Chapter 7. We can roughly estimate mν ∼

λ5 Y 2
N v2

16π2 MN
.

Therefore, we obtain two non-zero neutrino masses with mν ∼ 0.1 eV for MN = 1 TeV and
λab5 ∼ 10−10, if the entries of the YN matrix are of order 1. The smallness of the λ5 elements is
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Figure 5.1: Some NP contributions to the observables of interest. Above: Box diagrams con-
tributing to b→ sµµ observables. Below from left: Generation of neutrino masses at the 1-loop
level, η0 represents the real and imaginary components of all generations of η0; flavor univer-
sal penguin contribution to the b → s`` anomalies; and 1-loop contribution to the anomalous
magnetic moment of the muon (photon line should be attached to the charged scalars). Other
contributions, not shown here for simplicity, were considered in the analysis.

technically natural and protected against radiative corrections [155] since in the limit λab5 → 0
lepton number is restored.

5.3 Observables

We now discuss the NP contributions induced by the new states in our model to the observables
of interest.

b → s`` anomalies The model induces many 1-loop contributions to b → s`` observables.
Some examples of them are shown in Fig. 5.1. We note that the charged η− scalars mix with
the charged singlet φ−, and thus the states propagating in the loops are the mass eigenstates
resulting from this mixing. We nevertheless show gauge eigenstates in Fig. 5.1 to better illustrate
the most relevant contributions. Box diagrams are responsible for flavor universality violating
contributions, central to explain observables such as the RK ratio. In addition, one should also
consider flavor universal contributions from penguin diagrams, as shown in the second row of
Fig. 5.1. Our model realizes scenario b) of [310]. We highlight the presence of the crossed-
diagram in Fig. 5.1, possible due to the Majorana nature of the N singlets. We do not show an
analogous crossed-diagram with φ− in the loop. These diagrams play a crucial role in canceling
unwanted contributions to Bs −Bs mixing [82], as discussed below.
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Anomalous magnetic moment of the muon The model also has new contributions to the
anomalous magnetic moment of the muon, as shown in the lower row of Fig. 5.1. One should note
that two different Yukawa couplings enter this diagram. While YN plays a role in the generation
of neutrino masses, the κ Yukawa couplings do not. We also highlight the presence of the µ
trilinear couplings that induce mixing between the charged component of η and φ and can be
used to chirally enhance the associated contribution. These NP contributions were computed
using the formalism described in [103].

Dark matter Last but not least, the model also provides a solution to the DM problem.
The lightest Z2-odd state is stable and, if electrically neutral, it is a potentially valid DM
candidate. Two possibilities arise: the lightest N state and one of the components (CP-even
or CP-odd) of the neutral η0 scalars. Both scenarios have been widely studied in the literature
for the pure Scotogenic model [198, 199], and both have been shown to be compatible with
the observed DM relic density. However, we note that the scalar candidate can achieve this
more easily [311–315], since the fermionic candidate requires large YN Yukawa couplings and
then leads to some tension with existing bounds from lepton flavor violating observables [202].
Nevertheless, our model deviates from the usual scenario with one inert η doublet, since two
generations are introduced. This scenario was studied in great detail in [316], where it was
shown that the richer inert sector may open up novel regions in parameter space where the relic
density can match the observed value. For instance, this is achieved when both scalar doublets
have similar masses since coannihilation rates get enhanced.

5.4 Numerical results

Our model faces several experimental constraints. First, we must make sure that neutrino
oscillation data are correctly reproduced. We use the results of the global fit [138] and implement
them by means of a Casas-Ibarra parametrization [200], properly adapted to the Scotogenic
scenario [201, 203, 204], as explained in Section 2.5.3. Then, Eq. (2.62) allows us to write the
YN Yukawa matrix in terms of the neutrino oscillation parameters, the neutrino mass matrix of
the model, and the orthogonal matrix R, which, in this scenario, is a general 2 × 3 orthogonal
matrix defined as

R =
(

0 cos θ − sin θ
0 sin θ cos θ

)
. (5.16)

Therefore, neutrino masses strongly restrict the elements of the YN Yukawa matrix, which play
a crucial role in the resolution of the b→ s`` and (g−2)µ anomalies (see Fig. 5.1). Furthermore,
as in most neutrino mass models, LFV processes are potentially dangerous, being µ → eγ the
most constraining one.

Regarding processes with mesons, the main constraints come from b → sγ, B → K(∗)νν̄

and Bs − Bs mixing. The b → sγ decays yield strong constraints on the coefficients of dipole
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operators [317]. These are induced at the 1-loop level by diagrams like the one shown in the lower
middle of Fig. 5.1, with photons or gluons and without the charged leptons. The inclusive b→ sγ

branching ratio is experimentally determined to be BR(b → sγ) = (3.49 ± 0.19) × 10−4 [318].
As we will show below, this constrains the (YS)2 × (YS)3 product. About B → K(∗)νν̄, note
that if a contribution to B → K(∗)`+`− exists, the corresponding process with neutrinos is
unavoidable due to SU(2)L invariance. Current experimental results set limits to the branching
ratios of B → K(∗)νν̄ which, normalized to their SM predictions, are restricted to Rνν̄K < 3.9
and Rνν̄K∗ < 2.7 [319]. On top of this, Bs−Bs mixing [320] is again inevitable and typically very
constraining in scenarios aiming at an explanation of the b→ s`` anomalies at the 1-loop level.
Any model that generates a box diagram with b and s quarks and two leptons, like the ones in
Fig. 5.1, will automatically produce box contributions to the four quarks operators responsible
for Bs − Bs mixing. In fact, this specific constraint precludes most radiative models for b → s

transitions. In our scenario, however, the Majorana nature of the N singlet can be used to
suppress Bs−Bs mixing in the limit of (nearly) degenerate NP masses participating in the box,
i.e., S−1/3 and N , as pointed out in [82]. This is actually the reason to introduce just one N
singlet. If the model contained more than one generation of N , the cancellation would no longer
work or would require more tunings.

We present now our results. Our goal is to prove that our model can accommodate all
the anomalies while being consistent with neutrino oscillation data and all the experimental
constraints. In what concerns the b → s`` anomalies, a reasonable goal is to accommodate
Scenario 5 of the global fit [116], characterized by

CV9µ = −0.55+0.44
−0.47 ,

CV10µ = 0.49+0.35
−0.41 ,

CU9 = CU10 = −0.35+0.42
−0.38 ,

(5.17)

where C9 and C10 are the Wilson coefficients of the O9 and O10 effective operators, respectively,
introduced in Eq. (1.57). The superindices V and U denote flavor universality violating and
conserving contributions, respectively, and the flavor universality violating ones are specific to
the muon flavor. This scenario provides a clear improvement with respect to the SM in what
concerns the description of b→ s`` data [116]. We used a private code in Wolfram Mathematica

where we constructed a χ2-function in the usual way, with these four Wilson coefficients and
the anomalous magnetic moment of the muon. Rather than finding the global minimum of the
resulting χ2-function, which depends non-trivially on many model parameters, our goal is to
prove that our model can provide a good explanation to all the anomalies. Therefore, in order
to simplify the analysis, we fixed several parameters. First, the masses of the NP states were
taken to be close to 1 TeV, a typical reference NP scale. We have explicitly checked that the
qualitative results and the conclusions of our analysis remain the same with other choices of
NP scale. Note that the Bs − Bs mixing suppression requires the masses of S and N to be
degenerate or nearly degenerate [82]. The mass of η is taken to be lower, around 550 GeV. With



106 Chapter 5. Neutrino masses, flavor anomalies and muon g− 2 from dark loops

this hierarchy, η would be the lightest stable particle with a mass compatible with the observed
DM relic density and direct detection cross-section bounds [314,315]. We assumed that the 2×2
matrix λ5 is proportional to the identity, i.e. λ5 = λ0

5 I2, and fix the following values:

µ1 = −µ2 = −1.0TeV , κ1 = 0 , (5.18)

λ0
5 = 2× 10−10 , κ2 = 0.04 . (5.19)

We noticed that these two elements of the coupling vector κ = (κ1 κ2 κ3) need to be small in
order to suppress the branching ratio of µ→ eγ below the experimental bound. Indeed, we chose
to set κ1 to zero, leading to observables with electrons being SM-like. The rest of the parameters
of the model are not relevant for our discussion here, given the flavor structure of the diagrams
depicted in Fig. 5.1. Note also that due to the external quark structure, YS always enters in the
combination (YS)2 × (YS)3. For the χ2 minimization, we are then left with (YS)2 × (YS)3 and
sin θ. We found that the values of the parameters for which χ2 was minimal were

(YS)2 × (YS)3 = 0.6 , sin θ = 0.25 , (5.20)

giving χ2
min = 1.52 and ∆χ2 = χ2

SM−χ2
min = 21.23. This not only shows a remarkable improve-

ment with respect to the SM, but the low χ2
min value also guarantees that all the anomalous

observables can be properly accommodated in our model. This is better illustrated on the left-
hand side of Fig. 5.2, which shows the results of our χ2 fit in the sin θ − (YS)2 × (YS)3 plane.
We find that both parameters can substantially deviate from their best-fit values without af-
fecting the χ2-function notably. However, sin θ is required to be in the 0.25 ballpark in order to
reduce the µ→ eγ branching ratio below its experimental bound. This turns out to be a strong
constraint in our model due to the connection to neutrino masses, which generically require the
YN couplings involving the electron to be non-zero. Similarly, the b→ sγ constraint imposes an
upper bound on the (YS)2 × (YS)3 product, which has to be below ∼ 1. The impact on CV9µ and
∆aµ is shown on the right-hand side of Fig. 5.2. Here we see that the central values for both
observables (we treat the CV9µ coefficient as an observable here) can be easily achieved in our
model and are, in fact, very close to the central value of the muon anomalous magnetic moment
shown in Eq. (1.49) and to our global best-fit point in Eq. (5.17), which only deviates slightly
due to the influence of other Wilson coefficients. It is also remarkable that our model does
not require too large YS Yukawa parameters to accommodate the b → s`` anomalies. In fact,
O(1) YS Yukawas are sufficient to reproduce all the anomalies at the 1σ level. We emphasize,
once again, that all the parameter points considered in our analysis comply with the constraints
from neutrino oscillation data, b → sγ and Bs − Bs mixing. The B → K(∗)νν̄ bounds are
also easily satisfied. Finally, the mass spectrum chosen in our numerical fit also accommodates
the observed DM relic density. Therefore, although a more sophisticated analysis is required to
determine precisely the region of parameter space where our model can accommodate all the
anomalies, we have shown that this region does exist, and the model can fully achieve its goals.
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Figure 5.2: Results of our χ2 fit of the model parameters. The colored regions correspond to
1σ (pink), 2σ (orange), and 3σ (yellow) regions, while the best-fit point is indicated with an
orange dot. The region allowed by the MEG experiment is shown in dark red, while the dashed
lines correspond to contours of BR(µ → eγ). The shaded region is excluded by the b → sγ
constraint at 3σ. In the right panel, contours of the (YS)2× (YS)3 product are shown with thick
dashed gray lines, while the black dashed line and dot are the experimentally determined 1σ
region and central value, respectively.

5.5 Discussion

We have proposed a novel model that accommodates the existing deviations in b → s``

observables and the muon g−2, induces neutrino masses and provides a weakly-interacting dark
matter candidate, thanks to a dark sector including several states contributing to the observables
of interest at the 1-loop level. We have shown that our simple and economical model can explain
all the anomalies via these dark loops. This is achieved with renormalizable Yukawa couplings,
while being compatible with neutrino oscillation data and the existing experimental bounds.
The flavor violating muon decay µ→ eγ turns out to provide an important constraint, but this
can be easily satisfied in a wide region of the parameter space. Also, we chose the scalar mass
in such a way that it is a viable DM candidate.

The scenario considered in our analysis requires the existence of several states at the TeV
scale. Since they are all odd under a new dark parity, their production and decay channels
are modified with respect to more common scenarios. For instance, the S leptoquark must
be produced in pairs at colliders and subsequently decay as S → j N → j ` /ET , where the
jet can be given by a 2nd or 3rd generation quark and the missing energy in the final state
is due to the production of the η DM particle. The approximate mass degeneracy between
S and N , introduced to suppress Bs − Bs mixing, implies very soft jets, undetectable at the
LHC. Moreover, if both η generations are lighter than N , additional leptons can be produced
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in the cascade. A more compressed spectrum would not affect our results in a substantial way,
but would make these leptons very soft too, leading to a particularly challenging scenario at
the LHC. In what concerns the heavy neutral lepton N , the conservation of the dark parity
forbids its mixing with the standard neutrinos. We conclude that our scenario contains several
non-standard features and a dedicated study is thus required to fully assess its observability.

Finally, we note that, as discussed in Section 1.5, the latest experimental results seem to
indicate that some of the relevant neutral-current B flavor anomalies may be likely to disappear.
The measurements becoming SM-like would imply that the values of the NP contributions to the
Wilson coefficients would approach to zero, leading to lower model parameters to accommodate
them.



Chapter 6

Observable flavor violation from
spontaneous lepton number breaking

While constructing new physics models to address the anomalies in the Standard Model, as
done in Chapters 4 and 5, is undoubtedly relevant, it is important to keep in mind that most of
these discrepancies are only hints at present. An alternative avenue of research involves studying
models that exhibit signatures that may be detected experimentally in the near future. This is
the case of charged lepton flavor violation. In addition, this can be linked with the spontaneous
breaking of lepton number, which implies the existence of a majoron, a particular case of the
ultralight scalars we examined in Chapter 3.

6.1 Introduction

In this Chapter, based on [321], we study charged lepton flavor violation connected to the
spontaneous violation of lepton number. As discussed in Section 2.6, the spontaneous breaking
of the lepton number global symmetry is always accompanied by a majoron.

Here we propose a relatively simple model that induces large off-diagonal majoron couplings
to charged leptons at tree-level. Our model adds a singlet and a doublet scalar to the SM, both
with lepton number. It also extends the SM symmetry by imposing lepton number conservation.
Finally, we introduce three right-handed neutrinos and a vector-like lepton, which we choose
to be an SU(2)L singlet for simplicity. After the electroweak and lepton number symmetries
are spontaneously broken, neutrinos acquire non-zero masses via a TeV-scale type-I seesaw
mechanism, and the vector-like lepton mixes with the SM charged leptons, inducing in this way
large LFV majoron couplings. Furthermore, extending the SM lepton sector with vector-like
fermions will affect a number of observables, most notably the anomalous magnetic moment
of the charged leptons, as well as their coupling to gauge bosons. As a by-product of our
construction, the model can explain the observed anomaly in the muon anomalous magnetic

109
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Field Generations SU(3)c SU(2)L U(1)Y U(1)L

`L 3 1 2 −1/2 1

eR 3 1 1 −1 1

νR 3 1 1 0 1

FL,R 1 1 1 −1 −1

H 1 1 2 1/2 0

σ 1 1 1 0 2

S 1 1 2 −1/2 −2

Table 6.1: Particle content of the model (excluding the gauge and quark sectors) and represen-
tations under the gauge and global symmetries. `L, eR and H are the usual SM fields.

moment [49, 322] in parts of its parameter space. It can also lead to observable effects in Higgs
boson decays, most notably in h→ µµ.

We mention in passing that branching ratios for µ→ e J decays as large as the experimental
limit have been found in [250]. The underlying model is supersymmetric with spontaneous viola-
tion of R-parity. This provides one, albeit quite complicated, model example, where off-diagonal
majoron couplings to charged leptons are induced at tree-level and can be large. Nevertheless,
we note that this decay can, in principle, saturate the experimental bound also in models that
generate the majoron couplings to charged leptons at the 1-loop level [213].

6.2 The model

We consider a variant of the type-I seesaw discussed in Section 2.5.1.1 with spontaneous lepton
number violation. The quark sector remains as in the SM, whereas the lepton sector is extended
with the addition of 3 generations of singlet right-handed neutrinos, νR, a pair of singlet vector-
like leptons, FL and FR, the scalars σ and S and a U(1)L global symmetry, where L refers to
lepton number. The full particle content of the model and the representations of all fields under
the gauge and global groups are shown in Table 6.1.

As usual, the SM SU(2)L doublets can be decomposed as in Eqs. (1.2), (1.3), and (1.25),
whereas the new S doublet can be expressed as

S =
(
S0

S−

)
. (6.1)

Under the above working assumptions, the most general Yukawa Lagrangian allowed by all
symmetries can be written as

LY = LSM
Y + Lextra

Y , (6.2)
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where LSM
Y is the usual SM Yukawa Lagrangian defined in Eq. (1.38). The new terms are given

by

−Lextra
Y =Yν νR `LH + 1

2 κσ νR ν
c
R + ρ σ eR FL + YS S FR `L +MF FR FL + h.c. . (6.3)

Here Yν and κ are 3× 3 matrices, ρ is a 3× 1 matrix and YS is a 1× 3 matrix. The parameter
MF has dimensions of mass and SU(2)L contractions and flavor indices have been omitted for
the sake of clarity. The guiding principle when writing Eq. (6.3) is the conservation of lepton
number. 1 Finally, the scalar potential of the model also includes new terms involving the σ and
S fields. It can be written as

V = VH + Vσ + VS + Vmix , (6.4)

where
Vφ = m2

φ|φ|2 + λφ
2 |φ|

4 , (6.5)

with φ = H,σ, S, and

Vmix = λHσ |H|2 |σ|2 + λ
(1)
HS |H|

2 |S|2 + λ
(2)
HS H

† S S†H + λσS |σ|2 |S|2 + (µH σ S + h.c.) . (6.6)

Here all m2
φ parameters have dimensions of mass2, whereas µ is a parameter with dimensions of

mass.

6.2.1 Scalar sector

The scalars of the model take the vacuum expectation values (VEVs)

〈H〉 = 1√
2

(
0
vH

)
, 〈σ〉 = vσ√

2
, 〈S〉 = 1√

2

(
vS

0

)
. (6.7)

These relations define the VEVs vH , vσ and vS , which break the electroweak and U(1)L symme-
tries. 2 As a result of this, the W and Z gauge bosons acquire non-zero masses, given by

m2
W = 1

4 g
2 v2 , (6.8)

m2
Z = 1

4
(
g2 + g′

2
)
v2 , (6.9)

where v2 = v2
H + v2

S and g and g′ are the SU(2)L and U(1)Y gauge couplings, respectively.
Here v ' 246 GeV is the usual electroweak VEV, which receives contributions from both scalar

1For instance, we have not included a Yukawa term of the form σ eR F
c
R because it would violate lepton number

explicitly.
2In this Chapter, the VEV of the Higgs doublet H will be denoted as vH since, in this model, we will use v to

refer to the electroweak VEV.
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doublets H and S. The tadpole equations obtained by minimizing the scalar potential read

∂V
∂H0 = vH√

2

(
m2
H + v2

H λH
2 + v2

S λ
(1)
HS

2 + v2
σ λHσ

2 − vS vσ µ√
2 vH

)
= 0 , (6.10)

∂V
∂σ

= vσ√
2

(
m2
σ + v2

σ λσ
2 + v2

H λHσ
2 + v2

S λSσ
2 − vH vS µ√

2 vσ

)
= 0 , (6.11)

∂V
∂S0 = vS√

2

(
m2
S + v2

S λS
2 + v2

H λ
(1)
HS

2 + v2
σ λSσ

2 − vH vσ µ√
2 vS

)
= 0 . (6.12)

The trilinear µ term in Eq. (6.6) plays an important role. In the limit µ → 0, the scalar
potential has an accidental U(1) symmetry, under which all scalar fields can have arbitrary
charges. Therefore, its presence is crucial to explicitly break this global symmetry and avoid
the appearance of an unwanted Goldstone boson. The µ term also induces a tadpole for each of
the scalar fields if the other two have non-vanishing VEVs.

Assuming that CP is not violated in the scalar sector, namely that all scalar potential
parameters and VEVs are real, we can split the neutral scalar fields into their real and imaginary
components as

H0 = 1√
2

(SH + i PH + vH) , (6.13)

σ = 1√
2

(Sσ + i Pσ + vσ) , (6.14)

S0 = 1√
2

(SS + i PS + vS) . (6.15)

The scalar potential contains the piece Vmass = VNmass + VCmass, with mass terms for the neutral
(VNmass) and charged (VCmass) scalars in the model. The neutral scalars mass terms read

VNmass = 1
2 Re(zi)

(
M2

R

)
ij
Re(zj) + 1

2 Im(zi)
(
M2

I

)
ij
Im(zj) , (6.16)

where z = {H0, σ, S0} and M2
R and M2

I are the 3 × 3 squared mass matrices for the CP-even
and CP-odd neutral states, respectively. The prefactors of 1

2 are due to the fact that Re(zi) and
Im(zi) are real scalar fields. It is straightforward to get the analytical expressions of the mass
matrices, which can be computed as

(
M2

R

)
ij

= 1
2

(
∂2Vmass
∂zi∂zj

+ ∂2Vmass
∂z∗i ∂z

∗
j

)
+ ∂2Vmass

∂zi∂z∗j
, (6.17)

(
M2

I

)
ij

= −1
2

(
∂2Vmass
∂zi∂zj

+ ∂2Vmass
∂z∗i ∂z

∗
j

)
+ ∂2Vmass

∂zi∂z∗j
. (6.18)
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Then, using the expressions above, one finds 3

M2
R =


m2
H + 3 v2

H λH
2 + v2

S λ
(1)
HS

2 + v2
σ λHσ

2 vH vσ λHσ − vS µ√
2 vH vS λ

(1)
HS −

vσ µ√
2

vH vσ λHσ − vS µ√
2 m2

σ + 3 v2
σ λσ
2 + v2

H λHσ
2 + v2

S λSσ
2 vS vσ λSσ − vH µ√

2

vH vS λ
(1)
HS −

vσ µ√
2 vS vσ λSσ − vH µ√

2 m2
S + 3 v2

S λS
2 + v2

H λ
(1)
HS

2 + v2
σ λSσ

2

 ,

(6.19)
and

M2
I =


m2
H + v2

H λH
2 + v2

S λ
(1)
HS

2 + v2
σ λHσ

2
vS µ√

2
vσ µ√

2
vS µ√

2 m2
σ + v2

σ λσ
2 + v2

H λHσ
2 + v2

S λSσ
2

vH µ√
2

vσ µ√
2

vH µ√
2 m2

S + v2
S λS
2 + v2

H λ
(1)
HS

2 + v2
σ λSσ

2

 .

(6.20)
One can now use the tadpole equations in Eqs. (6.10)-(6.12) to evaluate these matrices at the
minimum of the scalar potential. We obtain

M2
R =


v2
H λH + vS vσ µ√

2 vH
vH vσ λHσ − vS µ√

2 vH vS λ
(1)
HS −

vσ µ√
2

vH vσ λHσ − vS µ√
2 v2

σ λσ + vH vS µ√
2 vσ

vS vσ λSσ − vH µ√
2

vH vS λ
(1)
HS −

vσ µ√
2 vS vσ λSσ − vH µ√

2 v2
S λS + vH vσ µ√

2 vS

 , (6.21)

and

M2
I =


vS vσ µ√

2 vH
vS µ√

2
vσ µ√

2
vS µ√

2
vH vS µ√

2 vσ
vH µ√

2
vσ µ√

2
vH µ√

2
vH vσ µ√

2 vS

 . (6.22)

The physical CP-even mass eigenstates {H1, H2, H3} are related to the corresponding weak
eigenstates {SH , Sσ, SS} as 

H1

H2

H3

 = W


SH

Sσ

SS

 , (6.23)

where W is the 3× 3 unitary matrix which brings the matrixM2
R into diagonal form as

WM2
RW

T = diag(m2
H1 ,m

2
H2 ,m

2
H3) . (6.24)

The model has thus 3 CP-even neutral scalars. One of them, presumably the lightest, is to be
identified with the Higgs boson discovered at the LHC, H1, with mH1 ≈ 125 GeV. Similarly,
diagonalizing the mass matrix M2

I , we can obtain the profile of the three CP-odd mass eigen-
states. We end up with a massive state that we denote by A, and two massless states. One

3It proves useful to compute the matrixM2
I in a general Rξ gauge, since this allows for the proper identification

of the Goldstone boson that becomes the longitudinal component of the Z boson. However, we present here the
results in the Landau gauge (ξ = 0).
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of the massless states is the Goldstone boson, z, eaten by the Z boson, while the other is the
majoron, J , the Goldstone boson associated to the spontaneous breaking of lepton number. In
the basis Im {H0, σ, S0} = {PH , Pσ, PS}, the mass eigenstates are given in terms of the original
gauge eigenstates as

z = 1
v

(vH , 0,−vS) , (6.25)

J = 1
V 2

(
vH v

2
S

v
,−v vσ,

v2
H vS
v

)
, (6.26)

A = 1
V 2 (vS vσ, vH vS , vH vσ) , (6.27)

with their masses given by

m2
z = m2

J = 0 , m2
A = µV 4

√
2 vH vS vσ

. (6.28)

We have defined the combination V 4 = v2
H v

2
S + v2

H v
2
σ + v2

S v
2
σ. Note that while z is given by

H0 in the SM, here it is a combination of the two scalar doublets. As already discussed, the µ
parameter breaks an accidental U(1) symmetry that would lead in its absence to the appearance
of an additional massless Goldstone boson. This can be observed in m2

A, which would vanish
if µ = 0. We have also found that the majoron has a non-vanishing component in the doublet
directions. Therefore, in order to avoid phenomenological problems with a doublet majoron,
such as a sizable invisible Z-boson width, we are forced to impose the hierarchy of VEVs

vH , vS � vσ , (6.29)

which guarantees that the majoron is mostly singlet. We turn now to the charged scalar mass
matrix. In this case, the scalar potential contains the term

VCmass =
(
H− S−

)
M2
±

(
H+

S+

)
, (6.30)

with

M2
± =

 m2
H + v2

H λH
2 + v2

S
2

(
λ

(1)
HS + λ

(2)
HS

)
+ v2

σ λHσ
2

vσ µ√
2 + λ

(2)
HS vH vS

2
vσ µ√

2 + λ
(2)
HS vH vS

2 m2
S + v2

S λS
2 + v2

H
2

(
λ

(1)
HS + λ

(2)
HS

)
+ v2

σ λSσ
2

 .

(6.31)
Again, the application of the tadpole equations leads to

M2
± =

 vS vσ µ√
2 vH

+ λ
(2)
HS v

2
S

2
vσ µ√

2 + λ
(2)
HS vH vS

2
vσ µ√

2 + λ
(2)
HS vH vS

2
vH vσ µ√

2 vS
+ λ

(2)
HS v

2
H

2

 . (6.32)
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One of the eigenvalues of this matrix vanishes. This corresponds to the Goldstone boson eaten
by the W boson, w. The other state is the massive charged scalar C±. In the basis {H±, S±},
they are given in terms of the gauge eigenstates as

w± = 1
v

(−vH , vS) , (6.33)

C± = 1
v

(vS , vH) , (6.34)

and their masses are

m2
w = 0 , m2

C = 1
2

v2

vH vS

(√
2µ vσ + λ

(2)
HS vH vS

)
. (6.35)

6.2.2 Lepton masses

The light neutrinos get their masses by means of a standard type-I seesaw mechanism, as seen
in Section 2.5.1.1. However, in this model, the 3× 3 matrices in generation space mD and MR

that appear in Eq. (2.21), are defined as

mD = vH√
2
Yν , MR = vσ√

2
κ . (6.36)

The resulting mass matrix,MN , of the neutral states corresponds to the standard type-I seesaw
matrix, see Eq. (2.21). If mD �MR, the light neutrinos mass matrix is given by the well-known
formula mν = −mT

DM
−1
R mD. We note that the hierarchy mD � MR follows naturally from

the hierarchy in Eq. (6.29). On the other hand, the mass term of the charged leptons reads

−LC =
(
ēR F̄R

)
MC

(
eL

FL

)
+ h.c. , (6.37)

where the 4× 4 matrixMC is given by

MC =
(
me mρ

mS MF

)
, (6.38)

and we have defined

me = vH√
2
Ye , mρ = vσ√

2
ρ , mS = vS√

2
YS . (6.39)

The matrices me, mρ and mS are 3 × 3, 3 × 1 and 1 × 3, respectively. Also, me would be
the SM-like charged leptons mass matrix. The mass matricesMN andMC can be brought to
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diagonal form as

M̂N = diag(mNi) = V νMN V
νT , (6.40)

M̂C = diag(mCi) = V R†MC V
L , (6.41)

where V ν and V L,R are unitary matrices. 4

It proves convenient to derive approximate expressions for the matrices involved in Eq. (6.41).
Similarly to what we did in Section 2.5.1.6, we now follow [191] to obtain approximate expressions
for the matrices V L,R by performing a perturbative expansion in powers of the inverse of the
largest scale inMC . 5 We assume

me,mS � mρ �MF , (6.42)

consistent with Eq. (6.29). Then, we can write the matrices V L,R as

V L(R) = UL(R)DL(R) , (6.43)

where UL,R and DL,R are unitary matrices. The matrices UL,R will be responsible for the block-
diagonalization ofMC while DL,R will diagonalize the light and heavy sub-blocks. The matrices
DL,R can be written in the form

DL(R) =

 D
L(R)
e 0
0 D

L(R)
F

 , (6.44)

where DL,R
e are 3 × 3 matrices and DL,R

F are just complex phases. While the non-vanishing
elements of the D matrices are expected to be of O(1), the elements of U will instead be
sensitive to the hierarchy of the scales involved in MC . We can decompose the 4 × 4 unitary
matrices UL,R in the block form

UL(R) =

 U
L(R)
ee U

L(R)
eF

U
L(R)
Fe U

L(R)
FF

 , (6.45)

where UL,Ree , UL,ReF and UL,RFe are 3×3, 3×1 and 1×3 matrices, respectively, and UL,RFF are complex
numbers. We impose that the following unitary transformation bringsMC into a block-diagonal
matrix, namely that

UR
†
(
me mρ

mS MF

)
UL =

(
mlight 0

0 mheavy

)
. (6.46)

4We observe that for vH � vσ, which is required by the seesaw mechanism, and assuming the Yukawa couplings
ρ and YS to be of O(1), we are forced to impose vS � vσ in order not to have all charged lepton masses pushed
towards the seesaw scale. This is in agreement with the considerations regarding the majoron profile.

5See also the pioneer work [207] for an alternative (but equivalent) approach for the perturbative diagonalization
of a Majorana mass matrix.
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Eq. (6.46) imposes constraints on the UL,R matrices and hence reduces their numbers of inde-
pendent parameters. In particular, it requires UL,R to lead to two vanishing 3 × 1 and 1 × 3
submatrices. Therefore, each of them must have three degrees of freedom only. We then formu-
late the ansätze for UL and UR

UL =
( √

13 − LL† L

−L†
√

1− L†L

)
, (6.47)

UR =
( √

13 −RR† R

−R†
√

1−R†R

)
, (6.48)

where 13 is the 3×3 identity matrix and L and R are 3×1 matrices. The L and R matrices must
be determined perturbatively as a function of the parameters inMC by expanding in powers of
1/MF . One must also Taylor-expand the square root. In the case of L, the expansion is given
by

L = L1 + L2 + L3 + · · · (6.49)

and √
13 − LL† = 13 −

1
2LL

† − 1
8LL

†LL† + · · · (6.50)

where the Li matrices are proportional to M−iF . Analogous expansions can be given for R. The
coefficients of the expansion are computed recursively, imposing that the off-diagonal sub-blocks
of MC vanish at each order in MF . Using the aforementioned hierarchy among scales, this
procedure leads to

UL =

 13 − 1
2
m†SmS
M2
F
− 1

2
m†emρmS+m†Sm

†
ρme

M3
F

m†S
MF

+ m†emρ
M2
F
− m†Sm

†
ρmρ

M3
F

−mS
MF
− m†ρme

M2
F

+ m†ρmρmS
M3
F

1− 1
2
mSm

†
S

M2
F
− 1

2
mSm

†
emρ+m†ρmem†S

M3
F

+O(M−3
F ) ,

(6.51)

UR =

 13 − 1
2
mρm

†
ρ

M2
F
− 1

2
mρmSm

†
e+mem†Sm

†
ρ

M3
F

mρ
MF

+ mem
†
S

M2
F
− mρm

†
ρmρ

2M3
F

− m†ρ
MF
− mSm

†
e

M2
F

+ m†ρmρm
†
ρ

2M3
F

1− 1
2
m†ρmρ
M2
F
− 1

2
mSm

†
emρ+m†ρmem†S

M3
F

+O(M−3
F ) ,

(6.52)

where we kept only the leading order contribution in mρ to the O(M−3
F ) coefficients L3 and R3.

The block-diagonal masses for the light and heavy charged leptons are finally given by

mlight = me −
mρmS

MF
−
mρm

†
ρme

2M2
F

− mem
†
SmS

2M2
F

+
mρm

†
ρmρmS

2M3
F

+O(M−3
F ) , (6.53)

mheavy = MF +
m†ρmρ

2MF
+ mSm

†
S

2MF
+
m†ρmem

†
S +mSm

†
emρ

2M2
F

−
m†ρmρm

†
ρmρ

8M3
F

+O(M−3
F ) . (6.54)

In summary, mlight ≈ me and mheavy ≈ MF , with corrections to these zeroth order results
entering at different orders in 1/MF .
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6.3 Majoron couplings

In the gauge basis, the interaction terms of the majoron with neutrinos and charged leptons
read

−LJNN = − i J

2 v V 2

(
ν̄cL ν̄R

)( 0 −v2
Sm

T
D

−v2
SmD v2MR

) (
νL

νcR

)
+ h.c. , (6.55)

−LJCC = − i J

v V 2

(
ēR F̄R

)( v2
Sme v2mρ

−v2
H mS 0

) (
eL

FL

)
+ h.c. . (6.56)

The majoron profile in Eq. (6.26) has been used in the derivation of Eqs. (6.55) and (6.56).
We can now focus on the interaction Lagrangian involving charged leptons and write it in the
fermion mass basis. This results in

−LJCC = − i J

v V 2

[
X̄β

(
V R†AV L

)
βα
PLX

α − X̄α
(
V L†A†V R

)
αβ
PRX

β
]
, (6.57)

where α, β are flavor indices, specified here for the sake of clarity, we have defined the four
component array in flavor space X = (e, F ) and

A =
(

v2
Sme v2mρ

−v2
H mS 0

)
(6.58)

is the matrix in Eq. (6.56). By comparing to Eq. (2.66), one finds a dictionary between the
SL,R effective couplings and the parameters of the model under consideration. In the case of the
flavor violating couplings, with β 6= α, one finds

SβαL = i

v V 2

(
V R†AV L

)βα
, (6.59)

SβαR = − i

v V 2

(
V L†A†V R

)βα
. (6.60)

This matching only holds for the light charged leptons, hence α, β = 1, 2, 3 here. We note that
the matching is completely specified by the charged lepton mass matrixMC . In the case of the
flavor conserving couplings, with β = α, one gets

Sββ ≡ SββL + Sββ∗R = i

v V 2

(
V R†AV L

)ββ
. (6.61)

We note that there is a mismatch of a factor of 2 with the matching holding for the off-diagonal
couplings, which prevents us from writing a single matching relation. The coupling in Eq. (6.61)
is purely imaginary, as expected for a pure pseudoscalar. The analytic proof of this result is
given in Appendix D.
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Finally, one can find approximate expressions for the SL,R couplings by using the expressions
derived for the V L,R matrices in the previous Section. One finds

SβαL = i

v V 2 C
βα , (6.62)

SβαR = − i

v V 2 C
αβ∗ , (6.63)

with

C = DR†
e

[
v2
Sme −

v2
S

MF
mρmS −

3 v2
S + 2 v2

H

2M2
F

mρm
†
ρme + 2 v2

H − v2
S

2M2
F

mem
†
SmS +O(M−3

F )
]
DL
e .

(6.64)
Comparing with Eq. (6.53), it follows that the off-diagonal couplings of the Majoron are sup-
pressed by O(M−2

F ), and not by O(M−1
F ) as one could naively expect. This follows from the

fact that DL,R
e are the unitary matrices that diagonalize mlight.

6.4 Phenomenology of the model

The model can be probed owing to its signatures in low-energy flavor experiments and high-
energy colliders.

Lepton flavor violating signatures

The first and most evident consequence of a massless majoron with tree-level LFV couplings is
the existence of large LFV rates in wide regions of the parameter space. This includes the usual
LFV processes, such as `α → `β γ or `α → 3 `β, which constitute important constraints for our
model. For the radiative processes `α → `β γ we use the general formulas in [323], whereas for
the 3-body LFV decays `−α → `−β `

−
β `

+
β , `−α → `−β `

−
γ `

+
γ and `−α → `+β `

−
γ `
−
γ , we use the general

expressions in [251]. The effective coefficients for the 3-body decays are generated in our model
at tree-level and are listed in Appendix E. In addition, we must consider processes involving the
majoron in the final state. In particular, the LFV decay `α → `β J is induced by the off-diagonal
SβαA scalar couplings, with A = L,R, defined in Eq. (2.66). The majoron contributions to all
the LFV processes of interest where calculated in Chapter 3, where a detailed discussion on the
obtention of the bounds of the majoron couplings with charged leptons is presented. A summary
of these limits is also provided in Table 3.2. In addition, the new massive charged scalar C±

will also contribute to some LFV processes through its S doublet component.

Anomalous magnetic moment of the muon

The enlarged lepton sector in our model induces contributions to many leptonic observables.
We have already discussed flavor violating observables, which vanish in the SM. In addition,
flavor conserving observables also receive new contributions, and these may potentially induce
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Hk, A, J

µL FR FL µR

ρ2(YS)2 MF

Figure 6.1: Dominant new physics contribution to the muon anomalous magnetic moment.

deviations from the SM predictions. For instance, the new states contribute to the anomalous
magnetic moment of the muon, an observable that has received a lot of attention recently.

In our model, new contributions to the muon g − 2 are induced at the 1-loop level, as
shown in Fig. 6.1. This figure includes diagrams with the massive CP-even bosons Hk, with the
massive CP-odd state A, and with the majoron J . For the massive states, we use the analytical
expressions given in [103], whereas the majoron contribution was computed in Section 3.4.7.

Higgs boson decays

The lightest CP-even scalar mass eigenstate, H1 ≡ h, can be identified with the 125 GeV state
discovered at the LHC. Therefore, it is crucial that its properties and decay channels match
those observed, within the ranges allowed by the experimental errors. Since the observed state
resembles the Higgs boson of the SM, this is guaranteed if the mixing angles in the CP-even
scalar sector are sufficiently small. In this case, h is made up mostly by the SH state, which has
the properties of a SM Higgs. Thus, decays such as h→ ZZ,WW are not modified substantially.

Higgs decays into a pair of muons have been recently searched for by the ATLAS [324] and
CMS [325] collaborations. Their data yields the following ratio in terms of the SM predicted
value [210],

Rhµµ = BR(h→ µµ)exp

BR(h→ µµ)SM = 1.19± 0.39 . (6.65)

In our model, the mixing in the CP-even scalar sector may induce large deviations from the SM
predicted ratio, Rhµµ = 1. Even if the mixing is tiny, the large S and σ couplings to muons,
required if one wants to address the experimental anomaly in the muon anomalous magnetic
moment, induce sizable contributions to Rhµµ, which can largely deviate from 1. An approxi-
mate analytical expression for Rhµµ, valid under some simplifying assumptions, is provided in
Appendix F.

Finally, h can also decay invisibly to a pair of majorons. The current ATLAS limit on the
invisible Higgs branching ratio translates into BR(h→ JJ) < 0.19 at 95% C.L. [326]. We take
this constraint into account in our numerical analysis, using Γh ≈ ΓSM

h = 4.1 MeV for the total
Higgs decay width [327]. Its error is negligible.
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6.5 Numerical results

In this Section, we present our numerical results. These have been obtained by randomly
scanning in the wide parameter space of the model and computing the observables discussed in
the previous Section. All points in our scans are compatible with current neutrino oscillation
data. This is achieved by using a Casas-Ibarra parametrization [200] for the Yν Yukawa matrix,
as explained in Section 2.5.3, consideringM = v2

H
2 M

−1
R in Eq. (2.62). Here, we are working in the

basis in which the MR matrix, defined in Eq. (6.36), is diagonal, with MR = diag (M1,M2,M3).
In our numerical analysis we assume normal neutrino mass ordering and randomly take neutrino
oscillation parameters within the 3σ ranges obtained by the global fit [138]. Qualitatively similar
results can be obtained assuming inverted neutrino mass ordering.

Several parameters are chosen randomly in our scans. These are vS , vσ, the vector-like
lepton mass MF , the trilinear coupling µ as well as the ρ and YS Yukawa couplings, where
the ρ2 and the (YS)2 upper bounds are chosen below the non-perturbative regime. In addition,
the κ Yukawa matrix has been taken diagonal, with κii also chosen randomly. All Yukawa
couplings have been assumed to be real for simplicity. The ranges for the parameters that have
been chosen randomly in our scans are shown on Table 6.2. We have chosen the VEV vS in
the narrow range [0.05, 0.1] GeV. This choice is motivated by the fact that the doublet S does
not couple to quarks. A sizable vS VEV would imply a reduction of vH and, as a consequence
of this, an increase in the Higgs boson couplings to quarks, already constrained by LHC data.
Moreover, vS is also indirectly constrained due to its impact on the diagonal majoron couplings,
see Eq. (6.64), and a small value is generally required. Furthermore, a small value for vS
motivates a similarly small value for the µ trilinear coupling. Otherwise, the heavy CP-even
scalars Hk and the pseudoscalar A become very heavy, and their impact on the phenomenology
is negligible, see Eqs. (6.21) and (6.28). Finally, the scalar potential parameters λσ = λ

(1)
HS = 0.1

and λS = λHσ = λ
(2)
HS = λSσ = 0.01 have been fixed in all the scans. Note, however, that the

exact choice for these quartic couplings is irrelevant for the observables we study. Also, the
small values of vS and the quartics assure that SM precision observables are not substantially
changed in our model.

Our analysis has taken into account several experimental bounds. Starting with the LFV
processes, we have checked that the branching ratios of the radiative processes `α → `βγ as
well as the 3-body decays `−α → `−β `

−
β `

+
β , `−α → `−β `

−
γ `

+
γ and `−α → `+β `

−
γ `
−
γ satisfy the existing

bounds [210]. Regarding the decays `α → `β J , we have imposed the restrictions on the flavor
violating couplings instead of the branching ratios. To do so, we have defined the combination

|Sβα| =
(∣∣∣SβαL ∣∣∣2 +

∣∣∣SβαR ∣∣∣2)1/2
(6.66)

and imposed the bounds derived in Chapter 3. On the flavor conserving side, we also consider the
stringent constraints from astrophysics on the imaginary couplings. Both flavor conserving and
violating bounds are collected in Table 3.2. The impact of these bounds on the phenomenology
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Parameter Range

vS [0.05 , 0.1] GeV

vσ [0.75 , 1.5] TeV

MF [0.75 , 3] TeV

µ [0.01 , 0.1] GeV

κii [0.1 , 1]

ρ1
[
10−6 , 1

]
× 5 · 10−3

ρ2
[
5 · 10−4 ,

√
4π
]

ρ3 [0.05 , 1]× 10−7

(YS)1 [0.01 , 1]× 10−6

(YS)2

[
0.1 ,

√
4π
]

(YS)3 [0.001 , 5]× 10−7

Table 6.2: Ranges for the parameters that are randomly taken in our numerical analysis.

of the model will be studied in detail in the discussion that follows. We have also made sure
here that the ratios

RZ`` = Γ
(
Z → `+`−

)
ΓSM (Z → `+`−) , (6.67)

where ΓSM
(
Z → `+`−

)
is the SM predicted decay width, lie within the 95% CL range, which is

estimated to be 0.995 < RZee < 1.003 and 0.993 < RZµµ < 1.006 [210]. With respect to Higgs
decays, we have considered the very recent measurement of the process h→ µµ, discussed in the
previous Section, and we have rejected the points in our analysis outside the range compatible
with Eq. (6.65) at 3σ. Finally, points with BR (h→ JJ) > 0.19 [326] have been discarded as
well.

Our results for the LFV processes µ → e γ and µ → e J are shown in Fig. 6.2, which
shows BR(µ → e γ) as a function of BR(µ → e J). The vertical line corresponds to the bound
BR(µ → e J) < 10−5, already discussed in Chapter 3, while the horizontal line is the current
limit BR(µ→ e γ) < 4.2×10−13, obtained by the MEG experiment [141]. Red points correspond
to parameter points that respect all astrophysical bounds, namely the bounds on See and Sµµ

in Eqs. (3.7) and (3.8), while the astrophysical bound on the majoron coupling to muons is
violated in the blue points. Finally, the clear points are excluded due to one or several of the
other experimental constraints mentioned above. First, as can be seen in this figure, our model
is able to attain the current experimental bounds on BR(µ→ e γ) and BR(µ→ e J). Moreover,
one finds no difference at all between blue and red points. This implies that the astrophysical
bounds on the flavor conserving couplings See and Sµµ have no impact on the results for the flavor
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Figure 6.2: BR(µ→ e γ) as a function of BR(µ→ e J).

violating observables. We also observe that a correlation between BR(µ→ e γ) and BR(µ→ e J)
exists, although these two observables depend on different combinations of parameters. However,
it is easy to understand that they are not completely independent. In the limit ρ1 = (YS)1 = 0,
the vector-like fermion F does not couple to electrons. In this case, the only contributions
to µ − e LFV observables come from the Yν Yukawa matrix, which has entries of the size of
∼ 10−7 − 10−6 and then leads to tiny LFV branching ratios. Therefore, sizable ρ1 or (YS)1
couplings are required in order to have observable LFV, and this applies both to µ → e J

and µ → e γ. Regarding other LFV processes, our numerical results also show that dipole
contributions dominate the amplitude of the 3-body decay µ− → e−e+e−. This leads to strong
correlations with µ→ e γ, which always has a much larger branching ratio.

Furthermore, in the region of parameter space covered by our numerical scan, it is easy to
show that BR(µ → e J) clearly correlates with the combination of parameters vσ ρ1 ρ2M

−2
F .

From the expression of the majoron couplings to charged leptons in Eqs. (6.62) and (6.63) and
the charged lepton mass matrix in Eq. (6.53), derived under the assumption mρ � MF , and
assuming vS � vH and a large ρ2 coupling, as motivated by the explanation of the muon g − 2
anomaly, one can obtain the approximation for the off-diagonal e− µ coupling

|Seµ| ≈ mµ vσ
M2
F

ρ1 ρ2 . (6.68)

We observe that, as long as the condition mρ < MF is satisfied, |Seµ| actually grows when the
U(1)L symmetry breaking scale vσ increases. This result seems to go against the usual decoupling
behavior expected when the new physics scale becomes larger. However, when vσ is increased,
the mixing between the SM-like charged leptons and the vector-like lepton F increases as well,
hence enhancing the µ − e − J coupling. Eventually, when vσ is pushed above MF , Eq. (6.68)
becomes invalid and BR(µ→ e J) starts to decrease.
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Figure 6.3: ∆aµ as a function of the combination (YS)2 ρ2/MF . Gray points are excluded due
to one or several experimental bounds, but are shown for illustration.
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Figure 6.4: ∆aµ as a function of the vector-like mass MF for ρ2 = (YS)2 =
√

4π (blue), ρ2 =
(YS)2 = 1 (red) and ρ2 = (YS)2 = 0.5 (green).

In what concerns τ decays, our choice of parameters suppresses all the LFV amplitudes.
Since experimental limits in the τ sector are much weaker than for the muon, we do not show
plots for LFV τ decays. We note, however, that one can saturate (some of) the experimental
bounds also for τ ’s in our model, for the appropriate choice of (large) parameters in the 3rd
generation. On the other hand, in our model it is not possible to have both, τ → e γ and
τ → µγ, with large rates at the same time, without running into conflict with µ→ e γ.

Our model can also induce large contributions to the muon anomalous magnetic moment and
address the current experimental anomaly. 6 This is shown in Fig. 6.3. This figure displays ∆aµ
as a function of the combination of parameters (YS)2 ρ2/MF , which enters the Feynman diagram

6We notice that an explanation for the anomalous magnetic moment of the electron is not possible due to the
ranges chosen for the Yukawa couplings of the electron. The motivation for this was that we wanted to avoid too
large µ→ e γ decaying rates.
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in Fig. 6.1. The horizontal dashed line represents the experimental central value, while the green
and yellow bands correspond to the 1σ and 3σ ranges, respectively. 7 As in the previous figure,
the red points respect the astrophysical bounds on See and Sµµ, while the blue points only
respect the constraint on See. Clear points are excluded due to one or several constraints but
are shown for illustration. We have found numerically that all diagrams, with massive scalars
or with the majoron in the loop, may have comparable sizes. Interestingly, some points are
found within the 1σ interval, hence providing a good explanation for the experimental value
of the muon anomalous magnetic moment. These points require relatively light F fermions
(with masses of the order of ∼ 1− 2 TeV) and large (order 1) ρ2 and (YS)2 Yukawa couplings.
However, they violate the bound on Sµµ obtained from the supernova SN1987A, since this
constraint necessarily implies a low value of ρ2. In fact, we note that this figure displays a large
concentration of points with low values of ∆aµ in a region where all the red points are found.
This region is characterized by ρ2 � 1, and hence the dominant contributions to the muon g−2
do not come from the diagram in Fig. 6.1 but are mostly induced by diagrams proportional to
(YS)2

2 /M
2
F . These diagrams have an external chirality flip that introduces an mµ suppressing

factor and then, as is generically found in a large class of models with this feature, ∆aµ can be
at most ∼ 10−10.

Complementary information is provided by Fig. 6.4, which shows ∆aµ as a function of
the vector-like mass MF for three different values of ρ2 = (YS)2. Blue points corresponds to
ρ2 = (YS)2 =

√
4π, red points to ρ2 = (YS)2 = 1 and green points to ρ2 = (YS)2 = 0.5. This

figure has been obtained with a specific parameter scan in which MF ∈ [0.75 , 10] TeV, while
the ranges for the other randomly chosen parameters are as in Table 6.2. As expected, all new
physics contributions decrease for largeMF and strongly depend on the value of the ρ2 and (YS)2
couplings. When ρ2 = (YS)2 = 0.5, these are not large enough to address the muon g−2 anomaly,
while when ρ2 = (YS)2 = 1 this happens in a narrow region of the parameter space characterized
by very light vector-like leptons, with masses . 1 TeV. Only when ρ2 = (YS)2 =

√
4π, one can

find an explanation for the anomaly in a wide MF range. And even in this case, they eventually
become too small to account for the measured muon g−2. However, this happens for very large
vector-like masses. In fact, one finds that vector-like masses as large as 10 TeV still allow for
a 3σ explanation of the muon g − 2 anomaly. Such a large mass would make the F fermions
unobservable at the LHC.

We turn our attention to Higgs boson decays. As already explained, the mixing in the CP-
even scalar sector can induce large deviations from the SM predicted Higgs branching ratios. In
particular, a large effective coupling to muons is induced in parameter points in which the muon
g − 2 anomaly is explained. This is shown in Fig. 6.5. Here we plot the ratio Rhµµ, defined in
Eq. (6.65), as a function of the lepton number breaking scale vσ. The horizontal line represents
the current central value, Rhµµ = 1.19 [210], while the green and yellow bands correspond to

7We note that the 1σ and 3σ intervals are symmetric with respect to the central value, but they look asymmetric
in this figure since we are using a logarithmic scale for the y-axis.
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Figure 6.5: Rhµµ as a function of vσ for three fixed values of the vector-like mass MF : MF = 1
TeV (blue), MF = 3 TeV (red) and MF = 5 TeV (green). The horizontal line represents the
current central value, Rhµµ = 1.19 [210], while the green and yellow bands correspond to the 1σ
and 2σ ranges, respectively.

the 1σ and 2σ ranges, respectively. As in the previous plot, the vector-like mass MF is fixed to
specific values in this figure: MF = 1 TeV (blue points), MF = 3 TeV (red points), and MF = 5
TeV (green points). In addition, vS = 0.1 GeV and ρ2 = (YS)2 =

√
4π are fixed in this plot,

while µ ∈ [0.05 , 50] GeV, ρ1 ∈ [0.002 , 1.2] × 10−6 and (YS)1 ∈ [0.1 , 5] × 10−7 are randomly
varied and the rest of parameters are taken as in Table 6.2. Due to the large value chosen for
ρ2, the astrophysical bound on Sµµ is not respected in this plot. Imposing this constraint would
imply Rhµµ ≈ 1. We observe that for large vσ and MF , the new physics contributions become
negligibly small, and one finds Rhµµ = 1. However, for lower scales one finds many parameter
points leading to large deviations from the SM predicted value. In particular, for MF = 1 TeV
our scan reveals points with Rhµµ as large ∼ 1.4 or as low as ∼ 0.3. These extreme points are,
of course, ruled out by the existing data but serve as an example of how easily Higgs decays into
muons can deviate from the SM predictions in our setup.

We finally note that the Rhµµ ratio does not correlate with other observables due to the large
number of independent contributions to the h−µ−µ coupling, see Appendix F. For this reason,
a definite prediction cannot be made. For instance, Eqs. (F.7)-(F.9) imply that for vanishing
mixing in the scalar sector, cSσµµ = cSSµµ = 0 and cSHµµ > cSM

µµ , hence predicting Rhµµ > 1. However,
the α and β angles never vanish and in fact, one can find Rhµµ < 1 as well.

6.6 Summary

In this Chapter, we have proposed a simple model that leads to sizable majoron flavor violating
couplings to charged leptons. The particle spectrum is extended with the addition of two new
scalar multiplets as well as three right-handed neutrino singlets and a vector-like lepton. The
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SM symmetry is also extended with a continuous lepton number global symmetry. As a result
of spontaneous symmetry breaking, neutrinos acquire non-zero Majorana masses via a type-I
seesaw mechanism, and a massless Goldstone boson appears in the spectrum, the majoron.

Thanks to sufficiently large mixings between the SM charged leptons and the vector-like lep-
ton, sizable majoron LFV couplings are generated at tree-level. Therefore, our model constitutes
a simple example of a model with tree-level off-diagonal majoron couplings not suppressed by
neutrino masses. This induces plenty of signatures in experiments looking for LFV processes. In
particular, we have shown that the decay µ→ e J can have large rates close to the experimental
limit. In fact, it already excludes part of the parameter space of the model.

As a by-product of our construction, other interesting phenomenological possibilities emerge:
(i) an explanation to the current muon g − 2 discrepancy can be provided in large parts of the
parameter space of the model, easily finding points that address the anomaly even within 1σ,
and (ii) sizable deviations with respect to the SM predicted Higgs decay rates can be obtained,
most notably in h → µµ. These two phenomenological possibilities provide additional handles
on the model. We note, however, that an explanation of the muon g− 2 anomaly would lead to
tension with recent astrophysical bounds on the majoron coupling to muons.

Here we have shown that as soon as the lepton sector is extended beyond the minimal models,
exotic signatures appear, such as those including a massless majoron in the final state. This
motivates the experimental search for processes like µ → e J and stimulates the construction
of new theoretical scenarios that, in addition to neutrino masses, provide an understanding to
other open questions.
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Model Building
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Chapter 7

Generalizing the Scotogenic model

In particle physics, model building refers to the construction of novel quantum field theories that
extend the Standard Model. These new theories have specific features that make them theoret-
ically appealing. While in the previous chapters the models were motivated by phenomenology,
in this part of the thesis we adopt a model building perspective.

7.1 Introduction

In Section 2.5.2, we discussed the Scotogenic model, which is a well-known radiative neutrino
mass model [198, 199]. The original version of the model was proposed in 1996 by Zhijian Tao
and later, independently, in 2006 by Ernest Ma. Since then, many variations and extensions
have been developed. These include colored versions of the model [328–331] and versions with
additional states and/or symmetries, both in Dirac [332–340] and Majorana fashion [341–385].
The Z2 parity can also be promoted to a local [386,387] or global U(1) symmetry [388–391], or
to a Peccei-Quinn quasi-symmetry [392–394]. Finally, Scotogenic-like scenarios have also been
combined with, or even obtained from, extended gauge symmetries [395–398].

In the original version of the Scotogenic model, a single copy of the inert doublet and three
generations of singlet fermions were included. 1 However, this choice was not unique, and the
Scotogenic model can be generalized to include alternative numbers of generations [399,400]. In
this chapter, based on [309], we introduce the general Scotogenic model, which allows for arbitrary
numbers of generations of the Scotogenic states, and explore its more relevant features.

7.2 The general Scotogenic model

The particle content of the SM is expanded by an unspecified number, nN , of singlet fermions
N , and also an arbitrary number, nη, of inert scalar doublets η. Particular cases of this particle
spectrum can be labeled by their (nN , nη) values. Furthermore, the symmetry group of the SM

1Even though this version of the Scotogenic model is often referred to as the minimal Scototogenic model, we
note that more minimal setups can be built [343,374,375].
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is enlarged with a dark Z2 parity, under which all the new fields are odd, while the SM particles
are even. The scalar and lepton particles of the model, along with their representations under
the gauge group SU(3)c × SU(2)L ×U(1)Y and the Z2 parity are given in Table 7.1.

Field Generations SU(3)c SU(2)L U(1)Y Z2

`L 3 1 2 −1/2 +

eR 3 1 1 −1 +

H 1 1 2 1/2 +

η nη 1 2 1/2 −

N nN 1 1 0 −

Table 7.1: Scalar and lepton particle content of the model and their representations under the
gauge and global symmetries. `L and eR are the SM left- and right-handed leptons, respectively,
and H is the SM Higgs doublet.

The relevant Yukawa and bare mass terms for our discussion are

LN ⊃ ynaαNn ηa `
α
L + 1

2 MNn N
c
nNn + h.c. , (7.1)

where n = 1, . . . , nN , a = 1, . . . , nη and α = 1, 2, 3 are generation indices and y is a general
complex nN × nη × 3 object. Besides, MN is a symmetric nN × nN Majorana mass matrix that
has been chosen diagonal without loss of generality. Furthermore, one can also write the scalar
potential

V = m2
HH

†H +
(
m2
η

)
ab
η†aηb + 1

2 λ1
(
H†H

)2
+ 1

2 λ
abcd
2

(
η†aηb

) (
η†cηd

)
+ λab3

(
H†H

) (
η†aηb

)
+ λab4

(
H†ηa

) (
η†bH

)
+ 1

2
[
λab5

(
H†ηa

) (
H†ηb

)
+ h.c.

]
.

(7.2)

Here all the indices are η generation indices and can take the values 1, . . . , nη. Therefore, m2
η

and λ3,4,5 are nη × nη matrices while λ2 is an nη × nη × nη × nη object. Note that λ5 must be
symmetric whereas λ3,4 must be Hermitian. Again, m2

η will be assumed to be diagonal without
loss of generality. Finally, we highlight the presence of the scalar potential quartic couplings λab5 ,
which play a major role in the neutrino mass generation mechanism, as shown in Section 7.3.

Similar to the minimal Scotogenic model, we will assume that the minimization of the scalar
potential in Eq. (7.2) leads to the vacuum configuration

〈
H0
〉

= v√
2

,
〈
η0
a

〉
= 0 , (7.3)
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with a = 1, . . . , nη. Therefore, only the neutral component of H acquires a non-zero vacuum
expectation value, which breaks the electroweak symmetry in the standard way, while the ηa
scalars are inert doublets with vanishing VEVs. In this way, the Z2 symmetry remains unbroken
and the stability of the lightest Z2-charged particle is guaranteed. We will explore the possibility
of Z2 breaking due to Renormalization Group Equations (RGEs) effects later.

In the following we will assume that all the parameters in the scalar potential are real, hence
conserving CP in the scalar sector. In this case, the real and imaginary components of η0

a,

η0
a = 1√

2
(ηRa + i ηIa) , (7.4)

do not mix. After electroweak symmetry breaking, the nη × nη mass matrices for the real and
imaginary components are given by

(M2
R)ab = (mη)2

aa δab +
(
λab3 + λab4 + λab5

) v2

2 (7.5)

and
(M2

I)ab = (mη)2
aa δab +

(
λab3 + λab4 − λab5

) v2

2 , (7.6)

respectively. We note thatM2
R =M2

I in the limit λ5 → 0, in which all the elements of λ5 vanish.
This will be crucial in the calculation of neutrino masses, as shown below. Both mass matrices
can be brought into diagonal form by means of a change of basis. The gauge eigenstates, ηAa ,
are related to the mass eigenstates, η̂Ab , where A = R, I, by

ηA = VA η̂A . (7.7)

Here ηA and η̂A are nη-component vectors. In general, the nη × nη matrices VA are unitary,
such that VAV †A = V †AVA = Inη , where Inη is the nη × nη identity matrix. However, in the
simplified scenario of CP conservation in the scalar sector, M2

R and M2
I are real symmetric

matrices, and then the VA matrices are orthogonal, such that VAV T
A = V T

A VA = Inη . With these
transformations, the diagonal mass matrices are given by

M̂2
A =


m2
A1

0
. . .

0 m2
Anη

 = V T
AM2

AVA . (7.8)

The resulting analytical expressions for the mass eigenvaluesm2
Aa

and mixing matrices VA involve
complicated combinations of the scalar potential parameters. However, under the assumptions2

2Note that this assumption is technically natural [155]: the smallness of λ5 is not dynamically explained but
is stable against RGE flow. This is due to the fact that the limit λ5 → 0 increases the symmetry of the model by
restoring lepton number. Therefore, if λ5 is set small at one scale it will remain small at all scales.
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λaa3,4
v2

2 �
(
m2
η

)
aa

and λab5 � λab3,4 � 1 , (7.9)

where a 6= b, one can find simple expressions. The m2
Aa

mass eigenvalues are approximated by

m2
Ra =

(
m2
η

)
aa

+ (λaa3 + λaa4 + λaa5 ) v
2

2 , (7.10)

m2
Ia =

(
m2
η

)
aa

+ (λaa3 + λaa4 − λaa5 ) v
2

2 . (7.11)

We note that the mass splitting m2
Ra
− m2

Ia
= λaa5 v2 vanishes in the limit λ5 → 0. In what

concerns the VA orthogonal matrices, each of them can be expressed as a product of nη(nη−1)/2
rotation matrices, with the scalar mixing angles given by

tan 2 θabA = 2 (M2
A)ab

(M2
A)bb − (M2

A)aa
=
(
λab3 + λab4 + κ2

A λ
ab
5

) v2

m2
Ab
−m2

Aa

, (7.12)

where a 6= b and the κ2
A sign (κ2

R = +1 and κ2
I = −1) has been introduced.

7.3 Neutrino masses

νL νL

H0 H0

η η

N N να
L ν

β
L

ηRa
, ηIa

Nn

Figure 7.1: Neutrino mass generation. To the left, Feynman diagram with gauge eigenstates.
To the right, the analogous Feynman diagram with the physical mass eigenstates that propagate
in the loop.

The generation of neutrino masses takes place at the 1-loop level à la scotogenic [198, 199]. In
the presence of the terms given in Eqs. (7.1) and (7.2), lepton number is explicitly broken by two
units, hence inducing Majorana neutrino masses. Assuming that the potential is such that the ηa
scalars do not get VEVs, see Eq. (7.3), neutrino masses are forbidden at tree-level. Nevertheless,
they are induced at the 1-loop level, as shown in Fig. 7.1. Several diagrams contribute to the



7.3. Neutrino masses 135

neutrino mass matrix. Therefore, one can write

(mν)αβ =
∑
A,a,n

(
mA
ν

)an
αβ

, (7.13)

where
(
mA
ν

)an
αβ

is the contribution to (mν)αβ generated by the Nn − ηAa loop, given by

−i
(
mA
ν

)an
αβ

= CAnaα

∫ dDk
(2π)D

i

k2 −m2
Aa

i (/k +MNn)
k2 −M2

Nn

CAnaβ , (7.14)

where D = 4 − ε is the number of space-time dimensions, the external neutrinos are taken at
rest and k is the momentum running in the loop. We note that the term proportional to /k does
not contribute because it is odd in the loop momentum. CAnaα is the Nn − ηAa − ναL coupling,
given by

CAnaα = i
κA√

2
∑
b

(VA)∗ba ynbα , (7.15)

with κR = 1 and κI = i. Since we assume real parameters in the scalar sector, complex
conjugation in VA will be dropped in the following. Replacing Eq. (7.15) into Eq. (7.14) and
introducing the standard Passarino-Veltman loop function B0 [401],

B0
(
0,m2

Aa ,M
2
Nn

)
= ∆ε + 1−

m2
Aa

logm2
Aa
−M2

Nn
logM2

Nn

m2
Aa
−M2

Nn

, (7.16)

where ∆ε diverges in the limit ε→ 0, Eq. (7.13) becomes

(mν)αβ = − 1
32π2

∑
A,a,b,c,n

MNn κ
2
A (VA)ba (VA)ca ynbα yncβ B0(0,m2

Aa ,MNn) . (7.17)

Equation (7.17) constitutes our central result for the exact 1-loop neutrino mass matrix in the
model. It is important to note that the divergent pieces cancel exactly. Indeed, the κ2

A factor
implies that the term proportional to ∆ε in Eq. (7.17) (see Eq. (7.16)) involves the combination

∑
a

[(VR)ba (VR)ca − (VI)ba (VI)ca] =
(
VR V

T
R

)
bc
−
(
VI V

T
I

)
bc

= δbc − δbc = 0 , (7.18)

which vanishes due to the orthogonality of the VA matrices, ensuring the cancellation of the
divergent part of the B0 functions. This was expected since the neutrino mass matrix is physical
and therefore finite.

Equation (7.17) provides a simple analytical expression for the neutrino mass matrix. How-
ever, the dependence on the fundamental parameters of the model is not explicit. The neutrino
mass matrix involves a product of VA matrices and B0 functions, both in general depending on
the scalar potential parameters in a non-trivial way. Therefore, to clearly identify the role of
these parameters, we will work under the assumptions in Eq. (7.9) and derive an approximate
form for the neutrino mass matrix, valid for small values of the λab5 couplings and small mixing
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angles in the scalar sector. First, it is convenient to expand in powers of λab5 � 1. One can write

(mν)αβ = − 1
32π2

∑
n

MNn

∑
a,b,c

ynbα yncβ (7.19)

{
[(V )ba (V )ca]

(0)
[
B

(1)
0 (0,m2

Ra ,MNn)−B(1)
0 (0,m2

Ia ,MNn)
]

+ [(VR)ba (VR)ca − (VI)ba (VI)ca]
(1) B

(0)
0 (0,m2

a,MNn)
}

+O
(
λ2

5

)
,

where the superindex (i), with i = 0, 1, denotes the order in λab5 . We highlight that since λ5 = 0
would imply the restoration of lepton number and then massless neutrinos, the expansion begins
at 1st order in λ5. With this in mind, the origin of the two terms in Eq. (7.19) is easy to
understand. In the first term, the λab5 couplings are neglected in the VA matrices but kept
at leading order in the B0 functions. This term is proportional to the B0(0,m2

Ra
,MNn) −

B0(0,m2
Ia
,MNn) difference, which would vanish for λaa5 = 0, see Eqs. (7.10) and (7.11). The

mass matrices for the real and imaginary components of η0 are equal at 0th order in λ5, M̂2 (0)
R =

M̂2 (0)
I , and then we can define V ≡ V

(0)
R = V

(0)
I . In the second term, the λab5 couplings are

neglected in the B0 functions but kept at leading order in the VA mixing matrices. Since
m

(0)
Ra

= m
(0)
Ia
≡ ma at 0th order in λaa5 , then the B(0)

0 function has the argument

m2
a =

(
m2
η

)
aa

+ (λaa3 + λaa4 ) v
2

2 . (7.20)

We note that this term will only be non-zero when the λ5 matrix contains non-vanishing off-
diagonal entries, since this is the only way the (VR)ba (VR)ca − (VI)ba (VI)ca would not vanish
at 1st order in λ5. Next, we find approximate expressions for the VA mixing matrices. This is
only feasible by assuming small scalar mixing angles, in agreement with Eq. (7.9). In this case
one can expand V not only in powers of λ5, but also in powers of the small parameter

sab = 1
2
(
λab3 + λab4

) v2

m2
b −m2

a

� 1 , (7.21)

which is defined for a 6= b and corresponds to sin θabR or sin θabI at 0th order in λ5, see Eq. (7.12).
Note that the scenario we are considering does not include the possibility of degenerate masses
in the scalar sector. With this definition, one finds the general expression (V )ab = δab + (1 −
δab) sab+O

(
s2). Analogous expressions are found for VR and VI replacing s by sin θR and sin θI ,

respectively. With all these ingredients, Eq. (7.19) can be written as

(mν)αβ = v2

32π2

∑
n,a,b

ynaα ynbβ
MNn

Γabn +O
(
λ2

5

)
+O

(
λ5 s

2
)
, (7.22)

where we have defined the dimensionless quantity

Γabn = δab λ
aa
5 fan − (1− δab)

[(
λaa5 fan − λbb5 fbn

)
sab −

M2
Nn

m2
b −m2

a

λab5 gabn

]
(7.23)
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and the loop functions

fan =
M2
Nn

m2
a −M2

Nn

+
M4
Nn(

m2
a −M2

Nn

)2 log
M2
Nn

m2
a

, (7.24)

gabn = m2
a

m2
a −M2

Nn

log
M2
Nn

m2
a

− m2
b

m2
b −M2

Nn

log
M2
Nn

m2
b

. (7.25)

Eq. (7.22) involves the quantity Γabn, which we have written in Eq. (7.23) as the sum of two
terms. The first term in Γabn contributes only for a = b and involves only diagonal elements
of λ5. The second term, which involves diagonal as well as off-diagonal elements of λ5, only
contributes for a 6= b. We also note that gabn = −gban.

Eq. (7.22) is the main analytical result of this chapter. Under the assumptions of Eq. (7.9),
it reproduces the neutrino mass matrix in very good approximation. It is valid for any nN and
nη values. We will now show how in some particular cases it reduces to well-known expressions
in the literature.

7.3.1 Particular case 1: (nN , nη) = (3,1)

Of course, the first example we consider is the standard Scotogenic model, which is obtained
for (nN , nη) = (3, 1). In this case, only one inert doublet η is introduced, resulting in all
the matrices in the scalar sector becoming just scalar parameters. In particular, VA = 1,
λab5 ≡ λ11

5 ≡ λ5 and (m2
η)aa ≡ (m2

η)11 ≡ m2
η. Besides, the Yukawa couplings become 3 × 3

matrices: ynaα ≡ yn1α ≡ ynα. Similarly, fan ≡ f1n ≡ fn, and the second term in Eq. (7.23) does
not contribute. These simplifications result in the general Γabn reducing to Γ(3,1)

n , which is given
by

Γ(3,1)
abn ≡ Γ(3,1)

11n ≡ Γ(3,1)
n = λ5 fn . (7.26)

Replacing this into Eq. (7.22), one obtains the well-known Scotogenic neutrino mass matrix that
we derived in Section 2.5.2,

(mν)(3,1)
αβ = λ5 v

2

32π2

∑
n

ynα ynβ
MNn

 M2
Nn

m2
0 −M2

Nn

+
M4
Nn(

m2
0 −M2

Nn

)2 log
M2
Nn

m2
0

 , (7.27)

with m2
0 = m2

η + (λ3 + λ4) v2/2.

7.3.2 Particular case 2: (nN , nη) = (1,2)

Our second example is a variation of the Scotogenic model featuring one singlet fermion and
two inert doublets, denoted by (nN , nη) = (1, 2). This particular model has been previously
explored in [399,400]. Since the model contains only one singlet fermion N , MNn ≡MN is just
a parameter and the Yukawa couplings become 2 × 3 matrices: ynaα ≡ y1aα ≡ yaα. Finally,
fna ≡ f1a ≡ fa and gabn ≡ gab1 ≡ gab. Both references work in the basis in which the m2

η matrix
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is diagonal. However, they take different simplifying assumptions about the scalar potential
parameters.

In [399] the matrix λ3 + λ4 was assumed to be diagonal. In this case, which we denote as
scenario (1, 2) I, (1− δab)sab = 0 and the general Γabn reduces to

Γ(1,2) I
abn ≡ Γ(1,2) I

ab1 ≡ Γ(1,2) I
ab = δab λ

aa
5 fan + (1− δab)

M2
Nn

m2
b −m2

a

λab5 gabn . (7.28)

Replacing this expression into Eq. (7.22) and arranging the different pieces properly, one obtains

(mν)(1,2) I
αβ = v2

32π2

∑
a,b

yaα ybβ λ
ab
5

MN

m2
b −M2

N

[
m2
b

m2
a −m2

b

log m
2
a

m2
b

− M2
N

m2
a −M2

N

log m2
a

M2
N

]
, (7.29)

which agrees with the result in [399] up to a global factor of 1/4.
On the other hand, a diagonal λ5 matrix was taken in [400]. We denote this as scenario

(1, 2) II. Again, this simplifies Γabn, which becomes

Γ(1,2) II
abn ≡ Γ(1,2) II

ab1 ≡ Γ(1,2) II
ab = δab λ

aa
5 fan − (1− δab)

(
λaa5 fan − λbb5 fbn

)
sab . (7.30)

With this result, one can easily use Eq. (7.22) to derive

(mν)(1,2) II
αβ = v2

32π2MN

∑
a,b,c

yaα ybβ λ
cc
5 fcXabc , (7.31)

with
Xabc = δabδbc + 1

2 (1− δab) (δc2 − δc1)
(
λab3 + λab4

) v2

m2
b −m2

a

, (7.32)

which agrees with the expression given in [400] if terms of order s2
12 are neglected.

7.4 High-energy behavior

The conservation of the Z2 parity is a crucial aspect of the consistency of the Scotogenic model.
In the absence of this symmetry, neutrinos would get masses at tree-level, and the DM candidate
would no longer be stable. This motivates the study of the conservation of Z2 at high energies.
This research was initiated in [402], which identified that the RGE flow in the Scotogenic model
might alter the shape of the scalar potential at high energies leading to the breaking of Z2. Later
works [403,404] have extensively explored this issue, demonstrating that the Z2 parity breaking
occurs in significant regions of the parameter space.

At the 1-loop order, the RGEs of a model can be written as

dx(t)
dt

= 1
16π2 βx , (7.33)
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where t ≡ logµ, µ is the renormalization scale and βx is the 1-loop β function for the parameter
x. In our analysis, the full 1-loop running in the Scotogenic model with arbitrary numbers of
N and η generations has been considered. Analytical expressions for all the 1-loop β functions
have been derived with the help of SARAH [405–409]. 3 These have been included in a private
code that solves the complete set of RGEs numerically.

We can understand some general features of the high-energy behavior of the model, and in
particular of the possible breaking of the Z2 symmetry, by inspecting the 1-loop β functions for
the m2

η matrix,

(
βm2

η

)
ab

=− 9
10 g

2
1

(
m2
η

)
ab
− 9

2 g
2
2

(
m2
η

)
ab

+
nη∑

c,d=1

[
4λabcd2

(
m2
η

)
dc

+ 2λacdb2

(
m2
η

)
cd

]

+
[
4λab3 + 2λab4

]
m2
H +

(
m2
η

)
ab

nN∑
n=1

3∑
α=1

(
|ynaα|2 + |ynbα|2

)
− 4Tr

[
y†aM

∗
NMNyb

]
.

(7.34)

Here ya ≡ [ynaα] is a nN × 3 matrix, being the first index a singlet fermion family index and
the third one a charged lepton family index. We have explicitly checked that for nN = 3 and
nη = 1, Eq. (7.34) reduces to the m2

η β function in the standard Scotogenic model [402].
Eq. (7.34) extends the result previously derived in [402] and provides a general expression for

the 1-loop β function for the m2
η matrix, valid for any combination of (nN , nη) values. To study

the potential breaking of the Z2 symmetry, we need to examine the sign (positive or negative) of
the individual contributions to the running of m2

η. In this regard, the negative contribution of
the term proportional to Tr

[
y†aM

∗
NMNyb

]
turns out to be crucial. In the following, we will refer

to this term as the trace term. As demonstrated in [402] for the standard Scotogenic model, in
cases where there are large Yukawa couplings (equivalent to λ5 � 1) and M2

N & m2
η, the trace

term dominates the m2
η running, causing it to decrease towards negative values. Eventually, this

results in the breaking of the Z2 symmetry at high energies, once m2
η < 0 induces a minimum

of the scalar potential with 〈η〉 6= 0. The general Scotogenic model is expected to exhibit the
same behavior. However, other terms in Eq. (7.34) may counteract this effect. In particular, the
quartic scalar coupling terms may do so if their signs are appropriately chosen. The contribution
to the m2

η running will be positive for λ2 > 0 and λ3,4 < 0 (since m2
H < 0), while their impact

will otherwise reinforce that of the trace term.
We will now explore the scalar potential of the model at high energies by solving the full set

of RGEs numerically. In order to do that we will concentrate on two specific (but representative)
versions of the general Scotogenic model:

• The (3,1) model, with three singlet fermions and one inert doublet. This is the original
Scotogenic model [198,199].

• The (1,3) model, with one singlet fermion and three inert doublets.
3See [410] for a pedagogical introduction to the use of SARAH in the context of non-supersymmetric models.
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To analyze the high energy behavior of our model parameters, we fix all their values at the
electroweak scale, which we take to be the mass of the Z-boson, denoted as mZ . Therefore,
the inputs of all the parameters must be understood to hold at µ = mZ . We determine m2

H by
solving the tadpole equations of the model and set the value of λ1 to reproduce the measured
Higgs boson mass. The remaining scalar potential parameters are chosen freely, but always
to values that guarantee that the potential is bounded from below (BFB) at the electroweak
scale. This is a non-trivial constraint due to the complexity of the scalar potential in the general
Scotogenic model. For a detailed discussion on how we ensure boundedness from below, we
refer to Appendix G. Finally, we must accommodate the neutrino squared mass differences and
the leptonic mixing angles measured in neutrino oscillation experiments by properly fixing the
Yukawa couplings of the model. In the two variants of the general Scotogenic model considered,
the Yukawa couplings become 3 × 3 matrices, and then they can be obtained using a Casas-
Ibarra parametrization properly adapted to both variants of the Scotogenic model, as explained
in Section 2.5.3. The difference between both parametrizations lies in the definition of the
matrix M introduced in Eq. (2.60). The case (3, 1), the standard Scotogenic model, was already
discussed there and M(3,1) was defined in Eq. (2.64), while in the (1, 3) model, the matrix takes
the form

M(1,3) = v2

32π2
Γab1
MN1

. (7.35)

With these definitions, Eq. (2.62) ensures compatibility with neutrino oscillation data. We con-
sider neutrino normal mass ordering and the 1σ ranges for the oscillation parameters obtained
in the global fit [411], including the CP-violating phase δ, hence allowing for complex Yukawa
couplings. For simplicity, we take m1 = 0 and R = 13, with 11 the 3 × 3 identity matrix. We
note, however, that in variants of the general Scotogenic model with both nN , nη > 1, which
can be regarded as hybrid scenarios, the master parametrization [203, 204] must be used to
parametrize the Yukawa tensor couplings, as can be seen in Appendix F of [204].

Some comments are in order before presenting our numerical results. In what follows, we
explore several regions of the parameter spaces of the (3, 1) and (1, 3) Scotogenic models, with our
focus on the behavior of these models at high energies. While there are many phenomenological
directions of interest, our work is specifically motivated by the effects associated to the trace
term. This motivates us to consider small λ5 values (λaa5 ≤ 10−8). Larger λ5 entries would require
smaller y Yukawa couplings to accommodate the mass scales observed in neutrino oscillation
experiments, see Eq. (7.22), hence making the trace term less relevant numerically. For this
reason, all scenarios considered below have y ∼ O(1). It should be noted that this choice of
y may conflict with the current bounds on charged lepton flavor violating processes. However,
there are many free parameters in the y Yukawa matrices. This freedom can be used to cancel
the most constraining observables, for instance by choosing specific R matrices, without any
impact on our discussion. Similarly, the scenarios considered below, and in particular the values
chosen for the masses of the Z2-odd states, may not be compatible with the measured dark
matter relic density.
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Figure 7.2: Evolution of the CP-even scalar masses as a function of the energy scale µ in the
(3, 1) and (1, 3) Scotogenic models. To the left, the CP-even scalar mass mR in the standard
(3, 1) model with MN = (1, 1.5, 2) TeV, λ2 = λ3 = λ4 = 0.1, λ5 = 10−9 and m2

η = (200 GeV)2.
To the right, the three CP-even scalar masses mRa in the (1, 3) model with MN = 8 TeV,
λaaaa2 = λaa3 = λaa4 = 0.1, λaa5 = 10−9 and m2

η = (2002, 6002, 8002) GeV2, with the remaining
scalar parameters set to zero.

First, we have rediscovered the parity problem in the standard (3, 1) Scotogenic model. This
is shown on the left-hand side of Fig. 7.2, which displays the RGE evolution of the CP-even
scalar mass mR with the energy scale µ. This is the most convenient parameter to study the
breaking of the Z2 symmetry. When m2

R becomes negative, the lightest CP-even scalar becomes
tachyonic, a clear sign that 〈η〉 = 0 is not the minimum of the potential. We have checked that
the scalar potential is BFB at all energy scales in this figure. We note that due to our parameter
choices, the lightest singlet fermion, N1, has vanishing Yukawa couplings. In particular, this
is due to our choice mν1 = 0. For the same reason, y2α � y3α and the breaking of the parity
is driven predominantly by N3. This explains the drastic change in the evolution of mR at
µ = 2 TeV when N3 becomes active. Below this scale, N3 effectively decouples and does not
contribute to the RGE running. We point out that a much less pronounced change occurs at
µ = 1.5 TeV, when N2 becomes active, but this is not visible in the figure. The Z2 parity gets
broken at µ ' 60 TeV, after which the ηR state becomes tachyonic. These results agree well with
those found in [402] and confirm the possible breaking of Z2 in the original Scotogenic model.
We found a very similar behavior for the (1, 3) model, which only has one singlet fermion, as
shown on the right-hand side of Fig. 7.2. In this case, the three CP-even scalar masses mRa are
displayed. Again, we have checked that the scalar potential is BFB at all energy scales in this
figure. As in the case of the standard Scotogenic model, when one of the CP-even scalar masses
reaches zero, the Z2 symmetry gets broken. As we can see in this figure, this happens at µ ' 15
TeV, where one of the scalar masses (the one receiving the largest contribution from the trace
term) goes very sharply towards zero due to the effect of the large MN = 8 TeV value. This is
clearly the same behavior observed in the standard (3, 1) Scotogenic model.
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Figure 7.3: Z2 breaking scale as a function of the singlet fermion massMN in the (1, 3) Scotogenic
model for three different scenarios: λaaaa2 = λaa3 = λaa4 = 0.1 and m2

η =
(
2002, 3002, 4002) GeV2

(blue), λaaaa2 = λaa3 = λaa4 = 0.1 and m2
η =

(
2002, 6002, 8002) GeV2 (red, dashed), and λaaaa2 =

λaabb2 = λaa3 = λaa4 = 0.3 and m2
η =

(
2002, 3002, 4002) GeV2 (green, dotted). In the three cases

λaa5 = 10−9 and the remaining quartic parameters are set to zero.

In the following, we concentrate only on the (1, 3) model. As already discussed, the singlet
fermion mass MN drives the scalar masses towards negative values via the trace term, breaking
the Z2 parity at high energies. Fig. 7.3 shows the Z2 breaking scale as a function of MN for
several scalar parameter sets. The blue and red lines correspond to moderate values for the
quartic couplings, λaaaa2 = λaa3 = λaa4 = 0.1, while the green line has increased (and additional)
quartics, λaaaa2 = λaabb2 = λaa3 = λaa4 = 0.3. The λ5 matrix is taken to be diagonal, with
λaa5 = 10−9. We have explicitly checked that the scalar potential is BFB at the electroweak scale
in all scenarios. 4 As expected, the Z2 breaking scale decreases for larger MN since the effect
of the trace term becomes stronger. While different scalar potential couplings may alter the
outcome, this generic behavior is found in large portions of the parameter space. One should
notice, however, that the green curve begins at MN ' 2 TeV. For this specific scenario, lower
values of MN do not break the Z2 symmetry, as we now proceed to discuss.

Fig. 7.4 shows the evolution of the lightest scalar mass mR1 as a function of the energy
for the parameter values corresponding to the green curve in Fig. 7.3. The results have been
obtained for several values of MN . It is important to note that this figure shows the mass of the
lightest scalar at each energy scale and not the mass of a single mass eigenstate at all energies.

4We have allowed for (possible) non-BFB potentials at high energies, where some of the quartic couplings
become negative due to running effects. We note that our algorithm gives us only sufficient (and not necessary)
boundedness from below conditions, and in principle some of the possibly non-BFB potentials might actually be
BFB. Moreover, even non-BFB potentials may be realistic if the electroweak vacuum is metastable and has a
large enough lifetime. This issue is already present in the SM and is clearly beyond the scope of our analysis,
which focuses on the possible breaking of the Z2 symmetry.
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Figure 7.4: Evolution of the lightest scalar mass mR1 as a function of the energy scale µ in the
(1, 3) Scotogenic model. The scalar parameters are set to λaaaa2 = λaabb2 = λaa3 = λaa4 = 0.3,
λaa5 = 10−9 and m2

η =
(
2002, 3002, 4002) GeV2, while MN takes the values 1 TeV (blue), 1.5 TeV

(red, dashed), 1.9 TeV (green, dotted), 2.025 TeV (orange, dash-dotted) and 2.2 TeV (brown,
double dashed).

For MN = 2.2 TeV one observes that mR1 reaches zero and the Z2 symmetry gets broken at
µ ' 107 GeV, in accordance with Fig. 7.3. For lower MN values, however, mR1 never reaches
zero. Although mR1 gets initially decreased due to the effect of the trace term, it eventually
increases at higher energies. The reason is the appearance of a Landau pole in the λ2 quartic
couplings. In this figure, λaaaa2 = λaabb2 = 0.3 at the electroweak scale, and this value grows with
the energy until it completely dominates the m2

η β function with a positive contribution, see
Eq. (7.34). The high multiplicity of λ2 couplings reinforces the effect. We note that this Landau
pole is present at very high energies, well above the Z2 breaking scale, for many choices of the
parameters at the electroweak scale.

We conclude our exploration of the high-energy behavior of the (1, 3) model with Fig. 7.5.
In this case, we plot the Z2 breaking scale as a function of one of the λ2 parameters, namely
λ2233

2 . This is done for three scenarios: the blue curve corresponds to λaaaa2 = λaa3 = λaa4 = 0.1,
λaa5 = 10−8, m2

η =
(
2002, 3002, 4002) GeV2 and MN = 5 TeV, in red we show the results for

λaaaa2 = λaa3 = λaa4 = 0.1, λaa5 = 10−9, m2
η =

(
2002, 2502, 3002) GeV2 and MN = 1.25 TeV, while

the green line is for λaaaa2 = λaabb2 = λaa3 = λaa4 = 0.3, λaa5 = 10−8, m2
η =

(
2002, 6002, 8002) GeV2

andMN = 9 TeV. In all cases, we have checked that the scalar potential is BFB at the electroweak
scale. For the blue and green lines, the impact of λ2233

2 is relatively mild. This is because the
high values of MN (5 and 9 TeV, respectively) make the trace term completely dominant and
break the Z2 symmetry at relatively low energies. In contrast, the Z2 breaking scale has a
much stronger dependence on λ2233

2 in the red scenario, which has a lower MN = 1.25 TeV. For
λ2233

2 & 0.6, a Landau pole is found before the Z2 symmetry gets broken.
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Figure 7.5: Z2 breaking scale as a function of the λ2233
2 parameter in the (1, 3) Scotogenic model

for three different scenarios: λaaaa2 = λaa3 = λaa4 = 0.1, λaa5 = 10−8, m2
η =

(
2002, 3002, 4002) GeV2

and MN = 5 TeV (blue), λaaaa2 = λaa3 = λaa4 = 0.1, λaa5 = 10−9, m2
η =

(
2002, 2502, 3002) GeV2

and MN = 1.25 TeV (red, dashed), and λaaaa2 = λaabb2 = λaa3 = λaa4 = 0.3, λaa5 = 10−8,
m2
η =

(
2002, 6002, 8002) GeV2 andMN = 9 TeV (green, dotted). In the three cases the remaining

quartic parameters are set to zero.

7.5 Summary and discussion

The Scotogenic model is a well-known radiative scenario to generate neutrino masses. The intro-
duction of three singlet fermions and one inert scalar doublet, all charged under a new Z2 parity,
leads to 1-loop Majorana neutrino masses and, as a bonus, provides a viable weakly-interacting
dark matter candidate. In this chapter, we have considered a generalization of this setup to
any number of generations of singlet fermions and inert doublets. After computing the 1-loop
neutrino mass matrix in the general version of the model, both exactly and approximately, we
have studied its high-energy behavior, focusing on two specific variants: the original Scotogenic
model with (nN , nη) = (3, 1) and a new multi-scalar variant with (nN , nη) = (1, 3). Our main
conclusion is that all the features of the original model are kept in the multi-scalar version, with
some particularities due to the presence of a more involved scalar sector.

Our generalization of the Scotogenic model offers several novel possibilities. For instance,
flavor model building could benefit from an interesting feature of multi-scalar versions of the
model. In the (nN , nη) = (1, 3) model, one obtains three massive neutrinos and leptonic mixing
can be fully explained even if the Yukawa matrices are completely diagonal. In this case, the
leptonic mixing matrix would be generated by mixing in the scalar sector. This could be relevant
in some flavor models. For example, it may be a crucial ingredient to rescue models where lepton
mixing is predicted to be similar to quark mixing. Novel phenomenological signatures might exist
as well. The η doublets can be produced at the Large Hadron Collider due to their couplings to
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the SM gauge bosons. Exotic signatures might be possible in models with many η generations,
such as the (nN , nη) = (1, 3) model. Cascade decays initiated by the production of the heaviest
η doublets would lead to striking multilepton signatures, including missing energy due to the
production of the lightest Z2-odd state at the end of the decay chain. Finally, the dark matter
production rates in the early Universe might be affected as well by the presence of additional
scalar degrees of freedom. These interesting questions certainly deserve further study.





Chapter 8

Ultraviolet extensions of the
Scotogenic model

At this point in the thesis, we are rather familiar with the Scotogenic model [198, 199]. It is
a well-founded and economical theory, and since its appearance, numerous models have been
constructed based on it. Often just incorporating additional fields and/or symmetries to enhance
its phenomenological appeal. This was precisely the case of the model proposed in Chapter 7,
where we generalized it to include an arbitrary number of generations of the Scotogenic states.
However, the minimal version of the theory encounters certain theoretical issues that can be
accounted for by considering an ultraviolet completion of the model, as we will see below.

8.1 Introduction

In Chapter 2, we saw that radiative neutrino mass models provide a natural suppression for
neutrino masses through loop factors. This is one of the main motivations in favor of this class
of models. Moreover, some models introduce further suppression by assuming an approximate
lepton number symmetry broken to a small extent by the presence of a Lagrangian term with a
suppressed coefficient. This is the case of the Scotogenic model, which requires a small λ5 � 1
quartic parameter to generate the correct size for neutrino masses with sizable Yukawa couplings.
While this is technically valid and natural in the sense of ’t Hooft [155], it also calls for an
extension that explains the smallness of the λ5 parameter, possibly relating it to the breaking of
lepton number. The Scotogenic model was introduced in Section 2.5.2, and here we will follow
the conventions that were set there.

In this chapter, based on [412,413], we consider ultraviolet (UV) extensions of the Scotogenic
model that provide a natural explanation for the smallness of the λ5 parameter and in which the
Z2 parity of the model emerges at low energies from a spontaneously broken global U(1) lepton
number symmetry. Here we classify all possible models with these features in which a low-energy
Scotogenic model is obtained after integrating out a heavy field at tree-level. Besides one or

147
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several massive scalars, the particle spectrum of the theory will contain a massless Goldstone
boson, the majoron [206–209], induced by the spontaneous breaking of lepton number. These
new states are not present in the original Scotogenic model and lead to novel phenomenological
predictions that allow one to probe our setup.

8.2 Ultraviolet extensions of the Scotogenic model

8.2.1 General considerations

The Scotogenic model has two features that call for a refinement, namely, the origin of the Z2

symmetry and λ5 � 1. Although these features do not pose any theoretical problem, they
can be regarded as ad-hoc ingredients in an otherwise very natural framework. We are thus
interested in an UV extension of the Scotogenic model that provides an explanation for them.
More specifically, we want to classify all possible UV scenarios that lead to the Scotogenic model
at low energies after integrating out a heavy scalar field S, with mS � v, and that satisfy the
following two requirements:

(A) The Scotogenic Z2 is obtained as a remnant after the spontaneous breaking of a U(1)L

lepton number symmetry by the VEV of one or several singlet scalar fields σ:

U(1)L
〈σ〉−−−−−→ Z2

(B) The (H†η)2 operator is forbidden in the UV theory due to U(1)L conservation, but an
operator of the form (H†η)2σn, with n ≥ 1, is generated after integrating out S. After
the singlets get VEVs and U(1)L is spontaneously broken, this will induce an effective λ5

coupling, which will be naturally suppressed by the large mS energy scale.

Here we will concentrate on global U(1)L lepton number symmetries, tree-level completions of
the λ5 operator, and UV models with one or two σ singlets. Gauged versions of the lepton
number symmetry, higher-order completions, and models with additional singlets are left for
future work.

The models we are looking for induce neutrino masses à la Scotogenic, with variations of
the neutrino mass diagram in Fig. 2.5. This diagram has an internal scalar line (with η0) and
an internal fermion line (with N). The analogous diagrams in the UV extended models will
include the heavy scalar S in the loop and one or several external legs with σ singlets (or σ
insertions, for short). After these considerations, there are two classes of models that can be
already discarded:

• Models without σ insertions in the scalar line. These models can be discarded because the
(H†η)2 operator would be allowed in the UV theory. This would preclude an explanation
of λ5 � 1. In addition, H†η would also be allowed and η would acquire a VEV.



8.2. Ultraviolet extensions of the Scotogenic model 149

• Models without σ insertions in the fermion line. The U(1)L charge of theN singlet fermions
must necessarily vanish if the σN c

N operator is absent and their Majorana masses are
explicitly introduced in the Lagrangian. However, in this case, N will be even under the Z2

symmetry obtained after spontaneous U(1)L breaking. This scenario does not correspond
to the Scotogenic model. Nevertheless, an additional accidental Z2 symmetry may appear,
as explained in Appendix H.

Topology Diagram Required operators

I

ηH†

S

ηH†

σA σB

(σAH†SH̃),(σB η̃†S†η)

II

H†H†

S

ηη

σA σB

(σAH†Sη),(σBH†S†η)

III
H† H†S

η

ησA

σB

(σAσBH†S),(H†ηS†η)

IV

H†

H†

Sη η

σA

σB

(H†SH†η),(σAσBS†η)

V
η

H†

SS

σCσB

σA σA

H†

η

(σAH†Sη),((S†)2σBσC)

Table 8.1: λ5 operator in the UV theory.

We are thus left with neutrino mass topologies with σ insertions in both internal lines. The
scalar line leads to an operator (H†η)2σn after the heavy S is integrated out. All possible
topologies are shown in Table 8.1. Topologies I− IV include one S propagator and lead to a λ5

operator of the form
Oλ5 = (H†η)2σAσB , (8.1)
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suppressed by 1/m2
S , while topology V includes two S propagators and induces the operator

Oλ5 = (H†η)2σ2
AσBσC , (8.2)

suppressed by 1/m4
S . These two generic expressions for the λ5 operator include cases in which

one of the σ insertions is missing (for instance, σB = ∅, where ∅ indicates that no σ enters the
corresponding vertex) and cases in which several σ insertions in the scalar line correspond to the
same field (for instance, σA = σB). Finally, the fermion line simply corresponds to a σ−N −N
Yukawa interaction. In the following, we will always assume the presence of the operator σN c

N

(for models with one σ field) or σ1N
c
N (for models with two σ fields), and we will not draw it.

The coefficient of this operator will be denoted by κ. Therefore, once the singlet scalar gets a
VEV, 〈σ(1)〉 =

vσ(1)√
2 , the Majorana mass matrix for the singlet fermions N is generated, 1

MN =
√

2κ vσ(1) . (8.3)

In the following, we classify all possible UV extensions of the Scotogenic model compatible with
our requirements (A) and (B). Given their qualitative differences, we discuss topologies I − IV
and V separately.

8.2.2 Topologies I-IV

We first discuss the models based on topologies I−IV. We will refer to a specific model using the
notation ξ(A,B), where ξ = {I, II, III, IV} denotes the topology for the (H†η)2σAσB operator,
as listed in Table 8.1, and A and B denote the singlets involved in the vertices where σA,B
are coupled. Since we only consider UV theories with at most two different singlets, A and B
can only take the values ∅, 1, 2, 1∗, where σ1∗ ≡ σ∗1. It is important to mention that we do not
consider scenarios with A,B = 2∗ because they lead to a redefinition of the charge qσ2 → −qσ2 . 2

Therefore, in principle each topology has 16 different variations depending on the way the σA,B
singlets are coupled. However, we can reduce this number by taking into account the following
arguments:

• A 6= B is required to forbid the term (H†η σA)2 in the effective Lagrangian. If this specific
combination is allowed, then the term (H†η σA) is too. This trilinear interaction induces a
non-zero VEV for η after bothH and σA acquire their VEVs, hence breaking the Scotogenic
Z2 symmetry.

• A 6= B∗ is also required. Otherwise, (H†η)2σAσ
∗
A is allowed by the U(1)L symmetry and

then the operator (H†η)2 is present in the UV theory.
1In models with two σ fields such that qσ1 = qσ2 or qσ1 = −qσ2 , an additional Yukawa term σ2N

c
N or σ∗2N

c
N

would be present. Here qσ1 and qσ2 denote the U(1)L charges of σ1 and σ2, respectively. This would lead to
MN =

√
2 (κ1 vσ1 + κ2 vσ2 ) without affecting our discussion. We note, however, that in such models, both σ

singlets are essentially copies of the same field.
2In the following, we will denote the U(1)L charge of the field X as qX . Furthermore, q`L = qeR = 1 and

qH = 0, as usual.
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Topology A B qN qη qσ1 qσ2 qS (SU(2)L,U(1)Y)S

1 I 1∗ ∅ 1
2 −1

2 −1 - −1 (3, 1)

2 I ∅ 1∗ 1
2 −1

2 −1 - 0 (3, 1)

3 I 2 ∅ qN qN − 1 −2qN 2− 2qN 2qN − 2 (3, 1)

4 I ∅ 2 qN qN − 1 −2qN 2− 2qN 0 (3, 1)

5 I 1 2 qN qN − 1 −2qN 2 2qN (3, 1)

6 I 2 1 qN qN − 1 −2qN 2 −2 (3, 1)

7 I 1∗ 2 qN qN − 1 −2qN 2− 4qN −2qN (3, 1)

8 I 2 1∗ qN qN − 1 −2qN 2− 4qN 4qN − 2 (3, 1)

9-10 II 1∗ ∅ 1
2 −1

2 −1 - −1
2 (3, 0) or (1, 0)

11-12 II 2 ∅ qN qN − 1 −2qN 2− 2qN qN − 1 (3, 0) or (1, 0)

13-14 II 1 2 qN qN − 1 −2qN 2 1 + qN (3, 0) or (1, 0)

15-16 II 1∗ 2 qN qN − 1 −2qN 2− 4qN 1− 3qN (3, 0) or (1, 0)

17 III 1∗ ∅ 1
2 −1

2 −1 - −1 (2, 1/2)

18 III 2 ∅ qN qN − 1 −2qN 2− 2qN 2qN − 2 (2, 1/2)

19 III 1 2 qN qN − 1 −2qN 2 2qN − 2 (2, 1/2)

20 III 1∗ 2 qN qN − 1 −2qN 2− 4qN 2qN − 2 (2, 1/2)

21 IV 1∗ ∅ 1
2 −1

2 −1 - 1
2 (2, 1/2)

22 IV 2 ∅ qN qN − 1 −2qN 2− 2qN 1− qN (2, 1/2)

23 IV 1 2 qN qN − 1 −2qN 2 1− qN (2, 1/2)

24 IV 1∗ 2 qN qN − 1 −2qN 2− 4qN 1− qN (2, 1/2)

Table 8.2: UV extended models satisfying conditions (A) and (B). For each model we show the
U(1)L charges of N , η, σ1, σ2 and S, as well as the (SU(2)L,U(1)Y) representation of S. Models
that become any of the models in this list after renaming the fields or redefining their U(1)L
charges are not included, as explained in the text.

• In all ξ(1, ∅) and ξ(∅, 1) models the effective operator leading to the λ5 coupling is Oλ5 =
(H†η)2σ. This implies the relation 2qη + qσ = 0. In addition, the Yukawa coupling σN c

N

implies 2qN + qσ = 0. Hence, the charges for η and N must satisfy qη = qN and then the
Nη̃†`L Yukawa term is forbidden by U(1)L. Similarly, in all ξ(1∗, ∅) and ξ(∅, 1∗) models
one finds qη = −qN and then qN = 1

2 is required in order to allow the term Nη̃†`L.

With these considerations, there are only 8 possibilities left in each of the four topologies.
However, there are duplicities. Models based on topologies III and IV are symmetric with
respect to the exchange σA ↔ σB (i.e. ξ(A,B) = ξ(B,A) with ξ = III, IV). Similarly, II(A,B) ∼
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II(B,A) by redefining qS → −qS . This further reduces the number of fundamentally different
UV models. In total, we find 24 (20 + 4, because in II-models, S can be an SU(2)L singlet or
triplet) different UV theories. They are listed in Table 8.2, where the U(1)L charges of N , η,
σA,B and S, as well as the (SU(2)L,U(1)Y) representation of S in each model, are shown. Some
comments are in order:

(i) The (SU(2)L,U(1)Y) representation of the heavy scalar S depends on the topology. In
I-models S transforms as (3, 1), in II-models we have two possibilities, (3, 0) or (1, 0),
while in III- and IV-models S transforms as (2, 1/2).

(ii) In all the models in Table 8.2, the global U(1)L symmetry may be spontaneously broken
to a Z2 parity, under which N and η are odd. In all the ξ(1∗, ∅) models and in I(∅, 1∗),
the conservation of U(1)L restricts the lepton number charges of N , η, σA,B and S, which
must take precise values, and this automatically implies a remnant Z2 that corresponds
to the usual Scotogenic parity. In the rest of the models, the conservation of U(1)L leaves
one of the charges to be chosen freely. We decided to choose qN . In this case, these are
the restrictions to recover the dark Z2 parity from U(1)L breaking:

• qN cannot be an integer.

• If qN = α
β , with α, β ∈ Z, then α and β have to be odd and even, respectively.

• GCD(α, β) = 1, where GCD stands for Greatest Common Divisor. Therefore, α and
β must be coprime.

The first restriction comes from the requirement of N and η being both odd under the
remnant Scotogenic Z2. The relation qη = qN − 1 implies that if qN is even, then qη must
be odd, and vice versa. Then, N and η will transform differently under the remnant Z2

symmetry. As an example of this, consider the model I(1, 2) with qN = 2. In this case,
the solution for the rest of the U(1)L charges in the model is qη = 1, qσ1 = −4, qσ2 = 2 and
qS = 4. The global lepton number symmetry gets spontaneously broken as U(1)L → Z2,
but with N and η charged under Z2 as + and −, respectively, and this does not reproduce
the Scotogenic model. Similarly, if qN = α

β , after normalizing all U(1)L charges so that
they become integer numbers (multiplying by β) we obtain q̃η = β−α and q̃N = α. Hence,
for η and N to be odd under Z2, α and β must be odd and even, respectively. Finally,
the third restriction is required to guarantee that n = 2 after U(1)L breaks to the discrete
symmetry Zn. As an example we take model I(1,2), where n ≡ GCD(q̃σ1 , q̃σ2 , q̃S) =
GCD(−2α, 2β, 2α) = 2GCD(α, β) = 2. We checked for all the working models that
GCD(q̃σ1 , q̃σ2 , q̃S) or GCD(q̃σ1 , q̃σ2), depending on whether S acquires a VEV or not, always
reduces to GCD(α, β) = 1. Also, we want qN = α

β to be irreducible.

(iii) In all models, and for all possible values of qN in agreement with the restrictions listed in
the previous item, η never acquires an induced VEV. This is crucial for the consistency of
the Scotogenic model.
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(iv) It is clear that in all models of the form ξ(A, ∅) or ξ(∅, B), a trilinear coupling µ participates
in the generation of the λ5 coupling, induced after the breaking of U(1)L. This is perfectly
consistent but requires the assumption µ� mS to justify λ5 � 1. This poses a theoretical
issue, since µ is a parameter of the UV theory. In contrast, in models of the form ξ(A,B)
with A,B 6= ∅, the λ5 coupling will only depend on the σA,B VEVs, induced at low energies
and naturally small compared to mS .

(v) Finally, we note that in I-models, the U(1)L charges of the particles N , η and σA,B remain
the same after the non-trivial change A ↔ B. For instance, this is the case in models
I(1, 2) and I(2, 1).

8.2.3 Topology V

Topology V contains an internal line with a double S propagator and thus induces the λ5 coupling
at order 1/m4

S . This is two orders higher than the corresponding contributions from topologies
I − IV. Therefore, in order for a diagram with topology V to be dominant, other topologies
must be absent (or highly suppressed due to a specific parameter choice). In fact, many models
leading to topology V also generate other topologies, and they have been already included in
the previous discussion. Nevertheless, there are also some models in which the symmetries allow
for topology V but forbid other topologies, as we proceed to show.

Topology V requires the presence of the operators H†η S σA and
(
S†
)2
σBσC to produce a

λ5 operator as in Eq. (8.2). A model based on this topology will be denoted as V(A,B,C),
where A, B, and C can take the values ∅, 1, 2, 1∗, as in the previous topologies. Again, we do
not consider models with A,B,C = 2∗. The reason, however, is twofold. On the one hand, in
scenarios involving 2∗ but not 2, this is again due to the existence of a redefinition of the charges
that allows showing equivalence to models without 2∗. On the other hand, models combining
2 and 2∗ do not lead to a solution for the U(1)L charges or their solutions are compatible with
topology II, which is naturally dominant. 3 In conclusion, topology V leads to 4 × 4 × 4 = 64
different variations depending on the way the σA,B,C singlets are coupled. However, we can
reduce this number by taking into account the following arguments:

• All V models are symmetric under B ↔ C, V(A,B,C) = V(A,C,B). Then, for each of
the 4 possible values of A, this removes (42 − 4)/2 = 6 possibilities, leaving 40 variations.

• B 6= C andB 6= C∗. The former is required to forbid the operator S†σB. This would induce
a VEV for S, which, in turn, would induce a VEV for η due to the operator H†η S σA. The
latter restriction avoids having S†S† in the Lagrangian since this term would imply that S
is a singlet under every symmetry of the model, hence leading to an induced VEV for η as
well. This condition, together with the previous one, leaves 4×

[
(42 + 4)/2− 4− 1

]
= 20

possibilities.
3This is the case of models V(2, 2∗, C) and V(2, B, 2∗). These are not equivalent to models V(2, 2, C) and

V(2, B, 2), respectively, so they do not lead to just a redefinition of the charges.
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Topology A B C qN qη qσ1 qσ2 qS (SU(2)L,U(1)Y)S

25-26 V 1 1 ∅ −1
2 −3

2 1 - 1
2 (3, 0) or (1, 0)

27-28 V 1∗ 1∗ ∅ 1
4 −3

4 −1
2 - 1

4 (3, 0) or (1, 0)

29-30 V ∅ 1 2 qN qN − 1 −2qN 2 1− qN (3, 0) or (1, 0)

31-32 V ∅ 1∗ 2 qN qN − 1 −2qN 2− 4qN 1− qN (3, 0) or (1, 0)

33-34 V 1 2 ∅ qN qN − 1 −2qN 2qN + 2 1 + qN (3, 0) or (1, 0)

35-36 V 1∗ 2 ∅ qN qN − 1 −2qN 2− 6qN 1− 3qN (3, 0) or (1, 0)

37-38 V 1 1 2 qN qN − 1 −2qN 4qN + 2 1 + qN (3, 0) or (1, 0)

39-40 V 1∗ 1∗ 2 qN qN − 1 −2qN 2− 8qN 1− 3qN (3, 0) or (1, 0)

41-42 V 2 1 ∅ qN qN − 1 −2qN 1 −qN (3, 0) or (1, 0)

43-44 V 2 1∗ ∅ qN qN − 1 −2qN 1− 2qN qN (3, 0) or (1, 0)

45-46 V 2 2 ∅ qN qN − 1 −2qN 2
3 −

2
3qN

1
3 −

1
3qN (3, 0) or (1, 0)

47-48 V 2 1 2 qN qN − 1 −2qN 2
3

1
3 − qN (3, 0) or (1, 0)

49-50 V 2 1∗ 2 qN qN − 1 −2qN 2
3 −

4
3qN

1
3 + 1

3qN (3, 0) or (1, 0)

Table 8.3: UV extended models leading to topology V and satisfying conditions (A) and (B).
For each model we show the U(1)L charges of N , η, σ1, σ2 and S, as well as the (SU(2)L,U(1)Y)
representation of S. Models that become any of the models in this list after renaming the fields
or redefining their U(1)L charges are not included, as explained in the text.

• A 6= B∗ (or C∗) leads either to models for which the equations for the charges are in-
compatible with the original assumptions or to models for which the solutions for the
charges are compatible with topology II. Here Oλ5 takes the form (σ∗AσA)σAσC(H†η)2,
which means that the term σAσC(H†η)2 would be allowed by lepton number and, in turn,
σC(H†S†η) too, with C 6= A in order to satisfy the above requirements. Given that, by
construction, we have the operator σA(H†Sη) within the model, the diagram for the scalar
line of II-models (shown in Table 8.1) would appear, leaving this new topology as a sub-
dominant effect in the generation of the λ5 coupling. From the remaining 20 variations,
this removes 2 for each A = 1 and A = 1∗, and 3 more for the models V(∅, B, ∅), leaving
13 possibilities.

Notice that S can be a singlet and a triplet in all the models, so we have the 26 models shown
in Table 8.3. Again, we note that if only one of the three A, B, or C labels is equal to 2, then
the same model but with 2∗ instead, is equivalent to the former with qσ2 → −qσ2 .

Again, in all the models in Table 8.3, the global U(1)L symmetry may be spontaneously
broken to a Z2 parity, under which N and η are odd. In the models V(1, 1, ∅) and V(1∗, 1∗, ∅),
the conservation of U(1)L restricts the lepton number charges of N , η, σA,B,C and S, which must
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take precise values, and this automatically implies a remnant Z2 that corresponds to the usual
Scotogenic parity. In the rest of the models, the conservation of U(1)L leaves one of the charges
to be chosen freely. We decided to choose qN . In this case, these are the restrictions to recover
the dark Z2 parity from U(1)L breaking:

• qN cannot be an integer.

• If qN = α
β , with α, β ∈ Z, then α and β have to be odd and even, respectively.

• GCD(α, β) = 1. Therefore, α and β must be coprime.

Additionally, some models have extra conditions for the Z2 to appear:

• In V(2, 2, 0), we further require GCD(3α, α−β) = 1 if α−β3 is not an integer, or GCD(α, α−β3 ) =
1 if α−β3 is an integer.

• In V(2, 1∗, 2), we further require GCD(3α, 2α − β) = 1 if 2α−β
3 is not an integer, or

GCD(α, 2α−β
3 ) = 1 if 2α−β

3 is an integer.

• In V(2, 1, 2), we further require GCD(3α, β) = 1 if β3 is not an integer, or GCD(α, β3 ) = 1
if β3 is an integer.

We note that all the formal conditions for the five topologies have been derived individually
for each of the models. This concludes our classification of all possible UV extensions of the
Scotogenic model satisfying our requirements (A) and (B). We will now illustrate it with three
specific example models.

8.3 An UV extended Scotogenic model with one σ field: First
example

We will begin with an example model that is an UV extension of the Scotogenic model with one
σ field. It is based on the work [413]. We will provide more details in this example than in the
subsequent ones.

8.3.1 Ultraviolet theory

We consider an extension of the Scotogenic model with two new particles: the SU(2)L triplet
S and the singlet σ, both scalars. The Z2 Scotogenic parity is replaced by a global U(1)L

lepton number symmetry. Table 8.4 shows the scalar and leptonic fields of the model and their
representations under the gauge and global symmetries.

We aim to explain the smallness of the Scotogenic’s λ5 coupling. Our strategy will be to
forbid it in our original Lagrangian and make it arise effectively at low energies once the scalar
σ acquires a VEV and we integrate out S. We also impose that, after symmetry breaking, the
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Field Generations SU(3)c SU(2)L U(1)Y U(1)L

`L 3 1 2 -1/2 1

eR 3 1 1 -1 1

N 3 1 1 0 qN

H 1 1 2 1/2 0

η 1 1 2 1/2 qη

σ 1 1 1 0 qσ

S 1 1 3 1 qS

Table 8.4: Lepton and scalar particle content and representations under the gauge and global
symmetries in the first example of an UV extension of the Scotogenic model with one σ field.

νL νL

H0 H0

η0 η0

N N

µ

y y

κ

σ

σ

S

λHσS

Figure 8.1: Neutrino mass generation in the first example of an extended Scotogenic model with
one σ field. This Feynman diagram shows the relevant gauge eigenstates involved in the 1-loop
contribution to neutrino masses. In our notation, this corresponds to a I(1∗, ∅) model.

effective λ5 coupling induces neutrino masses as shown in Fig. 8.1. In our notation, this is a
I(1∗, ∅) model. It requires the presence of the operators

Nη̃†`L , σN
c
N , σ∗H†SH̃ , η̃†S†η , (8.4)
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which in turn imply the following set of equations for the U(1)L charges of the model:

−qN + qη + 1 = 0 , (8.5)

qσ + 2 qN = 0 , (8.6)

qS − qσ = 0 , (8.7)

2 qη − qS = 0 . (8.8)

This system of linear equations has a unique solution:

qN = 1
2 , (8.9)

qη = −1
2 , (8.10)

qσ = −1 , (8.11)

qS = −1 . (8.12)

With this solution, the operators

N
c
N , NH̃†`L ,

(
H†η

)2
(8.13)

are automatically forbidden due to U(1)L conservation. One should note that if we choose the
operator σH†SH̃ instead of σ∗H†SH̃, no solution for the resulting system of equations would
exist. Indeed, if one replaces −qσ by qσ in Eq. (8.7), the combination of the resulting equation
with Eqs. (8.6) and (8.8) leads to qN = qη, which is incompatible with Eq. (8.5). This illustrates
why ξ(1, ∅) models are not compatible with our requirements.

Having fixed the quantum numbers of all the particles in the model, we proceed to write its
Lagrangian. The new Yukawa interactions are given by

LY = y N η̃† `L + κσN
c
N + h.c. , (8.14)

where y is a general complex 3 × 3 matrix and κ is a complex symmetric 3 × 3 matrix. The
scalar potential of the model can be written as

VUV = m2
HH

†H +m2
STr(S†S) +m2

σσ
∗σ +m2

ηη
†η + λ1

2 (H†H)2 + λ2
2 (η†η)2

+ λS1
2 Tr (S†S)2 + λS2

2 (TrS†S)2 + λσ
2 (σ∗σ)2 + λ3(H†H)(η†η)

+ λHS3 (H†H)Tr (S†S) + λHσ3 (H†H)(σ∗σ) + ληS3 (η†η)Tr (S†S) + λησ3 (η†η)(σ∗σ)

+ λσS3 (σ∗σ)Tr (S†S) + λ4(H†η)(η†H) + λHS4 (H†S†S H) + ληS4 (η†S†S η)

+
[
λHσS σ

∗(H†S H̃) + µ (η†S η̃ ) + h.c.
]
.

(8.15)



158 Chapter 8. Ultraviolet extensions of the Scotogenic model

Here µ is a trilinear parameter with dimensions of mass while m2
H , m2

η, m2
S , and m2

σ have
dimensions of mass2. Other Lagrangian terms, like (H† η)2, H†S η†, H†Sη†σ, and H†η σ, are
allowed by the gauge symmetries of the model but forbidden by U(1)L.

8.3.2 Effective theory

Assuming that mS is much larger than any other mass scale in the model, we can properly
describe all physical processes at energies well below mS using an effective field theory in which
the heavy field S has been integrated out and expanding the resulting theory in powers of 1/mS .
For our purposes, we only need to work at tree-level and keep operators up to dimension 6. We
can easily achieve this by following the method outlined in [414]. We now present how this
effective theory is obtained.

In order to integrate out the S triplet, we need to solve its classical equation of motion and
insert the solution into the UV Lagrangian. We will consider the 2 × 2 representation of the
triplet,

S =
(
S+/
√

2 S++

S0 −S+/
√

2

)
. (8.16)

In addition, we can simplify the derivation of the equations of motion by integrating by parts
(DµS)† (DµS) and substituting it by −S†D2S. This way, the Euler-Lagrange equation becomes

∂L
∂ (S†)ba

=−D2Sba −m2
S Sba − λHS3 (H†H)Sba − ληS3 (η†η)Sba − λσS3 (σ∗σ)Sba

− λHS4 (H†)a (∆H)b − ληS4 (η†)a (Sη)b − λ∗HσS σ (H̃†)aHb − µ∗ (η̃†)a ηb = 0 ,
(8.17)

where we have not included quartic S terms as they would contribute at higher orders in 1/mS .
Now, we can factor out the Sab field from the terms in which it appears explicitly,

m2
S [1 +D2

m2
S

+ λHS3
m2
S

(H†H) + ληS3
m2
S

(η†η) + λσS3
m2
S

(σ∗σ)
]
Sba =

− λHS4 (H†)a (S H)b − ληS4 (η†)a (S η)b − λ∗HσS σ (H̃†)aHb − µ∗(η̃†)a ηb = 0 .
(8.18)

We have also extracted a factor of m2
S from the left side of the equation. This enables us to

express the left-hand side in a form that resembles (1 + ε), where ε is a small term of order
1/m2

S . By doing so, we can use the approximation (1 + ε)−1 ≈ (1− ε) to solve for Sab,

Sba =−1
m2
S

[
λHS4 (H†)a (S H)b + ληS4 (η†)a (S η)b + λ∗HσS σ (H̃†)aHb + µ∗ (η̃†)a ηb

]
+ 1
m4
S

[
λHS4 (H†)a (S H)b + ληS4 (η†)a (S η)b + λ∗HσS σ (H̃†)aHb + µ∗ (η̃†)a ηb

]
[
D2 + λHS3 (H†H) + ληS3 (η†η) + λσS3 (σ∗σ)

]
+O

(
1
m6
S

)
.

(8.19)
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Notice that S still appears on the right-hand side of the result, making it difficult to obtain an
explicit solution. One strategy to address this issue is to recursively solve for S. Those terms on
the right-hand side of the equation having an S will have, at least, an additional 1/m2

S factor,
making them smaller and potentially irrelevant for our purposes. Actually, it is enough for us
to keep just the lower order terms in the solution,

Sab = −1
m2
S

[
λ∗HσS σHa (H̃†)b + µ∗ ηa (η̃†)b

]
+O

(
1
m4
S

)
, (8.20)

where we have interchanged the a and b indices. Now, it is straightforward to write Eq. (8.20)
in matrix form,

S = −1
m2
S

[
λ∗HσS σ (H H̃†) + µ∗ (η η̃†)

]
+O

(
1
m4
S

)
. (8.21)

We obtain the tree-level effective field theory by substituting this equation into the Lagrangian.
Since we are interested in dimension 6 operators, it is enough to substitute S in those terms
of Eq. (8.15) involving just a single triplet S and in its mass term. Therefore, the new non-
renormalizable operators that are added to the effective potential at low energies are

VIR ⊃−m2
S

(
1
m2
S

)2

Tr
{[
λHσS σ

∗ (H̃ H†) + µ (η̃ η†)
] [
λ∗HσS σ (HH̃†) + µ∗ (η η̃†)

]}
+
[
|λHσS |2

m2
∆

(σ∗σ)H†H H̃†H̃ + |µ|
2

m2
S

η†η η̃†η̃

+λHσS µ
∗

m2
S

σ∗H†η η̃†H̃ + λ∗HσS µ

m2
S

σ η†H H̃†η̃ + h.c.
]
.

(8.22)

Using the relations

ψ̃†φ̃ = (iσ2ψ
∗)† (iσ2φ

∗) = ψTσ†2 σ2 φ
∗ = ψTφ∗ = φ†ψ ,

Tr
(
ψ̃ ψ†φ φ̃†

)
=
(
ψ†φ

)
Tr
(
ψ̃ φ̃†

)
=
(
ψ†φ

)
Tr
(
φ̃† ψ̃

)
=
(
ψ†φ

)2
,

(8.23)

valid for any two SU(2) doublets ψ and φ, to simplify the new terms, we get the full low energy
potential of our effective field theory,

VIR = m2
HH

†H +m2
σσ
∗σ +m2

ηη
†η +

(
H†H

)2
[
λ1
2 −

|λHσS |2

m2
S

(σ∗σ)
]

+ λσ
2 (σ∗σ)2

+
(
η†η

)2
(
λ2
2 −

|µ|2

m2
S

)
+ λ3

(
H†H

) (
η†η

)
+ λHσ3

(
H†H

)
(σ∗σ) + λησ3

(
η†η

)
(σ∗σ)

+ λ4
(
H†η

) (
η†H

)
−
[
λHσSµ

∗

m2
S

σ∗
(
H†η

)2
+ h.c.

]
+O

(
1
m4

∆

)
.

(8.24)
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Assuming now that CP is conserved in the scalar sector, the neutral fields H0 and σ can be
decomposed as

H0 = 1√
2

(v + φ+ i z) , σ = 1√
2

(vσ + ρ+ i J) , (8.25)

with v√
2 and vσ√

2 the VEVs of H0 and σ, respectively. These VEVs are determined by minimizing
the scalar potential in Eq. (8.24). The resulting tadpole equations are given by

dVIR
dH0

∣∣∣∣
〈H0〉= v√

2
,〈σ〉= vσ√

2

= v√
2

(
m2
H + λ1

v2

2 + λHσ3
v2
σ

2 −
v2 v2

σ |λHσS |
2

2m2
S

)
= 0 , (8.26)

dVIR
dσ

∣∣∣∣
〈H0〉= v√

2
,〈σ〉= vσ√

2

= vσ√
2

(
m2
σ + λHσ3

v2

2 + λσ
v2
σ

2 −
v4 |λHσS |2

4m2
S

)
= 0 , (8.27)

where we have only written the non-trivial equations, and they are evaluated at the VEVs of
each scalar field. As we can see from Eq. (8.24), once σ acquires a VEV, the operator (H†η)2 is
generated, with an effective λ5 coupling that is naturally suppressed by the mass of the heavy
field S,

λ5
2 ≡ −

λHσS µ
∗ vS√

2m2
S

� 1 . (8.28)

This follows from the assumption µ � mS . As explained in Section 8.2, this is perfectly valid.
However, it poses a theoretical problem since µ is a parameter of the UV theory. A model
without this issue will be discussed below in Section 8.5. We now proceed to the computation
of the scalar spectrum of the model. In the bases {φ, ρ} for the CP-even states and {z, J} for
the CP-odd ones, the squared mass matrices read

M2
R =

m
2
H + 3 v2

2 λ1 + v2
σ
2 λHσ3 − 3 v2 v2

σ |λHσS |
2

2m2
S

v vσ

(
λHσ3 − v2|λHσS |2

m2
S

)
v vσ

(
λHσ3 − v2|λHσS |2

m2
S

)
m2
σ + 3 v2

σ
2 λσ + v2

2 λ
Hσ
3 − v4|λHσS |2

4m2
S

 , (8.29)

and

M2
I =

m2
H + v2

2 λ1 + v2
σ
2 λHσ3 − v2 v2

σ |λHσS |
2

2m2
S

0

0 m2
σ + v2

σ
2 λσ + v2

2 λ
Hσ
3 − v4|λHσS |2

4m2
S

 , (8.30)

respectively. Using now the tadpole equations in Eqs. (8.26) and (8.27), one can simplify these
mass matrices notably. In fact, the CP-odd matrix M2

I is exactly zero once the minimization
equations are used. This implies the existence of two massless Goldstone bosons. One of them
(z) is the would-be Goldstone boson that becomes the longitudinal component of the Z boson
and makes it massive, while the other (J) is the majoron, a (physical) massless Goldstone boson
associated to the spontaneous breaking of lepton number. On the other hand, after applying
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Eqs. (8.26) and (8.27),M2
R becomes

M2
R =

 v2
(
λ1 − v2

σ |λHσS |
2

m2
S

)
v vσ

(
λHσ3 − v2|λHσS |2

m2
S

)
v vσ

(
λHσ3 − v2|λHσS |2

m2
S

)
v2
σ λσ

 . (8.31)

This matrix can be brought to diagonal form as V T
RM2

RVR = M̂2
R = diag(m2

h,m
2
Φ), where VR

is a unitary matrix that can be parametrized as

VR =
(

cos θ − sin θ
sin θ cos θ

)
. (8.32)

The mixing angle θ is given by

tan(2θ) = 2(M2
R)12

(M2
R)11 − (M2

R)22
≈ 2 r λHσ3
r2λ1 − λσ

≈ −2rλ
Hσ
3
λσ

+O(r2) , (8.33)

where we have neglected contributions proportional to 1/m2
S and we have defined r ≡ v/vσ. For

vσ ∼ TeV, r � 1 and simple approximate expressions can be obtained. The lightest of the two
mass eigenstates is the well-known Higgs-like state h, with mass mh ≈ 125 GeV, discovered at
the LHC. In addition, the model contains the heavy scalar Φ, with a mass of the order of vσ.
We focus now on the Z2-odd scalars η+ and η0. The neutral η0 field can be decomposed as

η0 = 1√
2

(ηR + i ηI) . (8.34)

Their masses are given by

m2
η+ =m2

η + λeff
3
v2

2 , (8.35)

m2
ηR

=m2
η +

(
λeff

3 + λeff
4 + λ5

) v2

2 , (8.36)

m2
ηI

=m2
η +

(
λeff

3 + λeff
4 − λ5

) v2

2 , (8.37)

where we have defined

λeff
3 ≡ λ3 + λησ3

v2
σ

v2 , (8.38)

λeff
4 ≡ λ4 , (8.39)

As in the usual Scotogenic model, the mass square difference between ηR and ηI is controlled
by the effective λ5 coupling,

m2
ηR
−m2

ηI
= −4λHS∆ µ vS√

2m2
∆

v2

2 ≡ λ
eff
5 v2 . (8.40)



162 Chapter 8. Ultraviolet extensions of the Scotogenic model

Field Generations SU(3)c SU(2)L U(1)Y U(1)L

`L 3 1 2 -1/2 1

eR 3 1 1 -1 1

N 3 1 1 0 qN

H 1 1 2 1/2 0

η 1 1 2 1/2 qη

σ 1 1 1 0 qσ

S 1 1 2 1/2 qS

Table 8.5: Lepton and scalar particle content and representations under the gauge and global
symmetries in the second example of an UV extension of the Scotogenic model with one σ field.

Finally, the spontaneous breaking of U(1)L by the VEV of σ induces a Majorana mass term for
the N singlets, withMN =

√
2κ vσ. This leads to Majorana neutrino masses at 1-loop, as shown

in Fig. 8.1. The 3×3 neutrino mass matrix is given by the usual Scotogenic formula in Eq. (2.59),
where λ5 is the effective coupling in Eq. (8.28). Due to the additional scalar states, including a
massless majoron with couplings to charged leptons, the phenomenology of this model is richer
than that of the usual Scotogenic scenario. This will be discussed in Section 8.6.

8.4 An UV extended Scotogenic model with one σ field: Second
example

Our second example model is a UV extension of the Scotogenic model with one σ field.

8.4.1 Ultraviolet theory

For this second example we consider an extension of the Scotogenic model with two new particles:
the SU(2)L doublet S and the singlet σ, both scalars. The Z2 Scotogenic parity is replaced by
a global U(1)L lepton number symmetry. Table 8.5 shows the scalar and leptonic fields of the
model and their representations under the gauge and global symmetries.

Again, we aim at an explanation of the smallness of the Scotogenic’s λ5 coupling, and our
strategy will be to forbid it in our original Lagrangian, making it arise effectively at low energies
once the scalar σ acquires a VEV and we integrate out S. We also impose that, after symmetry
breaking, the effective λ5 coupling induces neutrino masses as shown in Fig. 8.2. In our notation,
this is a IV(1∗, ∅) model. This requires the presence of the operators

Nη̃†`L , σN
c
N , H†SH†η , σ∗S†η . (8.41)



8.4. An UV extended Scotogenic model with one σ field: Second example 163

νL νL

H0 σ

η0 η0

N Ny y

κ

H0

σ

S

β µ

Figure 8.2: Neutrino mass generation in the second example of an extended Scotogenic model
with one σ field. This Feynman diagram shows the relevant gauge eigenstates involved in the
1-loop contribution to neutrino masses. In our notation, this corresponds to a IV(1∗, ∅) model.

As a result, the following set of equations is implied for the U(1)L charges of the model:

−qN + qη + 1 = 0 , (8.42)

qσ + 2 qN = 0 , (8.43)

qS + qη = 0 , (8.44)

−qσ − qS + qη = 0 . (8.45)

For this system of linear equations there is again a unique solution:

qN = 1
2 , (8.46)

qη = −1
2 , (8.47)

qσ = −1 , (8.48)

qS = 1
2 . (8.49)

This solution implies that the operators

N
c
N , NH̃†`L ,

(
H†η

)2
(8.50)

are automatically forbidden due to U(1)L conservation, as required. As in the previous example,
it should be noted that if we chose the operator σS†η instead of σ∗S†η, there would be no
solution for the resulting system of equations. In fact, if we replace −qσ by qσ in Eq. (8.45),
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the resulting equation combined with Eqs. (8.43) and (8.44) leads to qN = qη, which contradicts
Eq. (8.42). This confirms again why ξ(1, ∅) models are not compatible with our requirements.

Once the quantum numbers of all the particles in the model are fixed, we can proceed with
writing its Lagrangian. Specifically, the new Yukawa interactions are given by

LY = y N η̃† `L + κσN
c
N + h.c. , (8.51)

where y is a general complex 3 × 3 matrix and κ is a complex symmetric 3 × 3 matrix. The
scalar potential in this model can be written as

VUV = m2
HH

†H +m2
SS
†S +m2

σσ
∗σ +m2

ηη
†η + λ1

2 (H†H)2 + λ2
2 (η†η)2

+ λS
2 (S†S)2 + λσ

2 (σ∗σ)2 + λ3(H†H)(η†η) + λS3 (H†H)(S†S)

+ λσ3 (H†H)(σ†σ) + ληS3 (η†η)(S†S) + λησ3 (η†η)(σ∗σ)

+ λσS3 (σ∗σ)(S†S) + λ4(H†η)(η†H) + λHS4 (H†S)(S†H)

+ ληS4 (S†η)(η†S) +
[
β(H†SH†η) + µ(σ∗S†η) + h.c.

]
.

(8.52)

Here µ is a trilinear parameter with dimensions of mass while m2
H , m2

η, and m2
σ have dimensions

of mass2.

8.4.2 Effective theory

We will now assume that mS is much larger than any other energy scale in the theory. At
energies well below mS , all physical processes can be properly described by an effective field
theory in which the heavy field S has been integrated out. We now present this effective theory,
obtained after integrating out S at tree-level. Following the same procedure as in Section 8.3.2,
the effective potential at low energies can be written as

VIR = m2
HH

†H +m2
ηη
†η +m2

σσ
∗σ + λ1

2 (H†H)2 + λ2
2 (η†η)2 + λσ

2 (σ∗σ)2

+ λ3(H†H)(η†η) + λσ3 (H†H)(σ∗σ) +
(
λησ3 −

|µ|2

m2
S

)
(σ∗σ)(η†η)

+
[
λ4 −

|β|2(H†H)
m2
S

]
(H†η)(η†H)−

[
βµ

m2
S

σ∗(H†η)2 + h.c.
]

+O
(

1
m4
S

)
.

(8.53)

If we assume that CP is conserved in the scalar sector, we can decompose the neutral fields H0

and σ as
H0 = 1√

2
(v + φ+ iz) , σ = 1√

2
(vσ + ρ+ iJ) , (8.54)
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with v√
2 and vσ√

2 the VEVs of H0 and σ, respectively. These VEVs are determined by minimizing
the scalar potential in Eq. (8.53). The resulting tadpole equations are given by

dVIR
dH0

∣∣∣∣
〈H0,σ〉={ v√

2
, vσ√

2
}

= v√
2

(
m2
H + λ1v

2

2 + λσ3v
2
σ

2

)
, (8.55)

dVIR
dσ

∣∣∣∣
〈H0,σ〉={ v√

2
, vσ√

2
}

= vσ√
2

(
mσ2 + λσ3v

2

2 + λσv
2
σ

2

)
. (8.56)

Here we have only included the non-trivial equations, which are evaluated at the VEVs of each
scalar field. As shown in Eq. (8.53), once σ gets a VEV, the operator (H†η)2 is generated with
an effective λ5 coupling that is naturally suppressed by the mass of the heavy field S,

λ5
2 = − βµvσ√

2m2
S

� 1 . (8.57)

As mentioned in the previous example, this follows from the assumption µ� mS . Next, we will
compute the scalar spectrum of the model. The squared mass matrices for the CP-even and
CP-odd states are expressed in the bases {φ, ρ} and {z, J}, respectively. They read

M2
R =

(
m2
H + 1

2
(
3λ1v

2 + λσ3v
2
σ

)
λσ3vvσ

λσ3vvσ m2
σ + 1

2
(
λσ3v

2
H + 3λσv2

σ

) ) , (8.58)

for the former, and

M2
I =

 m2
H + λ1v2

H
2 + λσ3 v

2
σ

2 0
0 m2

σ + λ2
σv

2

2 + λσv2
σ

2

 , (8.59)

for the latter. The above expressions can be reduced using Eqs. (8.55) and (8.56). When
this is done, the resultingM2

I becomes identically zero, implying the existence of two massless
Goldstone bosons. One of them (z) corresponds to the state that is eaten up by the Z boson
and becomes its longitudinal component, while the other (J) is associated to the spontaneous
breaking of the global U(1)L symmetry, the so-called majoron. On the other hand, the reduction
ofM2

R with Eqs. (8.55) and (8.56) leads to

M2
R =

(
λ1v

2 λHσ3 v vσ

λHσ3 v vσ λσv
2
σ

)
. (8.60)

Which is the same mass matrix as the one in Eq.(8.31), although in the limit mS →∞. There-
fore, it will be diagonalized by the same matrix VR defined in Eq. (8.32) with the mixing angle
in Eq. (8.33). Again, the lightest of the two mass eigenstates is to be identified with the well-
known Higgs-like state h, and the model contains a heavy scalar Φ, with a mass of the order of
vσ. Regarding the Z2-odd scalars η+, ηR, and ηI , their masses are given by the expressions in
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Eqs. (8.35), (8.36), and (8.37), but with the new definitions of λ5 and

λeff
3 ≡ λ3 + λησ3

v2
σ

v2 − µ
2 v2

σ

v2m2
S

, (8.61)

λeff
4 ≡ λ4 −

β2v2

2m2
S

. (8.62)

The mass square difference between ηR and ηI is given by

m2
ηR
−m2

ηI
= −
√

2 βµvσ
m2
S

v2 = λ5v
2 , (8.63)

as in the original Scotogenic model. Finally, the VEV of σ induces a Majorana mass term for
the N singlets, with MN =

√
2κ vσ. This results in Majorana neutrino masses at 1-loop, as

shown in Fig. 8.1. The 3× 3 neutrino mass matrix is given by the usual Scotogenic formula in
Eq. (2.59), where λ5 is the effective coupling in Eq. (8.57). As this model includes additional
scalar states, including a massless majoron with couplings to charged leptons, its phenomenology
is richer than that of the standard Scotogenic scenario. This will be illustrated in Section 8.6.

8.5 An UV extended Scotogenic model with two σ fields

We consider now an UV extension of the Scotogenic model with two σ fields.

8.5.1 Ultraviolet theory

We enlarge the Scotogenic particle content with three new particles: the scalar SU(2)L singlets
S, σ1, and σ2. Again, instead of the usual Z2 Scotogenic parity, a global U(1)L lepton number
symmetry is introduced. Table 8.5 shows the scalar and leptonic fields of the model and their
representations under the gauge and global symmetries.

We consider the 1-loop generation of neutrino masses by the diagram in Fig. 8.3. In our
notation, this corresponds to a II(1, 2) model. For this mechanism to take place, the operators

Nη̃†`L , σ1N
c
N , σ1H

†Sη , σ2H
†S∗η (8.64)

must be allowed by the symmetries of the model. This restricts the U(1)L charges of the fields
in the model. In particular, one can write the following set of equations for them:

−qN + qη + 1 = 0 , (8.65)

qσ1 + 2 qN = 0 , (8.66)

qσ1 + qS + qη = 0 , (8.67)

qσ2 − qS + qη = 0 . (8.68)
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Field Generations SU(3)c SU(2)L U(1)Y U(1)L

`L 3 1 2 -1/2 1

eR 3 1 1 -1 1

N 3 1 1 0 qN

H 1 1 2 1/2 0

η 1 1 2 1/2 qη

σ1 1 1 1 0 qσ1

σ2 1 1 1 0 qσ2

S 1 1 1 0 qS

Table 8.6: Lepton and scalar particle content and representations under the gauge and global
symmetries in an UV extension of the Scotogenic model with two σ fields.

νL νL

H0 H0

η0 η0

N Ny y

κ

σ1

σ1

σ2

S

β1 β2

Figure 8.3: Neutrino mass generation in an extended Scotogenic model with two σ fields. This
Feynman diagram shows the relevant gauge eigenstates involved in the 1-loop contribution to
neutrino masses. In our notation, this corresponds to a II(1, 2) model.

They can be solved in terms of qN to obtain

qη = qN − 1 , (8.69)

qσ1 = −2 qN , (8.70)

qσ2 = 2 , (8.71)

qS = qN + 1 . (8.72)
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In addition, we want the operators

N
c
N , NH̃†`L ,

(
H†η

)2
(8.73)

to be forbidden. In order to forbid the first operator, a Majorana mass term for N , we just
require qN 6= 0. The second operator would lead to νL-N Dirac mass terms, and we can forbid
it by requiring qN 6= 1. Then, Eq. (8.69) implies qη 6= 0 too. Finally, with these considerations,
we choose

qN = 1
2 , (8.74)

which implies
qη = −1

2 , qS = 3
2 , qσ1 = −1 , qσ2 = 2 . (8.75)

Some comments are in order. First, the diagram in Fig. 8.3 has two different σ singlets attached
to the scalar internal line, σ1 and σ2. In principle, one may wonder why we did not consider
the same σ singlet in both vertices as starting point for constructing our model. That would
imply qS = 0 and reduce the number of couplings in the model. However, such a construction
would lead to an effective operator (H†η)2σ2 after integrating out the S field. If this operator is
allowed by all symmetries of the model, so is the trilinear (H†η)σ term. We will assume that the
σ singlets acquire non-zero VEVs, breaking the original U(1)L. In the presence of the trilinear
(H†η)σ, this would induce a tadpole for η, hence breaking the Z2 parity of the Scotogenic
model. This forces us to discard this possibility and consider different σ1 and σ2 attached to
the internal scalar line. It also illustrates why models with σA = σB are not compatible with
our requirements. Furthermore, one may consider a third σ3 singlet field coupled to the internal
fermion line. While this is possible, we preferred to choose a charge assignment that allows us to
identify σ3 ≡ σ1 and reduce the number of fields in the model. Finally, once σ1 and σ2 acquire
non-zero VEVs, the original U(1)L symmetry will get broken to one of its Zn subgroups. Here
n is the GCD of |qσ1 | and |qσ2 | after being normalized to become integer numbers, hence n = 2
and the remnant symmetry is Z2.

Once we know the quantum numbers of all the particles in the model, we can write its
Lagrangian. The new Yukawa interactions are given by

LY = y N η̃† `L + κσ1N
c
N + h.c. , (8.76)
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where y is a general complex 3 × 3 matrix and κ is a complex symmetric 3 × 3 matrix. The
scalar potential of the model is given by

VUV = m2
HH

†H +m2
SS
∗S +m2

σiσ
∗
i σi +m2

ηη
†η + λ1

2 (H†H)2 + λ2
2 (η†η)2

+ λS
2 (S∗S)2 + λσi

2 (σ∗i σi)2 + λ3(H†H)(η†η) + λS3 (H†H)(S∗S)

+ λσi3 (H†H)(σ∗i σi) + ληS3 (η†η)(S∗S) + λησi3 (η†η)(σ∗i σi)

+ λσσ3 (σ∗1σ1)(σ∗2σ2) + λσiS3 (σ∗i σi)(S∗S) + λ4(H†η)(η†H)

+
[
β1(σ1H

†Sη) + β2(σ2H
†S†η) + µ√

2
(σ2σ1σ1) + λ0(SSσ1σ

∗
2) + h.c.

]
,

(8.77)

where we sum over i = 1, 2. Here µ is a trilinear parameter with dimensions of mass while
m2
H , m2

η and m2
σi have dimensions of mass2. Other Lagrangian terms are allowed by the gauge

symmetries of the model but forbidden by U(1)L.

8.5.2 Effective theory

In the following we will assume that mS is much larger than any other energy scale in the model
and integrate out the heavy scalar S. If we do this at tree-level, the effective scalar potential at
low energies can be written as

VIR = m2
H(H†H) +m2

η(η†η) +m2
σi(σ

∗
i σi) + λ1

2 (H†H)2 + λ2
2 (η†η)2 + λσi

2 (σ∗i σi)2

+ λ3(H†H)(η†η) + λσi3 (H†H)(σ∗i σi) + λησi3 (η†η)(σ∗i σi) + λσσ3 (σ∗1σ1)(σ∗2σ2)

+
[
λ4 −

|βi|2

m2
S

(σ∗i σi)
]

(H†η)(η†H)

+
[
µ√
2

(σ2σ1σ1)− β1β2
m2
S

σ1σ2(H†η)2 + h.c.
]

+O
(

1
m4
S

)
.

(8.78)

Now, we decompose the neutral fields H0 and σ1,2 as

H0 = 1√
2

(v + φ+ i z) , σi = 1√
2

(vσi + ρi + i Ji) , (8.79)

where we defined v√
2 and vσi√

2 as the VEVs of the corresponding fields. After this, we can compute
the tadpole equation resulting from the effective potential in Eq. (8.78), evaluated at the VEVs
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of each scalar field. The non-trivial tadpole equations are

dVIR
dH0

∣∣∣∣
〈H0,σi〉={

vH√
2
,
vσi√

2
}

= vH√
2

(
m2
H + λ1

v2
H

2 + λσ1
3
v2
σ1

2 + λσ2
3
v2
σ2

2

)
= 0, (8.80)

dVIR
dσ1

∣∣∣∣
〈H0,σi〉={

vH√
2
,
vσi√

2
}

= vσ1√
2

(
m2
σ1 + µ vσ2 + λσ1

3
v2
H

2 + λσ1

v2
σ1

2 + λσσ3
v2
σ2

2

)
= 0, (8.81)

dVIR
dσ2

∣∣∣∣
〈H0,σi〉={

vH√
2
,
vσi√

2
}

= vσ2√
2

(
m2
σ2 + µ

v2
σ1

2vσ2
+ λσ2

3
v2
H

2 + λσ2

v2
σ2

2 + λσσ3
v2
σ1

2

)
= 0. (8.82)

As already explained, as a result of σi acquiring a VEV, lepton number gets spontaneously
broken, leaving a discrete Z2 symmetry, under which all the particles in the model are even except
for N and η, which are odd. Another important consequence of the spontaneous breaking of
lepton number is the generation of the (H†η)2 operator, with a naturally suppressed λ5 coupling
due to the 1/m2

S factor. One finds

λ5
2 = −vσ1vσ2β1β2

2m2
S

� 1 , (8.83)

where βi are dimensionless parameters of the UV theory and vσi � mS by construction. This
expression clearly corresponds to a II(1, 2) model, following the classification of Section 8.2. We
now consider the scalar spectrum of the model. We will assume that CP is conserved in the
scalar sector, just for the sake of simplicity. In this case, the spectrum contains three CP-even
and three CP-odd gauge eigenstates. In the bases {φ, ρ1, ρ2} and {z, J1, J2}, their mass matrices
are given by

M2
R =


λ1v

2
H λσ1

3 vHvσ1 λσ2
3 vHvσ2

λσ1
3 vHvσ1 λσ1v

2
σ1 vσ1(µ+ λσσ3 vσ2)

λσ2
3 vHvσ2 vσ1(µ+ λσσ3 vσ2) λ2v

2
σ2 −

µv2
σ1

2vσ2

 (8.84)

and

M2
I =


0 0 0
0 −2µvσ2 −µvσ1

0 −µvσ1 −µv2
σ1

2vσ2

 , (8.85)

respectively. The tadpole equations (8.80)-(8.82) were used in the derivation of Eqs. (8.84) and
(8.85). The CP-even and CP-odd physical mass eigenstates can be written as linear combinations
of {φ, ρ1, ρ2} and {z, J1, J2}, respectively, obtained after the diagonalization of the matrices
M2

R andM2
I . Out of the three CP-even mass eigenstates, one can be identified with the Higgs

boson. In addition, two massive CP-even scalar fields exist. In what concerns the CP-odd mass
eigenstates, their mass matrix in Eq. (8.85) can be readily diagonalized as V T

I M2
I VI = M̂2

I ,
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where

VI =


1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 (8.86)

is a unitary matrix and M̂2
I is a diagonal matrix. One obtains

M̂2
I =


0 0 0
0 0 0
0 0 −µ(v2

σ1+4v2
σ2 )

2vσ2

 , (8.87)

thus leading to two massless pseudoscalar bosons. The first one is the Goldstone boson that
becomes the longitudinal component of the Z boson (z), while the second one (a linear combina-
tion of fields J1 and J2) is associated to the spontaneous breaking of U(1)L and is the so-called
majoron, denoted as J . The J1 − J2 mixing angle is given by

tan(2θ) = 2 (M2
I)23

(M2
I)22 − (M2

I)33
= 4vσ1vσ2

4v2
σ2 − v2

σ1

. (8.88)

We finally turn our attention to the Z2-odd scalars and decompose the neutral field η0 as

η0 = 1√
2

(ηR + i ηI) . (8.89)

The mass of the charged η+ and the neutral ηR,I fields are given by Eqs. (8.35), (8.36), and
(8.37), respectively, with the new definitions of λ5 and

λeff
3 ≡ λ3 + λησ1

3
v2
σ1

v2 + λησ2
3

v2
σ2

v2 (8.90)

λeff
4 ≡ λ4 −

β2
1v

2
σ1

2m2
S

−
β2

2v
2
σ2

2m2
S

. (8.91)

As in the Scotogenic model, the mass difference between ηR and ηI is proportional to the λ5

coupling:
m2
ηR
−m2

ηI
= −vσ1vσ2β1β2

m2
S

v2 = λ5v
2 . (8.92)

Finally, the breaking of U(1)L also induces a Majorana mass term for the N singlets, with
MN =

√
2κ vσ1 . This leads to Majorana neutrino masses at 1-loop, as shown in Fig. 8.3.

The resulting neutrino mass matrix is given by Eq. (2.59), with the effective λ5 of Eq. (8.83).
Furthermore, contrary to the minimal Scotogenic model, this UV extension induces a 1-loop
interaction between the majoron and a pair of charged leptons. This enriches the phenomenology
of the model, as we discuss in the next Section.
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8.6 Phenomenology

All UV scenarios discussed in our classification of Section 8.2 and illustrated with the three
examples of Secs. 8.3, 8.4, and 8.5 share some common features. They are characterized at low
energies by a Scotogenic model extended with a massless pseudoscalar, the majoron J , and one
or several massive scalars and pseudoscalars. While some phenomenological implications may
be specific to particular models, there are also some general expectations that we may highlight.

8.6.1 Majoron coupling to charged leptons

The presence of a massless majoron dramatically affects the phenomenology of this class of
models. In fact, models including a majoron are strongly constrained by a variety of experimental
limits, such as those originated by the majoron coupling to a pair of charged leptons, as discussed
in Chapter 3. The relevance of these limits depends on the flavor structure of the couplings [215],
which necessarily depends on the specific model. Stringent constraints exist for both flavor
conserving and flavor violating couplings. Let us write the majoron interaction with charged
leptons as,

L``J = J ¯̀
β

(
SβαL PL + SβαR PR

)
`α + h.c. , (8.93)

which is a particularization of Eq. (3.1) for the majoron. Due to the pseudoscalar nature of
majorons, the diagonal Sββ = SββL + Sββ∗R couplings are purely imaginary. As discussed in
Chapter 3, they receive strong constraints from astrophysical observations due to the cooling
effects induced by the majoron in dense astrophysical media. Flavor off-diagonal couplings are
constrained by the null searches of lepton flavor violation in processes involving charged leptons.
In particular, searches for `α → `β J can be used to set bounds on the combinations

|Sβα| =
(∣∣∣SβαL ∣∣∣2 +

∣∣∣SβαR ∣∣∣2)1/2
. (8.94)

A compilation of the current limits on the majoron couplings to charged leptons can be found
in Table 3.2.

While in some scenarios the majoron couplings to charged leptons appear at tree-level [250,
321], in many cases the leading order contribution is induced at the 1-loop level. For instance, this
is the case of the popular type-I seesaw with spontaneous lepton number violation [206,212,213].
Similarly, in the Scotogenic scenarios discussed in this chapter, the majoron coupling to charged
leptons is also induced at 1-loop [413, 415] by the Feynman diagram in Fig. 8.4. Here gJNN is
the J −N −N coupling, which depends on the specific model. It is given by

gJNN =

 i κ√2 in models with one σ singlet
i κ√2 cos θ in models with two σ singlets

, (8.95)
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Figure 8.4: 1-loop generation of the majoron coupling to a pair of charged leptons in the Scoto-
genic scenarios discussed in this work.

where the mixing angle θ is defined in Eq. (8.86). The prefactor cos θ in models with two σ
singlets is due to the fact that only σ1 has a coupling to N c

N . No other contributions to the
majoron coupling to charged leptons exist at 1-loop. One may wonder about a Feynman diagram
with two scalar lines in the loop induced by a J η+η− coupling. However, this contribution
vanishes exactly. The reason is the pseudoscalar nature of the majoron. The J ¯̀

α`α vertex must
be proportional to γ5, but the Lorentz structure of this contribution does not generate such
pseudoscalar couplings. Indeed, in the case of the η scalars running in the loop, the contribution
cannot exist because the combination η+η− is real, while J always comes with an i factor due to
its pseudoscalar nature. Thus, a Lagrangian with this vertex would not be Hermitian, and the
term is not allowed. Also, diagrams with gauge bosons vanish due to the pure singlet nature of
N . Therefore, one can find the SL,R couplings introduced in Eq. (8.93) by direct computation
of the diagram in Fig. 8.4. The result can be written as [413,415]

SβαL = −
m`β

8π2

(
y†gJNN Γ y

)
βα

, (8.96)

SβαR = m`α

8π2

(
y†gJNN Γ y

)
βα

, (8.97)

for the non-diagonal couplings and

Sββ = −
m`β

8π2

(
y†gJNN Γ y

)
ββ

, (8.98)

for the diagonal ones. Here m`β = {me,mµ,mτ} and we have defined

Γmn = MNn(
M2
Nn
−m2

η+

)2

(
M2
Nn −m

2
η+ +m2

η+ log
m2
η+

M2
Nn

)
δmn . (8.99)

We can now study how the bounds on these couplings restrict the parameter space of the models
considered in our classification. In the following, we will focus on the 2-body decay µ→ eJ , for
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Figure 8.5: Contours of BR (µ→ eJ) in the
(
MN ,mη+

)
plane. The colored regions correspond

to the regions allowed by the current experimental bound on the branching ratio. On the left,
gJNN has been fixed to 10−1 (blue) and to 10−2 (pink), while rη = 1 has been used. On the
right, the coupling gJNN was not fixed, and three different values of the rη ratio have been
considered, 0.1 (pink), 1 (blue), and 2 (green).

which
BR (µ→ eJ) = mµ

32π Γµ

(
|SeµL |

2 + |SeµR |
2
)
, (8.100)

where Γµ ≈ 3 × 10−19 GeV is the total decay width of the muon. We used a Casas-Ibarra
parametrization [200] properly adapted to the Scotogenic model [201,203,204], see Section 2.5.3,
and the best-fit values obtained in the global fit [138] to neutrino oscillation data in order to
express the Yukawa matrix y in terms of experimentally measured quantities. We assumed that
the three singlet fermions are degenerate, that is, MN1 = MN2 = MN3 = MN and we fixed
λ5 = 5 × 10−8. Notice that lower values of this parameter would imply larger values of the
Yukawas, thus further restricting the parameter space of the model. It also proves convenient
to define

rη = m0
mη+

. (8.101)

Our results are shown in Fig. 8.5. On the left-hand side we fixed the coupling gJNN to 10−1

(blue), and to 10−2 (pink), and we considered rη = 1 in both scenarios. The colored regions
correspond to regions allowed by the experimental bound on the µ → eJ decay, which implies
BR (µ→ eJ) < 10−5 [250]. As expected, the larger the J −N −N coupling is, the smaller the
allowed region of the parameter space becomes. We also find that light Scotogenic states can
be made compatible with the µ → eJ bound. This can be easily understood by inspecting the
non-trivial relation between the masses mη+ and MN and the Yukawa couplings y. Under the
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assumptions mentioned above one finds

SL,R ∝ gJNNΓii
(
y†y
)

12
, (8.102)

where Γii is any of the diagonal entries of Γ, given by

Γii ∝MN

M2
N −m2

η+ +m2
η+ log

m2
η+

M2
N(

M2
N −m2

η+

)2 . (8.103)

Eq. (2.59) implies that the Yukawa product
(
y†y
)

12
is proportional to

(
y†y
)

12
∝ 1
MN

(
M2
N −m2

0
)2

M2
N −m2

0 +M2
N log m2

0
M2
N

. (8.104)

Therefore, in the limit rη = 1 one finds

SL,R ∝ gJNN
M2
N −m2

η+ +m2
η+ log

(
m2
η+

M2
N

)
M2
N −m2

η+ +M2
N log

(
m2
η+

M2
N

) . (8.105)

For a fixed gJNN value two possibilities arise: (i) if we fix mη+ , the Γii
(
y†y
)

12
combination

decreases if MN increases, and (ii) if we fix MN , the Γii
(
y†y
)

12
combination increases if mη+

increases. Essentially, the involved couplings strongly depend on mη+ and MN , and this de-
pendence may lead to an apparent non-decoupling behavior that explains the results for the
µ→ eJ branching ratio observed in Fig. 8.5. Finally, the right-hand side of this figure provides
complementary information. Here we considered gJNN = i κ√2 = iMN

2 vσ and fixed vσ = 5 TeV.
Since the gJNN coupling grows with MN , for each mη+ there is a maximum value of MN for
which BR (µ→ eJ) < 10−5. This can be clearly seen in our results.

8.6.2 Collider signatures

Since the spontaneous breaking of U(1)L requires the introduction of additional scalar multiplets,
all models in our classification have extended scalar sectors containing several states besides the
ones in the Scotogenic model. This can be used to probe them at colliders.

One of the CP-even scalars, presumably the lightest, is to be identified with the 125 GeV
state discovered at the LHC. The production cross-section and decay rates of this state, denoted
generally as h, must agree with the values measured by the ATLAS and CMS collaborations.
Since these are very close to those predicted for a pure SM Higgs, h ≈ Re(H0) is generally
required. In particular, mixings with the σ states are strongly constrained since they would
affect its decay rates in a twofold way. First, the σ states do not couple to the SM gauge bosons
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or quarks. Thus, any mixing would induce a universal reduction of the h partial decay widths
into these states. And second, h can have additional decay modes. It can decay invisibly to
a pair of singlet fermions (h → N1N1) or a pair of majorons (h → JJ). The former can only
take place if mN1 ≤ mh/2. In contrast, since the majoron is massless, the latter is always
kinematically available. We can write the interaction Lagrangian of h with a pair of majorons as
LhJJ = 1

2 ghJJ hJ
2, where ghJJ is a dimensionful coupling that depends on the specific model.

This interaction induces the invisible decay h→ JJ , with the decay width given by

Γ(h→ JJ) = g2
hJJ

32πmh
. (8.106)

If we assume a total Higgs decay width in agreement with the SM expectation, Γh ≈ ΓSM
h = 4.1

MeV [327], the bound on the invisible Higgs branching ratio BR(h → JJ) < 0.19 at 95%
C.L. [326], implies ghJJ < 3.1 GeV. This translates into constraints on the parameters of the
scalar potential of the model, which are encoded in ghJJ . For instance, in the model discussed
in 8.3, the dimensionful coupling ghJJ is given by

ghJJ = vσ λσ sin θ +
(
λHσ3 − v2 |λHσS |2

m2
S

)
v cos θ , (8.107)

where the mixing angle θ is defined in Eq. (8.32). Therefore, the previous bound on the cou-
pling ghJJ implies that the λHσ3 parameter must be . 10−2. We note, however, that stronger
constraints can be derived by combining invisible and visible channels, as recently pointed out
in [416].

Finally, all models in our classification also contain additional heavy states. They can also be
searched for at colliders. Their production cross-sections and decay models strongly depend on
the specific realization of our setup and, more specifically, on their gauge composition. If they
have sizable doublet components, they can, in principle, be produced at high rates at the LHC
via Drell–Yan processes. In contrast, heavy scalars with a dominant component in the singlet
direction have tiny production cross-sections at the LHC. Due to the constraints discussed above,
which imply suppressed mixing between the SM Higgs doublet and the σ states, this is the most
likely scenario in all models discussed in our classification.

8.6.3 Dark matter

In all the UV models studied in this chapter, a remnant Z2 symmetry is obtained as a result
of the spontaneous breaking of lepton number. This is the Scotogenic Z2 parity, under which
only the usual Scotogenic states N and η are charged. The conservation of Z2 implies that the
lightest of them is completely stable and, in principle, a valid DM candidate. Both options have
been widely studied in the literature. In the case of a scalar candidate, the DM phenomenology
resembles that of the Inert Doublet model [311–313, 315, 417], with the DM production in the
early Universe set by gauge interactions. We note that in this scenario, there is no connection
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between lepton flavor violation and DM phenomenologies. In contrast, the case of a fermion
candidate typically requires large Yukawa couplings. This leads to tension with bounds from
lepton flavor violation [201], although the observed DM relic density can be achieved [202,418–
421].

The low energy theories resulting from our UV extended models do not correspond exactly
to the original Scotogenic model. As explained above and illustrated in Secs. 8.3 - 8.5, additional
scalar states are present: the massless majoron and one or several massive scalars. These new
degrees of freedom couple to the Z2-odd states and may affect the resulting DM phenomenology,
which may have some differences with respect to the one in the original Scotogenic scenario.
This has recently been studied in [391, 422] for the case of fermion DM. The main conclusion
from these works is that the new scalar states open up new regions in parameter space in which
the DM relic density can match the observed value. In particular, annihilations become very
efficient when the mass of the DM candidate, mN1 , is about half of the mass of a new scalar
state. This implies that one can find the correct DM abundance for any value of mN1 without
resorting to coannihilations, in contrast to the original Scotogenic model. These models are also
expected to have a rich phenomenology at direct and indirect detection experiments [422].

8.7 Summary and discussion

The Scotogenic model is a very popular scenario for neutrino masses and dark matter. In this
chapter, we have considered extensions of this scenario that naturally explain the smallness of
the quartic λ5 coupling and the origin of the Scotogenic Z2 parity. This is achieved in UV
extensions including a conserved global lepton number symmetry, spontaneously broken by the
VEVs of one or several scalar singlets, and a new heavy state that suppresses all lepton number
violating effects at low energies. We explored all possible models with these assumptions and
found 50 variations. They are all characterized at low energies by the presence of a massless
Goldstone boson, the majoron, as well as other massive scalars besides the usual Scotogenic
states. Three specific example models are discussed in detail in order to illustrate the basic
ingredients of our setup. In these models, as well as in all the variants in our classification, a
rich phenomenology is expected, with potential signatures in collider and lepton flavor violating
searches, and implications for dark matter.

Out of the 50 models identified by our analysis, none of them have been studied in the
literature, except for the examples in Sections 8.3, 8.4, and 8.5. This illustrates the vast model
space beyond the original Scotogenic model, which is yet to be explored. In fact, there are many
variations of the fundamental setup that keep all the positive features and include additional
ingredients. While many of these modified Scotogenic scenarios may contain unnecessary or
redundant ingredients, others may offer novel ways to address open questions in current particle
physics [423]. This is the main motivation behind the classification presented in this chapter.
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There are several ways in which our analysis can be extended. First of all, we have con-
sidered UV theories that realize the λ5 coupling at tree-level. In this case, the only source of
suppression is given by the large energy scale mS , assumed to lie well above the electroweak
scale. Alternatively, the λ5 coupling can also be realized at loop order, as recently explored
in [424]. This possibility leads to many novel extensions of the Scotogenic setup with, at least
potentially, new phenomenological expectations. Another way in which our analysis can be ex-
tended is by considering a local lepton number symmetry. In this case, the massless majoron
that was characteristic in our setup would be replaced by a heavy Z ′ boson, with a dramatic
impact on the low-energy phenomenology. However, we note that this direction requires non-
trivial extensions of the fermion particle content in order to cancel out the usual triangle gauge
anomalies. Therefore, a general classification of all possible gauge models becomes more cum-
bersome, although interesting too. Finally, variations with non-universal lepton charges for the
N fermions or featuring alternative numbers of generations for the Scotogenic states can be
explored as well.
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Chapter 9

Collider Searches for Heavy Neutral
Leptons:

Beyond Simplified Scenarios

“There is nothing like looking, if you want to find
something. You certainly usually find something, if you
look, but it is not always quite the something you were
after.”

– J.R.R. Tolkien, The Hobbit

This Chapter, based on [425], is the final part of the thesis and will take a different path. Many
neutrino mass models predict the existence of Heavy Neutral Leptons that mix with the Standard
Model neutrinos. Here we will be interested in Heavy Neutral Lepton searches at high-energy
colliders, mainly at the LHC due to its current extensive program dedicated to them, see, for
instance, Ref. [426], and the numerous dedicated works and analyses [427–468].

9.1 Introduction

With very few exceptions, the large amount of available Heavy Neutral Lepton (HNL) bounds
have been derived relying on the assumption of a single (usually Majorana) HNL that mixes with
only one lepton flavor. Most of the BSM scenarios involving new neutral leptons address the
lepton mixing as a whole, as it impacts flavor physics studies and lepton properties (such as the
Dirac or Majorana nature of neutrinos) through different lepton number conserving/violating
processes. The mixing pattern in these scenarios is expected to be quite complex, making it
inadequate to apply bounds derived from negative HNL searches based on simplified hypotheses
on the HNL parameter space. Indeed, as we will see, using these limits directly will in general
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overconstrain the parameter space. Consequently, most of the experimental bounds for HNL
need to be recast before being applied to a generic BSM scenario.

The motivation for reinterpreting LHC bounds is, in general, a well-established topic. See, for
example, Ref. [469] and references therein. In the context of HNL searches, the reinterpretation of
the obtained bounds on the HNL mixings to active flavors has been addressed in previous works.
This is the case of Ref. [460], which discussed searches for Heavy Neutral Leptons with Displaced
Vertices, and, more recently, of Ref. [468], focusing on HNLs decaying promptly to a tri-lepton
final state. In the latter, the single-flavor mixing results obtained by ATLAS were recast to a
low-scale seesaw model with a quasi-degenerate pair of HNLs, which is the most minimal and
simple extension in order to accommodate neutrino oscillation data (the lightest neutrino being
massless). Due to the simplicity of this model, the active neutrino masses and mixings determine
the flavor pattern of the HNLs [178,470], and it is possible to define benchmark points beyond the
single-flavor scenario [471]. While being an interesting scenario, this approach has the drawback
of being model dependent. For example, considering other sources for light neutrino masses, 1

such as additional HNLs not necessarily within the LHC range, could spoil the correlation
between light and heavy sectors that motivated the definition of these scenarios.

For this reason, in this chapter, we will follow a different approach. We will work with
physical HNL states with independent mixings and masses, with the motivation of covering
every scenario that could be realized at generic BSM models. We will also discuss how to go
beyond the simplest single-flavor mixing scenario. However, we will not attempt to explain light
neutrino masses and mixings. This idea is actually the most straightforward extension to what is
usually assumed at LHC searches. In doing so, we will discuss what the most relevant quantities
to be bounded experimentally would be in order to easily reinterpret the results.

Furthermore, we will also extend the study to the case where more than one HNL is present
and take into account possible interference effects when at least two heavy neutral leptons are
in the same mass regime (nearly degenerate or possibly forming a pseudo-Dirac neutrino pair).
This potential interference can lead to different bounds on the active-sterile mixings, see, for
instance, Ref. [472–474].

Notice that those models where there is no mixing between the HNLs and the active neutrinos
are out of the scope of this Chapter. This is, for instance, the case of the Scotogenic model.
The Z2 parity present in this model prevents the N singlets (which are odd) from mixing with
the SM neutrinos (that are even).

9.2 Status of HNL searches at high-energy colliders

Heavy Neutral Leptons can be searched for in a wide variety of processes and experiments,
being the HNL mass the key parameter to decide which is the optimal one. HNLs lighter than
the GeV scale can lead to signatures in nuclear β decays or in leptonic or semileptonic meson

1This would actually be needed in order to relax the hypothesis of the lightest active neutrino being massless
and, thus, to have three massive active neutrinos.
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and tau decays. On the other hand, heavy HNLs above the TeV are better explored indirectly
by electroweak precision observables or rare flavor processes. For a detailed review of all these
signals and experimental status, see, for instance, Refs. [475–477].

Here, we are interested in the intermediate regime, with HNL masses MN ranging from
a few to hundreds of GeVs. Such HNLs could be directly produced at high-energy colliders
with lifetimes usually short enough to decay within the detectors, enabling us to discover them
looking for their decay products. Since these decays are weak processes, the relevant scale to
compare to is defined by the masses of the SM gauge bosons. Throughout this Chapter, we refer
to HNLs lighter than the W boson as light HNLs, and to those with MN > MW as heavy HNLs.
These definitions are in the context of high-energy collider searches. Detailed reviews of HNL
searches at colliders can be found in Refs. [478–480]. Here we update and summarize the list of
experimental analyses and highlight the most relevant aspects that we will use in our discussion
in the following sections.

As in any collider search looking for heavy unstable particles, we need to consider both the
production and the decay channels of the HNLs. At a hadronic collider such as the LHC, the
main production channel comes from Drell-Yan W and Z bosons,

pp→W (∗) → N`± and pp→ Z(∗) → Nν , (9.1)

where the gauge bosons could be on- or off-shell, depending on whether the HNL is lighter
or heavier than the W or Z bosons. Additional production channels could also arise from the
Higgs boson decays, which could be motivated in several models providing large neutrino Yukawa
couplings. Unfortunately, Higgs bosons are produced less abundantly than weak bosons, so they
are usually neglected. Moreover, the W channel has the additional prompt charged lepton
that can help triggering the process and reducing backgrounds, and thus experimental searches
focused mostly on this channel. Nevertheless, it is worth mentioning that for very heavy masses,
at around the TeV scale, vector boson fusion channels such asWγ orWW become important and
could even dominate the production of HNLs [435,437,467]. Indeed, the latest CMS analysis [481]
already included the Wγ channel in order to enhance their sensitivity to high HNL masses.

After being produced, a HNL of several GeVs, but still lighter than MW , will decay domi-
nantly via off-shell W or Z bosons to a 3-body final state

N → `±α jj , (9.2)

N → `±α `
∓
β νβ , (9.3)

N → ναjj , (9.4)

N → να`
±
β `
∓
β , (9.5)

N → 3ν . (9.6)
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Figure 9.1: Drell-Yann HNL production leading to a dilepton signature. The thunder-shaped
arrow indicates that the HNL could be of Dirac or Majorana nature, short- or long-lived.

On the other hand, if MN is above the EW scale, the dominant decays will be to on-shell W,Z,
and H bosons, i.e., N → `±W∓, νZ, νH. These 2-body decays will be followed by the decay
of the heavy bosons, leading in the end to the same final states as before. Nevertheless, it is
important to keep in mind that the kinematics in these two mass regimes will be different.

Combining both production and decay channels, we get a full process such as the example
shown in Fig. 9.1. Depending on the relative size ofMN andMW , either the first or the secondW
boson will be on-/off-shell, distinguishing the light and heavy HNL regimes. A complete catalog
of HNL signatures, combining the different production and decay processes, can be found in
Ref. [482]. Here we focus only on those that have been already searched for at the LHC, and we
collect them in Table 9.1. Similar searches considering the existence of right-handed currents
have also been performed [483–490], and could, in principle, be recast to our setup. Nevertheless,
one would naively expect lower sensitivities, as they are optimized for heavy right-handed gauge
bosons.

Most of the LHC searches focused on the smoking gun signature for Majorana neutrinos, the
same sign (SS) dilepton final state:

pp→ `±αN → `±α `
±
β + nj . (9.7)

Here, the lepton pair is accompanied by at least two jets (see Fig. 9.1) unlessMN is much lighter
or heavier thanMW , which leads to boosted objects and collimated jets that are reconstructed as
a single one. Being a LNV process, the SS dilepton does not suffer from severe SM backgrounds.
Unfortunately, current collider searches are sensitive only to relatively large mixings between
the HNL and the active neutrinos, too large to explain the masses of the light neutrinos unless
a symmetry protected scenario is invoked. More specifically, this symmetry is an approximated
conservation of lepton number [491], which may suppress the expected LNV signal from HNLs,
although sizable SS decaying rates can be obtained in some regions of the parameter space (see
Refs. [492–495]).



9.2. Status of HNL searches at high-energy colliders 185

From this point of view, searching for opposite sign (OS) dileptons, as done by LHCb [496],
seems more relevant to explore theoretically motivated scenarios. The drawback is the large
amount of background from Z → `+`− decays, which reduces the sensitivity. A possible alter-
native would be focusing on LFV channels to reduce backgrounds [442,462].

Yet another alternative considers the fully leptonic process

pp→ `±αN → `±α `
±
β `
∓
γ ν . (9.8)

This channel has a trilepton signature, rather clean in a hadronic collider. Nevertheless, it also
has a source of MET, which might spoil the complete reconstruction of MN . The trilepton
channel offers the possibility to search for both LNV and LNC signals, although most of the
experimental analyses still focus only on the LNV channels to reduce backgrounds, again from
Z → `+`−. For example, ATLAS searched for e±e±µ∓ and µ±µ±e∓ channels, 2 but not for
e±e∓µ± and µ±µ∓e± [497]. CMS did something similar for light HNLs, although they also
included channels with OS but same flavor lepton pairs in the heavy HNL regime, removing only
those events with lepton pairs compatible with a decay of a Z boson [481]. As stated before for
the SS dilepton channel, searching for HNLs without assuming their Majorana nature will be
helpful to probe scenarios compatible with neutrino oscillation data and thus with potentially
suppressed LNV signals.

Finally, it is important to stress that improving the experimental sensitivities to smaller
values of mixings implies exploring HNL with longer lifetimes, which can travel macroscopic
distances before decaying. Such long-lived HNLs would avoid the searches mentioned so far, as
they all assumed prompt decaying HNLs and, therefore, we need a dedicated search for this kind
of topologies. Recently, both ATLAS [498] and CMS [499] have searched for displaced vertex
signatures for light HNLs, setting the strongest constraints for GeV masses up to 20 GeV. This
can be seen in Fig. 9.2, where we summarize all the relevant LHC constraints explained in this
section.

Searches at lepton colliders

Even though our current most powerful high-energy collider is a hadronic one, it is important
to stress that lepton colliders are extremely relevant for HNL searches. Not only due to the
impressive sensitivities expected at future leptonic colliders such as the FCCee [506], but also
because HNL searches at LEP still provide the most relevant limits for some MN hypotheses.

The great advantage of a leptonic collider is its clean environment, in contrast with the
hadronic ones. In the case of LEP, they combined this cleanliness with the huge amount of
Z bosons they collected to search for HNLs produced in Z → νN processes. Moreover, they

2Having an undetected (anti)neutrino, it is not always possible to define a LNV or LNC process unambiguously.
Assuming the presence of a HNL that mixes only to electrons or to muons, as ATLAS did, the e±e±µ∓ and µ±µ±e∓
channels are originated only from LNV processes. However, this is not true anymore if the HNL mixes to both
flavors [468].
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Channel Lepton Flavor Experiment
√
s [TeV] L [fb−1] MN [GeV]

Prompt SS dilepton

pp→ `±
αN → `±

α `
±
β + nj

ee/µµ CMS’12 [500] 7 4.98 (50, 210)
µµ CMS’15 [501] 8 19.7 (40, 500)
ee/eµ CMS’16 [502] 8 19.7 (40, 500)
ee/µµ ATLAS’15 [503] 8 20.3 (100, 500)

ee/eµ/µµ CMS’18 [481] 13 35.9 (20, 1600)
µµ LHCb’20 [496] 7-8 3.0 (5, 50)

Prompt OS dilepton
pp→ `±

αN → `±
α `

∓
β + nj

µµ LHCb’20 [496] 7-8 3.0 (5, 50)

Prompt trilepton
pp→ `±

αN → `±
α `

±
β `

∓
γ ν

eee+ eeµ/µµµ+ µµe CMS’18 [504] 13 35.9 (1, 1200)
eeµ/µµe ATLAS’19 [497] 13 36.1 (5, 50)

Displaced trilepton

pp→ `αN, N → `β`γν

µ− eµ/µ− µµ ATLAS’19 [497] 13 32.9 (4.5, 10)
6 combinations of e, µ ATLAS’22 [498] 13 139 (3, 15)
6 combinations of e, µ CMS’22 [499] 13 138 (1, 20)

Table 9.1: HNL searches at the LHC, classified according to the type of signal searched for.
OS/SS are for opposite/same sign for the charges of final leptons and nj for a number n of final
jets.

considered both visible and semi-invisible HNL decays, such as monojet final states [507]:

e+e− → νN → ννqq̄ , (9.9)

with the qq̄ pair clustered as a single jet due to the large HNL boost (efficient forMN . 30 GeV).
For heavier masses, MN ∈ (30, 80) GeV, the signature is composed of two jets with or without a
charged lepton. Such a search would be very challenging at a hadronic collider. However, it has
the advantage of being sensitive to all flavors, including the mixing to the τ lepton, not explored
so far by LHC searches. The DELPHI results [507], derived for both long-lived and prompt light
HNLs, were not improved (for mixings to e and µ flavors) by LHC until very recently and still
dominate for some mass ranges (cf. Fig. 9.2).

Additionally, the L3 collaboration explored the heavy HNL regime by considering their pro-
duction via the t-channel W diagram [508]. This process dominates the heavy HNL production
at a e+e− collider running above the Z pole, although it is sensitive only to mixings to electrons.
The results by L3 still provide the strongest limits for masses between 100 and 200 GeV.

Despite the great effort in the search for HNLs by both LEP and LHC, it is important to
analyze their implications for realistic models introducing and motivating the existence of HNLs.
A common feature of all these searches is the assumption of a simplified scenario, most of the
time consisting on a single HNL mixing to a single lepton flavor, which is not the standard
hypothesis one would use from the theory side. To our knowledge, the only exceptions to these
simplifications are provided by the recent ATLAS search for long-lived HNLs that also considered
a minimal but realistic 2HNL scenario [498], and CMS searches for SS eµ final states [481,502],
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Figure 9.2: Summary of direct HNL searches performed at the LHC so far either by CMS
(dashed), ATLAS (dotted), or LHCb (dot-dashed), and grouped by colors for different kinds of
searches as given in Table 9.1. In the upper (lower) panel, a single mixing scenario to electrons
(muons) is assumed. The shadowed region covers the area excluded by direct searches at LEP.
Notice that below 2 GeV and above (approx.) 100 GeV, bounds from meson decays and from non-
unitarity of the lepton mixing [505] dominate respectively over current LHC bounds, although
we do not show them explicitly for easier reading of the collider results.

although still neglecting the mixing to taus. In the two following sections, we discuss the
importance of going beyond these simplified scenarios to explore more realistic scenarios.
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9.3 Beyond the single mixing assumption

As explained in the previous section, most of the LHC analyses are done assuming the existence
of just one HNL that mixes to a single flavor. We refer to this hypothesis as the single mixing
scenario. In this section, we consider deviations from this simplification and discuss their impli-
cations for reinterpreting the LHC bounds summarized in Fig. 9.2. In particular, we focus only
on prompt searches, while the implications for long-lived HNL were discussed in, for instance,
Ref. [460].

For simplicity, we still consider the presence of a single HNL (we will discuss deviations from
this hypothesis in the next section). However, we open the room for generic mixing patterns.
Moreover, we will follow a bottom-up approach where the SM is extended by ad-hoc masses
for the three active neutrinos, as required by oscillation phenomena and by the presence of the
additional HNL N . In particular, this framework is useful to study the collider phenomenology
of HNLs without assuming any specific underlying model or mechanism of light neutrino mass
and leptonic mixing generation. 3

In such a framework, the lepton mixing matrix is thus enlarged to a 4× 4 unitary matrix

Uν =
(
U3×3
νν U3×1

νN

U1×3
Nν U1×1

NN

)
, (9.10)

so the would-be-PMNS matrix Uνν is no longer a unitary matrix, a feature which is indeed used
to constrain these models [505]. The fourth column contains the HNL mixings to each flavor:

UTνN =
(
UeN , UµN , UτN

)
. (9.11)

For our discussion, it is interesting to parametrize this column as

UTνN =
√
U2 (εe, εµ, ετ ) , (9.12)

where U2 represents the total (squared) mixing of the HNL and the εα its flavor strengths, with
|εe|2 + |εµ|2 + |ετ |2 = 1. Notice that this framework is precisely the one considered by most
LHC analyses, the only difference being that they simplify it by setting the a priori non-relevant
mixings to zero. Here, we are interested in knowing how these bounds need to be modified in a
generic mixing pattern scenario.

The reason why we expect the bounds to be modified is twofold. The first reason is the
importance of the HNL decay width, which depends on every mixing UαN , and which plays a
major role in the resonant searches (on-shell produced HNL) we are interested in. This means
that the final cross sections will depend on all of the mixings, even on those flavors that are not
explicitly present in the charged leptons involved in the processes. The second reason is that

3Notice, however, that reproducing oscillation data in a given framework may introduce relations between the
HNL mass and mixings, shrinking the parameter space we will consider.
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for some channels, considering generic mixings could open new contributing diagrams which
could modify the distributions and thus the efficiencies of the searches as discussed thoroughly
in Ref. [468]. Complete expressions for the computation of the total decay width ΓN can be
found in Ref. [509]. For our purposes, we parameterize it as

ΓN = |UeN |2 ΓeN + |UµN |2 ΓµN + |UτN |2 ΓτN , (9.13)

where ΓαN stands for the sum of partial decay widths depending on the mixing UαN , after
factorizing the |UαN |2 dependence itself. Thus, ΓαN are independent of the mixings (at leading
order) and depend only on the HNL mass. Moreover, when the HNL is heavy enough so that
we can neglect charged lepton masses, we get ΓeN ' ΓµN ' ΓτN and thus

ΓN ∝
∑
α

∣∣UαN ∣∣2 = U2 . (9.14)

With this discussion in mind, we can now study how the different processes displayed in Table 9.1
depend on the HNL mixings. Let us start focusing on the dilepton channels, which are the most
straightforward cases, as we only need to track the effect of the HNL total decay width.

In the narrow width approximation (NWA), the processes with SS and same flavor dileptons
can be factorized in the production of the HNL together with a charged lepton, times its sub-
sequent decay to the same lepton plus jets. The first part depends only on the mixing to the
flavor of that lepton, but the second one involves all the mixings due to the HNL decay width.
More explicitly, we have

σ(pp→ `±αN → `±α `
±
α + nj) ∝ |UαN |2 BR(N → `±α jj) ∝

|UαN |4

ΓN
, (9.15)

or, assuming a heavy enough HNL,

σ(pp→ `±αN → `±α `
±
α + nj) ∝ U2 |εα|4 . (9.16)

Then, we clearly see that those bounds obtained in the single mixing benchmark (εα = 1) will be
relaxed in a general flavor scenario with a fixed U2 since, in general, we will have |εα|2 ≤ 1. This
is actually the expected behavior, as switching on other mixings opens for new decay channels,
so not every produced HNL will decay to the final state we are searching for.

We can repeat the exercise for the different flavor SS dilepton processes. Obviously, the
minimal setup in this case requires to have two non-zero mixings, leading to two diagrams that,
in principle, interfere. Nevertheless, using the narrow width approximation, we can see that
both diagrams cannot resonate at the same time, so we can neglect the interference and add
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process (prompt) Relevant parameters (Majorana HNL)
approx. complete dependence

pp→ `±
α `

±
α + nj U2 |εα|4

∣∣UαN ∣∣2 BR(N → `±
α jj)

pp→ `±
α `

±
β + nj U2 |εα|2 |εβ |2 |UαN |2 BR(N → `±

β jj) + |UβN |2 BR(N → `±
α jj)

pp→ `+
α `

+
α `

−
α + /ET U2 |εα|4 |UαN |2 BR(N → `+

α `
−
α ν̄α) + |UαN |2 BR(N → `−

α `
+
ανα)

pp→ `+
α `

+
α `

−
β + /ET U2 |εα|2 (|εα|2 + |εβ |2) |UαN |2 BR(N → `+

α `
−
β ν̄β) + |UαN |2 BR(N → `−

β `
+
ανα)

pp→ `+
α `

−
α `

+
β + /ET U2 |εα|2 (|εα|2 + 3|εβ |2) |UαN |2 BR(N → `−

α `
+
β ν ) + |UβN |2 BR(N → `−

α `
+
αν )

pp→ `+
α `

+
β `

−
γ + /ET U2

∑
i=α,β

|εi|2
(
1− |εi|2

)
|UαN |2 BR(N → `+

β `
−
γ ν ) + |UβN |2 BR(N → `+

α `
−
γ ν )

Table 9.2: Summary table for generic flavor dependences of dilepton and trilepton channels at
the LHC assuming a single Majorana HNL with generic mixing patterns. Flavor indices are
to be understood as different, i.e. α 6= β 6= γ. For trileptons, we are neglecting the effects of
differential distributions, as discussed in the text.

both processes incoherently:

σ(pp→ `±α `
±
β + nj) ∝

(
|UαN |2 BR(N → `±β jj) + |UβN |2 BR(N → `±α jj)

)
∝ |UαN |

2|UβN |2

ΓN
∝ U2 |εα|2 |εβ|2 . (9.17)

The case of the trilepton channels can be more involved, mainly because we cannot know the
lepton number and the flavor carried by the missing (anti)neutrino. Let us consider first the
case of same flavor trileptons. There are two contributing diagrams, one with a neutrino and
one with an antineutrino, which we can add incoherently. 4 Then, considering for simplicity a
W+ Drell-Yan channel, we have

σ(pp→ `+α `
+
α `
−
α + /ET ) ∝

(
|UαN |2 BR(N → `+α `

−
α ν̄α) + |UαN |2 BR(N → `−α `

+
α να)

)
. (9.18)

Notice that the first contribution is mediated by the Majorana nature of the HNL, while the
second one is of Dirac type. In principle, both contributions are identical when integrated over
the full phase space. However, different spin-correlations induce different angular distributions,
which might translate into different acceptances under a given experimental analysis. Still, both
channels have the same flavor dependence, and we can write

σ(pp→ `+α `
+
α `
−
α + /ET ) ∝ |UαN |2 BR(N → `α`ανα) ∝ |UαN |

4

ΓN
∝ U2 |εα|4 . (9.19)

4If light neutrinos are of Majorana nature, then there is an interference term, which is, however, negligible as
it is proportional to light neutrino masses.
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When the trilepton signal involves leptons of two different flavors, we need to consider two sub-
cases: the same-sign same-flavor (SSSF) and opposite-sign same-flavor (OSSF). These channels
are trickier because in a generic flavor pattern, there are new diagrams not present in the single
mixing scenario. For instance, in the case of the SSSF, we have two types of contributions:

Majorana-like: pp→ `+αN ,N → `+α `
−
β ν̄β ,

Dirac-like: pp→ `+αN ,N → `−β `
+
α να .

(9.20)

It is clear that the first process requires a Majorana HNL, while the second one needs mixings
to both flavors. As before, the interference is negligible, so we have

σ(pp→ `+α `
+
α `
−
β + /ET ) ∝

(
|UαN |2 BR(N → `+α `

−
β ν̄β) + |UαN |2 BR(N → `−β `

+
α να)

)
. (9.21)

Due to the missing (anti)neutrino, both processes are almost identical at the LHC, with the only
difference coming again from the different distributions and acceptances of the experimental
analysis. This was studied in detail in Ref. [468] for the case of light HNLs. Nevertheless, in
order to get a first rough estimate, we can neglect these differences and write

σ(pp→ `+α `
+
α `
−
β + /ET ) ∝ |UαN |2

|UαN |2 + |UβN |2

ΓN
∝ U2 |εα|2 (|εα|2 + |εβ|2) . (9.22)

The case of OSSF is similar, although now the roles of Majorana and Dirac HNLs are flipped:

Majorana-like: pp→ `+αN ,N → `+β `
−
α ν̄α ,

Dirac-like: pp→ `+αN ,N → `−α `
+
β νβ .

(9.23)

Moreover, since we are working in the prompt HNL regime, we can also have pp → `+βN,N →
`+α `
−
α

(–)

να. This means that a proper recasting of this kind of signals would require to compute
the efficiencies for all these diagrams. If, for the sake of this discussion, we neglect these effects
again, we get:

σ(pp→ `+α `
−
α `

+
β + /ET ) ∝

(
|UαN |2 BR(N → `−α `

+
β νβ) + |UαN |2 BR(N → `+β `

−
α ν̄α)

+ |UβN |2 BR(N → `−α `
+
α να) + |UβN |2 BR(N → `+α `

−
α ν̄α)

)
∝ |UαN |2

|UαN |2 + 3|UβN |2

ΓN
∝ U2 |εα|2 (|εα|2 + 3|εβ|2) . (9.24)
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process (prompt) Relevant parameters (Dirac HNL)
approx. complete dependence

pp→ `±
α `

∓
α + nj U2 |εα|4

∣∣UαN ∣∣2 BR(N → `±
α jj)

pp→ `±
α `

∓
β + nj U2 |εα|2 |εβ |2 |UαN |2 BR(N → `±

β jj) + |UβN |2 BR(N → `±
α jj)

pp→ `+
α `

+
α `

−
α + /ET U2 |εα|4 |UαN |2 BR(N → `−

α `
+
ανα)

pp→ `+
α `

+
α `

−
β + /ET U2 |εα|2|εβ |2 |UαN |2 BR(N → `−

β `
+
ανα)

pp→ `+
α `

−
α `

+
β + /ET U2 |εα|2 (|εα|2 + |εβ |2) |UαN |2 BR(N → `−

α `
+
β νβ) + |UβN |2 BR(N → `−

α `
+
ανα)

pp→ `+
α `

+
β `

−
γ + /ET U2 |εγ |2

(
1− |εγ |2

)
|UαN |2 BR(N → `−

γ `
+
β νβ) + |UβN |2 BR(N → `−

γ `
+
ανα)

Table 9.3: Same as Table 9.2, but for Dirac HNL. We give the OS dileptons in this case since
the SS ones are not sensitive to Dirac HNLs.

Finally, and even if no LHC searches have been performed so far, we can also consider the case
with three different flavors. Following the same steps, we get

σ(pp→ `+α `
+
β `
−
γ + /ET ) ∝

(
|UαN |2 BR(N → `+β `

−
γ ν̄γ) + |UαN |2 BR(N → `−γ `

+
β νβ)

+ |UβN |2 BR(N → `+α `
−
γ ν̄α) + |UβN |2 BR(N → `−α `

+
α να)

)
∝ U2

{
|εα|2

(
1− |εα|2

)
+ |εβ|2

(
1− |εβ|2

)}
. (9.25)

We summarize our discussion in Table 9.2. Here, we assume a Majorana HNL, although a
similar table can be easily obtained for a Dirac HNL just by switching off the LNV channels we
discussed above. This is done in Table 9.3. Notice that some channels that were designed for
Majorana HNLs are also sensitive to Dirac HNLs in the case of generic mixing patterns, as was
already discussed in Ref. [468].

These tables are to be compared with the minimal mixing scenario where all of the processes
scale as |UαN |2, or |UαN |2|UβN |2/(|UαN |2 + |UβN |2) for α 6= β. However, we see that, in general,
each process is sensitive to different combinations of mixing strengths. This means that, in order
to generalize the bounds to a generic pattern, it is better to set bounds on the quantity on the
last columns of Tables 9.2 and 9.3, since then we only need to recompute the new BRs for each
mixing hypothesis.

While there are some experimental works presenting bounds in the (MN , |UαN |2×BR) plane,
most of the results are given directly in the (MN , |UαN |2) one. Translating the latter to the former
is straightforward in most of the cases since the experimental collaborations usually assume a
constant BR 5 for the channel under study. Although not always specifying the precise value
they used. Nevertheless, this recasting to |UαN |2×BR is not possible when the experimental
results on |UαN |2 are presented after combining different channels. This is the case, for instance,

5This is a well-justified approximation, but still an approximation that could be avoided by setting bounds
directly on |UαN |2×BR.
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Figure 9.3: Rescaling of the bounds on |UµN |2 from CMS [481] (solid red line) and LHCb [496]
(solid blue line), fixing the active−sterile mixings to the values corresponding to the green points
1−4 in the ternary plot on the left. The orange squared point represents the single mixing case.

of the latest CMS searches for trileptons [504], where they combined channels like e±e±e∓ and
e±e∓µ∓ (see Table 9.1). While in the single mixing scenario both channels depend only on
|UeN |2, they have a different dependence in the case of a generic mixing scenario (see Table 9.2),
and thus it is not easy to recast the obtained bounds without a dedicated analysis. For this
reason, together with the potential efficiency differences discussed above, we will focus the rest
of our discussion only on the dilepton channels.

As a case of study for the use of Table 9.2, let us consider the CMS [481] and LHCb [496]
searches for the LNV dimuon channel µ±µ±. For a given total active-sterile mixing U2, we can
display the full flavor mixing space in a ternary diagram, as in the left panel of Fig. 9.3. Then,
the single mixing scenario constraints by both CMS and LHCb lie in the top corner. As we
move along the ternary diagram, we decrease the flavor strength to muons, so the bounds are
relaxed, as shown in the right panel (dashed lines). Here we chose just a few benchmark points
for the light HNL mass regime, although the same logic applies to the heavy one.

As discussed above, the physical reason for the relaxation of these bounds is due to the new
HNL decay channels in the generic mixing scenario. On the other hand, this also implies that
the experimental searches for other channels with different flavors might become relevant. In
order to show the interplay between different flavor channels, let us consider a ternary diagram
again. We can understand it as a subspace of the parameter space with fixed values of MN and
U2, which is dissected in flavor space. Then, searches for dimuon channels will cover the area
close to the εµ = 1 corner, becoming weaker as we move further away. Equivalently, dielectron
searches will cover the ternary from the εe = 1 corner, while the e±µ± channel will cover the
area in between. This is depicted in Fig. 9.4 for two benchmark points, one in the light regime
(MN = 30 GeV) and one in the heavy regime (MN = 300 GeV).
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Figure 9.4: Combination of several bounds in a general mixing pattern for two benchmark points
of mass MN and total mixing U2. Each bound corresponds to the latest SS dilepton searches
by CMS (Table 9.1), which were derived within a single mixing scenario (or assuming UτN for
the e±µ± channel). The white area is still allowed by LHC searches.

Fig. 9.4 clearly shows the complementarity of the different dilepton searches, to which we
could supplementarily add the bounds from trilepton channels if the above mentioned concerns
are solved. If the combination of every channel covered all the area of the ternary, we could say
that this (MN , U

2) point is excluded no matter which flavor mixing pattern we were considering.
This is not the case in any of the two examples in the figure since the bottom left corner is still
allowed by LHC. Notice that this is always the case at present, since there are no LHC searches
for HNLs mixing to the tau lepton, so the corner of ετ = 1 will always be allowed. Although we
already discussed that a single mixing scenario does not seem very natural for a realistic model
including HNLs, closing this gap still motivates the need of performing dedicated searches in
the tau sector.

On the other hand, it is important to stress that the benchmark points in Fig. 9.4 are
chosen just for illustrative purposes since they are already excluded by LEP searches or global
fit bounds. Indeed, this is actually the case in a large part of the parameter space for the
current LHC bounds discussed in Section 9.2. Nevertheless, it is worth emphasizing that LHC
sensitivities are expected to improve during the currently ongoing runs, pushing our knowledge
about HNLs beyond present limits. Therefore, combining the different LHC channels, as we
discussed here, will become crucial in order to determine whether a heavy neutral lepton with a
given mass and mixing is completely excluded or not.
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9.4 Beyond the single HNL

Should HNLs exist in Nature, there is a priori no bound on their number, and, in general, BSM
models involving HNLs do not introduce just one of them. For example, in the standard type-I
seesaw model, at least two HNLs are needed to explain neutrino oscillation data. In this work, in
order to explore deviations from the single HNL hypothesis, we extend the framework considered
in the previous section to include more neutral fermions focusing here on the minimal case of
SM extension via two HNLs. In this case, the lepton mixing matrix is now a 5×5 unitary matrix

Uν =
(
U3×3
νν U3×2

νN

U2×3
Nν U2×2

NN

)
, (9.26)

with the fourth and fifth columns encoding the mixings of both HNLs to the active leptons

UνN =


UeN1 UeN2

UµN1 UµN2

UτN1 UτN2

 . (9.27)

For the sake of simplicity, we will assume in this section that the two HNLs mix with just a
single flavor. In a sense, it can be seen as extending the interpretation of the bounds of Fig. 9.2
in horizontal in UνN , to additional columns, while in Section 9.3 we extended them in vertical,
to additional flavors. The most general case with several HNLs and arbitrary mixing patterns
can then be inferred as a combination of these two discussions.

In the case where only one of these HNLs is within experimental reach or when there are
several HNLs but with well-separated mass regimes, our conclusions derived following the single
HNL scenario will apply to each of the HNLs. Nevertheless, if two HNLs happen to be close
in mass (as motivated by low-scale seesaw models [173, 178, 510], resonant leptogenesis [511] or
ARS leptogenesis [512]), they could lead to interference effects and modify the results and the
bounds obtained in the single HNL hypothesis. Moreover, these modifications might affect both
LNV and LNC branching ratios, and thus studying their correlation could shed light on the
nature of the HNL (see [473] and references therein).

In this section, we discuss how these effects could affect the LHC bounds obtained in the
single HNL scenario from searches for LNV and LNC channels and provide a recipe to combine
both results (on LNV and LNC searches) in order to bring forth more robust bounds on the
HNLs parameter space. The recipe is also applicable to the case where HNLs interfere. We
mostly focus on the LHCb [496] results for the prompt dimuon channel, since this is the only
available analysis addressing both SS and OS dilepton channels (cf. Table 9.1). More specifically,
this search considers light HNLs which are dominantly produced from on-shell DY W bosons in
Fig. 9.1, that is,

pp→W+ → `+αNi → `+α `
+
β q q

′ , pp→W+ → `+αNi → `+α `
−
β q q

′ . (9.28)
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In the presence of just a single Majorana HNL, although the angular distributions will be different
(see Appendix I for more details), the predictions for the total rates of these two processes are
of similar size: equal for channels with α = β and twice as large for α 6= β. The reason for this
difference is that the channel with crossed `α and `β is also contributing in the case of the LNV
process. However, it must be added incoherently to the process since the rate is dominated by
on-shell HNLs, fixing the momentum of the first lepton with the 2-body decay kinematics, and
thus the interference becomes subdominant. This means that for channels with α 6= β, the total
rate for the LNV process is enhanced by a factor of 2 with respect to the LNC one. On the
other hand, in channels with α = β, there is an additional 1/2 factor from having two identical
particles, and thus we obtain the same total rate for both LNV and LNC.

When assuming the existence of two HNLs, we have two identical contributions to the total
amplitude of the processes, one for each Ni. The squared amplitude is, then, given as a sum
of the individual contributions of each HNL plus a potential interference between the N1 and
N2 contributions. For each individual contribution to the amplitudes, we find that they are
proportional to U∗αNiU

∗
βNi

for the SS process and to U∗αNiUβNi for the OS one, proving convenient
to define

UαNi = |UαNi | eiφαi , (9.29)

with φαi ∈ [0, 2π], α = e, µ, τ and i = 1, 2. In this way, the interference term resulting from
both amplitudes will be proportional to

|UαN1 | |UαN2 | |UβN1 | |UβN2 | eiδφ
±
, (9.30)

where we have defined δφ± as follows:

δφ± = (φα2 − φα1)± (φβ2 − φβ1) , (9.31)

with +/− for the SS/OS channel. Details with the complete analytical amplitude and decay
rates, which we have additionally checked with WHIZARD [513], can be found in Appendix I, both
for the case with just one HNL and with two HNLs.

As already stated, when the mass difference between the two HNLs is large (compared to
their decay width), the contribution of each HNL resonates independently, and the interference
is negligible. In this case, the total rates for the LNV and LNC rates are related as in the
case of the single HNL scenario. Therefore, in the following, we will assume the scenario where
the interference effects can modify considerably the relative predictions between LNV and LNC
rates, which corresponds to the case where both HNLs are close in mass. More specifically,
we assume that the individual contribution of each HNL is of similar size, MN1 ' MN2 ≡
MN ,ΓN1 ' ΓN2 ≡ ΓN , and also that |UαN2 | |UβN2 | = |UαN1 | |UβN1 |. However, we consider that
the two HNL mass splitting ∆MN ≡ MN2 −MN1 could be different from zero as long as it is
small compared to the decay width ΓN . Notice that this kind of scenario appears naturally in
low-scale seesaws due to the approximate lepton number conservation. The only differences are
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that, in these models, the phases of the HNLs are fixed to be opposite, i.e., δφ+ = π and δφ− = 0
(the heavy neutrinos forming a pseudo-Dirac neutrino pair), and that ∆MN is somehow related
to light neutrino masses [494, 495], while in the following we will let them free, in the spirit of
the bottom-up approach described before.

Under these conditions, we can write the total decay rate driven by the two HNLs in the
case of the W+ channel as

Γ
(
W+ → `+α `

±
β qq̄

′
)∣∣∣
N1&N2

= 2K+
(
y, δφ±

)
Γ
(
W+ → `+α `

±
β qq̄

′
)∣∣∣
N1

, (9.32)

and equivalently for the W− channel with K− (y, δφ±). Here, we have factorized the total rate
in presence of only one HNL and defined the modulation function

K±
(
y, δφ±

)
≡
(

1 + cos δφ± 1
1 + y2 ∓ sin δφ± y

1 + y2

)
, (9.33)

with
y ' ∆MN

ΓN
. (9.34)

The function K± codifies the role of the interference. In the limit of ∆MN � ΓN , the two
HNL are too separated in mass, coherence is lost, and the total contribution is just twice
the single HNL contribution for both LNV and LNC. On the other hand, for ∆MN < ΓN , the
modulation function can take values from 0 (maximally destructive interference) to 2 (maximally
constructive). Thus, we are maximizing the effects of the interference between the two HNLs.
Moreover, these effects will be different for LNV and LNC, breaking the equal size prediction in
the single HNL scenario.

These modulation functions can be used to simply recast the bounds derived by LHCb [496]
under the assumption of a single HNL. Noticing that LHCb searched only for the W+ channel
and given Eq. (9.15), to recast these bounds to our scenario with two HNLs, we need to rescale
the mixing as

|UµN |2 → |UµN |2 × 2K+
(
y, δφ±

)
, (9.35)

with δφ− = 0 in this channel with α = β. Following this modulation, we show in the left panel of
Fig. 9.5 how the LHCb bounds might vary, depending on the values of y and the relative phases
δφ+, for both LNV and LNC searches, which defines the green and blue bands, respectively. The
vertical axis needs to be understood now as the (squared) mixing of each of the HNLs to muons,
which in absence of interference (y � 1), is just a factor of two stronger with respect to the
single HNL scenario. For y � 1, however, constructive interference can strengthen the bounds
by up to an additional factor of two, while destructive interference could relax it, even avoid
it completely in the case of LNV signals. The latter corresponds to the case where δφ+ = π,
which is precisely when the two HNLs have opposite phases (thus forming a pseudo-Dirac pair),
as required by low-scale seesaws with approximate lepton number conservation. Interestingly,
the same choice of parameters that maximizes the destructive interference of LNV channels also
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Figure 9.5: Left: rescaling of the bounds on |UµN |2 from LHCb [496] in the presence of two
HNLs. The dark blue line is the LHCb bound in the LNC searches, while in lighter blue (lower
curve) is the rescaled bound for y = ∆MN/ΓN < 1. The dark green line is the bound in the
LNV searches, which can be relaxed (upper green region) if the N1,2 form a pseudo−Dirac pair
(δφ+ = π, y � 1), or strengthened (lower green region) if δφ+ = 0. Right: |UµN |2 as a function
of y, with MN = 30 GeV and δφ+ = π. The blue (green) region is for the LNC (LNV) channel
with the thick lines corresponding to the (rescaled) LHCb bounds to the case of a low-scale
seesaw with pseudo-Dirac HNL pair.

maximizes the constructive interference for the LNC ones, making the bounds from the latter
stronger.

This interplay prompts us to consider both channels at the same time, using their comple-
mentarity to set absolute bounds on the mixings that could not be avoided even with ad-hoc
values of the parameters that maximize the interference. We show this in the right panel of
Fig. 9.5 for a particular example of MN = 30 GeV and opposite phases, δφ+ = π, as required by
low-scale seesaws. When the contributions of the two HNLs are maximally coherent (y � 1),
the LNV searches are avoided at the price of maximizing the LNC bounds. If coherence is lost
(y � 1), then the stronger LNV bounds always dominate over the LNC ones. We see then that
the largest possible mixing could be obtained between the two cases when the two tendencies
cross over, which we can consider as an absolute bound on the mixing that cannot be avoided
even with two interfering HNLs.

To summarize, searches for LNC and LNV processes are important and complementary
since they can cover different areas of the parameter space even in cases where there is some
interference (partially) canceling any of the two channels. This strongly motivates the need
to search for both LNC and LNV channels in parallel, even if the latter is more challenging
experimentally since combining both of them could set more robust bounds on generic scenarios,
including more than one heavy neutral lepton.
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Figure 9.6: CP violating ratio A±CP, defined in Eq. (9.37), as function of the relevant ratio
y = ∆MN/ΓN and for different choices of the relative phases δφ±. Red dots were obtained with
WHIZARD as a cross-check of our analytical results.

CP violation

When a quasi-degenerated pair of HNLs is considered, new CP-violating phases are introduced,
which can induce differences in the decays of these particles to leptons over antileptons. If
HNLs were discovered in processes such as those in Eq. (9.28) and provided that enough events
were collected, one way of measuring this potential CP asymmetry would be by defining the
ratio [474]

A±CP =
BR

(
W− → `−α `

∓
β q̄q

′
)
− BR

(
W+ → `+α `

±
β qq̄

′
)

BR
(
W− → `−α `

∓
β q̄q

′
)

+ BR
(
W+ → `+α `

±
β qq̄

′
) . (9.36)

Using our previous results for theW decays, see Eq. (9.32), it is straightforward to see that A±CP
takes the simple form

A±CP = y sin δφ±

1 + y2 + cos δφ± , (9.37)

where +/− denotes again LNV/LNC processes.
As one can see, this equation does not depend on the HNL masses but on their mass difference

∆MN (through y = ∆MN/ΓN ). It vanishes for the obvious case of δφ± = 0, since then there is
no difference in both the W decay and its CP equivalent; notice that it is also the case when y
is close to zero or too large. This is shown in Fig. 9.6 where we display the CP asymmetry for
different values of δφ±.

Notice that a similar computation was performed in Ref. [474] with which our results agree
but with some slight differences. On the one hand, we find a discrepancy when applying the
narrow width approximation for the interference term (see Appendix I for more details). On the
other hand, we performed the computation considering very prompt heavy neutral leptons, so
we did not take into account their time evolution and their possible oscillations before decaying.
Our approach is appropriate for heavy HNLs, while one should take into account the evolution
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effect for very light HNLs with longer decay lifetimes, as it was done in Ref. [474]. Finally, we
also point out that, in order to measure ACP at a proton-proton collider, we must take into
account that the production rates for W+ and W− are not the same [474].

9.5 Conclusions

In this chapter, we focused on LHC searches of heavy neutral leptons that decay promptly (short-
lived). In most of the searches, which we summarized in Section 9.2, the obtained bounds were
derived under the hypothesis of the existence of a single (usually Majorana) HNL that mixes
with only one lepton flavor, while most of the BSM scenarios involving new neutral fermions
require more than one HNL. Moreover, unless some specific symmetries are present, the mixing
pattern in these BSM scenarios is more complex, each HNL mixing in general with all charged
leptons, and thus, the bounds derived from negative searches on the HNL parameter space have
to be recast before being applied to a generic BSM scenario.

In this study, we discussed how to recast the present experimental bounds on the parameter
space of HNLs, to the case of generic mixing to all active flavors as well as to the case with several
HNLs. The former was covered in Section 9.3, where we inspected the flavor dependencies of
each of the channels searched for by the LHC and stressed the importance of setting bounds not
only on the mixings but on the relevant combination of |UαN |2 × BR (see Tables 9.2 and 9.3).
Considering the bounds on this combination, we proposed a method to combine the results in
flavor space, using the ternary diagrams in Fig. 9.4 to conclude whether that area of parameter
space is fully excluded, regardless of the assumed mixing pattern.

In the case with several heavy neutral leptons, we focused on the scenario when two HNLs
are in the same mass regime, nearly degenerate or possibly forming a pseudo-Dirac neutrino pair,
paying special attention to the non-trivial role of the interference between their contributions.
To illustrate its importance, we focused on dilepton channels and moreover considered both
channels with the same and opposite charge of the final leptons, as it was done by LHCb [496].
We showed the complementarity of the LNC and LNV searches and the importance of performing
both of them in parallel. We stressed that, by doing this, we are not only taking into account
the two possible natures of a single HNL, Dirac or Majorana, but also covering the case when,
for example, two Majorana HNLs exist and however they interfere destructively, suppressing the
expected LNV signature.

To summarize, we have discussed the importance of going beyond simplified scenarios such
as the single mixing hypothesis. While they are useful for simplifying experimental analyses,
they are not directly applicable to BSM models introducing HNLs. Unfortunately, recasting the
current bounds of each experiment to a given BSM scenario can be tedious. In this work, we
have proposed an alternative way of presenting the constraints on the parameter space of the
HNLs, which, under some approximations, can be directly constrained by experimental analyses
and easily recast to a generic BSM scenario.
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Final Thoughts

The prediction of the Standard Model that neutrinos are massless stands as one of its most
significant limitations. The experimental observation of neutrino flavor oscillations directly
contradicts this theoretical result and constitutes the clearest evidence of physics beyond the
model. This phenomenon unequivocally confirms the existence of neutrino masses, although
tiny, and reveals the presence of mixing between them, implying that lepton flavor is violated.
Nevertheless, the mechanism responsible for generating their masses, as well as determining their
Dirac or Majorana nature, remains elusive, leaving researchers with a compelling motivation to
unravel these mysteries.

In Chapters 1 and 2, we have thoroughly discussed the need for going beyond the Stan-
dard Model of particle physics due to the existence of several anomalies that we present there.
However, the number of unresolved questions that the model cannot answer is vast, making it
impractical to address them all in a thesis. Instead, we have focused on selected problems that
are hinting at the presence of new physics in the lepton sector of the SM.

Most of the works presented in this thesis have focused on studying and proposing neutrino
mass models. In particular, neutrinos can acquire Majorana masses if the lepton number sym-
metry, L, is violated. This can happen both explicitly, just by adding lepton number violating
interactions or mass terms to the Lagrangian, or spontaneously. If the symmetry is global, the
latter includes a massless Goldstone boson, usually called the majoron, J . Motivated by this
possibility, in Chapter 3, we studied the possible impact of an ultralight scalar, a scalar much
lighter than the electron, on leptonic observables. Considering a model independent approach
that included both scalar and pseudoscalar interactions, we computed the leptonic observables
of interest analytically, including several 2- and 3-body charged lepton decays and the lepton
magnetic and electric dipole moments. However, the ultralight scalars that we considered were
leptophilic and it may also be interesting to allow these particles to have couplings with quarks.

Besides neutrino masses, more anomalies are currently demanding an explanation. One
example of these other anomalies is the long-standing discrepancy between experiments and
the SM prediction for the anomalous magnetic moments of the electron and the muon. Both
deviations can be accommodated by considering an extension of the inverse type-III seesaw with
a pair of vector-like leptons, as we have shown in Chapter 4. Although these deviations may be
due to a problem with the theoretical calculations, their possible connection to the neutrino mass
mechanism could shed light on the neutrino mass problem. The anomaly in the case of the muon
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was also addressed, although as a by-product, in Chapter 6. In this case, with a variation of the
type-I seesaw with a vector-like lepton and spontaneous Lepton Number Violation. However, this
model aimed to motivate the experimental search for charged lepton flavor violating processes,
proving that large rates for them, close to the experimental sensitivities, are common to some
neutrino mass models.

Other interesting deviations are the B flavor anomalies, with hints of lepton flavor univer-
sality violation. In Chapter 5, thanks to the introduction of a dark sector contributing to the
observables of interest, we achieved an economical explanation for these anomalies as well as for
the anomalous magnetic moment of the muon while generating neutrino masses and providing
a weakly-interacting dark matter candidate. However, in this Chapter, we just focused on the
b → s`` processes, leaving the anomalies in b → c`ν observables aside. Alternative versions of
this model, including a vector leptoquark and extending the gauge symmetry, may address both
deviations from the SM predictions at the same time.

Among the plethora of neutrino mass models, an appealing possibility are radiative models.
That is, models that induce neutrino masses at the loop level. What makes these models
interesting is that the suppression introduced by the loop factors allows us to accommodate
the observed neutrino mass scales with sizable couplings and relatively light mediators. In
addition, some of these radiative models include discrete symmetries connected to the generation
of neutrino masses that can be used to obtain a viable dark matter candidate. Regarding this
class of models, one of the first and (possibly) the most popular one is the Scotogenic model.
Many variations and extensions have been proposed since its appearance, and in Chapter 7, we
introduced the general Scotogenic model with arbitrary numbers of generations of the original
Scotogenic states. After computing the analytical expression for the neutrino mass matrix in
the general version of the model, we also studied its high-energy behavior. Also, in Chapter 8,
we proposed ultraviolet completions for the Scotogenic model in order to address some open
questions of it. Specifically, neutrino masses in this model are proportional to a small parameter
in the scalar potential, the so-called λ5 quartic term, and even though it is naturally small in
the sense of ’t Hooft, its smallness is not explained in the context of the model. In addition,
the dark Z2 parity is an ad-hoc symmetry. Therefore, in our completions, an explanation for
the smallness of the λ5 parameter is provided and the Z2 is obtained as a residual symmetry
from the spontaneous breaking of the lepton number symmetry U(1)L, which also implies the
existence of a majoron.

Finally, out of all the possibilities to generate neutrino masses, Heavy Neutral Leptons are
often present as building blocks of the mechanisms. The presence of these particles may modify
the charged and neutral currents if the leptonic mixing matrix not only includes the usual PMNS
matrix but also the active-HNL mixings. Of course, these modifications would imply an impact
on numerous observables, leading to abundant constraints on the new mixings. However, and
with very few exceptions, the large amount of available experimental bounds on HNLs have
been derived under the assumption of the existence of just a single (usually Majorana) sterile



205

fermion which only mixes with one lepton flavor. And this is not the case in most of the
new physics scenarios involving these particles, which usually have a complex mixing pattern
involving several HNLs. Therefore, in Chapter 9, we discussed how the available bounds on
the active-HNL mixings from LHC searches can be reinterpreted when it comes to considering
more generic mixing patterns. The main result was that the experimental constraints should be
presented in a particular way in order for them to be easily recast to any new physics scenario.

Summing up, along the thesis, we have presented and discussed several tree-level and radia-
tive neutrino mass models with both model building and phenomenological motivations. Partic-
ularly interesting are those models that connect the neutrino mass generation with explanations
for other important anomalies, such as those in the leptonic sector of the Standard Model or
the dark matter problem. In addition, numerous models that generate neutrino masses also
predict important lepton flavor violating rates. This emphasizes the importance of conducting
searches not only for potential particles that could explain the anomalies but also for processes
that violate lepton flavor.





Summary of the Thesis

In this part of the thesis, we will present a comprehensive overview of the work. It will include
an introduction and an outline of the research objectives, a description of the methodology used,
a summary of the main findings in each chapter, and the conclusions drawn from the thesis as
a whole.

Introduction

Physicists in the latter half of the 20th century developed what is now considered the most
precise and successful theoretical framework, the Standard Model of particle physics. This
model describes three of the four fundamental forces found in Nature: electromagnetism, weak,
and strong interactions. It is a relativistic quantum field theory that remains invariant under
the Lorentz group transformations, and it is based on gauge invariance under the symmetry
group

SU(3)C × SU(2)L ×U(1)Y . (1)

The forces are mediated by the exchange of spin-1 gauge bosons. The strong force is described
by the SU(3)C group and its 8 massless gauge fields, called gluons. In contrast, the electroweak
force is governed by the symmetry group SU(2)L × U(1)Y. This force is carried by 3 SU(2)L

W gauge bosons and 1 U(1)Y B gauge boson. Together, these four gauge bosons provide the
framework for the electroweak force, which unifies electromagnetism and weak forces.

Regarding the fermion content of the model, they can be grouped in different SU(2)L multi-
plets depending on the chirality of the fields. The left-handed particles are organized as SU(2)L

doublets while the right-handed ones are SU(2)L singlets:

(
νe

e

)
L

,

(
u

d

)
L

, eR , uR , dR . (2)

In addition, in the SM, the quarks and leptons have three families (or flavors) and the structure
of multiplets above is replicated three times.

The gauge group given by Eq. (1) represents the symmetry group of the SM, which forbids
any of the particles in the model from having mass terms in the Lagrangian. However, we know
from experiments that particles possess masses, necessarily implying that the symmetry must
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be broken. One can break a symmetry explicitly or spontaneously, but in the case of a gauge
symmetry, only the latter option is viable.

In the SM, spontaneous symmetry breaking is achieved through the Higgs mechanism. This
mechanism introduces a new scalar field with a scalar potential preserving the gauge symmetry,
but the ground state of the theory does not. 1 Since the electroweak symmetry is meant to be
spontaneously broken down to electromagnetism, U(1)Q, the simplest way to achieve this is by
introducing a doublet under SU(2)L with hypercharge Y = 1/2, known as the Higgs doublet:

H =
(
H+

H0

)
. (3)

The ground state of the SM is obtained once the Higgs doublet gets the appropriately chosen
Vacuum Expectation Value

〈H〉 = 1√
2

(
0
v

)
, (4)

breaking the gauge symmetry of the standard model spontaneously such that

SU(3)C × SU(2)L ×U(1)Y → SU(3)C ×U(1)Q . (5)

After the process of electroweak symmetry breaking, the gauge bosons of the weak interaction
and the fermion fields successfully and naturally get masses, as desired. However, the SM does
not include right-handed neutrinos, and as a result, neutrinos are predicted to be massless in
the theory. This leads to the conservation of lepton flavors within the model.

Although the SM is a highly successful theory that obeys a complex set of symmetries and
has earned its place among the greatest achievements of humanity, it still has some gaps that
need to be addressed. Some of the important issues that the theory faces include:

Neutrino masses Neutrinos in the SM are massless by construction, but neutrino oscillation
experiments have clearly established that this is not correct. This evidence is considered by
many to be the most robust indication of new physics beyond the Standard Model. As a result,
there is a need for an extension of the SM lepton sector with new degrees of freedom, which
typically lead to deviations in other observables, whether directly associated with leptons or not.

Dark matter The observation of the rotation curves of galaxies provides evidence for the
existence of dark matter, which is additional matter that we can not see but makes up approx-
imately 25 % of the energy content of the Universe. However, the nature of this matter is still
a mystery.

1The ground state of any theory is the state of minimum energy.
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Charged leptons anomalous magnetic moments The electron and muon anomalous mag-
netic moments have a long-standing discrepancy between the Standard Model predictions and
their experimental values. This suggests the presence of new states beyond the SM and calls for
a non-trivial extension of the model. The muon g − 2 has been considered in various contexts,
including models for neutrino mass generation and as a motivation for a muon collider. Further
measurements and refined theoretical calculations are needed to confirm the relevance of these
anomalies.

B flavor anomalies The B flavor anomalies refer to a set of observations involving B-meson
decays that do not match the theoretical predictions of the Standard Model. They are divided
into two types: neutral-current anomalies, which occur in b → s`` decays, and charged-current
anomalies, which are seen in b→ c`ν` decays. The first observation of these anomalies was made
about a decade ago, and since then, there has been an increase in the number of measurements,
which also showed significant deviations from the SM. Nevertheless, recent results from exper-
imental collaborations have reduced the discrepancies between the experimental measurements
and the SM predictions.

This first anomaly presented here is, perhaps, the most urgent problem of the model, so
we will delve further into the issue. Neutrino oscillations occur due to the fact that neutrino
mass eigenstates do not coincide with neutrino flavor eigenstates, and ones can be expressed
as a superposition of the others. Then, a neutrino traveling through space changes from one
flavor to another with a probability depending on the distance traveled, the neutrino energy, the
mass differences, and the mixing parameters. The values of the parameters that are measured,
with good precision, in neutrino oscillation experiments are summarized in Table 2.1, although
there are still some unknown questions in neutrino physics. For instance, we do not know the
precise number of neutrinos that exist, nor have we determined the neutrino mass ordering.
Additionally, the nature of neutrinos remains an unresolved question: specifically, whether they
are Dirac or Majorana particles.

From a model-independent point of view, the Weinberg operator OW is the lowest dimen-
sional operator, violating lepton number, that can be added to the SM Lagrangian in order
to generate Majorana masses for the neutrinos. There are three possible ways to generate the
Weinberg operator at tree-level in a renormalizable theory: through the well-known type I,
type II, and type III seesaw mechanisms. Thanks to the addition of a singlet fermion, a triplet
scalar, or a triplet fermion, respectively, these models can generate tiny neutrino masses by
means of huge new physics scales. Nevertheless, there are extensions of these scenarios, such as
the inverse seesaw mechanisms, where nearly conserved symmetries are used to relax the large
mass scales required. An interesting alternative to tree-level mechanisms are radiative neutrino
mass models, such as the famous Scotogenic model. In spite of requiring different mechanisms
and symmetries compared to the usual seesaw mechanisms, the suppression introduced by the
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loop factors allows us to accommodate the observed neutrino masses and mixings with sizable
couplings and relatively light mediators, typically leading to a richer phenomenology.

An interesting possibility for neutrino mass models is that non-zero masses for the neutrinos
can be originated due to the violation of lepton number, which can result in neutrinos being
Majorana particles. While it is possible to add explicit lepton number violating terms to the
Lagrangian of the model, it is also possible for the violation of lepton number to be spontaneous
in origin. This spontaneous symmetry breaking would generate a massless Goldstone boson
called the majoron. The presence of this boson in the particle spectrum of the theory may affect
the phenomenology.

Objectives

The main objective of this thesis has been to study BSMmodels primarily designed to explain the
origin of neutrino masses. Throughout the majority of the thesis, we have assumed that neutrinos
are Majorana particles, as is common in the scientific literature. In many of the chapters, we
have proposed variations of some of the standard seesaw and inverse seesaw mechanisms, as
well as explored the Scotogenic mechanism, which has played a significant role in constructing
several models in this thesis. In some cases, we aimed to connect the neutrino mass generation
to other anomalies mentioned above, while also considering the potential for sizable LFV rates
in the leptonic charged sector which is predicted by many extensions of the SM that generate
neutrino masses, even though there is no experimental evidence for such rates. This must be
used to constrain the parameter space of any model. This has been done in Chapters 4, 5, and 6.

In Chapter 3, we wanted to fulfill a minor objective of the thesis. As mentioned earlier,
when lepton number is spontaneously broken in a Majorana neutrino mass model, a massless
majoron appears. The presence of this particle can significantly impact the phenomenology of
the model and, depending on the nature of the majoron, lead to relevant lepton flavor violating
effects. Therefore, we aimed to study the potential contributions of this massless scalar to several
important observables considering a model-independent approach and generalizing the problem
to any ultralight scalar with arbitrary scalar and pseudoscalar couplings to the SM charged
leptons.

Chapters 7 and 8 had a slightly different objective than the previous ones. Here, we followed
an approach with a model building perspective. In the former, what we wanted to achieve was
to generalize the neutrino mass matrix of the Scotogenic model but for arbitrary numbers of
the Scotogenic states and also to study how different versions of the model could affect the high
energy behavior. On the other hand, in the latter, our goal was to list all the possible ultraviolet
completions, satisfying some conditions, of the Scotogenic model that could provide a natural
explanation to two open questions of the model.

Finally, many neutrino mass models predict the existence of Heavy Neutral Leptons that
mix with the active neutrinos. However, most of the experiments searching for these particles
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have set bounds assuming that only one HNL exists and it mixes just with one lepton flavor.
Therefore, in Chapter 9, we aimed to reinterpret the available bounds to a generic scenario with
more than one HNL mixing with all the lepton flavors.

Methodology

To conduct the study performed in this thesis, several tools and techniques, both theoretical and
computational, have been fundamental. In the following, we will be examining some of them.

First of all, being a thesis on theoretical particle physics, an advanced understanding of
quantum field theory is essential. Quantum field theory unifies the principles of special relativity,
which is the framework describing phenomena involving velocities close to that of light, and
quantum mechanics, which is the branch of mechanics studying the interactions of subatomic
particles at a microscopic scale. This, in combination with proficient mathematical skills, enables
us to accurately calculate the physical observables required for the research presented in this
thesis.

In terms of computer tools, Wolfram Mathematica has been the most important program
for the obtention of the results. Not only it has been useful for complex analytical manipulations
or obtention of numerical results, but it also has a number of integrated packages that make the
life of a particle physicist way easier. For example, the package Sym2Int is used to get all the
valid interactions permitted by the gauge and global symmetries and particle content of a given
theory. Then, once the Lagrangian of a model is known, the SARAH package helps you to build
it. It is able to calculate for you the vertices, mass matrices, tadpole equations, or the RGEs of
your model. It can also generate the source code needed for SPheno, a Fortran-based code that
allows for the numerical evaluation of analytical expressions obtained from SARAH. Additionally,
FeynCalc and PackageX are used for the symbolic evaluation of Feynman diagrams and algebraic
calculations in quantum field theory. The development of PackageX, however, has been recently
terminated due to insufficient funding. Occasionally, other programs such as WHIZARD, which
efficiently calculates multi-particle scattering cross sections and simulated event samples, and
the well-known Python have also been used.

Leptonic Observables and Standard Model Anomalies

Many physics scenarios contain scalar states, φ, that are either exactly massless or much lighter
than the electron. We refer to those particles as ultralight scalars. In Majorana neutrino mass
models including spontaneous lepton number violation, the majoron plays this role. While in
most scenarios including Goldstone bosons, they are pure pseudoscalar particles, in Chapter 3,
we took a model-independent approach, allowing for φ to have both scalar and pseudoscalar
couplings with the SM charged leptons. Motivated by generalization, we studied the possible
impact of these ultralight scalars on several purely leptonic observables. In most of the cases, we
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generalized previous results present in the literature, which frequently considered massive scalars
or just pure pseudoscalars. We revisited the decays `α → `β φ and `α → `β γ φ, where the scalar
φ is produced, and presented complete expressions for the radiative LFV decays `α → `β γ, as
well as for the 3-body decays `−α → `−β `

−
β `

+
β , `−α → `−β `

−
γ `

+
γ and `−α → `+β `

−
γ `
−
γ , where φ acts as a

mediator. Furthermore, we discussed the effect of ultralight scalars on anomalous magnetic and
electric dipole moments of charged leptons.

The effective Lagrangian parametrizing the most general interaction between the ultralight
scalar φ and a pair of charged leptons is given by

L``φ = φ `β
(
SβαL PL + SβαR PR

)
`α + h.c. , (6)

where no sum over the α and β charged lepton indices is performed, and all the possible fla-
vor combinations are considered: βα = {ee, µµ, ττ, eµ, eτ, µτ}. Also, SL,R are dimensionless
coefficients and most of the observables that we considered receive contributions from the usual
dipole and 4-fermion operators defined in Eqs. (3.2), (3.3), and (3.4).

Before computing the observables we were interested in, we wanted to derive experimental
bounds on the lepton flavor conserving interactions, whose couplings can be redefined as

Ldiag
``φ = φ `β

[
ReSββ − i ImSββ γ5

]
`β , (7)

with Sββ = SββL + Sββ∗R . The most stringent bounds on the diagonal couplings, shown in
Table 3.2, come from the phenomenon of stellar cooling. Scalar particles generated within
stars and subsequently emitted could act as a potent cooling mechanism, potentially leading to
discrepancies with astrophysical observations by altering the evolution of stars. Previous works
that studied astrophysical cooling by the emission of ultralight scalars have only considered
pure pseudoscalar couplings. However, one can estimate ReSββ .

[
ImSββ

]
max

by numerically
integrating the relevant cross sections for the cooling. It is worth noting that less stringent
bounds can be set on the lepton flavor conserving couplings through the 1-loop interaction of φ
with two photons.

After establishing the bounds on the diagonal couplings, we proceeded to compute analytical
expressions for the leptonic observables of interest and discussed possible phenomenological
directions. Of particular interest are the processes `α → `βφ, as the most powerful bounds on
the lepton flavor violating couplings of the ultralight scalar come from experimental searches
for these decays. These upper limits are shown in Table 3.2. Furthermore, searches for these
processes can also be used to set bounds on the couplings when the same observable with an
additional photon in the final state is considered. Due to the experimental finite resolution, it
is possible to integrate the phase space over the region that can be detected by the experiment,
allowing to set limits on the couplings, although milder.

On the other hand, the observables considered in the Chapter are indeed complementary. For
example, both LFV µ→ eγ and µ→ eee branching ratios can be used to determine the nature
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of the scalar φ by using the ratio defined in Eq. (3.74) if they are experimentally determined.
Additionally, these observables can shed light on the energy scale at which the new physics
effects are relevant or even on the relative intensity between the dipole interactions and those
of the ultralight scalar with charged leptons. Furthermore, we have found that the lepton flavor
conserving couplings Sββ could explain the electron and muon anomalous magnetic moments.
However, the values required for these couplings would conflict with astrophysical observations,
necessitating a mechanism to suppress the processes that gave rise to those constraints. Finally,
we have concluded that off-diagonal contributions would have only a minor impact.

Then, in Chapter 4, we were interested in whether the inverse type-III seesaw model, initially
designed to explain neutrino masses and mixings, could also account for the deviation of the
experimental values of the electron and muon anomalous magnetic moments from their theoret-
ically predicted values. However, we found that this scenario fails to explain the anomalies due
to a few reasons, and an alternative is required. Therefore, to address this issue, we proposed a
minimal extension to the model that introduced a pair of vector-like lepton doublets with sizable
couplings to electrons and muons. Our proposal had the necessary components to produce the
required contributions to both the electron and muon g − 2 anomalies while maintaining the
relevant features of the original model.

To confirm that the new version of the model was capable of explaining the g− 2 anomalies
while remaining compatible with neutrino oscillation data, we conducted a thorough analysis of
the parameter space of the model using a random scan approach. During the scan, we ensured
that all the accepted points were in agreement with constraints from both flavor and electroweak
precision data. Additionally, we checked that the decay widths for the processes Z → `+`− and
h → `+`−, with ` = e, µ, remained within the allowed range, with the former decay being a
strong constraint for our scenario. We also imposed bounds from collider searches on the masses
and couplings of the triplets, as no excess has been observed in searches for type-III seesaw
triplets at the LHC.

Fig. 4.4 demonstrates that our model can explain both electron and muon anomalies. In the
case of the electron, we can find valid points within the 1σ region allowed by all the experimental
constraints easily. In contrast, the muon g − 2 can only be addressed at the 1σ level in narrow
regions of the parameter space. Furthermore, Fig. 4.5 shows that the ∆aµ correlates clearly
with the combination (YΣ)ii (λL)i (λR)i /

[
(MΣ)i M2

L

]
, implying that the W contribution to the

anomalous magnetic moment of the muon is the dominant one. Lastly, our model predicts no
significant change in the Higgs decays to the charged leptons compared to their results in the
SM.

Next, in Chapter 5, we presented an efficient model that provides a unified explanation for
various indications of new physics, including non-zero neutrino masses, b → s transitions, the
anomalous magnetic moment of the muon, and the potential origin of dark matter. Our proposal
introduces several new fields: a singlet fermion N , two scalar doublets η, a singlet scalar φ, and a
doublet leptoquark S that is necessary to accommodate the b→ s`` anomalies. In this scenario,
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all these new particles are odd under a dark Z2 parity that is added to the model, while the SM
fields are even. One remarkable feature of this model is the presence of dark loops, with Z2-odd
states running within them, that induce all the new physics contributions to the anomalous
observables we aim to explain. Moreover, Majorana neutrino masses are generated at the 1-loop
level through a variation of the Scotogenic mechanism, as tree-level contributions are forbidden
by the presence of the Z2 symmetry.

In addition to explaining the aforementioned anomalies, the model must satisfy several exper-
imental constraints. Of course, neutrino oscillation data has to be correctly reproduced, although
this can be easily achieved by considering a properly adapted Casas-Ibarra parametrization to
our scenario. Another common concern in neutrino mass models is the risk of lepton flavor
violating processes. The model also faces constraints from various processes involving mesons,
the most relevant ones being b→ sγ, B → K(∗)νν̄, and Bs − B̄s mixing.

The goal of this Chapter was to demonstrate that our model can account for all the anomalies
while satisfying all the experimental constraints. To achieve this, we constructed a χ2-funcion
including the anomalous magnetic moment of the muon and the Wilson coefficients of the ef-
fective operators involved in the b− s anomalies. After fixing several parameters for simplicity,
we found the minimum value of the χ2-function to be χ2

min = 1.52, to be compared with the
SM value: ∆χ2 = χ2

SM − χ2
min = 21.23. The left-hand side of Fig. 5.2 shows the results of the

fit, revealing that the model parameters that were left free in the fit can vary significantly from
their best-fit values without causing a significant change in the χ2-function. However, µ → eγ

turns out to be a strong constraint in the model. Furthermore, the right-hand side of the Figure
shows that the model can easily achieve the central value of the observables fitted.

Chapter 6 concludes this part of the thesis. It was devoted to the study of charged lepton
flavor violation in a model with spontaneous lepton number breaking and, therefore, with a
majoron J . In this Chapter, we present a relatively simple model that generates significant off-
diagonal majoron couplings to charged leptons at tree-level. In addition to the SM symmetries,
this model imposes lepton number conservation and extends the particle content with a singlet
and a doublet scalars, three right-handed neutrinos, and an SU(2)L singlet vector-like lepton,
all of them with non-zero lepton number. After the spontaneous breaking of the EW and lepton
number symmetries, neutrinos acquire masses through a TeV-scale type-I seesaw mechanism.

As a consequence of the tree-level LFV couplings, the model exhibits sizable LFV rates
covering large regions of its parameter space, including the usual `α → `βγ and `α → 3`β
processes. This implies the existence of important constraints. Moreover, the inclusion of vector-
like fermions to the lepton sector of the SM has an impact on several observables, particularly
on the anomalous magnetic moment of the charged leptons and on their coupling to gauge
bosons. As a result, the model induces new contributions to the muon magnetic moment at the
1-loop level that can account for the observed anomaly in some ranges of its parameter space.
Regarding the couplings of the charged leptons to the Z boson, we made sure during the analysis
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that they lie within the allowed ranges. Lastly, the model can also lead to observable effects in
Higgs boson decays, especially in h→ µµ, and allows for Higgs decay in a pair of majorons.

Similarly to Chapter 4, here we randomly scanned the wide parameter space of the model
while computing the relevant observables for each point of the scan. Thanks to a Casas-Ibarra
parametrization, all the points were compatible with the current neutrino oscillation obser-
vations. As depicted in Fig. 6.2, our model can reach the experimental upper bounds on
BR(µ → eγ) and BR(µ → eJ), which are actually correlated. Additionally, the muon g − 2
can be explained in large parts of the parameter space of the model, even within 1σ, as shown
in Fig. 6.4, and we found significant deviations of the h → µµ branching ratio with respect to
its SM prediction, as illustrated in Fig. 6.5.

Model Building

In this part of the thesis, we adopted a model building perspective while relegating phenomenol-
ogy to a secondary role. It consists of two chapters, both of them centered on the Scotogenic
model.

The Scotogenic model, in its original version, features an inert scalar doublet η and three
copies of singlet fermionsN in addition to the particles of the SM. The model is also characterized
by a dark Z2 parity under which the new states are odd and the SM particles are even. However,
the choice for the number of generations of each new field is not unique, and to address this,
we have presented the general Scotogenic model in Chapter 7. This model allows for arbitrary
numbers of generations of the Scotogenic states.

The relevant Yukawa and bare mass terms for the discussion are

LN ⊃ ynaαNn ηa `
α
L + 1

2 MNn N
c
nNn + h.c. , (8)

where n = 1, . . . , nN , a = 1, . . . , nη and α = 1, 2, 3 are generation indices and nN and nη are
the number of copies of N and η, respectively, in the general version of the model. Particular
cases of the model can be labeled by their (nN , nη) values. Furthermore, one can also write the
important scalar potential terms

V ⊃
(
m2
η

)
ab
η†aηb+λab3

(
H†H

) (
η†aηb

)
+λab4

(
H†ηa

) (
η†bH

)
+ 1

2
[
λab5

(
H†ηa

) (
H†ηb

)
+ h.c.

]
. (9)

The main result of this Chapter is the derivation of the neutrino mass matrix in the general
version of the model. To simplify the computation, we made the assumption that CP is conserved
in the scalar sector of the model by considering that all the parameters in the scalar potential
are real. By doing this, we obtained an exact analytical expression for the mass matrix:

(mν)αβ = − 1
32π2

∑
A,a,b,c,n

MNn κ
2
A (VA)ba (VA)ca ynbα yncβ B0(0,m2

Aa ,MNn) . (10)
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Here, A = R, I and b and c can take the same values as a. B0(0,m2
Aa
,MNn) is the standard

Passarino-Veltman loop function introduced in Eq. (7.16), κR = 1, κI = i, and m2
R(I)a

and VR(I)

are the mass eigenvalues and diagonalization matrix of the mass matrix of the real (imaginary)
components of the neutral parts of ηa, respectively.

Although the exact dependence on the parameters of the model is not explicit in the exact
neutrino mass matrix, we can still obtain a useful approximate form by making reasonable
assumptions. Specifically, we assume that λaa3,4v

2/2 � (m2
η)aa and λab5 � λab3,4 � 1, with a 6= b.

By doing so, we have derived an approximate form for the neutrino mass matrix, which is the
main analytical result of the Chapter:

(mν)αβ = v2

32π2

∑
n,a,b

ynaα ynbβ
MNn

Γabn +O
(
λ2

5

)
+O

(
λ5 s

2
)
, (11)

where sab = 1/2(λab3 + λab4 )v2/(m2
b −m2

a) and m2
a = (m2

η)aa + (λaa3 + λaa4 )v2/2. We also defined
the dimensionless quantity

Γabn = δab λ
aa
5 fan − (1− δab)

[(
λaa5 fan − λbb5 fbn

)
sab −

M2
Nn

m2
b −m2

a

λab5 gabn

]
(12)

with the loop functions

fan =
M2
Nn

m2
a −M2

Nn

+
M4
Nn(

m2
a −M2

Nn

)2 log
M2
Nn

m2
a

, (13)

gabn = m2
a

m2
a −M2

Nn

log
M2
Nn

m2
a

− m2
b

m2
b −M2

Nn

log
M2
Nn

m2
b

. (14)

After demonstrating that our expression reduces to the mass matrices obtained in two previously
published results, the standard Scotogenic model and a variant that includes two η and one N ,
we studied the high-energy behavior of the model.

The conservation of the Z2 symmetry is essential for any version of the general Scotogenic
model to be consistent. Otherwise, neutrinos would acquire masses at tree-level, and the dark
matter candidate would no longer be stable. However, the running of the RGEs can alter the
shape of the scalar potential at high energies, leading to the breaking of Z2. This motivates the
study of the high energy behavior of the theory. We computed all the 1-loop β functions and
used them to numerically solve the complete set of RGEs. We focused on two specific versions
of the general Scotogenic model: the (3, 1) and (1, 3) models, where the former is the original
version of the model. Despite some particularities due to the different numbers of generations,
our main conclusion is that all the features of the original Scotogenic model are present in other
specific variants of the general model.

On the other hand, in the Scotogenic model, a small λ5 � 1 quartic parameter is required
to generate the correct scale of neutrino masses while having sizable Yukawa couplings and
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relatively light mediators. The smallness of this parameter is technically natural in the sense of ’t
Hooft, but it asks for an extension explaining it. In addition, the Z2 symmetry in the Scotogenic
model is considered an ad-hoc symmetry. Therefore, in Chapter 8, we wanted to classify the
possible ultraviolet completions leading to the Scotogenic model at low energies when integrating
out a heavy scalar field S and addressing these two issues. Specifically, we were interested in
UV scenarios where the Z2 appears as a remnant symmetry after the spontaneous breaking of a
U(1)L symmetry, where the L stands for lepton number. We also wanted the operator (H†η)2,
which is the λ5 term, to be forbidden in the UV theory due to lepton number. In contrast, an
operator of the form (H†η)2σn, with n ≥ 1, must be generated after integrating out the heavy
field. This operator induces an effective λ5 coupling, naturally suppressed by the large mass of
the scalar S, after the singlets acquire VEVs.

Focusing on possible tree-level completions of the λ5 operator using one or two different σ
singlets, we identified all the possible topologies in the UV theory that generate this operator, as
shown in Table 8.1. Of the five possible topologies, four include just one S propagator, leading
to a λ5 operator of the form Oλ5 = (H†η)2σAσB, suppressed by a factor 1/m2

S . In contrast, the
remaining topology has two S propagators and generates the operator Oλ5 = (H†η)2σ2

AσBσC ,
now suppressed by 1/m4

S . It is worth noting that these generic expressions include cases where
some σ insertions correspond to the same field, as well as cases where one of the σ insertions
is missing. We explored all the possibilities and found 50 different variations that satisfy the
previous requirements. However, it is important to note that the lepton numbers of the fields in
all these variations must take specific values to prevent η from acquiring a VEV and to generate
the correct Z2 parity.

In this Chapter, we discussed three illustrative example models. The phenomenology of these
models, as well as of the rest of variations, is expected to be very rich. Due to the spontaneous
breaking of lepton number, the models predict the existence of a massless majoron and other
new massive scalars. We derived analytical expressions for the couplings of the majoron to the
charged leptons, including both lepton flavor conserving and violating interactions. Furthermore,
the models have potential signatures in collider searches and offer interesting implications for
dark matter compared to the standard Scotogenic model, as they contain additional states.

Collider Searches

Chapter 9 was the final chapter of the thesis, and there we focused on short-lived heavy neutral
lepton searches at high-energy colliders, primarily at the LHC. Our interest was in the fact that
the HNL bounds, with very few exceptions, are derived by experimental collaborations under
the assumption of a single HNL that mixes with only one lepton flavor. However, this is not the
case in most of the BSM scenarios involving this kind of particles, where the mixing pattern can
be quite complex. In this Chapter, we aimed to address this issue by discussing how to recast
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the existing experimental limits on HNLs to a scenario that involves generic mixings to all the
lepton flavors and with several HNLs.

Initially, we explored the scenario of a single HNL but allowing it to mix with all three lepton
flavors. Typically, the experimental limits on HNL searches are presented in the

(
MN , |UαN |2

)
plane, where UαN , with α = e, µ, τ represents the active-sterile mixings, and MN denotes the
HNL mass. However, we wanted to emphasize that to generalize the bounds, it is better to
present them in the

(
MN , |UαN |2 × BR

)
plane. This is because, this way, one only has to com-

pute the new branching ratios for their particular mixing hypothesis. While most of the works
present their results using the former possibility, translating it to the latter is straightforward
when the experimental collaboration assumes a constant BR for the channel they study, al-
though they do not always specify its value. Nevertheless, the recasting is not possible when
the results are obtained after combining different channels.

In principle, there is no restriction on the number of HNLs that a model can have. If only
one of the HNLs is within the reach of current experiments, or if there are multiple HNLs but
with distinct mass regimes, then the conclusions drawn from the analysis of the single HNL
scenario can be applied to each of the HNLs. However, when two HNLs have similar masses,
interference effects may occur, potentially altering the results and bounds obtained under the
assumption of just one HNL. For simplicity, we focused on the scenario with two HNLs close in
mass. To better illustrate the importance of the interference, we focus on the LHCb results for
the prompt dimuon channel, considering both same sign and opposite sign dilepton channels.
This way, we were able to show that LNC and LNV searches are important and complementary,
and they should be performed in parallel.

Conclusions

Neutrino mass models are arguably the best motivated extensions of the Standard Model of
particle physics. Although neutrino oscillation experiments have confirmed that they are mas-
sive, the mechanism behind the generation of their masses is a mystery. In this thesis, we have
presented several models specially focused on generating neutrino masses, both at tree-level and
radiatively. Of particular interest are those models that not only provide masses to neutrinos
but also connect them with explanations for other outstanding issues in particle physics, such
as the origin of dark matter, the anomalous magnetic moment of the charged leptons, or the B
flavor anomalies. Moreover, many neutrino mass models predict substantial lepton flavor vio-
lating interactions, highlighting the importance of searching not only for the possible particles
involved in generating neutrino masses but also for lepton flavor violating processes.



Resum de la Tesi

En aquesta part de la tesi, oferirem una visió general i completa del treball. Inclourà una
introducció i una descripció dels objectius de la investigació, una explicació detallada de la
metodologia utilitzada, un resum de les principals troballes en cada capítol i les conclusions
extretes de la tesi com un tot.

Introducció

Els físics de la segona meitat del segle XX van desenvolupar el que ara es considera el marc
teòric més precís i reeixit, el Model Estàndard (ME) de la física de partícules. Aquest model
descriu tres de les quatre forces fonamentals que es troben en la naturalesa: electromagnetisme,
interaccions febles i fortes. És una teoria de camps quàntics relativista que roman invariant sota
les transformacions del grup de Lorentz, i es basa en la invariància de gauge sota el grup de
simetria.

SU(3)C × SU(2)L ×U(1)Y . (1)

Les forces són mediades per l’intercanvi de bosons de gauge de spin-1. La força forta es descriu
pel grup SU(3)C i els seus 8 camps de gauge sense massa, anomenats gluons. D’altra banda, la
força electrofeble està governada pel grup de simetria SU(2)L × U(1)Y. Aquesta força és trans-
mesa per 3 bosons de gauge W de SU(2)L i 1 bosó de gauge B de U(1)Y. Junts, aquests quatre
bosons de gauge proporcionen el marc per a la força electrofeble, que unifica l’electromagnetisme
i les forces febles.

Pel que fa al contingut fermiònic del model, es poden agrupar en diferents multiplets de
SU(2)L depenent de la quiralitat dels camps. Les partícules esquerres s’organitzen en doblets de
SU(2)L, mentre que les dretes són singlets de SU(2)L:(

νe

e

)
L

,

(
u

d

)
L

, eR , uR , dR . (2)

A més a més, en el ME, els quarks i leptons tenen tres famílies (o sabors) i l’estructura dels
multiplets anteriorment descrits es replica tres vegades.

El grup de gauge donat per l’Eq. (1) representa el grup de simetria del ME, el qual prohibeix
que cap partícula del model puga tindre termes de massa al lagrangià. No obstant això, sabem
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per experiments que les partícules tenen masses, el que implica necessàriament que la simetria
ha de ser trencada. Un pot trencar una simetria explícitament o espontàniament, però en el cas
d’una simetria de gauge, només la segona opció és viable.

En el ME, la ruptura espontània de la simetria s’aconsegueix a través del mecanisme de
Higgs. Aquest mecanisme introdueix un nou camp escalar amb un potencial escalar que preserva
la simetria de gauge, però l’estat fonamental de la teoria no ho fa. 1 Donat que es pretén que
la simetria electrofeble es trenque de manera espontània fins a l’electromagnetisme, U(1)Q,
la manera més senzilla d’aconseguir-ho és introduint un doblet sota SU(2)L amb hipercàrrega
Y = 1/2, conegut com el doblet de Higgs:

H =
(
H+

H0

)
. (3)

L’estat fonamental del ME s’obté quan el doblet de Higgs adquireix l’adequadament triat Valor
d’Expectació del Buit (VEB)

〈H〉 = 1√
2

(
0
v

)
, (4)

trencant la simetria de gauge del ME de manera espontània, de tal manera que

SU(3)C × SU(2)L ×U(1)Y → SU(3)C ×U(1)Q . (5)

Després del procés de ruptura de simetria electrofeble, els bosons de gauge de la interacció feble
i els camps fermiònics adquireixen masses amb èxit i de manera natural, com es desitjava. No
obstant això, el ME no inclou neutrins drets i, per tant, els neutrins són predits com no massius
en la teoria. Això porta a la conservació dels sabors leptònics dins del model.

Encara que el ME és una teoria altament exitosa que compleix un conjunt complex de
simetries i ha guanyat el seu lloc entre els grans èxits de la humanitat, encara té algunes llacunes
que cal abordar. Algunes de les qüestions importants a les que s’enfronta la teoria inclouen:

Masses dels neutrins Els neutrins en el ME són sense massa per construcció, però els ex-
periments d’oscil·lacions de neutrins han establert clarament que això no és correcte. Aquesta
evidència és considerada per molts com la indicació més robusta de nova física més enllà del ME.
Com a resultat, hi ha la necessitat d’una extensió del sector leptònic del model amb nous graus
de llibertat, que típicament porten a desviacions en altres observables, ja siguen directament
associats amb leptons o no.

Matèria fosca L’observació de les corbes de rotació de galàxies proporciona evidència de
l’existència de matèria fosca, que és una matèria addicional que no podem veure, però que

1L’estat fonamental de qualsevol teoria és l’estat d’energia mínima.
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constitueix aproximadament el 25 % del contingut energètic de l’Univers. No obstant això, la
naturalesa d’aquesta matèria encara és un misteri.

Moments magnètics anòmals dels leptons carregats Els moments magnètics anòmals
de l’electró i el muó tenen una discrepància que ha persistit durant molt de temps entre les
prediccions del ME i els seus valors experimentals. Això suggereix la presència d’estats nous
més enllà del ME i demana una extensió no trivial del model. El valor del g − 2 del muó ha
estat considerat en diversos contextos, incloent models per a la generació de la massa del neutrí i
com a motivació per a un col·lisionador de muons. Són necessàries mesures addicionals i càlculs
teòrics refinats per confirmar la rellevància d’aquestes anomalies.

Anomalies de sabor delsB Les anomalies de saborB es refereixen a un conjunt d’observacions
que involucren desintegracions de mesons B que no coincideixen amb les prediccions teòriques
del ME. Es divideixen en dos tipus: anomalies de corrent neutral, que es produeixen en les desin-
tegracions b→ s``, i anomalies de corrent carregat, que es veuen en les desintegracions b→ c`ν`.
La primera observació d’aquestes anomalies es va fer fa una dècada, de llavors ençà hi ha hagut
un augment en el nombre de mesures, que també van mostrar desviacions significatives del ME.
No obstant, resultats recents de col·laboracions experimentals han reduït les discrepàncies entre
les mesures experimentals i les prediccions del ME.

La primera anomalia presentada ací és, potser, el problema més urgent del model, així que
aprofundirem més en el tema. Les oscil·lacions de neutrins es produeixen pel fet que els estats
propis de neutrins de massa no coincideixen amb els estats propis de sabor de neutrins, i els uns es
poden expressar com una superposició dels altres. Així, un neutrí que viatja pel espai canvia d’un
sabor a un altre amb una probabilitat que depén de la distància recorreguda, l’energia del neutrí,
les diferències de massa i els paràmetres de mescla. Els valors dels paràmetres que es mesuren,
amb bona precisió, en experiments d’oscil·lacions de neutrins es resumixen a la Taula 2.1, tot
i que encara hi ha preguntes sense resposta en la física de neutrins. Per exemple, no sabem el
nombre exacte de neutrins que existeixen, ni hem determinat l’ordre de massa dels neutrins. A
més, la naturalesa dels neutrins segueix sent una qüestió sense resoldre: específicament, si són
partícules de Dirac o de Majorana.

Des d’una perspectiva independent del model, l’operador de Weinberg OW és l’operador de
menor dimensió que viola el nombre leptònic i que es pot afegir al lagrangià del ME per a generar
masses de Majorana per als neutrins. Hi ha tres maneres possibles de generar l’operador de
Weinberg a nivell d’arbre en una teoria renormalitzable: a través dels mecanismes ben coneguts
del tipus I, tipus II i tipus III de balancí. Gràcies a l’addició d’un fermió singlet, un escalar triplet
o un fermió triplet, respectivament, aquests models poden generar masses de neutrins minúscules
mitjançant grans escales de nova física. No obstant això, hi ha extensions d’aquests escenaris,
com els mecanismes de balancí invers, on s’utilitzen simetries quasi conservades per relaxar les
grans escales de masses requerides. Per altra banda, una alternativa interessant als mecanismes
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a nivell d’arbre són els models de masses radiatives de neutrins, com el famós model Scotogenic.
Malgrat requerir mecanismes i simetries diferents en comparació amb els mecanismes de balancí
habituals, la supressió introduïda pels factors de bucle ens permet acomodar les masses i les
barreges de neutrins observades amb acoblaments grans i mediadors relativament lleugers, que
típicament porten a una fenomenologia més rica.

Una possibilitat interessant per als models de massa dels neutrins és que les masses no
nul·les dels neutrins puguen originar-se per la violació del nombre leptònic, el que pot resultar
en neutrins sent partícules de Majorana. Tot i que és possible afegir termes explícits que violen el
nombre leptònic al lagrangià del model, també és possible que la violació del nombre leptònic siga
d’origen espontani. Aquesta simetria trencada espontàniament generaria un bosó de Goldstone
sense massa anomenat majoron. La presència d’aquest bosó en l’espectre de partícules de la
teoria pot afectar la fenomenologia.

Objectius

L’objectiu principal d’aquesta tesi ha estat estudiar models més enllà del ME dissenyats princi-
palment per explicar l’origen de les masses dels neutrins. Durant la major part de la tesi, hem
assumit que els neutrins són partícules de Majorana, com és comú en la literatura científica. En
molts dels capítols, hem proposat variants dels mecanismes estàndard de balancí i de balancí
invers, així com explorat el mecanisme Scotogenic, que ha jugat un paper important en la con-
strucció de diversos models d’aquesta tesi. En alguns casos, hem buscat connectar la generació
de masses dels neutrins amb altres anomalies esmentades anteriorment, considerant també els
ràtios potencialment grans de processos que violen la simetria de sabor leptònic en el sector
leptònic carregat, cosa que és predita per moltes extensions del ME que generen masses per als
neutrins, encara que no hi ha evidència experimental d’aquestes ràtios. Això s’ha d’utilitzar per
a restringir l’espai de paràmetres de qualsevol model. Tot això s’ha realitzat en els capítols 4,
5, i 6.

Al Capítol 3, volguérem aconseguir un objectiu menor de la tesi. Com s’ha esmentat anteri-
orment, quan la ruptura espontània del nombre leptònic es produeix en un model de massa de
neutrins de Majorana, apareix un majoron sense massa. La presència d’aquesta partícula pot
impactar significativament la fenomenologia del model i, depenent de la naturalesa del majoron,
portar a efectes rellevants de violació de sabor leptònic. Per això, vam estudiar les possibles
contribucions d’aquest escalar no massiu a diversos observables importants, considerant una
enfocament independent del model i generalitzant el problema a qualsevol escalar ultralleuger
amb acoblaments escalars i pseudescalars arbitraris amb els leptons carregats del SM.

Els capítols 7 i 8 tenien un objectiu lleugerament diferent als anteriors. Ací, seguírem un
enfocament amb una perspectiva de construcció de models. En el primer, el que volíem acon-
seguir era generalitzar la matriu de massa dels neutrins del model Scotogenic per a nombres
arbitraris d’estats scotogenics i també estudiar com diferents versions del model podrien afectar
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al comportament a altes energies. D’altra banda, en el segon capítol, la nostra meta era llistar
totes les possibles extensions ultravioleta, satisfent certes condicions, del model Scotogenic que
podrien proporcionar una explicació natural a dos preguntes obertes del model.

Finalment, molts models de masses de neutrins prediuen l’existència de Leptons Neutrals
Pesats (HNL per les sigles en anglés) que es barregen amb els neutrins actius. No obstant això,
la majoria dels experiments que busquen aquestes partícules han establert límits suposant que
només existeix un HNL i que es barreja només amb un sabor de leptons. Per això, al Capítol 9,
vam proposar com reinterpretar els límits disponibles per al cas genèric amb més d’un HNL que
es barreja amb tots els sabors de leptons.

Metodologia

Per dur a terme l’estudi realitzat en aquesta tesi, diverses eines i tècniques, tant teòriques com
computacionals, han estat fonamentals. A continuació, examinarem algunes d’elles.

Primer de tot, com que aquesta tesi és de física teòrica de partícules, és essencial tenir
un coneixement avançat de la teoria quàntica de camps. Aquesta unifica els principis de la
relativitat especial, que és el marc que descriu fenòmens que involucren velocitats properes a la
de la llum, i la mecànica quàntica, que és la branca de la mecànica que estudia les interaccions de
les partícules subatòmiques a escala microscòpica. Això, combinat amb habilitats matemàtiques
competents, ens permet calcular amb precisió els observables físics necessàris per a la recerca
presentada en aquesta tesi.

Pel que fa a les eines informàtiques, Wolfram Mathematica ha estat el programa més impor-
tant per a l’obtenció dels resultats. No només ha sigut útil per a la manipulacións analítiques
complexes o l’obtenció de resultats numèrics, sinó que també té bastants paquets integrats que
fan la vida d’un físic de partícules molt més fàcil. Per exemple, el paquet Sym2Int s’utilitza per
obtenir totes les interaccions vàlides que permeten les simetries locals i globals i el contingut
de partícules d’una teoria determinada. A continuació, una vegada es coneix el lagrangià d’un
model, el paquet SARAH t’ajuda a construir-lo. És capaç de calcular per a tu els vèrtexs, les
matrius de masses, les equacions de tadpole o les RGEs del teu model. També pot generar
el codi font necessari per a SPheno, un programa basat en Fortran que permet l’avaluació
numèrica d’expressions analítiques obtingudes de SARAH. A més, FeynCalc i PackageX s’utilitzen
per a l’avaluació simbòlica de diagrames de Feynman i càlculs algebraics en teoria quàntica
de camps. No obstant, el desenvolupament de PackageX ha estat recentment interromput a
causa d’una manca de finançament. Ocasionalment, també s’han utilitzat altres programes com
WHIZARD, que calcula eficientment seccions eficaces de dispersió de múltiples partícules i mostres
d’esdeveniments simulats, i el ben conegut Python.
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Observables Leptònics i Anomalies del Model Estàndard

Molts escenaris de física contenen estats escalars, φ, que són o bé exactament no massius o
molt més lleugers que l’electró. Ens referim a aquestes partícules com a escalars ultralleugers.
En models de masses de neutrins de Majorana que inclouen violació espontània del nombre
leptònic, el majoron exerceix aquest paper. Mentre que en la majoria d’escenaris que inclouen
bosons de Goldstone, aquestes partícules són pseudoescalars purs, al Capítol 3, vam adoptar
una perspectiva independent del model, permetent que φ tinga acoblaments tant escalars com
pseudoescalars amb els leptons carregats del ME. Motivats per la generalització, vam estudiar
el possible impacte d’aquests escalars ultralleugers en diversos observables purament leptònics.
En la majoria dels casos, vam generalitzar resultats anteriors presents a la literatura, que sovint
consideraven escalars massius o només pseudoescalars purs. Revisitàrem les desintegracions
`α → `β φ i `α → `β γ φ, on es produeix l’escalar φ, i presentàrem expressions completes per a les
desintegracions radiatives `α → `β γ, així com per a les desintegracions de 3 cossos `−α → `−β `

−
β `

+
β ,

`−α → `−β `
−
γ `

+
γ i `−α → `+β `

−
γ `
−
γ , on φ actua com a mediador. A més, vam discutir l’efecte

dels escalars ultralleugers en els moments dipolars magnètics i elèctrics anòmals dels leptons
carregats.

El lagrangià efectiu que parametritza la interacció més general entre l’escalar ultralleuger φ
i un parell de leptons carregats ve donat per

L``φ = φ `β
(
SβαL PL + SβαR PR

)
`α + h.c. , (6)

on no es fa cap suma sobre els índexs dels leptons carregats α i β, i es consideren totes les
combinacions de sabor possibles: βα = {ee, µµ, ττ, eµ, eτ, µτ}. A més, SL,R són coeficients adi-
mensionals i la majoria dels observables que vam considerar reben contribucions dels operadors
usuals de dipol i 4-fermions definits a les Eqs. (3.2), (3.3), i (3.4).

Abans de calcular els observables que ens interessaven, volíem obtenir lligams experimentals
per a les interaccions que conserven el sabor dels leptons, les quals es poden redefinir com a

Ldiag
``φ = φ `β

[
ReSββ − i ImSββ γ5

]
`β , (7)

amb Sββ = SββL +Sββ∗R . Els límits més exigents per als acoblaments diagonals, que es mostren a
la Taula 3.2, provenen del fenomen del refredament estel·lar. Les partícules escalars generades
dins les estreles i posteriorment emeses podrien actuar com a mecanisme potent de refredament,
el que podria portar a discrepàncies amb les observacions astrofísiques en alterar l’evolució de
les estreles. Treballs anteriors que van estudiar el refredament astrofísic per l’emissió d’escalars
ultralleugers només consideraren acoblaments purament pseudescalars. No obstant això, es
pot estimar ReSββ .

[
ImSββ

]
max

mitjançant la integració numèrica de les seccions eficaces
rellevants per al refredament. Cal destacar que lligams alternatius menys exigents es poden
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establir en els acoblaments que conserven el sabor dels leptons a través de la interacció d’1-bucle
de φ amb dos fotons.

Després d’establir els límits en els acoblaments diagonals, vam procedir a calcular expressions
analítiques per als observables leptònics d’interès i discutírem possibles direccions fenomenològiques.
D’interès particular són els processos `α → `βφ, ja que els límits superiors més potents en els
acoblaments de l’escalar ultralleuger que violen sabor leptònic provenen de les recerques exper-
imentals per a aquestes desintegracions. Aquests límits superiors es mostren en la Taula 3.2. A
més, les recerques d’aquests processos també es poden utilitzar per establir límits quan s’estudia
el mateix observable amb un fotó addicional en l’estat final. Degut a la resolució finita exper-
imental, és possible integrar l’espai de fases en la regió que es pot detectar per l’experiment,
permetent establir límits en els acoblaments, tot i que més suaus.

D’altra banda, els observables considerats al Capítol són complementaris. Per exemple, tant
les tases de decaïment de µ→ eγ com de µ→ eee, que violen sabor leptònic, es poden utilitzar
per determinar la naturalesa de l’escalar φ utilitzant la relació definida a l’Eq. (3.74) si ambdues
es determinen experimentalment. A més a més, aquests observables poden aclarir l’escala en-
ergètica en què són rellevants els efectes de nova física o fins i tot la intensitat relativa entre les
interaccions dipol i aquelles de l’escalar ultralleuger amb els leptons carregats. Adicionalment,
hem trobat que els acoblaments que conserven el sabor dels leptons Sββ podrien explicar els
moments magnètics anòmals de l’electró i del muó. No obstant això, els valors necessaris per
a aquests paràmetres entrarien en conflicte amb les observacions astrofísiques, i seria necessari
un mecanisme per suprimir els processos que van donar lloc a aquestes restriccions. Finalment,
hem conclòs que les contribucions fora de la diagonal tindrien només un impacte menor.

A continuació, al Capítol 4, estiguérem interessats a saber si el model de balancí invers de
tipus III, dissenyat inicialment per explicar les masses i mescles dels neutrins, també podria
explicar la desviació dels valors experimentals dels moments magnètics anòmals de l’electró i el
muó respecte dels seus valors teòricament predits. No obstant, vam trobar que aquest escenari no
és capaç d’explicar les anomalies per diverses raons, i és necessària una alternativa. Per abordar
aquesta qüestió, vam proposar una extensió mínima del model que introduïa un parell de doblets
de leptons vectorials amb acoblaments considerables a electrons i muons. La nostra proposta
tenia els components necessaris per produir les contribucions requerides a les anomalies del
moment magnètic anòmal tant de l’electró com del muó mantenint les característiques rellevants
del model original.

Per confirmar que la nova versió del model era capaç d’explicar les anomalies del g−2 alhora
que era compatible amb les dades d’oscil·lacions de neutrins, realitzàrem una anàlisi exhaus-
tiva de l’espai de paràmetres del model utilitzant un apropament d’escaneig aleatori. Durant
l’escaneig, vam assegurar-nos que tots els punts acceptats concordaven amb les restriccions de
les mesures de precisió electrofeble i de sabor. A més, vam comprovar que les amplades de
desintegració dels processos Z → `+`− i h → `+`−, amb ` = e, µ, romangueren dins del rang
permès, sent el primer procés una restricció forta per al nostre escenari. També vam imposar els
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límits de les cerques de col·lisionadors sobre les masses i els acoblaments dels triplets, ja que no
s’ha observat cap excés en la cerca de triplets del balancí de tipus-III en el Gran Col·lisionador
d’Hadrons (LHC per les sigles en anglés).

La Figura 4.4 demostra que el nostre model pot explicar tant l’anomalia de l’electró com la
del muó. En el cas de l’electró, podem trobar punts vàlids dins de la regió 1σ permesos per totes
les restriccions experimentals fàcilment. En canvi, el g−2 del muó només es pot explicar a 1σ en
regions estretes de l’espai de paràmetres. A més, la Figura 4.5 mostra que ∆aµ es correlaciona
clarament amb la combinació (YΣ)ii (λL)i (λR)i /

[
(MΣ)i M2

L

]
, el que implica que la contribució

del W a l’anomalia magnètica del muó és la dominant. Finalment, el nostre model prediu que
no hi haurà cap canvi significatiu en les desintegracions del bosó de Higgs als leptons carregats
en comparació amb els resultats del ME.

A continuació, al Capítol 5, vam presentar un model eficient que proporciona una explicació
unificada per a diverses indicacions de nova física, incloent les masses no nul·les dels neutrins,
les transicions b→ s, l’anomalia magnètica del muó i l’origen potencial de la matèria fosca. La
nostra proposta introdueix diversos camps nous: un fermió singlet N , dos doblets escalars η,
un escalar singlet φ i un leptoquark doblet S que és necessari per a acomodar les anomalies
b → s``. En aquest escenari, totes aquestes noves partícules són imparells sota una paritat
fosca Z2 que s’afegeix al model, mentre que els camps del Model Estàndard són parells. Una
característica notable d’aquest model és la presència de bucles foscos, amb estats imparells de
Z2 dins ells, que indueixen totes les contribucions de nova física als observables anòmals que
volem explicar. A més, les masses dels neutrins de Majorana es generen al nivell d’1-bucle per
mitjà d’una variació del mecanisme Scotogenic, ja que les contribucions a nivell d’arbre estan
prohibides per la presència de la simetria Z2.

A més d’explicar les anomalies esmentades anteriorment, el model ha de satisfer diverses
restriccions experimentals. És clar que les dades d’oscil·lacions de neutrins han de ser reproduïdes
correctament, tot i que això es pot aconseguir fàcilment considerant una parametrització de
Casas-Ibarra adequadament adaptada al nostre escenari. Una altra preocupació habitual en
models de masses de neutrins és el risc de tindre processos on es viole sabor leptònic. El model
també es veu sotmès a condicionants que venen de diversos processos que involucren mesons,
sent els més rellevants b→ sγ, B → K(∗)νν̄, i la mescla Bs − B̄s.

L’objectiu d’aquest capítol era demostrar que el nostre model pot explicar totes les anomalies
mentre satisfà totes les restriccions experimentals. Per aconseguir-ho, vam construir una funció
χ2 que inclou l’anomalia del moment magnètic del muó i els coeficients de Wilson dels operadors
efectius involucrats en les anomalies b− s. Després de fixar diversos paràmetres per simplicitat,
trobàrem que el valor mínim de la funció χ2 és χ2

min = 1, 52, que es pot comparar amb el valor
del SM: ∆χ2 = χ2

SM − χ2
min = 21, 23. La part esquerra de la Figura 5.2 mostra els resultats de

l’ajust, revelant que els paràmetres del model que es van deixar lliures a l’ajust poden variar
significativament respecte dels seus valors millor ajustats sense causar un canvi significatiu en
la funció χ2. No obstant això, µ → eγ resulta ser una forta restricció en el model. A més, el
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costat dret de la figura mostra que el model pot assolir fàcilment el valor central dels observables
ajustats.

El Capítol 6 conclou aquesta part de la tesi. S’ha dedicat a l’estudi de la violació de la simetria
de sabor dels leptons carregats en un model amb ruptura espontània del nombre leptònic i, per
tant, amb un majoron J . En aquest capítol, presentem un model relativament simple que genera
acoblaments del majoró amb els leptons carregats no diagonals grans a nivell d’arbre. A més
de les simetries del ME, aquest model imposa la conservació del nombre leptònic i amplia el
contingut de partícules amb un singlet i un doblet d’escalars, tres neutrins drets i un leptó
vectorial singlet de SU(2)L, tots amb nombre leptònic no nul. Després de la ruptura espontània
de les simetries electrofeble i nombre leptònic, els neutrins adquireixen masses a través d’un
mecanisme de balancí de tipus-I amb escala de TeV.

Com a conseqüència dels acoblaments que violen sabor leptònic a nivell d’arbre, el model
exhibeix taxes de violació de sabor leptònic significatives que cobreixen regions grans del seu
espai de paràmetres, incloent els processos habituals `α → `βγ i `α → 3`β. Això implica
l’existència de restriccions importants. A més, la inclusió de fermions vectorials al sector de
leptons del ME té un impacte en diversos observables, particularment en el moment magnètic
anòmal dels leptons carregats i en el seu acoblament als bosons gauge. Com a resultat, el model
indueix noves contribucions al moment magnètic del muó a nivell d’1-bucle que poden explicar
l’anomalia observada en algunes regions del seu espai de paràmetres. Pel que fa als acoblaments
dels leptons carregats amb el bosó Z, ens hem assegurat durant l’anàlisi que es troben dins dels
rangs permesos. Finalment, el model també pot portar a efectes observables en els decaïments
del bosó de Higgs, especialment en h → µµ, i també permet la desintegració del Higgs en un
parell de majorons.

De manera similar al Capítol 4, ací escanejàrem aleatòriament l’ample espai de paràmetres
del model mentre calculàvem els observables rellevants per a cada punt de l’escaneig i gràcies
a una parametrització de Casas-Ibarra, tots els punts eren compatibles amb les observacions
actuals d’oscil·lacions de neutrins. Com es mostra a la Figura 6.2, el nostre model pot arribar
als límits experimentals de BR(µ → eγ) i BR(µ → eJ), que en realitat estan correlacionats.
A més a més, el moment magnètic del múon g − 2 es pot explicar en gran part de l’espai de
paràmetres del model, fins i tot dins de la regió d’1σ, com es mostra a la Figura 6.4, i vam
trobar desviacions significatives de la tasa de decaïment de h→ µµ respecte a la seua predicció
del ME, com s’il·lustra a la Figura 6.5.

Construcció de Models

En aquesta part de la tesi, vam adoptar una perspectiva centrada en la construcció de models
mentre relegàvem la fenomenologia a un segon pla. Consisteix en dos capítols, tots dos centrats
en el model Scotogenic.
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El model Scotogenic, en la seua versió original, inclou un doblet escalar η i tres còpies de
fermions singlets N , a més de les partícules del ME. El model es caracteritza també per una
paritat fosca Z2, segons la qual les noves partícules són imparells i les partícules del ME són
parells. No obstant, l’elecció del nombre de generacions de cada camp nou no és única i, per
abordar això, hem presentat el model Scotogenic general al Capítol 7. Aquest model permet un
nombre arbitrari de generacions dels estats Scotogenic.

Els termes de Yukawa i de massa rellevants per a la discussió són

LN ⊃ ynaαNn ηa `
α
L + 1

2 MNn N
c
nNn + h.c. , (8)

on n = 1, . . . , nN , a = 1, . . . , nη i α = 1, 2, 3 són índexs de generació, i nN i nη són el nombre
de còpies de les partícules N i η, respectivament, en la versió general del model. Els casos
particulars del model es poden etiquetar segons els seus valors (nN , nη). A més, també es poden
escriure els termes escalars importants del potencial com

V ⊃
(
m2
η

)
ab
η†aηb+λab3

(
H†H

) (
η†aηb

)
+λab4

(
H†ηa

) (
η†bH

)
+ 1

2
[
λab5

(
H†ηa

) (
H†ηb

)
+ h.c.

]
. (9)

El resultat principal d’aquest capítol és la derivació de la matriu de massa dels neutrins en la
versió general del model. Per simplificar els càlculs, es va assumir que la simetria CP es conserva
en el sector escalar del model considerant que tots els paràmetres del potencial escalar són reals.
Amb això, es va obtenir una expressió analítica exacta per a la matriu de massa:

(mν)αβ = − 1
32π2

∑
A,a,b,c,n

MNn κ
2
A (VA)ba (VA)ca ynbα yncβ B0(0,m2

Aa ,MNn) . (10)

Ací, A = R, I i b i c poden prendre els mateixos valors que a. B0(0,m2
Aa
,MNn) és la funció

de bucle estàndard de Passarino-Veltman introduïda a l’Eq. (7.16), κR = 1, κI = i, i m2
R(I)a

i
V R(I) són els valors propis de la matriu de massa de les components reals (imaginàries) de les
parts neutres de ηa, respectivament.

Tot i que la dependència exacta dels paràmetres del model no és explícita en la matriu de
massa exacta, encara podem obtenir una forma aproximada útil fent assumpcions raonables.
Específicament, assumírem que λaa3,4v

2/2 � (mη2)aa i λab5 � λab3,4 � 1, amb a 6= b. D’aquesta
manera, derivàrem una forma aproximada per a la matriu de massa dels neutrins, que és el
principal resultat analític del capítol:

(mν)αβ = v2

32π2

∑
n,a,b

ynaα ynbβ
MNn

Γabn +O
(
λ2

5

)
+O

(
λ5 s

2
)
, (11)
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on sab = 1/2(λab3 + λab4 )v2/(m2
b −m2

a) i m2
a = (m2

η)aa+ (λ3aa + λaa4 )v2/2. També hem definit la
quantitat adimensional:

Γabn = δab λ
aa
5 fan − (1− δab)

[(
λaa5 fan − λbb5 fbn

)
sab −

M2
Nn

m2
b −m2

a

λab5 gabn

]
(12)

amb les funcions de bucle

fan =
M2
Nn

m2
a −M2

Nn

+
M4
Nn(

m2
a −M2

Nn

)2 log
M2
Nn

m2
a

, (13)

gabn = m2
a

m2
a −M2

Nn

log
M2
Nn

m2
a

− m2
b

m2
b −M2

Nn

log
M2
Nn

m2
b

. (14)

Després de demostrar que la nostra expressió es redueix a les matrius de massa obtingudes en
dos resultats prèviament publicats, el model Scotogenic estàndard i una variant que inclou dos
η i un N , vam estudiar el comportament a altes energies del model.

La conservació de la simetria Z2 és essencial perquè qualsevol versió del model Scotogenic
general siga coherent. Si no, els neutrins adquiririen masses a nivell d’arbre, i el candidat a
matèria fosca ja no seria estable. No obstant això, l’evolució de les RGEs pot alterar la forma
del potencial escalar a altes energies, conduint al trencament de la Z2. Això motiva l’estudi del
comportament a altes energies de la teoria. Computàrem totes les funcions β d’1 bucle i les
varem utilitzar per a resoldre numèricament el conjunt complet d’RGEs. Ens vam centrar en
dues versions específiques del model Scotogenic general: els models (3, 1) i (1, 3), on el primer és
la versió original del model. Malgrat algunes particularitats a causa dels diferents nombres de
generacions, la nostra principal conclusió és que totes les característiques del model Scotogenic
original es presenten en altres variants específiques del model general.

D’altra banda, al model Scotogenic es requereix un petit paràmetre quartic λ5 � 1 per a
generar l’escala correcta de les masses dels neutrins mentre es tenen acoblaments de Yukawa
considerables i mediadors relativament lleugers. La petitesa d’aquest paràmetre és tècnicament
natural en el sentit de ’t Hooft, però requerix una extensió que la explique. A més, la simetria
Z2 al model Scotogenic és considerada una simetria ad hoc. Per això, al Capítol 8, vam voler
classificar les possibles extensions ultravioleta que porten al model Scotogenic a baixes energies
quan s’integra un camp escalar pesat S i que aborden aquests dos problemes. Específicament,
estàvem interessats en escenaris UV als quals la simetria Z2 apareix com una simetria remanent
després de la ruptura espontània d’una simetria U(1)L, on L significa nombre leptònic. També
volguérem que l’operador (H†η)2, que és el terme λ5, estiguera prohibit en la teoria UV a causa
del nombre leptònic. D’altra banda, un operador de la forma (H†η)2σn, amb n ≥ 1, ha de
ser generat després d’integrar el camp pesat. Aquest operador induïx un acoblament efectiu
λ5, naturalment suprimit per la gran massa de l’escalar S, després que els singlets adquireixin
VEBs.
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Centrant-nos en les possibles extensions a nivell d’arbre de l’operador λ5 utilitzant un o dos
singlets σ diferents, vam identificar totes les topologies possibles en la teoria UV que generen
aquest operador, com es mostra a la Taula 8.1. De les cinc topologies possibles, quatre inclouen
només un propagador S, portant a un operador λ5 de la forma Oλ5 = (H†η)2σAσB, suprimit per
un factor 1/m2

S . Per l’altra banda, la topologia restant té dos propagadors S i genera l’operador
Oλ5 = (H†η)2σ2

AσBσC , ara suprimit per 1/m4
S . Cal destacar que aquestes expressions genèriques

inclouen casos on algunes insercions de σ corresponen al mateix camp, així com casos on una de
les insercions de σ està absenta. Vam explorar totes les possibilitats i vam trobar 50 variacions
diferents que compleixen els requisits anteriors. No obstant, és important destacar que els
números leptònics dels camps en totes aquestes variacions han de prendre valors específics per
a evitar que η adquirisca un VEB i per a generar la paritat Z2 correcta.

En aquest Capítol, hem discutit tres models exemplificatius i s’espera que la fenomenologia
d’aquestos models, així com la de la resta, siga molt rica. A causa de la ruptura espontània del
nombre leptònic, els models preveuen l’existència d’un majoró sense mass, a més d’altres escalars
massius nous. Hem derivat expressions analítiques per als acoblaments del majoró als leptons
carregats, incloent-hi interaccions tant que conserven com que violes sabor leptònic. A més,
els models tenen signatures potencials en recerques de col·lisionadors i ofereixen implicacions
interessants per a la matèria fosca en comparació amb el model estàndard Scotogènic, ja que
contenen estats addicionals.

Recerques de Col·lisionadors de Partícules

El Capítol 9 va ser l’últim capítol de la tesi, i allí ens centràrem en les recerques de leptons
neutres pesats de vida mitjana curta en col·lisionadors d’alta energia, principalment al LHC. El
nostre interès es va centrar en el fet que les restriccions a l’espai de fàsic dels HNL, amb molt
poques excepcions, es deriven per les col·laboracions experimentals sota l’assumpció d’un únic
HNL que es mescla amb només un sabor dels leptons. No obstant això, aquest no és el cas en
la majoria dels escenaris de nova física que involucren aquest tipus de partícules, on el patró
de mescla pot ser bastant complex. En aquest capítol, vam proposar abordar aquesta qüestió
discutint com reinterpretar els límits experimentals existents sobre els HNL per a un escenari
que implica mescles genèriques amb tots els sabors de leptons i amb diversos HNLs.

Inicialment, exploràrem l’escenari d’un únic HNL però permetent que es mesclara amb els
tres sabors leptònics. Normalment, els límits experimentals en la cerca de HNL es presenten en el
pla

(
MN , |UαN |2

)
, on UαN , amb α = e, µ, τ , representa les mescles entre els neutrins i els HNLs

i MN denota la massa dels darrers. No obstant això, vam voler destacar que per generalitzar
els límits, és millor presentar-los al pla

(
MN , |UαN |2 × BR

)
. Això és perquè d’aquesta manera

només cal calcular les noves taxes de desintegració per a l’hipòtesi particular de mescla. Tot
i que la majoria dels treballs presenten els seus resultats utilitzant la primera opció, traduir-
los a la segona és senzill quan les col·laboracions experimentals assumeixen una BR constant
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per al canal que estudien, encara que no sempre especifiquen el seu valor. No obstant això, la
reescritura no és possible quan els resultats s’obtenen després de combinar diferents canals.

En principi, no hi ha cap restricció en el nombre de HNLs que pot tindre un model. Si
només un d’ells està dins de l’abast dels experiments actuals, o si hi ha diversos HNLs però amb
règims de massa diferents, llavors les conclusions extretes de l’anàlisi de l’escenari d’un sol HNL
es poden aplicar a cadascun dels HNLs. No obstant això, quan dos HNLs tenen masses similars,
poden produir-se efectes d’interferència, alterant potencialment els resultats i els límits obtinguts
sota l’assumpció d’un sol HNL. Per simplicitat, ens vam centrar en l’escenari amb dos HNLs
propers en massa. Per il·lustrar millor la importància de la interferència, ens vam centrar en els
resultats de LHCb per al canal prompt de dimuons, considerant tant els canals de dileptons de
mateix signe com els de signe oposat. D’aquesta manera, vam poder demostrar que les cerques
d’ambdós canals que violen i conserven sabor leptònic són importants i complementàries, i que
s’han de realitzar en paral·lel.

Conclusions

Els models de massa de neutrins són probablement les extensions del Model Estàndard de física
de partícules més ben motivades. Encara que els experiments d’oscil·lacions de neutrins han
confirmat que són massius, el mecanisme que hi ha darrere de la generació de les seues masses és
un misteri. En aquesta tesi, hem presentat diversos models especialment centrats en la generació
d’aquestes masses, tant a nivell d’arbre com radiativament. D’interès especial són aquells models
que no només proporcionen masses als neutrins, sinó que també les connecten amb explicacions
per a altres qüestions pendents en física de partícules, com ara l’origen de la matèria fosca,
el moment magnètic anòmal dels leptons carregats o les anomalies de sabor B. A més, molts
models de massa de neutrins prediuen interaccions importants que violen el sabor dels leptons,
destacant l’importància de buscar no només les possibles partícules involucrades en la generació
de masses de neutrins, sinó també els processos de violació de sabor de leptons.
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Appendix A

Ultralight scalar parametrization in
terms of derivative interactions

This appendix is related to Chapter 3. The Lagrangian in Eq. (3.1) is completely general and
includes both scalar and pseudoscalar interactions of the field φ with a pair of charged leptons.
An alternative parametrization in terms of derivative interactions is given by

L``φ = (∂µφ) ¯̀
βγ

µ
(
S̃βαL PL + S̃βαR PR

)
`α + h.c. . (A.1)

The coefficients S̃L,R have dimensions of mass−1 and we consider all possible flavor combinations:
βα = {ee, µµ, ττ, eµ, eτ, µτ}. Notice that the diagonal `β − `β − φ vertex is proportional to
(S̃L + S̃∗L)ββPL + (S̃R + S̃∗R)ββPR, and, therefore, the diagonal couplings can be taken to be
real without loss of generality. As we will shown below, Eq. (A.1) only includes pseudoscalar
interactions for φ. Therefore, it can be thought of as a particularization of Eq. (3.1). 1

Physical observables must be independent of the parametrization chosen. We proceed to
show now that the two parametrizations considered here are equivalent for a pure pseudoscalar
in processes involving on-shell leptons. First, we recall the equations of motion for the lepton
fields `α and its conjugate ¯̀

α

i γµ∂µ`α −mα`α = 0 ,

i ∂µ ¯̀
αγ

µ +mα
¯̀
α = 0 ,

(A.2)

valid for on-shell leptons. One can now rewrite Eq. (A.1) as the sum of a total derivative and
a derivative acting on the lepton fields. The total derivative does not contribute to the action,

1The parametrization in Eq. (A.1) is completely general if φ is a pure pseudoscalar, usually the case of the
Goldstone bosons in many models. In such scenarios, the two parametrizations for the effective Lagrangian L``φ
introduced here are related to two possible ways to parametrize the Goldstone boson. Eq. (3.1) follows from
a cartesian parametrization, that splits a complex scalar field in terms of its real and imaginary components.
Alternatively, the parametrization in terms of derivative interactions in Eq. (A.1) would follow from a polar
parametrization, that splits a complex scalar field in terms of its modulus and phase. As we will prove below,
they lead to the same results for observables involving on-shell leptons.
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whereas the derivative on the lepton fields can be replaced using the equations of motion in
Eq. (A.2). This leads to

L``φ = −i φ ¯̀
β

[(
mβ S̃

βα
L −mα S̃

βα
R

)
PL +

(
mβ S̃

βα
R −mα S̃

βα
L

)
PR
]
`α + h.c.

≡ φ ¯̀
β

(
SβαL PL + SβαR PR

)
`α + h.c. . (A.3)

Therefore we find a dictionary between the SX and S̃X coefficients

SβαL = i
(
mα S̃

βα
R −mβ S̃

βα
L

)
, (A.4)

SβαR = i
(
mα S̃

βα
L −mβ S̃

βα
R

)
, (A.5)

which for the diagonal couplings reduces to

Sββ = SββL + Sββ∗R = 2 imβ

(
S̃ββR − S̃

ββ
L

)
. (A.6)

Since both S̃ββX are real parameters, Eq. (A.6) implies that the diagonal Sββ couplings must be
purely imaginary. It is straightforward to show that, in this case, the flavor conserving inter-
actions of φ in Eq. (3.1) are proportional to γ5 (see Eq. (3.6)). This proves that Eq. (A.1) is
not general but only includes pseudoscalar interactions, and there is no one-to-one correspon-
dence between the two parametrizations. Given a set of S̃X couplings, one can always find the
corresponding SX couplings using Eqs. (A.4) and (A.5). However, certain sets of SX couplings,
namely those with non-vanishing real parts, cannot be expressed in terms of S̃X couplings. This
stems from the fact that purely scalar interactions are not included in Eq. (A.1).

The equivalence for the case of a pure pseudoscalar can be explicitly illustrated by comparing
the analytical expressions obtained with Eqs. (3.1) and (A.1) for a given observable. We can
start with a trivial example, the process `α → `βφ, discussed in Section 3.4.1. Using the
parametrization in Eq. (A.1), one can easily derive the decay width of this 2-body decay,

Γ̃ (`α → `β φ) = m3
α

32π

(∣∣∣S̃βαL ∣∣∣2 +
∣∣∣S̃βαR ∣∣∣2) , (A.7)

where terms proportional to mβ have been neglected. This result differs from Eq. (3.22) only
by a factor m2

α, as one would obtain from the direct application of the dictionary in Eqs. (A.4)
and (A.5). Let us now consider a less trivial example: `−α → `−β `

+
β `
−
β . The computation of its

amplitude with the Lagrangian in Eq. (A.1) makes use of the same Feynman diagrams shown
in Fig. 3.3. In this case one obtains

M̃φ =

ū (p3) 2
(
−/q
) (
S̃ββL PL + S̃ββR PR

)
v (p4) i

q2 + iε
ū (p2)

(
/q
) (
S̃βαL PL + S̃βαR PR

)
u (p1)

− ū (p2) 2 (−/k)
(
S̃ββL PL + S̃ββR PR

)
v (p4) i

k2 + iε
ū (p3) (/k)

(
S̃βαL PL + S̃βαR PR

)
u (p1) ,

(A.8)
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where the factor of 2 preceding the diagonal coupling is due to the addition of the Hermitian
conjugate, as explicitly shown in Eq. (A.1). Again, explicit flavor indices have been introduced.
The decay width is computed to be

Γ̃φ
(
`−α → `−β `

+
β `
−
β

)
=

m5
α

512π3

{
4
(∣∣∣S̃βαL ∣∣∣2 +

∣∣∣S̃βαR ∣∣∣2)(S̃ββL − S̃ββR )2 m2
β

m2
α

(
4 log mα

mβ
− 15

2

)

+ mβ

3mα

{(
S̃ββL − S̃

ββ
R

){
S̃βαR

(
AS∗LL − 2AS∗LR

)
− S̃βαL

(
AS∗RR − 2AS∗RL

)

+ mβ

mα

{
S̃βαL

[
2AS∗LL +

(
12 log mα

mβ
− 25

)
AS∗LR

]
− S̃βαR

[
2AS∗RR +

(
12 log mα

mβ
− 25

)
AS∗RL

]}

+ 12
[
AT∗RR

(
S̃βαL + 2mβ

mα
S̃βαR

)
−AT∗LL

(
S̃βαR + 2mβ

mα
S̃βαL

)]
+ 4

(
S̃βαR AV ∗LR − S̃

βα
L AV ∗RL

)
+ 2mβ

mα

{
S̃βαL

[(
25− 12 log mα

mβ

)
AV ∗LR −

(
42− 24 log mα

mβ

)
AV ∗LL

]

− S̃βαR

[(
25− 12 log mα

mβ

)
AV ∗RL −

(
42− 24 log mα

mβ

)
AV ∗RR

]}

+ 6e2
[(
KL

2

)βα∗
S̃βαL −

(
KR

2

)βα∗
S̃βαR

]

+ 4e2mβ

mα

(
3
2 + π2 + 6 log2 2− 6 log2 mα

mβ

)[(
KR

2

)βα∗
S̃βαL −

(
KL

2

)βα∗
S̃βαR

]}
+ c.c.

}}
,

(A.9)

where in this expression AIXY =
(
AIXY

)βββα
. We note that infrared divergences also occur

in interference terms at this order in mβ
mα

. This explains the appearance of several log factors.
We can compare the decay width in Eq. (A.9) to a previous result in the literature. The
authors of [224] drop all the interference terms in their calculation, and then their result must
be compared to the first line in Eq. (A.9). One can easily relate the S̃L,R coefficients to the ones
in [224] as

V e
βα ≡ −

1
2
(
S̃βαL + S̃βαR

)
, Aeβα ≡

1
2
(
S̃βαR − S̃

βα
L

)
, (A.10)

for the flavor violating terms, and

Aeββ ≡
(
S̃ββR − S̃

ββ
L

)
, (A.11)

for the flavor conserving ones. With this translation, it is easy to check that both results agree
up to a global factor of 1/2.
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In order to compare the `−α → `−β `
+
β `
−
β decay widths obtained with both parametrizations we

need an expanded version of Eq. (3.41) that includes terms up to O
(
mβ
mα

)
. This is given by

Γφ
(
`−α → `−β `

+
β `
−
β

)
=

mα

512π3

{(∣∣∣SβαL ∣∣∣2 +
∣∣∣SβαR ∣∣∣2){∣∣∣Sββ∣∣∣2(4 log mα

mβ
− 49

6

)
− 2

6

[(
Sββ∗

)2
+
(
Sββ

)2
]}

− m2
α

6

{
SβαL SββAS∗LL + 2SβαL Sββ∗AS∗LR + 2SβαR SββAS∗RL + SβαR Sββ∗AS∗RR

− 12
(
SβαL SββAT∗LL + SβαR Sββ∗AT∗RR

)
− 4

(
SβαR SββAV ∗RL + SβαL Sββ∗AV ∗LR

)
+ 6e2

(
SβαR SββKL∗

2 + SβαL Sββ∗KR∗
2

)
− 36mβ

mα

(
SβαR SββAT∗LL + SβαL Sββ∗AT∗RR

)
+ 3mβ

2mα

[
Sββ

(
11SβαL AS∗RL + 2SβαR AS∗LL − 7SβαR AS∗LR

)
+ Sββ∗

(
11SβαR AS∗LR + 2SβαL AS∗RR − 7SβαL AS∗RL

)]
− 6mβ

mα

(
SβαL AS∗RL − S

βα
R AS∗LR

) (
Sββ − Sββ∗

)
log mα

mβ

+ 12mβ

mα

(
SβαL AV ∗RL − 2SβαL AV ∗RR + 2SβαR AV ∗LL − S

βα
R AV ∗LR

) (
Sββ − Sββ∗

)
log mα

mβ

+ 3mβ

mα

[
Sββ

(
−11SβαL AV ∗RL + 14SβαL AV ∗RR − 14SβαR AV ∗LL + 7SβαR AV ∗LR

)
+ Sββ∗

(
−11SβαR AV ∗LR + 14SβαR AV ∗LL − 14SβαL AV ∗RR + 7SβαL AV ∗RL

)]
− 4 e2 mβ

mα

{[
SβαL

(
KL

2

)βα∗
+ SβαR

(
KR

2

)βα∗] (
Sββ + Sββ∗

)(
6 log mα

mβ
− 21

2

)

+
[
SβαL Sββ

(
KL

2

)βα∗
+ SβαR Sββ∗

(
KR

2

)βα∗](
π2 + 6 log2 2− 6 log2 mα

mβ

)}
+ c.c.

}}
,

(A.12)

where in this expression AIXY =
(
AIXY

)βββα
. Replacing Eqs. (A.4) and (A.5) into Eq. (A.12)

one finds full agreement with Eq. (A.9) to order O
(
mβ
mα

)
. This proves explicitly the equiva-

lence between both parametrizations in the calculation of `−α → `−β `
+
β `
−
β mediated by a pure

pseudoscalar.



Appendix B

Extended inverse type-III seesaw
couplings

The couplings of the model introduced in Chapter 4 that are involved in the calculation of the
charged lepton anomalous magnetic moments are shown in the Feynman diagrams of Fig. 4.1 and
have been computed with the help of SARAH [405–409]. We define them and list their analytical
expressions here:

Ni

χj

W+
µ

LχNW = N̄i γ
µ
[(
gLχNW

)
ij
PL +

(
gRχNW

)
ij
PR

]
χjWµ + h.c. (B.1)

(
gLχNW

)
ij

= −g
(

1√
2

3∑
a=1
VL ∗ja Uia +

9∑
a=4
VL ∗ja Uia + 1√

2
VL ∗j10 Ui10

)
(B.2)

(
gRχNW

)
ij

= −g
( 9∑
a=4
VRja U∗ia −

1√
2
VRj10 U∗i11

)
(B.3)
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χ̄i

χj

Zµ

LχZ = χ̄i γ
µ
[(
gLχZ

)
ij
PL +

(
gRχZ

)
ij
PR

]
χj Zµ + h.c. (B.4)

(
gLχZ

)
ij

= 1
2
(
g cos θW − g′ sin θW

)( 3∑
a=1
VL ∗ja VLia + VL ∗j10 VLi10

)
+ g cos θW

9∑
a=4
VL ∗ja VLia (B.5)

(
gRχZ

)
ij

= −g′ sin θW
3∑

a=1
VR ∗ia VRja + g cos θW

9∑
a=4
VR ∗ia VRja + 1

2
(
g cos θW − g′ sin θW

)
VR ∗i10 VRj10

(B.6)

χ̄i

χj

h

Lχh = χ̄i

[(
gLχh

)
ij
PL +

(
gRχh

)
ij
PR

]
χj h+ h.c. (B.7)

(
gLχh

)
ij

= − 1√
2

3∑
a,b=1

VL ∗jb VR ∗ia (Ye)ab −
3∑

a=1

3∑
b=1
VL ∗jb VR ∗i a+3 (YΣ)ab

− VL ∗j10

[ 3∑
a=1
VR ∗i a+3 (λL)a + 1√

2

3∑
a=1
VR ∗ia (λR)a

]
(B.8)

(
gRχh

)
ij

= − 1√
2

3∑
a,b=1

VLib VRja (Ye)∗ab −
3∑

a=1

3∑
b=1
VLib VRj a+3 (YΣ)∗ab

−
[ 3∑
a=1
VRj a+3 (λ∗L)a + 1√

2

3∑
a=1
VRja (λ∗R)a

]
VLi10 (B.9)
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χ̄i

χj

γµ

Lχγ = χ̄i γ
µ
[(
gLχγ

)
ij
PL +

(
gRχγ

)
ij
PR

]
χj Aµ + h.c. (B.10)

(
gLχγ

)
ij

=
(
gRχγ

)
ij

= −e δij (B.11)

W−
1

γ

W+
2

LWγ = ΓµαβWαWβAµ (B.12)

Γµαβ = g sin θW
[
gαβ

(
pµW1

+ pµW2

)
+ gµβ

(
−pαW2 − p

α
γ

)
+ gαµ

(
pβγ − p

β
W1

)]
(B.13)





Appendix C

Charged lepton anomalous magnetic
moments: full expressions

Following the notation used in Chapter 4, we define the dimensionless quantities

ε`i = m`

mχi

, δ`i = m`

mNi

, ωai = ma

mχi

and ωWi = mW

mNi

, (C.1)

with a = Z, h.

W contribution

The W contribution to the charged lepton anomalous magnetic moments can be written as

∆a` (W ) = 1
32π2 ω2

Wiδ
4
`i

[(
C2
χNW

)
i`
fW (δ2

`i, ω
2
Wi)− δ`i

(
D2
χNW

)
i`
gW (δ2

`i, ω
2
Wi)

]
, (C.2)

where a sum over the repeated index i is implicit and fW and gW are two loop functions given
by

fW (x, y) = x3 + x2 (8 y − 1) + 2x
(
1 + y − 2 y2

)
+
[
3x2 y − x

(
1− 3 y + 5 y2

)
− 3 y2 + 2 y3 + 1

]
log y

+ 2
∆(x, y)

[
3x3 y + x2

(
1− 8 y2

)
+ x

(
7 y3 − 7 y2 + 2 y − 2

)
+ (1− y)3 (1 + 2 y)

]
log 1 + y − x+ ∆(x, y)

2√y , (C.3)

gW (x, y) = 2x (1 + 2 y) +
[
x (3 y − 1)− 2 y2 + y + 1

]
log y

+ 2
∆(x, y)

[
x2 (3 y + 1)− x

(
2− y + 5 y2

)
+ 2 y3 − 3 y2 + 1

]
log 1 + y − x+ ∆(x, y)

2√y .

(C.4)
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Here we have defined the auxiliary function

∆(x, y) =
√
x2 − 2x (1 + y) + (1− y)2 . (C.5)

Z contribution

The Z contribution can be written as

∆a` (Z) = 1
32π2 ω2

Ziε
4
`i

[(
C2
χZ

)
i`
fZ(ε2`i, ω2

Zi) + ε`i
(
D2
χZ

)
i`
gZ(ε2`i, ω2

Zi)
]
. (C.6)

Again, there is a sum over the repeated index i, whereas fZ and gZ are the loop functions

fZ(x, y) = −x
[
x2 + x (3− 4 y) + 4 y2 − 2 y − 2

]
+
[
x2 − x

(
2− 2 y + 3 y2

)
+ 2 y3 − 3 y2 + 1

]
log y

− 2
∆(x, y)

[
x3 + x2

(
3 y2 + y − 3

)
− x

(
5 y3 − 4 y2 + 2 y − 3

)
− (1− y)3 (1 + 2 y)

]
log 1 + y − x+ ∆(x, y)

2√y , (C.7)

gZ(x, y) = 2x (2x− 2 y − 1)−
[
x2 + x (y − 2)− 2 y2 + y + 1

]
log y

+ 2
∆(x, y)

[
x3 − 3x2 + 3x

(
1 + y2

)
− 2 y3 + 3 y2 − 1

]
log 1 + y − x+ ∆(x, y)

2√y . (C.8)

h contribution

Finally, the h contribution to the charged leptons g − 2 can be written as

∆a` (h) = 1
32π2 ε4`i

[(
C2
χh

)
i`
fh(ε2`i, ω2

hi) + ε`i
(
D2
χh

)
i`
gh(ε2`i, ω2

hi)
]
, (C.9)

with an implicit sum over the repeated i index and the loop functions

fh(x, y) = −x (x+ 2 y − 2) +
[
(1− y)2 − x

]
log y

+ 2
∆(x, y)

[
x2 + x

(
y2 + y − 2

)
+ (1− y)3

]
log 1 + y − x+ ∆(x, y)

2√y , (C.10)

gh(x, y) = 2x− (x+ y − 1) log y

+ 2
∆(x, y)

[
(1− x)2 + y2 − 2 y

]
log 1 + y − x+ ∆(x, y)

2√y . (C.11)

We have compared our results to the general expressions provided in [103], finding full
agreement. Our results also match those recently presented in [93], where a model with similar
contributions to the muon g − 2 was considered. Finally, analytical expressions for the contri-
butions to the muon g− 2 in the limit of heavy mediators are provided in [52]. While we do not
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consider this limit in our paper (since it would correspond to mW ,mZ ,mh � mNi ,mχi), it can
be used to crosscheck our results. We find full agreement.





Appendix D

Proof of the pseudoscalar nature of
the majoron couplings

This appendix is related to the model introduced in Chapter 6. Eq. (6.61) encodes the diagonal
couplings of the majoron with the charged leptons of the model. Since the majoron is a pure
pseudoscalar Goldstone boson, the coefficients Sββ are purely imaginary. We are going to prove
that this is indeed the case for the general scenario of n singlet vector-like lepton pairs added to
the SM leptons, with the same form of the couplings as the one defined in Eq. (6.3). 1 Let

M =
(
m1 m2

m3 m4

)
(D.1)

be a generic complex (3 +n)× (3 +n) complex matrix, given by the blocks m1, m2, m3 and m4,
with dimensions 3× 3, 3×n, n× 3 and n×n, respectively. The singular value decomposition of
the matrix M is V †RM VL = M̂ , where VR and VL are unitary matrices and M̂ = diag(M1,M2),
with M1 and M2 3× 3 and n×n real diagonal matrices, respectively, with positive entries. The
interaction matrix of the majoron with the charged leptons can be written in the flavor basis as

N =
(

xm1 (x+ y)m2

−ym3 0

)
, (D.2)

where N is another (3 + n) × (3 + n) matrix and x, y ∈ R. Comparing with Eq. (6.58), the
majoron coupling matrix in our model is given by N ≡ A and corresponds to m1 ≡ me,
m2 ≡ mρ, m3 ≡ mS , x ≡ v2

S and y ≡ v2
H .

First of all, we block-parametrize the unitary matrices VR and VL as

V †R =
(
A B

C D

)
, V †L =

(
E F

G H

)
. (D.3)

1We thank Isabel Cordero-Carrión for providing the seed for this proof.
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We also denote

e1 =
(

13

0

)
, e2 =

(
0

1n

)
, (D.4)

where 1n is the n× n identity matrix. Therefore, one obtains

(
V †R e1

) (
V †R e1

)†
=
(
AA† AC†

CA† CC†

)
,

(
V †R e2

) (
V †R e2

)†
=
(
BB† BD†

DB† DD†

)
.

(D.5)

Analogously, one finds the following relations involving VL:

(
V †L e1

) (
V †L e1

)†
=
(
EE† EG†

GE† GG†

)
,

(
V †Le2

) (
V †Le2

)†
=
(
FF † FH†

HF † HH†

)
.

(D.6)

After these preliminaries, we note that the interaction matrix N can be written as

N = x

(
m1 m2

0 0

)
+ y

(
0 m2

−m3 0

)
. (D.7)

Therefore, if we prove that the combinations

V †R

(
m1 m2

0 0

)
VL , V †R

(
0 m2

−m3 0

)
VL (D.8)

have real diagonal elements, then, also V †RNVL has real diagonal elements, and the proof is
complete. Let us consider the first term. It is easy to check that(

m1 m2

0 0

)
= e1e

T
1 M . (D.9)

Then one can obtain

V †R

(
m1 m2

0 0

)
VL = V †Re1e

T
1 MVL = V †Re1e

T
1 VRM̂ =

(
V †R e1

) (
V †R e1

)†
M̂ =

(
AA†M1 AC†M2

CA†M1 CC†M2

)
.

(D.10)

The diagonal terms of the resulting matrix are real because AA† and CC† are Hermitian matrices
and M1,M2 are real diagonal matrices. We now have to consider the second term in Eq. (D.7).
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It is possible to write(
0 m2

−m3 0

)
= e1

(
eT1 Me2

)
eT2 − e2

(
eT2 Me1

)
eT1 . (D.11)

Using similar manipulations as for the first term one finds

V †R

(
0 m2

−m3 0

)
VL =

(
V †R e1

) (
V †R e1

)†
M̂
(
V †L e2

) (
V †L e2

)†
−
(
V †R e2

) (
V †R e2

)†
M̂
(
V †L e1

) (
V †L e1

)†
,

(D.12)
and, writing for the sake of brevity only the diagonal blocks of this expression, in the form of a
column array, we obtain

[
V †R

(
0 m2

−m3 0

)
VL
]

diag
=
(

AA†M1FF
† +AC†M2HF

†

CC†M2HH
† + CA†M1FH

†

)
−
(
BB†M1EE

† +BD†M2GE
†

DD†M2GG
† +DB†M1EG

†

)
.

(D.13)
The second terms in the sum cancel for both the upper and lower diagonal blocks, using the
unitarity of VL and VR. Then, using again unitarity in the following way

AA† = 1−BB†

EE† = 1− FF †

CC† = 1−DD†

GG† = 1−HH† ,

(D.14)

we finally end up with

[
V †R

(
0 m2

−m3 0

)
VL
]

diag
=
(

M1FF
† −BB†M1

M2HH
† −DD†M2

)
, (D.15)

and therefore the diagonal components of this matrix are purely real. This concludes the proof.





Appendix E

Effective coefficients for flavor
violating observables

In order to use the analytical results for the flavor violating observables provided in [251] and in
Chapter 3, one must match the effective Lagrangian in these references to any specific model. In
particular, this appendix considers the model introduced in Chapter 6. We focus in particular
on the 3-body lepton decays `−α → `−β `

−
β `

+
β , `−α → `−β `

−
γ `

+
γ and `−α → `+β `

−
γ `
−
γ . These processes

get tree-level contributions in our model from the three CP-even scalars Hk (k = 1, 2, 3), the
Z-boson, the CP-odd scalar A, and the majoron J . The majoron contributions have been
computed in [211]. Since all the other mediators are significantly heavier than the SM charged
leptons, we can then parametrize their contributions by the effective Lagrangian

L4` =
∑

I=S,V,T
X,Y=L,R

AIXY
¯̀βΓIPX`α ¯̀δΓIPY `γ + h.c. , (E.1)

where we have defined ΓS = 1, ΓV = γµ and ΓT = σµν and omitted flavor indices in the effective
coefficients for the sake of simplicity. The coefficients AIXY have dimensions of mass−2. We will
now give specific expressions for these coefficients in the model under consideration. In order to
do that, it proves convenient to define the following 3-component array

(c1, c2, c3)βα = (V R†
ee YeV

L
ee, V

R†
ee ρV

L
Fe, V

R†
Fe YSV

L
ee)βα , (E.2)

which encodes the interactions of the SM charged leptons with the CP-even scalars gauge eigen-
states {SH , Sσ, SS}.

`−α → `−β `
−
β `

+
β

Recalling the definition of the 3× 3 unitary matrix W given in Eq. (6.23), we get the following
expressions for the effective coefficients AIXY = (AIXY )βββα.
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Hk contributions

ASLL = 1
2m2

Hk

∑
i,j

(
Wkic

ββ
i

)(
Wkjc

βα
j

)
(E.3)

ASLR = 1
2m2

Hk

∑
i,j

(
Wkic

ββ
i

)(
Wkjc

†βα
j

)
(E.4)

ASRL = 1
2m2

Hk

∑
i,j

(
Wkic

†ββ
i

)(
Wkjc

βα
j

)
(E.5)

ASRR = 1
2m2

Hk

∑
i,j

(
Wkic

†ββ
i

)(
Wkjc

†βα
j

)
(E.6)

Z contributions

AVLL = − g2

4m2
W

(
V L†
ee V

L
ee − 2 sin2 θW I

)ββ(
V L†
ee V

L
ee

)βα
(E.7)

AVLR = 0 (E.8)

AVRL = g2

2m2
W

sin2 θW
(
V L†
ee V

L
ee

)βα
(E.9)

AVRR = 0 (E.10)

Actually, the parametrization V L(R) = UL(R)DL(R) greatly simplifies the expressions. Taking
into account the unitarity of DL

e one ends up with

AVLL = g2

4m2
WM

2
F

[
1− 2 sin2 θW −

(
DL†
e

m†SmS

M2
F

DL
e

)ββ](
DL†
e m†SmSD

L
e

)βα
(E.11)

AVRL = − g2

2m2
WM

2
F

sin2 θW
(
DL†
e m†SmSD

L
e

)βα
(E.12)

A contributions

From the profile of the massive CP-odd state A given in Eq. (6.27) one can recover the interaction
Lagrangian between A and the charged leptons in the flavor basis

LA`` = − i A√
2V 2

(
ēR F̄R

)( −Ye vSvσ ρ vHvS

YS vHvσ 0

) (
eL

FL

)
+ h.c. . (E.13)
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Denoting the matrix in the previous equation as B and transforming the Lagrangian to the mass
basis, one can easily perform the matching with Eq. (E.1). We get the following expressions for
the contributions of A to the effective coefficients AIXY = (AIXY )βββα.

ASLL = − 1
2V 4m2

A

(
V R†BV L

)ββ(
V R†BV L

)βα
(E.14)

ASLR = 1
2V 4m2

A

(
V R†BV L

)ββ(
V L†B†V R

)βα
(E.15)

ASRL = 1
2V 4m2

A

(
V L†B†V R

)ββ(
V R†BV L

)βα
(E.16)

ASRR = − 1
2V 4m2

A

(
V L†B†V R

)ββ(
V L†B†V R

)βα
(E.17)

`−α → `−β `
−
γ `

+
γ

There are two types of Feynman diagrams contributing to this process. The first class involves
a flavor conserving (γγ) and a flavor violating (βα) vertex, while in the second class, both
vertices violate flavor (βγ and γα). Therefore, the matching with Eq. (E.1) would yield non
vanishing contributions to both coefficients (AIXY )γγβα and (AIXY )βγγα. One can actually Fierz
transform the latter flavor structure into the former, thus in the following expressions, we set
AIXY = (AIXY )γγβα. The Fierz transformations involved in the matching are the following, where
the type of parenthesis indicates the fermion field which is contracted with the gamma matrix
in brackets.

(PL)[PL] = 1
2(PL][PL) + 1

8(σµνPL][σµνPL)

(PR)[PR] = 1
2(PR][PR) + 1

8(σµνPR][σµνPR)

(PR)[PL] = 1
2(γµPL][γµPR)

(γµPL)[γµPL] = −(γµPL][γµPL)

(γµPR)[γµPR] = −(γµPR][γµPR)

(γµPR)[γµPL] = 2(PL][PR)

(E.18)

Hk contributions

ASLL = 1
2m2

Hk

∑
i,j

[(
Wkic

γγ
i

)(
Wkjc

βα
j

)
− 1

2
(
Wkic

βγ
i

)(
Wkjc

γα
j

)]
(E.19)

ATLL = 1
2m2

Hk

∑
i,j

[
− 1

8
(
Wkic

βγ
i

)(
Wkjc

γα
j

)]
(E.20)
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ASLR = 1
2m2

Hk

∑
i,j

(
Wkic

γγ
i

)(
Wkjc

†βα
j

)
(E.21)

ASRL = 1
2m2

Hk

∑
i,j

(
Wkic

†γγ
i

)(
Wkjc

βα
j

)
(E.22)

ASRR = 1
2m2

Hk

∑
i,j

[(
Wkic

†γγ
i

)(
Wkjc

†βα
j

)
− 1

2
(
Wkic

†βγ
i

)(
Wkjc

†γα
j

)]
(E.23)

ATRR = 1
2m2

Hk

∑
i,j

[
− 1

8
(
Wkic

†βγ
i

)(
Wkjc

†γα
j

)]
(E.24)

AVLR = 1
2m2

Hk

∑
i,j

[
− 1

2
(
Wkic

βγ
i

)(
Wkjc

†γα
j

)]
(E.25)

AVRL = 1
2m2

Hk

∑
i,j

[
− 1

2
(
Wkic

†βγ
i

)(
Wkjc

γα
j

)]
(E.26)

Z contributions

AVLL = − g2

4m2
W

[(
V L†
ee V

L
ee − 2 sin2 θW I

)γγ(
V L†
ee V

L
ee

)βα +
(
V L†
ee V

L
ee

)βγ(
V L†
ee V

L
ee

)γα] (E.27)

AVLR = 0 (E.28)

AVRL = g2

2m2
W

sin2 θW
(
V L†
ee V

L
ee

)βα
(E.29)

AVRR = 0 (E.30)

The parametrization V L(R) = UL(R)DL(R) also simplifies the expressions in this case. Thanks
to the unitarity of DL

e , we can write

AVLL = g2

4m2
WM

2
F

[(
1− 2 sin2 θW −

(
DL†
e

m†SmS

M2
F

DL
e

)γγ)(
DL†
e m†SmSD

L
e

)βα
− 1
M2
F

(
DL†
e m†SmSD

L
e

)βγ(
DL†
e m†SmSD

L
e

)γα] (E.31)

AVRL = − g2

2m2
WM

2
F

sin2 θW
(
DL†
e m†SmSD

L
e

)βα
(E.32)

A contributions

ASLL = − 1
2V 4m2

A

[(
V R†BV L

)γγ(
V R†BV L)βα − 1

2
(
V R†BV L

)βγ(
V R†BV L)γα] (E.33)
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ATLL = − 1
2V 4m2

A

[
− 1

8
(
V R†BV L

)βγ(
V R†BV L)γα] (E.34)

ASLR = 1
2V 4m2

A

(
V R†BV L

)γγ(
V L†B†V R

)βα
(E.35)

ASRL = 1
2V 4m2

A

(
V L†B†V R

)γγ(
V R†BV L

)βα
(E.36)

ASRR = − 1
2V 4m2

A

[(
V L†B†V R

)γγ(
V L†B†V R)βα − 1

2
(
V L†B†V R

)βγ(
V L†B†V R)γα] (E.37)

ATRR = − 1
2V 4m2

A

[
− 1

8
(
V L†B†V R

)βγ(
V L†B†V R)γα] (E.38)

AVRL = 1
2V 4m2

A

[
− 1

2
(
V L†B†V R

)βγ(
V R†BV L)γα] (E.39)

AVLR = − 1
2V 4m2

A

[
− 1

2
(
V R†BV L

)βγ(
V L†B†V R)γα] (E.40)

`−α → `+
β `
−
γ `
−
γ

In this process, both vertices are necessarily flavor violating (γβ and γα). This allows us to easily
perform the matching with Eq. (E.1) and set in the following expressions AIXY = (AIXY )γβγα.

Hk contributions

ASLL = 1
2m2

Hk

∑
i,j

(
Wkic

γβ
i

)(
Wkjc

γα
j

)
(E.41)

ASLR = 1
2m2

Hk

∑
i,j

(
Wkic

γβ
i

)(
Wkjc

†γα
j

)
(E.42)

ASRL = 1
2m2

Hk

∑
i,j

(
Wkic

†γβ
i

)(
Wkic

γα
j

)
(E.43)

ASRR = 1
2m2

Hk

∑
i,j

(
Wkic

†γβ
i

)(
Wkjc

†γα
j

)
(E.44)

Z contributions

AVLL = − g2

4m2
W

(
V L†
ee V

L
ee

)γβ(
V L†
ee V

L
ee

)γα
(E.45)

AVLR = 0 (E.46)
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AVRL = 0 (E.47)

AVRR = 0 (E.48)

Finally, using our previous definitions we can simplify Eq. (E.45) to

AVLL = − g2

4m2
WM

4
F

(
DL†
e m†SmSD

L
e

)γβ(
DL†
e m†SmSD

L
e

)γα
(E.49)

A contributions

ASLL = − 1
2V 4m2

A

(
V R†BV L

)γβ(
V R†BV L

)γα
(E.50)

ASLR = 1
2V 4m2

A

(
V R†BV L

)γβ(
V L†B†V R

)γα
(E.51)

ASRL = 1
2V 4m2

A

(
V L†B†V R

)γβ(
V R†BV L

)γα
(E.52)

ASRR = − 1
2V 4m2

A

(
V L†B†V R

)γβ(
V L†B†V R

)γα
(E.53)



Appendix F

Rhµµ analytical expression

In the model in Chapter 6, the Rhµµ ratio can be approximately written as

Rhµµ = BR(h→ µµ)
BR(h→ µµ)SM ≈

(
cSHµµ + cSσµµ + cSSµµ

cSM
µµ

)2

, (F.1)

where
cSM
µµ = gmµ

2mW
(F.2)

is the SM Higgs coupling to a pair of muons and cSHµµ , cSσµµ, and cSSµµ denote the contributions
from the gauge eigenstates SH , Sσ, and SS , respectively. These couplings are given by

cSHµµ ≈
1√
2
Ye22V

R†
22 V

L†
22 (F.3)

cSσµµ ≈
1√
2

sinαρ2V
R†

22 V
L†

24 , (F.4)

cSSµµ ≈
1√
2

sin βYS2V
R†

24 V
L†

22 , (F.5)

where we have assumed ρ1, ρ3 � ρ2 and YS1 , YS3 � YS2 , as motivated by the explanation of
the muon g − 2 anomaly and the stringent constraints from lepton flavor violating observables.
Furthermore, we have introduced the mixing angles α, β, and γ. The CP-even scalar mass
matrixM2

R in Eq.(6.21) is diagonalized by the unitary matrix R, which, assuming small mixing
angles, can be parametrized as

R =


1 sinα sin β

− sinα 1 sin γ
− sin β − sin γ 1

 , (F.6)

257



258 Appendix F. Rhµµ analytical expression

where α, β, γ � 1. Using now Eqs. (6.51)-(6.53) we finally obtain

cSHµµ ≈
mµ

vH
+ YS2vSρ2vσ

2MF vH

[
1−

(
ρ2vσ
2MF

)2
]
, (F.7)

cSσµµ ≈
ρ2YS2vS

2MF
sinα , (F.8)

cSSµµ ≈ −
ρ2YS2vσ

2MF

[
1−

(
ρ2vσ
2MF

)2
]

sin β . (F.9)



Appendix G

Boundedness from below

In order to ensure the existence of a stable vacuum, the scalar potential of the theory must be
BFB. There exist several approaches to analyze boundedness from below. Ideally, one would
like to have a BFB test that provides necessary and sufficient conditions. This way, one could
not only guarantee that all potentials that pass the test are BFB (sufficient condition), but
also discard potentials that fail it (necessary condition). In this regard, a major step forward
was given in [514] and more recently in [515]. The algorithm proposed in the second reference
provides necessary and sufficient conditions for boundedness from below in a generic scalar
potential using notions of spectral theory of tensors. However, applying this algorithm beyond
a few simple cases turns out to be impractical due to the computational cost involved. For
this reason, in phenomenological analyses, one usually resorts to less ambitious approaches
which only provide sufficient conditions, but not necessary. These methods are overconstraining
since one must reject potentials not passing the test, even though they might actually be BFB.
Nevertheless, if the potential passes the test, one can fully trust that boundedness from below
is guaranteed.

Here we will employ the copositivity criterion, which, combined with a recently developed
mathematical algorithm, never applied to a high-energy physics scenario, will give us sufficient
(but not necessary) conditions. To the best of our knowledge, the first paper relating copositivity
with boundedness from below was [516]. One must first express the quartic part of the scalar
potential, V4, as a quadratic form of the n real fields ϕa (a = 1, 2, . . . n) in the theory,

V4 = Λab ϕ2
aϕ

2
b . (G.1)

The scalar potential is BFB if and only if the matrix of quartic couplings Λab is copositive. A
real matrix A is said to be copositive if xTAx > 0 for every non-negative vector x > 0, that
is, xi > 0. If the inequality is strict, the matrix is strictly copositive. Therefore, checking for
the copositivity of the matrix of quartic couplings would, in principle, provide sufficient and
necessary boundedness from below conditions. However, in complicated models, one cannot
write V4 as a quadratic form without introducing mixed bilinears (scalar field combinations
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involving two different fields). For this reason, this method only leads to sufficient conditions,
as we now explain.

In order to write the quartic part of the scalar potential as a quadratic form we define

ϕ†iϕi = h2
i , ϕ†iϕj = |hi| |hj | ρijeiφij = h2

ij ρije
iφij , (G.2)

with |ρij | ∈ [0, 1] by virtue of the Cauchy-Schwarz inequality. Thus, we can express the bound-
edness from below condition as

V4 = xT V4 x > 0 , (G.3)

with x =
(
h2

1 . . . h2
i . . . h

2
ij . . .

)
and the matrix V4 is given by a combination of the quartic

couplings, as well as the ρ’s and φ phases. The reason why this method provides only sufficient
conditions is the presence of the mixed bilinears. Notice that the direction given by h2

ij is not
independent of h2

i and h2
j . Therefore, imposing xT V4 x > 0 for every non-negative x vector is

overconstraining since unphysical directions would be included in the test. Nonetheless, when
the test is positive, the potential is BFB. In summary, a scalar potential is BFB if the associated
V4 matrix is copositive. However, when the matrix is not copositive nothing can be said about
the potential.

One can find mathematical work showing that a symmetric matrix A of order n is (strictly)
copositive if and only if every principal submatrix B of A has no eigenvector w > 0 with
associated eigenvalue κ < 0 (6 0) [517]. However, these theorems have limited practical use for
large matrices since the number of principal submatrices is 2n − 1. Luckily, we can make use
of [518] instead. The authors of this work proposed an algorithm that leads to necessary and
sufficient conditions for the copositivity of unit diagonal matrices (matrices with all diagonal
elements equal to 1). Although the algorithm in [518] could only be applied for up to 7 × 7
matrices, more recent work by the same authors contains indications to extend it to higher
orders [519].

After all these considerations, our procedure to check for copositivity is as follows:

1. We replace all the quartic couplings in V4 by the numerical values in the scalar potential
we want to test.

2. We transform each element of the matrix to the worst case scenario. This is achieved by
treating the remaining ρ and φ parameters as independent variables and setting them to
the configuration for which the term is minimal. 1

3. We check if the matrix has null entries in the diagonal. If it does, we remove the corre-
sponding rows and columns. The original matrix will be copositive if the remaining one is
and the removed elements are non-negative.

1We emphasize that we do this for each element. This means that even if the same ρ parameter appears in
two elements, it is treated as if each appearance is independent. This way we make sure that all the negative
directions in the scalar potential are considered. However, we are again taking an overconstraining (and then very
conservative) approach.
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4. We need the matrix to have unit diagonal to be able to apply the algorithm in [518].
Therefore, we divide all its entries by the smallest element in the diagonal and we replace
all the values greater than 1 by 1. The original matrix will be copositive if the new one is.

5. We finally check the copositivity of the resulting matrix with the algorithm in [518].

A final remark about our method is in order. The stability in charge-breaking directions is
ignored in many analyses. However, since we are being overly restrictive treating all the ρ
moduli and φ phases as independent variables in the different entries of V4, charge-breaking
directions are included as well in our BFB test. This can be easily shown for a model with
scalar doublets. Let us parametrize them as

φi =
√
rie

iγi

(
sin (αi)

cos (αi) eiβi

)
. (G.4)

This parametrization and an example of how to use it to explore boundedness from below is
shown in [520]. Let us consider a contraction of scalar doublets

(
φ†iφj

)
= √rirj

[
sinαi sinαj + cosαi cosαje−i(βi−βj)

]
, (G.5)

and take the modulus of the term in square brackets∣∣∣sinαi sinαj + cosαi cosαjeiβ
∣∣∣2

= sin2 αi sin2 αj + cos2 αi cos2 αj + sinαi sinαj cosαi cosαj
(
eiβ + e−iβ

)
= sin2 αi sin2 αj + cos2 αi cos2 αj + 2 sinαi sinαj cosαi cosαj cosβ 6 1.

(G.6)

As expected, the product is, at most, as large as the modulus of the fields, √ri. Therefore, if we
treat the factors that multiply √rirj as independent variables (that is, being overly restrictive
as explained in footnote 1), ρijeiφij , and make all combinations minimal, our method will cover
boundedness from below in charge-breaking directions as well.





Appendix H

UV extensions of the Scotogenic
model: Accidental Z2 symmetries

This appendix expands the discussion in Chapter 8. The dark Z2 parity of the Scotogenic
model can also be an accidental symmetry generated after the σ singlet (or singlets) acquires
a VEV. In these scenarios, the symmetry breaking path is also U(1)L → Z2, but with `L, eR
and η as the only particles charged under the discrete symmetry. In this case, the Yukawa term
N̄ η̃†`L and the Majorana mass N c

N are allowed by all symmetries, while N̄H̃†`L is forbidden.
Furthermore, given that η is the only Z2-odd scalar, it will always appear in pairs in the effective
scalar potential. Therefore, although the Z2 Scotogenic parity does not emerge as a remnant
symmetry after the breaking of U(1)L, it appears accidentally as a consequence of it. In fact,
one can see that the resulting symmetry is nothing but a non-supersymmetric version of the
well-known R-parity Rp = (−1)3B+L+2s [521], which has its origin in a combination of the U(1)L

and Lorentz symmetries. 1 These UV models are not included in the classification presented in
Section 8.2 since they violate requirement (A). However, they also lead to the Scotogenic model
at low energies.

Let us illustrate this possibility with a specific example. 2 Consider the particle content and
charge assignment in Table H.1. The new Yukawa interactions in the model are given by

LY = y N η̃† `L +MN N
c
N + h.c. , (H.1)

1The relation between R-parity and the Scotogenic Z2 symmetry has been explored in [378].
2This model corresponds to the II′ (1, ∅) model shown below in Table H.2.
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Field Generations SU(3)c SU(2)L U(1)Y U(1)L

`L 3 1 2 -1/2 1

eR 3 1 1 -1 1

N 3 1 1 0 0

H 1 1 2 1/2 0

η 1 1 2 1/2 -1

σ 1 1 1 0 2

S 1 1 1 0 -1

Table H.1: Lepton and scalar particle content and representations under the gauge and global
symmetries in an UV extension of the Scotogenic model with accidental Z2 symmetry.

while the scalar potential of the model is written as

VUV = m2
HH

†H +m2
SS
∗S +m2

σσ
∗σ +m2

ηη
†η + λ1

2 (H†H)2 + λ2
2 (η†η)2

+ λS
2 (S∗S)2 + λσ

2 (σ∗σ)2 + λ3(H†H)(η†η) + λS3 (H†H)(S∗S)

+ λσ3 (H†H)(σ∗σ) + ληS3 (η†η)(S∗S) + λησ3 (η†η)(σ∗σ)

+ λσS3 (σ∗σ)(S∗S) + λ4(H†η)(η†H) +
[
β(σH†ηS) + µ1H

†ηS∗ + µ2 σ S
2 + h.c.

]
.

(H.2)

It is easy to check that other Lagrangian terms are forbidden by U(1)L. This global symmetry
gets spontaneously broken once the electroweak singlet σ acquires a non-zero VEV, leaving a
remnant Z2 under which η, S, `L, and eR are odd, while the rest of the fields are even. We can
call this symmetry Zrem

2 . Since qN = 0, N is even under Zrem
2 , and thus this symmetry cannot

be identified with the Scotogenic dark parity. Nevertheless, the Lagrangian of the Scotogenic
model is still obtained after decoupling the heavy scalar S. This is due to the fact that a new
accidental Z2 parity appears. The only fields charged under this parity are η and N , while all
the other fields in the effective theory are even, therefore, this accidental symmetry, that we can
denote as Zacc

2 , is precisely the Scotogenic Z2. As already explained, it is a non-supersymmetric
version of R-parity.

Let us now generalize the idea studied in this Appendix. We consider again the set of models
in which (H†η)2 is generated by the topologies shown in Table 8.1 with the addition of at most
two different singlets σ1,2. There are two possibilities to construct models in which the Zacc

2

symmetry is obtained:

(i) Models with qN 6= 0. In this case, we consider the models shown in Table 8.1 but
impose that N is even under the remnant Zrem

2 parity while `L, eR, and η are odd. The
Majorana masses of the N fermions are induced by the κσ1N

c
N Yukawa term.
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(ii) Models with qN = 0. This case is excluded from the classification in Section 8.2, which
focuses on qN 6= 0, and must be discussed independently. In these models, the Majorana
mass term MN N

c
N is present in the UV theory.

We now proceed to discuss these two cases independently. Again, we find it convenient to
consider topologies I− IV and V separately, since they have some qualitative differences.

H.1 Topologies I-IV

We first consider topologies I − IV. The case of qN 6= 0 can be regarded as a revision of our
discussion in Section 8.2, imposing now different conditions on the resulting models. In fact, the
models studied in Section 8.2 could also lead to U(1)L → Zrem

2 , leaving the Scotogenic Z2 parity
as an accidental symmetry. This will be the case when these conditions on qN are satisfied:

• qN = 2 z, where z can be any integer number except zero.

• qN = α
β , with α, β ∈ Z and α and β even and odd, respectively. Also, GCD(α, β) = 1 has

to be satisfied.

Notice, however, that models with fixed charges, that is, the ones with only σ1, always have the
Scotogenic symmetry as the remnant symmetry and do not enter this discussion.

Considering now scenarios with qN = 0, only 11 different models exist, and they are listed
in Table H.2. Let us denote them as ξ′(A,B), where ξ = {I, II, III, IV} and the prime is used to
distinguish these models from the ones studied in Section 8.2. Each of the 11 models needs to
satisfy any of the following conditions on qσ1 in order to generate the Z2 parity as an accidental
symmetry:

• qσ1 = 2 z, where z can be any integer number, including zero. 3

• qσ1 = α
β , with α, β ∈ Z and α and β even and odd, respectively. Also, GCD(α, β) = 1 has

to be satisfied.

We finally point out that in none of the above scenarios η gets an induced VEV.

H.2 Topology V

We move on to topology V. Again, for this topology, we can distinguish the same two types of
models as for the previous topologies. First of all, we consider the case qN 6= 0. The accidental
symmetry arises for the models 29-40 in Table 8.3 when any of these conditions is satisfied:

• qN = 2 z, where z can be any integer number except zero.
3We note that if qσ1 = 0, a second σ2 singlet, with qσ2 6= 0, is required to break the U(1)L symmetry. In this

case, σ1 becomes a total singlet and is irrelevant for the model construction.
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Topology A B qN qη qσ1 qσ2 qS (SU(2)L,U(1)Y)S

1 I′ 1 ∅ 0 −1 2 - −2 (3, 1)

2 I′ ∅ 1 0 −1 2 - 0 (3, 1)

3 I′ 1 2 0 −1 qσ1 2− qσ1 −qσ1 (3, 1)

4-5 II′ 1 ∅ 0 −1 2 - −1 (3, 0) or (1, 0)

6-7 II′ 1 2 0 −1 qσ1 2− qσ1 1− qσ1 (3, 0) or (1, 0)

8 III′ 1 ∅ 0 −1 2 - −2 (2, 1/2)

9 III′ 1 2 0 −1 qσ1 2− qσ1 −2 (2, 1/2)

10 IV′ 1 ∅ 0 −1 2 - 1 (2, 1/2)

11 IV′ 1 2 0 −1 qσ1 2− qσ1 1 (2, 1/2)

Table H.2: UV extended models leading to topologies I − IV and for which the term N
c
N is

allowed and the Scotogenic Z2 is an accidental symmetry. For each model we show the U(1)L
charges of N , η, σ1, σ2 and S, as well as the (SU(2)L,U(1)Y) representation of S. Models that
become any of the models in this list after renaming the fields or redefining their U(1)L charges
are not included.

• qN = α
β , with α, β ∈ Z and α and β even and odd, respectively (β 6= 1). Also, GCD(α, β) =

1 has to be satisfied.

For models 41-50, we have different conditions, although in all of them, we need qN = α
β , with

α, β ∈ Z and α and β even and odd, respectively. Also, GCD(α, β) = 1 has to be satisfied and
we will allow β = 1 in these models. In addition:

• In model V(2, 1, 0), we further require qN 6= ±2
3 if S is a singlet and qN 6= 2

3 if S is a
triplet. In both cases, qN can not be an integer (i.e., we need β 6= 1).

• In model V(2, 1∗, 0), we further require qN 6= 2
3 ,

2
5 ,

2
7 if S is a singlet and qN 6= 2

3 ,
2
5 if S is

a triplet. In both cases, qN can not be an integer (i.e., we need β 6= 1).

• In model V(2, 2, 0), we have two options depending on the nature of qN . If qN ∈ Z,
GCD(3qN , 1 − qN ) = 1 if qN−1

3 is not an integer and GCD(qN , qN−1
3 ) = 1 if qN−1

3 is an
integer. If qN /∈ Z, GCD(3α, α− β) = 1 if α−β3 is not an integer and GCD(α, α−β3 ) = 1 if
α−β

3 is an integer.

• In model V(2, 1∗, 2), we also have two options depending on the nature of qN . If qN ∈ Z,
GCD(3qN , 1−2qN ) = 1 if 1−2 qN

3 is not an integer and GCD(qN , 1−2 qN
3 ) = 1 if 1−2 qN

3 is an
integer. If qN /∈ Z, GCD(3α, 2α−β) = 1 if 2α−β

3 is not an integer and GCD(α, 2α−β
3 ) = 1

if 2α−β
3 is an integer.
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Topology A B C qN qη qσ1 qσ2 qS (SU(2)L,U(1)Y)S

12-13 V′ 1 1 ∅ 0 −1 2
3 - 1

3 (3, 0) or (1, 0)

14-15 V′ ∅ 1 2 0 −1 qσ1 2− qσ1 1 (3, 0) or (1, 0)

16-17 V′ 1 2 ∅ 0 −1 qσ1 2− 2qσ1 1− qσ1 (3, 0) or (1, 0)

18-19 V′ 1 1 2 0 −1 qσ1 2− 3qσ1 1− qσ1 (3, 0) or (1, 0)

Table H.3: UV extended models leading to topology V and for which the term N
c
N is allowed

and the Scotogenic Z2 is an accidental symmetry. For each model we show the U(1)L charges
of N , η, σ1, σ2 and S, as well as the (SU(2)L,U(1)Y) representation of S. Models that become
any of the models in this list after renaming the fields or redefining their U(1)L charges are not
included.

• In model V(2, 1, 2), we have again two options depending on the nature of qN . There is no
further requirement if qN ∈ Z, whereas if qN /∈ Z, GCD(3α, β) = 1 if β

3 is not an integer
and GCD(α, β3 ) = 1 if β3 is an integer.

Models with qN = 0 based on the topology V are collected in Table H.3. Each of the 8 models
needs to satisfy any of the following conditions on qσ1 in order to generate the Z2 parity as an
accidental symmetry:

• qσ1 = 2 z, where z can be any integer number, including zero.

• qσ1 = α
β , with α, β ∈ Z and α and β even and odd, respectively. Also, GCD(α, β) = 1 has

to be satisfied.





Appendix I

W boson decays in the presence of
two HNL

In this appendix, we collect the relevant details for the computation of the W boson decay
into a HNL, followed by its semileptonic decays. This is the relevant process for the searches
performed by LHCb [496] and that we discussed in Section 9.4 in the scenario with two heavy
neutral leptons.

I.1 Same sign leptons: W+ → `+
α `

+
β q
′q̄

We start with the decay rate for the process W+ → `+α `
+
β q
′q̄ mediated by two HNLs N1,2 almost

degenerate in mass, similar to that shown in Fig. 9.1, but without the initial quarks. The
amplitude reads

M+ =
∑
i=1,2

g3

2
√

2
U∗αNiU

∗
βNi

MNi

M2
W

ε∗µ
`cαγ

µγνPL`β q̄γνPLq
′

p2
N −M2

Ni
+ iΓNiMNi

, (I.1)

with pN = pW − p`α . The channel with crossed `α and `β gives rise to the same amplitude, but
it must be added incoherently to our process since the rate is dominated by on-shell Ni, and
thus the momentum of the first lepton is fixed by the 2-body decay kinematics. Therefore, the
two processes do not interfere and we can forget about the crossed channel for the moment. The
only modification results in a factor of 2 in the rate.
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Defining UαNi = |UαNi | eiφαi , δφ+ = (φα2 − φα1) + (φβ2 − φβ1) and using the narrow width
approximation, the squared matrix element becomes

|M+|2 =
[

g3

2
√

2M2
W

]2

π
(
p`β · pq

) (
2E`αEq′ + p`α · pq′

)
×{

|UαN1 |
2 |UβN1 |

2 MN1

ΓN1
δ
(
p2
N −M2

N1

)
+ |UαN2 |

2 |UβN2 |
2 MN2

ΓN2
δ
(
p2
N −M2

N2

)
+ 2 |UαN1 | |UαN2 | |UβN1 | |UβN2 |MN1MN2

[
δ
(
p2
N −M2

N1

)
+ δ

(
p2
N −M2

N2

)]
[
cos δφ+ ΓN1MN1 + ΓN2MN2(

∆M2
N

)2 + (ΓN1MN1 + ΓN2MN2)2 − sin δφ+ ∆M2
N(

∆M2
N

)2 + (ΓN1MN1 + ΓN2MN2)2

]}
,

(I.2)

where ∆M2
N ≡M2

N2
−M2

N1
. Notice that, for the interference term, we used the NWA as follows:

1(
p2
N −M2

N1
+ iΓN1MN1

) (
p2
N −M2

N2
− iΓN2MN2

) =

π (ΓN2MN2 + ΓN1MN1)(
∆M2

N

)2 + (ΓN1MN1 + ΓN2MN2)2

[
δ
(
p2
N −M2

N1

)
+ δ

(
p2
N −M2

N2

)]
+ iπ∆M2

N(
∆M2

N

)2 + (ΓN1MN1 + ΓN2MN2)2

[
δ
(
p2
N −M2

N1

)
+ δ

(
p2
N −M2

N2

)]
,

(I.3)

which differs from the expression in Ref. [474], as discussed in Section 9.4. Assuming MN1 '
MN2 ≡MN ,ΓN1 ' ΓN2 ≡ ΓN and ∆MN ≡MN2−MN1 6= 0, and considering that |UαN1 | |UβN1 | =
|UαN2 | |UβN2 | ≡ |UαN | |UβN |, we get

|M+|2 '
[

g3

2
√

2M2
W

]2

π
(
p`β · pq

) (
2EαEq′ + pα · pq′

)
δ
(
p2
N −M2

N

)MN

ΓN
|UαN |2 |UβN |2

× 2
{

1 + 2
[
2 cos δφ+ M2

NΓ2
N(

∆M2
N

)2 + 4Γ2
NM

2
N

− sin δφ+ MNΓN∆M2
N(

∆M2
N

)2 + 4Γ2
NM

2
N

]}
. (I.4)

We observe that the squared amplitude in the case of only one sterile neutrino factorizes out.
Integrating over the phase space, and after factorizing the decay width in the single HNL frame-
work, it is straightforward to obtain

Γ
(
W+ → `+α `

+
β q
′q̄
)

= 2
(

1 + cos δφ+ 1
1 + y2 − sin δφ+ y

1 + y2

)
Γ
(
W+ → `+α `

+
β q
′q̄
)∣∣∣
N1

, (I.5)

where we have defined

y ≡ ∆M2
N

2MNΓN
'

M2
N2
−M2

N1

(MN1 +MN2) ΓN
= ∆MN

ΓN
. (I.6)
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Notice that we obtain the same result of Ref. [472]. This is because we are using the NWA,
which corresponds to considering on-shell HNL, leading to the same result after integrating over
t, the time evolution of the intermediate HNL, from 0 to∞. In fact, the factor 1/Γ coming from
the NWA is equivalent to the factor

∫∞
0

∣∣∣e−Γt/2
∣∣∣2 = 1/Γ, and the interference part of Eq. (I.4)

coincides with the finding of Ref. [472].

I.2 Different sign leptons: W+ → `+
α `
−
β q
′q̄

In this section of the appendix, the decay rate of the process W+ → `+α `
−
β q
′q̄ mediated by the

two HNLs N1,2, almost degenerate in mass, is computed. The amplitude of this process is given
by

M− =
∑
i=1,2

g3

2
√

2M2
W

U∗αNiUβNiε
∗
µ

¯̀
βγ

µ/pNγ
νPL`

+
α q̄γνPLq

′

p2
N −M2

Ni
+ iΓNiMNi

, (I.7)

where, again, pN = pW − p`α . With the help of FeynCalc [522], we obtain for the squared
amplitude,

∣∣∣M−∣∣∣2 =
(

g3

2
√

2M2
W

)2
|UαN1 |

2 |UβN1 |
2 K11(
p2
N −M2

N1

)2
+ Γ2

N1
M2
N1

+ |UαN2 |
2 |UβN2 |

2 K22(
p2
N −M2

N2

)2
+ Γ2

N2
M2
N2

+2 Re

U∗αN1UβN1UαN2U
∗
βN2

K12(
p2
N −M2

N1
+ iΓN1 MN1

) (
p2
N −M2

N2
− iΓN2 MN2

)
 ,

(I.8)

with the Kij factors defined as

Kij =− 16
MW

(
pβ · pq′

) {
MW

(
pNi · pNj

) [
(pα · pq) + 2EαEq

]
− 2Eα

[
(pNi · pW )

(
pNj · pq

)
+
(
pNj · pW

)
(pNi · pq)

]
−MW

[
(pNi · pq)

(
pNj · pα

)
+
(
pNj · pq

)
(pNi · pα)

]}
. (I.9)

Assuming as before that MN1 ≈ MN2 ≡ MN and ΓN1 ≈ ΓN2 ≡ ΓN , then K11 = K22 = K12 ≡
K. Also, considering that |UαN1 | |UβN1 | = |UαN2 | |UβN2 | ≡ |UαN | |UβN |, we can simplify the
expression notably

∣∣∣M−∣∣∣2 =
(

g3

2
√

2M2
W

)2

|UαN |2 |UβN |2 2
{

K(
p2
N −M2

N

)2 + Γ2
N M

2
N

+ Re

 K eiδφ
−(

p2
N −M2

N1
+ iΓN1 MN1

) (
p2
N −M2

N2
− iΓN2 MN2

)
 , (I.10)
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with δφ− = (φα2 − φα1)− (φβ2 − φβ1). And using the narrow width approximation, we get

∣∣∣M−∣∣∣2 = 2
(

g3

2
√

2M2
W

)2

|UαN |2 |UβN |2 K
π

ΓN MN
δ
(
p2
N −M2

N

)
{

1 + Re
[
2 ΓN MN

2 ΓN MN + i∆M2
N(

∆M2
N

)2 + 4 Γ2
N M

2
N

ei δφ
−
]}

. (I.11)

Finally, it is straightforward to obtain the total expression in terms of the decay width mediated
by just one HNL,

Γ
(
W+ → `+α `

−
β q
′q̄
)

= 2
(

1 + cos δφ− 1
1 + y2 − sin δφ− y

1 + y2

)
× Γ

(
W+ → `+α `

−
β q
′q̄
) ∣∣∣

N1
,

(I.12)
with y defined in Eq. (I.6).
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