
European Journal of Operational Research 291 (2021) 32–51 

Contents lists available at ScienceDirect 

European Journal of Operational Research 

journal homepage: www.elsevier.com/locate/ejor 

Discrete Optimization 

On the Distance-Constrained Close Enough Arc Routing Problem 

Ángel Corberán 

a , Isaac Plana 

b , Miguel Reula 

a , José M. Sanchis c , ∗

a Departament d’Estadística i Investigació Operativa, Universitat de València, Avda. Dr. Moliner 50, Burjassot 46100, Valencia, Spain 
b Departament de Matemáticas para la Economía y la Empresa, Universitat de València, Avda. Tarongers s/n, Valencia 46022, Valencia, Spain 
c Departament de Matemática Aplicada, Universidad Politécnica de Valencia, Camino de Vera s/n, Valencia 46022, Valencia, Spain 

a r t i c l e i n f o 

Article history: 

Received 15 January 2020 

Accepted 9 September 2020 

Available online 16 September 2020 

Keywords: 

Routing 

Distance constraints 

Close-enough 

Rural Postman 

Branch and cut 

a b s t r a c t 

Arc routing problems consist basically of finding one or several routes traversing a given set of arcs and/or 

edges that must be serviced. The Close-Enough Arc Routing Problem, or Generalized Directed Rural Post- 

man Problem, does not assume that customers are located at specific arcs, but can be serviced by travers- 

ing any arc of a given subset. Real-life applications include routing for meter reading, in which a vehicle 

equipped with a receiver travels a street network. If the vehicle gets within a certain distance of a meter, 

the receiver collects its data. Therefore, only a few streets which are close enough to the meters need to 

be traversed. In this paper we study the generalization of this problem to the case in which a fleet of 

vehicles is available. This problem, the Distance-Constrained Close Enough Arc Routing Problem, consists 

of finding a set of routes with minimum total cost such that their length does not exceed a maximum 

distance. 

In this article, we propose a new formulation for the Distance-Constrained Close Enough Arc Routing 

Problem and present some families of valid inequalities that we use in a branch-and-cut algorithm for 

its solution. Extensive computational experiments have been performed on a set of benchmark instances 

and the results are compared with those obtained with other heuristic and exact methods. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Some real-world logistic problems, such as meter reading, 

aste collection or postal delivery, require that a service is per- 

ormed while traversing a street or road. Recent technological ad- 

ances allow some of these tasks to be performed in an easier and 

ess expensive way. Particularly, radio frequency technology (RFID) 

ermits collecting the consumption data from electricity, gas or 

ater meters remotely ( Uribe-Pérez, Hernández, De la Vega, & An- 

ulo, 2016 ). 

Until recently, the collection of this data had to be performed 

oor to door and thus the vehicles or workers had to traverse all 

he streets where the meters where located. Using RFID, the ser- 

ice providers do not need to visit all their customers. The meter 

ends the data consumption and, if the receiver is closer than a 

ertain distance, this data is collected. Therefore, the operator only 

eeds to enter the meter covering zone to perform the service. An 

nteresting summary of the models and methods proposed since 

he late 1970s in meter reading is the paper by Eglese, Golden, and 

asil (2014) . 
∗ Corresponding author. 
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The first description of this application for a single vehicle 

as provided by Gulczynski, Heath, and Price (2006) . They con- 

ider the problem where each customer is modeled as a point 

n the plane and the salesman must travel within a required ra- 

ius r of each customer. They assume that the salesman “is not 

estricted to a road network”, that is, it can move between any 

air of points in the plane following a straight line whose cost is 

he Euclidean distance. The objective is to minimize the total dis- 

ance traveled. Since then, this problem, the Close Enough Trav- 

ling Salesman Problem (CETSP), and variants where the radius 

ssociated with each customer may be different or the shape of 

he area around the customer is not a circle have been studied 

y several authors: Dong, Yang, and Chen (20 07) , Mennell (20 09) ,

huttleworth, Golden, Smith, and Wasil (2008) , Behdani and Smith 

2014) , Coutinho, Subramanian, do Nascimento, and Pessoa (2016) , 

nd Carrabs, Cerrone, Cerulli, and Gaudioso (2017) . Another closely 

elated problem is the Covering Tour Problem (CTP) studied by 

endreau, Laporte, and Semet (1997) . The CTP is defined on a 

raph G = (V ∪ W, E) , where W is a set of vertices that must be

overed, and consists of determining a minimum length Hamilto- 

ian cycle on a subset of V such that every vertex of W is within

 prespecified distance from the cycle. For this problem, the au- 

hors present an ILP formulation and several valid inequalities and 

ropose a heuristic and a branch-and-cut algorithm. 

https://doi.org/10.1016/j.ejor.2020.09.012
http://www.ScienceDirect.com
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Hà, Bostel, Langevin, and Rousseau (2012, 2014) consider the 

eter reading application in the context of a street network, 

here, although the customers (meters) do not need to be nodes 

f the network, they can be serviced by traversing a street that is 

lose enough. Hà’s et al. approach to the problem is clearly that 

f an arc routing problem. Unlike the previous articles, where the 

ervice has to be done in all or some of the vertices of a network

node or vehicle routing problems), in arc routing problems (ARPs) 

he service has to be done in some or all the arcs or/and edges

f a network. See the book Corberán and Laporte (2014) , the an- 

otated bibliography by Mourão and Pinto (2017) , and Corberán, 

glese, Hasle, Plana, and Sanchis (2020) for a comprehensive treat- 

ent of this area. Hà et al. call this problem the Close-Enough Arc 

outing Problem (CEARP) and propose a formulation and a branch- 

nd-cut algorithm that exhibits a very good performance on large 

nstances. In a more general context, Drexl (2007, 2014) studies 

his problem and calls it the Generalized Directed Rural Postman 

roblem (GDRPP). In the GDRPP each customer has an associated 

ubset of arcs, of which at least one has to be traversed in order 

o service the customer, and the goal is to find a minimum cost 

oute servicing all the customers. Drexl proves that the problem is 

P-hard because it contains the Directed Rural Postman Problem 

s a special case and proposes a formulation and a branch-and-cut 

lgorithm producing good computational results. 

Ávila, Corberán, Plana, and Sanchis (2016) introduce two new 

ormulations for the CEARP, present a polyhedral study and pro- 

ose a branch-and-cut algorithm using several families of new in- 

qualities, comparing the obtained results with those from Hà, 

ostel, Langevin, and Rousseau (2014) . In Cerrone, Cerulli, Golden, 

nd Pentangelo (2017) a new flow-based formulation is given, as 

ell as some techniques to reduce the size of the graph. The re- 

ults obtained on one of the set of instances proposed in Hà et al. 

2012) using this new formulation improve those of Hà et al., but 

re slightly worse than those in Ávila et al. (2016) . A stochastic 

ersion of the CEARP has been studied by Renaud, Absi, and Feillet 

2017) . In that paper, the authors point out that the remote read- 

ng of a meter may fail and therefore there is an uncertainty in 

he collection of the data. They introduce the probability of read- 

ng a meter as a function of the distance of the customer from 

he vehicle route, and propose a mathematical formulation and a 

utting-plane algorithm and several heuristics for its solution. 

The Generalized Arc Routing Problem is an undirected version 

f the CEARP where the clusters of edges associated with the cus- 

omers are pairwise-disjoint connected subgraphs. This problem, 

hich can be seen as the arc routing counterpart of the Gener- 

lized Traveling Salesman Problem, is studied by Aráoz, Fernández, 

nd Franquesa (2017) , who describe some facets and valid inequal- 

ties for the problem and present a branch-and-cut algorithm for 

ts solution. 

Other applications of the CETSP and the CEARP arise in the 

obot monitoring of wireless sensor networks ( Behdani & Smith, 

014; Yuan, Orlowska, & Sadiq, 2007 ). As Yuan et al. (2007) point 

ut, “in a wireless sensor network, where sensors are geograph- 

cally distant from each other, it may not be practical to require 

ensors to directly coordinate with each other to form a com- 

unication network due to the energy restriction. One possible 

olution is to employ a mobile robot, which can travel to all 

ensors, to download the data and finally return to its base station 

starting position)”. Like in meter reading, “the robot must be 

hysically within its effective range”. Aráoz et al. (2017) also note 

hat another area of application is in quality control for networks 

aintenance, where only a small subset of the edges of a network 

as to be traversed. The same authors argue that the CEARP is 

he most appropriate problem for modeling location/arc routing 

roblems in which facilities have to be located at some given 

reas and connected among them by means of a route. 
33 
The CEARP is defined for a single vehicle, but in practical ap- 

lications where the number of customers is very high the service 

ust be carried out by a fleet of vehicles (or one vehicle perform- 

ng several routes). Ávila, Corberán, Plana, and Sanchis (2017) in- 

roduce the problem of finding a set of routes with total minimum 

ost, that start and end at a depot, service all the customers, and 

uch that the length of each route does not exceed a certain limit. 

or this problem, the Distance Constrained CEARP (DC-CEARP), the 

uthors introduce four different formulations and, based on them, 

hey propose four branch-and-cut algorithms for its solution. Re- 

ently, a matheuristic algorithm for the DC-CEARP has been de- 

cribed in Corberán, Plana, Reula, and Sanchis (2019) . 

In this paper we deepen the study of the DC-CEARP. The contri- 

ution of this work is threefold. First, we propose a new formula- 

ion for the DC-CEARP that combines the best features of the pre- 

iously existing ones. For this formulation, an exhaustive study of 

ts associated polyhedron is performed, and several different fam- 

lies of valid inequalities are proposed. Secondly, many of the new 

nequalities presented here can be used, directly or easily adapted, 

n other arc routing problems, and the ideas in which some of 

he algorithms designed for the separation of these inequalities are 

ased (or the algorithms themselves), can be used for similar in- 

qualities in other problems. Finally, the designed branch-and-cut 

lgorithm is an efficient exact method that is able to solve in- 

tances with up to 140 customers, 196 vertices, 544 arcs, and 5 

ehicles to optimality within two hours computing time. 

The paper is organized as follows. In Section 2 we describe 

he problem formally and present the new formulation. Several 

amilies of valid inequalities are shown in Section 3 , while the 

orresponding separation methods and the branch-and-cut algo- 

ithm are presented in Section 4 . Computational experiments are 

eported in Section 5 , and some conclusions and future lines of re- 

earch are given in Section 6 . 

. Problem definition and formulations 

The Distance-Constrained Close Enough Arc Routing Problem, 

C-CEARP, is defined as follows. Consider a strongly connected and 

irected graph G = (V, A ) , where V is the set of vertices, A is the

et of arcs, and, for each arc ( i , j ) ∈ A , there is a distance d ij asso-

iated with its traversal. Vertex 1 represents the depot. There is a 

eet of K identical vehicles based at the depot and a set of L cus-

omers. Each customer c ∈ { 1 , . . . , L } has an associated set of arcs

 c ⊆A from which it can be serviced. We consider that a customer 

 is serviced if there is a vehicle k that traverses at least one arc in

 c . The length of the routes of the vehicles must not exceed a max-

mum travel distance denoted by D max . The aim of the DC-CEARP 

s to find a set of K routes, starting and ending at the depot, with

inimum total distance and such that each customer c = 1 , . . . , L, 

s serviced and the length of each route does not exceed D max . 

In what follows, K = { 1 , . . . , K} will represent the set of vehi-

les, H = { 1 , . . . , L } the set of customers, and A R = H 1 ∪ H 2 ∪ · · · ∪ H L 

he set of required arcs. The arcs in the set A NR = A \ A R are called

on-required arcs. Given two sets S , T ⊂ V , we define (S : T ) =
 (i, j) ∈ A : i ∈ S, j ∈ T } and (S, T ) = (S : T ) ∪ (T : S) . In particular,
+ (S) = (S : V \S) , δ−(S) = (V \S : S) and δ(S) = (S, V \S) . Finally,

 (S) = { (i, j) ∈ A : i, j ∈ S} and, given a set of variables x ij indexed

n the arcs, and given a set F of arcs, x (F ) = 

∑ 

(i, j) ∈ F x i j . 

In Ávila et al. (2017) four formulations for the DC-CEARP us- 

ng different types of variables are presented. In these formula- 

ions, there are two types of variables. Some variables are asso- 

iated with the number of times a vehicle traverses an arc, while 

ther variables indicate if the vehicle traversing a required arc ser- 

ices an associated customer or not. 

The formulation we propose here, F xyz , is based on the F xy + 
nd F xz formulations presented in Ávila et al. (2017) . This new 
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t  
ormulation has more variables than F xy + and F xz but, as it will 

e seen in Section 5 , they are useful in the exact solution of the

C-CEARP. The formulation F xyz uses the following variables: 

 

k 
i j = number of times that the vehicle k traverses arc (i, j) ∈ A,

 

kc 
i j = 

{ 

1 , if the customer c is serviced by vehicle k 
while traversing arc (i, j) ∈ A R 

0 , otherwise. 

 

k 
c = 

{
1 , if the customer c is serviced by vehicle k 
0 , otherwise. 

The DC-CEARP can be formulated as 

inimize 
∑ 

k ∈ K 

∑ 

(i, j) ∈ A 

∑ 

d i j x 
k 
i j 

s.t. : ∑ 

(i, j) ∈ A 
d i j x 

k 
i j ≤ D max ∀ k ∈ K (1) 

 

k (δ+ (i ) ) = x k (δ−(i ) ) ∀ i ∈ V, ∀ k ∈ K (2) 

 

 ∈ K 

∑ 

(i, j) ∈ H c 
y kc 

i j = 1 ∀ c ∈ H (3) 

 

k 
i j ≥ y kc 

i j ∀ (i, j) ∈ A R , ∀ c ∈ H , ∀ k ∈ K (4) 

∑ 

(i, j) ∈ H c 
y kc 

i j = z k c ∀ c ∈ H , ∀ k ∈ K (5) 

 

k (δ+ (S) ) ≥ z k c − x k (H c ∩ A (V \ S)) ∀ S ⊂ V \{ 1 } , ∀ c ∈ H , ∀ k ∈ K 

(6) 

 

k 
i j ≥ 0 and integer ∀ (i, j) ∈ A, ∀ k ∈ K (7) 

 

k 
c ∈ { 0 , 1 } ∀ c ∈ H , ∀ k ∈ K (8) 

 

kc 
i j ∈ { 0 , 1 } ∀ (i, j) ∈ A R , ∀ c ∈ H , ∀ k ∈ K (9) 

Inequalities (1) limit the maximum length of each vehicle route. 

onstraints (2) are the well known symmetry equations. Inequali- 

ies (3) force each customer to be serviced exactly from one arc 

nd with one vehicle, and inequalities (4) say that if a vehicle ser- 

ices a required arc then it has to traverse it. The relation between 

he y kc 
i j 

and z k c variables is given by Eq. (5) . The connectivity of each

oute is guaranteed by inequalities (6) . They are valid because, if 

ehicle k does not service customer c , z k c = 0 and the inequality

s trivially satisfied. Otherwise, if vehicle k services customer c by 

raversing an arc in H c ∩ A ( V �S ), then it does not need to traverse

he cutset δ( S ) and the inequality is also trivially satisfied. Only if 

ehicle k services customer c by traversing an arc not in H c ∩ A ( V �S )

hence, traversing an arc in δ( S ) or in A ( S )), the vehicle has to tra-

erse δ( S ) and, therefore, the inequality is satisfied. Note that there 

s an exponential number of such inequalities. Finally, (7) –(9) are 

he non-negativity and integrality constraints. 

Note that the coefficients in the objective function and those in 

nequalities (1) do not necessarily have to be the same. We have 

et the same coefficients for the sake of simplicity and because we 

hink of them as distances associated with a time that the routes 

hould not exceed because they may correspond, for example, to 

rivers’ working hours. 
34 
. Valid inequalities 

In this section we introduce some inequalities that are valid for 

he DC-CEARP and that will strengthen the linear relaxation of the 

ormulation. 

.1. More connectivity inequalities 

Besides the connectivity inequalities (6) in the formulation, in- 

olving variables x and z , other connectivity inequalities are pre- 

ented in what follows. 

In Ávila et al. (2017) , the following connectivity inequalities 

ere introduced: 

 

k (δ+ (S) ) ≥ 1 − x k (H c ∩ A (V \ S)) − ∑ 

k ′ � = k 
x k 

′ 
(H c ) , ∀ S ⊂ V \ { 1 } , 

∀ c ∈ H , ∀ k ∈ K . (10) 

hese inequalities ensure that, if no vehicle other than k traverses 

he arcs in H c (thus it cannot service customer c ), and vehicle k 

oes not traverse any arcs in H c ∩ A ( V �S ), then vehicle k has to tra-

erse the cutset ( V �S , S ) in order to service this customer. They are

alled disaggregate connectivity inequalities because they refer to a 

ingle vehicle. For each subset � ⊂ K of | �| ≥ 2 vehicles, the fol- 

owing �-aggregate connectivity inequalities are valid 

 

 ∈ �
x k (δ+ (S) ) ≥ 1 −

∑ 

k ∈ �
x k (H c ∩ A (V \S)) −

∑ 

k ′ / ∈ �
x k 

′ 
(H c ) , 

∀ S ⊂ V \ { 1 } , ∀ c ∈ H . (11) 

n the case � = K the aggregate connectivity inequalities are: 
 

 ∈ K 
x k (δ+ (S) ) ≥ 1 −

∑ 

k ∈ K 
x k (H c ∩ A (V \S)) , (12) 

or any subset S ⊆V �{1} and any customer c ∈ H . 

If we consider also y kc 
i j 

variables, we have a different family of 

onnectivity inequalities (see Ávila et al., 2017 ): 

 

k (δ+ (S) ) ≥
∑ 

(i, j) ∈ H c \ A (V \ S) 
y kc 

i j , ∀ S ⊂ V \{ 1 } , ∀ c ∈ H , ∀ k ∈ K (13)

ote that, if vehicle k services customer c using an arc in 

 c �A ( V �S ), then the vehicle has to traverse δ( S ). 

Unlike for inequalities (10) , the �-aggregate and aggregate ver- 

ions of connectivity inequalities (6) and (13) are just the sum of 

he corresponding disaggregate inequalities and, therefore, they are 

ominated. 

.2. Parity inequalities 

Parity inequalities are based on the fact that a vehicle crosses 

ny cutset an even (or zero) number of times. The parity inequali- 

ies for the DC-CEARP described in what follows are different from 

hose in other arc routing problems because they are related not 

nly to the arcs in the cutset but also to the sets H c . Four different

amilies of parity inequalities were presented in Ávila et al. (2017) . 

rom them, the two stronger ones are presented in what follows. 

The first family uses only x variables. Given a vehicle k , let 

 ⊂ V and consider a subset of customers { c 1 , c 2 , . . . , c q } , with q ≥ 3

nd odd, such that H c i ∩ H c j ∩ δ(S) = ∅ and H c i ∩ δ(S) � = ∅ , ∀ c i , i =
 , . . . , q (see Fig. 1 (a)). In Ávila et al. (2017) , it is proved that the

ollowing parity inequalities are valid for the DC-CEARP: 

 

k (δ(S)) ≥
q ∑ 

i =1 

(
1 − 2 

∑ 

k ′ � = k 
x k 

′ 
(H c i ) − 2 x k (H c i \ δ(S)) 

)
+ 1 . (14)

Note that, if no other vehicle k ′ � = k services customer c i (i.e.,
 

k ′ � = k x k 
′ 
(H c i ) = 0 ) and vehicle k does not traverse any edge of cus-

omer c i that is not in the cutset (i.e., x k (H c \ δ(S)) = 0 ), then k

i 
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Fig. 1. Structure of the parity inequalities for the DC-CEARP. 
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raverses at least an arc in H c i ∩ δ(S) . Extending the previous argu-

ent to the q customers in δ( S ), vehicle k has to traverse at least q

imes δ( S ) and, since q is an odd number, it has to go through the

utset one more time. 

The second set of inequalities use the x k 
i j 

and the y kc 
i j 

variables. 

onsider now the set of arc subsets F = { F c 1 , F c 2 , . . . , F c q } , with

 ≥ 3 and odd, satisfying F c i ⊆ H c i ∩ δ(S) and F c i ∩ F c j = ∅ , ∀ c i , c j (see

ig. 1 (b)). Then, the following parity inequalities are valid for the 

C-CEARP: 

 

k (δ(S)) ≥
q ∑ 

i =1 

(
2 y kc i (F c i ) − 1 

)
+ 1 . (15) 

In this case, note that if vehicle k services each customer c i 
rom an arc in F c i , then it has to traverse δ( S ) at least q times.

gain, since q is an odd number, the number of traversals should 

e at least q + 1 . 

Besides the right-hand side of the inequalities, there is a dif- 

erence between the conditions satisfied by the customers in the 

arity inequalities above. As it is depicted in Fig. 1 , two customers 

 1 and c 2 satisfying H c 1 ∩ H c 2 ∩ δ(S) � = ∅ cannot be considered for

nequality (14) , but they can for inequality (15) if F c 1 and F c 2 are

hosen such that F c 1 ∩ F c 2 = ∅ . Nevertheless, we want to point out

hat the greater the sets F c i , the stronger inequalities (15) . In par-

icular, if F c i = H c i ∩ δ(S) , for all i = 1 , . . . , q, and F c i ∩ F c j = ∅ for all

 � = j; i, j = 1 , . . . , q, we obtain the strongest inequality. 

By comparing both kind of inequalities, it can be seen that none 

f them dominates the other in all the cases. Hence, in the branch- 

nd-cut algorithm we will use both families of parity inequalities 

14) and (15) . 

Finally, given a set of vehicles � = { k 1 , . . . , k P } , 2 ≤ P ≤ K , we

ave the following �-aggregate parity inequalities : 

 

 ∈ �
x k (δ+ (S)) ≥ q + 1 − 2 

q ∑ 

i =1 

( ∑ 

k ′ / ∈ �
x k 

′ 
(H c i ) + 

∑ 

k ∈ �
x k (H c i \ δ(S)) 

)
. 

(16) 

 

 ∈ �
x k (δ+ (S)) ≥

∑ 

i =1 

q 
(∑ 

k ∈ �
2 y kc i (F c i ) − 1 

)
+ 1 . (17) 

t can be seen that if � = K and F c i = H c i , ∀ c i (hence H c i \ δ(S) = ∅
olds), inequalities (16) and (17) reduce to the following aggregate 
35 
arity inequality: 
 

 ∈ K 
x k (δ+ (S)) ≥ q + 1 . 

.3. K-C inequalities 

K-C inequalities were introduced in Corberán and Sanchis 

1994) for the undirected Rural Postman Problem. Beyond the con- 

ectivity and parity inequalities described before, the K-C inequali- 

ies try to make connectivity and parity conditions satisfied simul- 

aneously on a partition of the vertex set that is more complex 

han the two shores of the cutsets ( S , V �S ) used in connectivity

nd parity inequalities. 

The name of this family of inequalities is motivated by the 

umber of sets into which V is partitioned, which is usually de- 

oted by K . To avoid confusion with the number of vehicles, in 

hat follows we use the letter Q instead. 

All the versions of the K-C inequalities are based on a structure 

see Fig. 2 ) defined by a partition of the set of vertices V into Q + 1

ubsets, M 0 , M 1 , . . . , M Q−1 , M Q , and a set of coefficients for the arcs

r edges of the graph. For each ( i , j ) ∈ A , we define 

i j = 

{ 

Q − 2 , if (i, j) ∈ (M 0 , M Q ) 
| r − s | , if (i, j) ∈ (M r , M s ) , { r, s } � = { 0 , Q} 
0 , otherwise. 

(18) 

Let us call external arcs those joining two consecutive sets M r 

nd M r+1 , and internal arcs to those joining two sets M r and M s 
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Fig. 3. Standard disaggregate K-C inequality for the DC-CEARP. Depot is represented by a triangle. 
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i  
ith | r − s | > 1 and { r , s } � = {0, Q }. Note that all the external arcs

ave coefficient 1, while the coefficient of an internal arc from M r 

o M s (not shown in Fig. 2 ) is equal to the cost of the shortest path

sing the coefficients of the external arcs. Finally, the coefficient of 

he arcs in ( M 0 , M Q ) is Q − 2 . It is known (see Corberán & Sanchis,

994 and Ávila et al., 2017 ) that any vector x ∈ Z 

| A | representing a

our traversing at least an even number q ≥ 2 of times the arcs in

 M 0 , M Q ), and visiting at least once each node set M 0 ∪ M Q , M 1 , . . . ,

 Q−1 , satisfies the following K-C inequality: 

∑ 

i, j) ∈ A 
αi j x i j ≥ (Q − 2) q + 2(Q − 1) . (19) 

Inequality (19) is valid for any ARP in which all the tours x 

ust traverse q times the arcs in ( M 0 , M Q ) and visit all the node

ets M 0 ∪ M Q , M 1 , . . . , M Q−1 . As an example, this is the case of the

RPs with one single vehicle when there are q required arcs in 

 M 0 , M Q ) and some required arcs in all the sets M 1 , . . . , M Q−1 . In

n ARP with several vehicles, such as the DC-CEARP studied here, 

t is usual that single vehicles are not obliged to traverse all the re-

uired arcs (or, therefore, to visit all the nodes), but only those arcs 

hat are serviced by it. Thus, the K-C inequalities for the DC-CEARP 

resented in this section have the same left-hand side (LHS) as in- 

quality (19) , but the right-hand side (RHS) must include variables 

 

kc 
i j 

that define the service of a customer by a vehicle from an arc, 

n such a way that, when the vehicle k satisfies the above condi- 

ions, the RHS of the inequality takes value (Q − 2) q + 2(Q − 1) . 

.3.1. Disaggregate K-C inequalities 

Consider a partition of the set of vertices V into Q subsets { M 0 ∪
 Q , M 1 , . . . , M Q−1 } , with Q ≥ 3, and the set of coefficients αij given

n (18) (see Fig. 3 ). 

Let us consider a family of arc subsets F = { F 1 , F 2 , . . . , F q } , with

 ≥ 2 and even, satisfying (see Fig. 3 ): 

• F i � = ∅ ∀ i ∈ { 1 , . . . , q } , 
• ∃ c i ∈ H such that F i ⊆ H c i ∩ (M 0 , M Q ) , ∀ i ∈ { 1 , . . . , q } , 
• F i ∩ F j = ∅ , ∀ i, j ∈ { 1 , . . . , q } , i � = j. 

Furthermore, assume that for each M j , j = 1 , . . . , Q − 1 , either

 ∈ M j or the set of arcs G j = H c j ∩ 

(
A (M j ) ∪ δ(M j ) 

)
is nonempty,

or some c j ∈ H . Note that we cannot assume G j 1 
∩ G j 2 

= ∅ because

(M j 1 
) and δ(M j 2 

) are not necessarily disjoint sets. We define the 
36 
isaggregate K-C inequality associated with a vehicle k as: 

∑ 

i, j) ∈ A 
αi j x k i j ≥ (Q − 2) 

q ∑ 

i =1 

(
2 y kc i (F i ) − 1 

)
+ 

Q−1 ∑ 

j=1 

2 y kc j (G j ) , (20)

f the depot is in M 0 ∪ M Q , and 

∑ 

i, j) ∈ A 
αi j x k i j ≥ (Q − 2) 

q ∑ 

i =1 

(
2 y kc i (F i ) − 1 

)
+ 

Q−1 ∑ 

j=1 

j � = l. 

2 y kc j (G j ) + 2 , 

(21) 

f 1 ∈ M l with l �∈ {0, Q }. 

ote 1. If Q = 2 , then inequality (20) is exactly the connectivity 

onstraint (6) associated with set S = M 1 . 

heorem 1. For each vehicle k , disaggregate K-C inequalities (20) and 

21) are valid for the DC-CEARP. 

roof. See Appendix A.1 . �

.3.2. �-aggregate K-C inequalities 

Here we present the K-C inequalities associated with any subset 

f vehicles � ⊆ K . Note that, inequality (20) can be written as 

∑ 

i, j) ∈ A 
αi j x k i j −(Q − 2) 

q ∑ 

i =1 

(
2 y kc i (F i ) 

)
−

Q−1 ∑ 

j=1 

2 y kc j (G j ) ≥−(Q − 2) q, 

(22) 

here the values for coefficients αij are given in (18) . 

If we consider a subset of vehicles � ⊆ K and we add the | �| 

orresponding disaggregate K-C inequalities we obtain an inequal- 

ty that is obviously valid for the DC-CEARP, but it is not interesting 

or the problem, since it is dominated: 

 

 ∈ �

∑ 

(i, j) ∈ A 
αi j x k i j − (Q − 2) 

∑ 

k ∈ �

q ∑ 

i =1 

(
2 y kc i (F i ) 

)
−

∑ 

k ∈ �

Q−1 ∑ 

j=1 

2 y kc j (G j ) 

≥ −| �| (Q − 2) q 

However, by changing the RHS from −| �| (Q − 2) q to −(Q −
) q, we obtain new and stronger inequalities (except when RHS = 0, 

.e., when Q = 3 , q = 2 and the depot is not in M 0 ∪ M Q ). Specif-

cally, given a partition { M 0 ∪ M Q , M 1 , . . . , M Q−1 } , Q ≥ 3, with the
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Fig. 4. A fractional solution for vehicle k not cut off by a disaggregate K-C inequal- 

ity. 
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orresponding set of coefficients α, a set F = { F 1 , F 2 , . . . , F q } ( q ≥ 2

nd even) and some sets G j as above, and given a subset of vehi-

les �, we define the �-aggregate K-C inequality as 

 

 ∈ �

∑ 

(i, j) ∈ A 
αi j x k i j ≥ (Q −2) 

q ∑ 

i =1 

(∑ 

k ∈ �
2 y kc i (F i )−1 

)
+ 

Q−1 ∑ 

j=1 

∑ 

k ∈ �
2 y kc j (G j ) 

(23) 

f the depot 1 ∈ M 0 ∪ M Q , and 

 

 ∈ �

∑ 

(i, j) ∈ A 
αi j x k i j ≥ (Q − 2) 

q ∑ 

i =1 

(∑ 

k ∈ �
2 y kc i (F i ) − 1 

)

+ 

Q−1 ∑ 

j=1 

j � = l. 

∑ 

k ∈ �
2 y kc j (G j ) + 2 (24) 

f 1 ∈ M l , with l �∈ {0, Q }. 

heorem 2. Given a set of vehicles � ⊆ K , the �-aggregate K-C in- 

qualities (23) and (24) are valid for the DC-CEARP. 

roof. See Appendix A.2 . �

.4. K-C 02 inequalities 

K-C 02 inequalities are a variant of the K-C inequalities that take 

nto account the asymmetry of the costs associated with the di- 

ection of traversal. In some ARPs the K-C 02 inequalities are domi- 

ated by the standard K-C inequalities. This is not the case for the 

C-CEARP. For example, consider the fractional DC-CEARP solution 

 x k , y k ) depicted in Fig. 4 . 

It can be seen that this solution satisfies all the connectivity 

nequalities (6) and it also satisfies the K-C inequality (20) corre- 

ponding to this structure: ∑ 

i, j) ∈ A 
αi j x 

k 
i j = (0 . 5 + 0 . 5 + 1 . 25) + (1 . 25 + 1 . 25 + 1 . 25) = 6 , an

Q − 2) 

q ∑ 

i =1 

(
2 y 

kc i (F i ) − 1 

)
+ 

q ∑ 

i =1 

2 y 
kc j (G j ) = 

(
2(0 . 5 + 0 . 5) − 1 

)
+ 

(
2 × 1 − 1 

)
+ 2 × 1 + 2 × 1 = 6 . 

e will see that the disaggregate K-C 02 inequalities that we de- 

cribe in what follows do cut off this solution. 
37 
.4.1. Disaggregate K-C 02 inequalities 

Consider a partition of the set of vertices V into Q subsets { M 0 ∪
 Q , M 1 , . . . , M Q−1 } , with Q ≥ 2, and the following set of coefficients

see Fig. 5 ). For each ( i , j ) ∈ A , 

i j = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

Q − 1 , if (i, j) ∈ (M 0 , M Q ) 
s − 1 , if (i, j) ∈ (M 0 : M s ) , 1 ≤ s ≤ Q − 1 

s + 1 , if (i, j) ∈ (M s : M 0 ) , 1 ≤ s ≤ Q − 1 

| r − s | , if (i, j) ∈ (M r , M s ) , 1 ≤ r, s ≤ Q 

0 , otherwise. 

et us also consider a family of arc subsets F = { F 1 , F 2 , . . . , F q } , and

he arc sets G j satisfying the same conditions as for the K-C in- 

qualities. Note that now we have Q ≥ 2 (see Note 2 below). We 

efine the disaggregate K-C 02 inequalities associated with a vehicle 

 as: 

∑ 

i, j) ∈ A 
βi j x k i j ≥ (Q − 1) 

q ∑ 

i =1 

(
2 y kc i (F i ) − 1 

)
+ 

Q−1 ∑ 

j=1 

2 y kc j (G j ) , (25)

f the depot is in M 0 ∪ M Q , and 

∑ 

i, j) ∈ A 
βi j x k i j ≥ (Q − 1) 

q ∑ 

i =1 

(
2 y kc i (F i ) − 1 

)
+ 

Q−1 ∑ 

j=1 

j � = l. 

2 y kc j (G j ) + 2 , 

(26) 

f 1 ∈ M l with l �∈ {0, Q }. 

heorem 3. For each vehicle k , K-C 02 inequalities (25) and (26) are 

alid for the DC-CEARP. 

roof. The proof is similar to that of Theorem 1 and is omitted 

ere for the sake of brevity. �

Let us now check that the K-C 02 inequality cuts off the frac- 

ional solution ( x k , y k ) depicted in Fig. 4 : ∑ 

i, j) ∈ A 
βi j x 

k 
i j = 2(0 . 5 + 0 . 5 + 1 . 25) + 0 × 1 . 25 

+ 1 × 1 . 25 + 1 × 1 . 25 = 7 , 

hile 

Q − 1) 

q ∑ 

i =1 

(
2 y 

kc i (F i ) − 1 

)
+ 

q ∑ 

i =1 

2 y 
kc j (G j ) 

= 2 

(
2(0 . 5 + 0 . 5) − 1 + 2 × 1 − 1) 

)
+ 2 × 1 + 2 × 1 = 8 . 

ote 2. Unlike the standard K-C inequalities, the K-C 02 inequalities 

ith Q = 2 are not equivalent to any other known inequality. 

.4.2. �-aggregate K-C 02 inequalities 

Given a partition { M 0 ∪ M Q , M 1 , . . . , M Q−1 } , Q ≥ 2, with the cor-

esponding set of coefficients β , a set F = { F 1 , F 2 , . . . , F q } ( q ≥ 2 and

ven), some sets G j as above, and given a subset of vehicles � ⊆ K , 

e define the �-aggregate K-C 02 inequality as 

 

 ∈ �

∑ 

(i, j) ∈ A 
βi j x k i j ≥ (Q −1) 

q ∑ 

i =1 

(∑ 

k ∈ �
2 y kc i (F i )−1 

)
+ 

Q−1 ∑ 

j=1 

∑ 

k ∈ �
2 y kc j (G j ) , 

(27) 

f the depot 1 ∈ M 0 ∪ M Q , and 
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Fig. 5. Disaggregate K-C 02 inequalities for the DC-CEARP. 
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 ∈ �

∑ 

(i, j) ∈ A 
βi j x k i j ≥ (Q − 1) 

q ∑ 

i =1 

(∑ 

k ∈ �
2 y kc i (F i ) − 1 

)

+ 

Q−1 ∑ 

j=1 

j � = l. 

∑ 

k ∈ �
2 y kc j (G j ) + 2 , (28) 

f 1 ∈ M l , with l �∈ {0, Q }. 

heorem 4. Given a set of vehicles � ⊆ K , the �-aggregate K-C in- 

qualities (27) and (28) are valid for the DC-CEARP. 

roof. The proof is similar to that of Theorem 2 and is omitted 

ere for the sake of brevity. �

.5. Path-Bridge inequalities 

Path-Bridge inequalities are a generalization of the K-C inequal- 

ties introduced in Letchford (1997) for the undirected General 

outing Problem and are inspired by the path inequalities intro- 

uced in Cornuèjols, Fonlupt, and Naddef (1985) for the Graphical 

raveling Salesman Problem. 

As K-C, Path-Bridge inequalities try that connectivity and parity 

onditions are satisfied simultaneously on a given partition of the 

ertex set V . They are based on a structure (see Fig. 6 ) with two

ets M 0 , M Z , a number P ≥ 1 of ‘paths’ between M 0 and M Z , and

 number B ≥ 0 of required arcs in ( M 0 , M Z ) forming the ‘bridge’,

ith P + B ≥ 3 being an odd number. It can be noted that K-C in-

qualities described in Section 3.3 are a particular case of the Path- 

ridge inequalities when P = 1 and B ≥ 2 and even. 

.5.1. Disaggregate path-bridge inequalities 

Given two integers P ≥ 1, B ≥ 0 such that P + B ≥ 3 is an

dd number, consider the partition of V into the subsets 

 M 0 , M Z , { M 

t 
r } t=1 , ... ,P 

r=1 , ... ,n t 
} , where n 1 , n 2 , . . . , n t are integer numbers,

 i ≥ 2, and consider the following coefficients (see Fig. 6 ). For each 

 i , j ) ∈ A , 

i, j = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

1 , if (i, j) ∈ (M 0 , M Z ) 

| r−s | 
n t −1 

, if (i, j) ∈ (M 

t 
r , M 

t 
s ) , t ∈ { 1 , .

1 
n t −1 

+ 

1 
n u −1 

+ 

∣∣∣ r−1 
n t −1 

− s −1 
n u −1 

∣∣∣, if (i, j) ∈ (M 

t 
r , M 

u 
s ) , t � = u, 

0 , otherwise. 
38 
 } , r, s ∈ { 0 , 1 , . . . , n t + 1 } 
 1 , . . . , n t } , s ∈ { 1 , . . . , n u } 

Let us consider a family of arc subsets F = { F 1 , F 2 , . . . , F B } satis-

ying: 

• F i � = ∅ ∀ i ∈ { 1 , . . . , B } , 
• ∃ c i ∈ H such that F i ⊆ H c i ∩ (M 0 , M Z ) ∀ i ∈ { 1 , . . . , B } , 
• F i ∩ F j = ∅ , ∀ i � = j ∈ { 1 , . . . , B } . 
urthermore, assume that for each M 

t 
r , t = 1 , . . . , P, r = 1 , . . . , n t ,

ither 1 ∈ M 

t 
r or it exists a set of arcs G 

t 
r such that ∅ � = G 

t 
r ⊆ H c j ∩

 R (M 

t 
r ∪ δ(M 

t 
r )) for a c j ∈ H . We define the disaggregate Path-Bridge 

nequality associated with vehicle k as: 

∑ 

i, j) ∈ A 
αi j x k i j ≥

B ∑ 

i =1 

(
2 y kc i (F i ) − 1 

)
+ 

P ∑ 

t=1 

n t ∑ 

r=1 

2 y kc j (G 

t 
r ) 

n t − 1 

− P + 1 , 

(29) 

f the depot 1 ∈ M 0 ∪ M Z , and 

∑ 

i, j) ∈ A 
αi j x k i j ≥

B ∑ 

i =1 

(
2 y kc i (F i ) − 1 

)
+ 

P ∑ 

t = 1 

t � = t 0 

n t ∑ 

r=1 

2 y kc j (G 

t 
r ) 

n t − 1 

+ 

n t 0 ∑ 

r = 1 

r � = r 0 

2 y kc j (G 

t 0 
r ) 

n t 0 − 1 

+ 

2 

(n t 0 − 1) 
− P + 1 , (30) 

f the depot 1 ∈ M 

t 0 
r 0 

(different from M 0 and M Z ). 

heorem 5. For each vehicle k , disaggregate Path-Bridge inequalities 

29) and (30) are valid for the DC-CEARP. 

roof. See Appendix A.3 . �

If we multiply the Path-Bridge inequalities (29) and (30) by 
 P 
t=1 (n t − 1) , all the coefficients become integer. When P = 2 (and, 
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Fig. 6. Standard Path-Bridge for the DC-CEARP. 
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ence, B is an odd number), the inequality is called 2-Path-Bridge 

nequality and can be written as: 

∑ 

i, j) ∈ A 
(n 1 − 1)(n 2 − 1) αi j x k i j ≥

B ∑ 

i =1 

2(n 1 − 1)(n 2 − 1) y kc i (F i ) 

+ 

n 1 ∑ 

j=1 

2(n 2 − 1) y kc j (G 

1 
j ) 

+ 

n 2 ∑ 

j=1 

2(n 1 − 1) y kc j (G 

2 
j ) − (B + 1)(n 1 − 1)(n 2 − 1) , (31) 

hen the depot 1 ∈ M 0 ∪ M Z . If the depot is, for example, in a node

 0 of the path t = 1 ( 1 ∈ M 

1 
j 0 

), the resulting inequality is 

∑ 

i, j) ∈ A 
(n 1 − 1)(n 2 − 1) αi j x k i j ≥

B ∑ 

i =1 

2(n 1 − 1)(n 2 − 1) y kc i (F i ) + 2(n 2 − 1) 

+ 

n 1 ∑ 

j = 1 

j � = j 0 

2(n 2 −1) y 
kc j (G 1 j )+ 

n 2 ∑ 

j=1 

2(n 1 −1) y 
kc j (G 2 j )−(B+1)(n 1 −1)(n 2 −1) . 

(32) 

.5.2. �-aggregate Path-Bridge inequalities 

Given P , B , a partition { M 0 , M Z , { M 

t 
r } t=1 , ... ,P 

r=1 , ... ,n t 
} , its corresponding

et of coefficients αi , j , and the families of arcs F i and G 

t 
r , as in the

revious section, we define the �-aggregate Path-Bridge inequality 

ssociated with a subset � ⊆ K of vehicles as: 

 

 ∈ �

∑ 

(i, j) ∈ A 
αi j x k i j ≥

B ∑ 

i =1 

(∑ 

k ∈ �
2 y kc i (F i ) − 1 

)

39 
+ 

∑ 

k ∈ �

P ∑ 

s =1 

( n t ∑ 

q =1 

2 y kc j (G 

t 
r ) 

n t − 1 

)
− P + 1 , (33) 

f the depot 1 ∈ M 0 ∪ M Z , and 

 

 ∈ �

∑ 

(i, j) ∈ A 
αi j x k i j 

≥
B ∑ 

i =1 

(∑ 

k ∈ �
2 y kc i (F i ) − 1 

)
+ 

∑ 

k ∈ �

P ∑ 

t = 1 

t � = t 0 

n t ∑ 

r=1 

2 y kc j (G 

t 
r ) 

n t − 1 

+ 

∑ 

k ∈ �

n t 0 ∑ 

r = 1 

r � = r 0 

2 y kc j (G 

t 0 
r ) 

n t 0 − 1 

+ 

2 

(n t 0 − 1) 
− P + 1 , (34) 

f the depot 1 ∈ M 

t 0 
r 0 

(different from M 0 and M Z ). 

heorem 6. Given a set of vehicles � ⊆ K , the �-aggregate Path- 

ridge inequalities (33) and (34) are valid for the DC-CEARP. 

roof. The proof is similar to that of Theorem 2 and is omitted 

ere for the sake of brevity. �

ote 3 (Path-Bridge 02 inequalities). An asymmetric version of 

ath-Bridge inequalities, called Path-Bridge 02 inequalities, is pro- 

osed in Corberán, Romero, and Sanchis (2003) for the Mixed Gen- 

ral Routing Problem. Inequalities based on the same idea can also 

e proposed for the DC-CEARP. However, not all their coefficients can 

e easily determined, since the coefficients of the variables associated 

ith arcs between nodes of different paths must be computed by se- 

uential lifting for each particular Path-Bridge structure. This process 
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s involved and, in addition, the obtained coefficients depend on the 

rdering in which arcs are considered. For this reason, its separation 

as never been implemented and, therefore, these inequalities are not 

tudied here. 

.6. Max-distance constraints 

In the DC-CEARP, the length of each route cannot exceed the 

aximum distance D max . Based on this constraint, in this section 

e present several sets of inequalities that we call max-distance 

nequalities . 

Let F H ⊆ H be a subset of customers. Consider the Close Enough 

rc Routing Problem (which considers only one vehicle), defined 

n graph G and with set of customers F H . Let cearp ( F H ) be its op-

imal value (or a lower bound of it). If cearp ( F H ) > D max , then the

nequalities 

 

k 
c (F H ) ≤ | F H | − 1 , ∀ k ∈ K (35) 

re valid for the DC-CEARP, because a single vehicle cannot service 

ll the customers in F H . 

On the other hand, if S is the set of vertices incident with the 

rcs in ∪ c∈ F H H c and 1 �∈ S , then at least two different vehicles have

o enter S , and the following inequality is also valid for the DC- 

EARP 
 

 ∈ K 
x k (δ−(S)) ≥ 2 . (36) 

owever, a DC-CEARP solution in which a vehicle enters S twice, 

ut no other vehicle does, satisfies (36) . In order to force two dif-

erent vehicles to enter S , the following valid inequalities can be 

sed 

 

 � = k ′ 
x k (δ−(S)) ≥ 1 , ∀ k ′ ∈ K . (37) 

The above inequalities, which were proposed in Ávila et al. 

2017) , can be generalized as follows. For a given set of customers 

 

H , let v (F H ) be a lower bound on the minimum number of ve-

icles needed to service F H . Then, a number of vehicles less than 

 (F H ) cannot service all the customers in F H . Hence, if v (F H ) ≥ 2 ,

he following inequalities are satisfied by each feasible solution of 

he DC-CEARP: 
 

 ∈ �
z k c (F H ) ≤ | F H | − (v (F H ) − | �| ) , ∀ � ⊆ K , 

 ≤ | �| ≤ v (F H ) − 1 , (38) 

∑ 

 ∈ K \ �
x k (δ−(S)) ≥v (F H ) −| �| , ∀ � ⊆ K , 0 ≤| �| ≤ v (F H ) −1 . 

(39) 

ote that, for v (F H ) = 2 , inequalities (38) and (39) are exactly

35) and (36) + (37) above, respectively. For v (F H ) = 3 , we have two

ets of inequalities (38) : 

 

k 
c (F H ) ≤ | F H | − 2 , ∀ k ∈ K , and (40)

 

k 
c (F H ) + z k 

′ 
c (F H ) ≤ | F H | − 1 , ∀ k, k ′ ∈ K . (41)

.7. Symmetry breaking inequalities 

Let { c 1 , . . . , c L } be any ordering of the set of customers (for

xample, according to the distances between them and the de- 

ot). The following symmetry breaking inequalities (see Fischetti, 

alazar-González, & Toth, 1995 ) are introduced to avoid equivalent 

olutions: 

 

1 
c 1 

= 1 (42) 
40 
 

k 
c i 

≤
i −1 ∑ 

j=1 

z k −1 
c j 

k = 3 , . . . , K, i ≥ 2 (43) 

 

k 
c i 

= 0 k = i + 1 , . . . , K, i = 1 , . . . , L − 1 (44) 

Inequality (42) forces vehicle 1 to service customer c 1 . Then, ve- 

icle 2 services the first customer in the ordering not serviced by 

ehicle 1, and so on. Inequalities (43) state that if a customer c i is

erviced by vehicle k , then at least one ‘previous’ customer c j , j =
 , . . . , i − 1 , has to be serviced by the vehicle k − 1 . Eq. (44) pre-

ents customers c i , i = 1 , . . . , L − 1 from being serviced by vehicles

ith indices larger than i . 

. The branch-and-cut algorithm 

In this section, we present a branch-and-cut algorithm for the 

C-CEARP. This new algorithm uses some separation procedures 

rom the methods described in Ávila et al. (2017) and incorpo- 

ates new ones for some of the inequalities described in Ávila et al. 

2017) and for the new inequalities presented in this article. More- 

ver, an upper bound obtained by the matheuristic algorithm pro- 

osed in Corberán et al. (2019) is used. 

.1. Separation algorithms 

In what follows we describe the separation algorithms that 

ave been used to identify the following types of inequalities that 

re violated by the current LP solution at any iteration of the cut- 

ing plane algorithm: connectivity and parity inequalities, disaggre- 

ate and �-aggregate K-C and K-C 02 , Path-Bridge inequalities, and 

ax-distance constraints. Section 4.1.5 provides a synopsis of the 

utting planes and characteristics of their separation procedures. 

.1.1. Connectivity inequalities 

Several separation procedures have been used to separate con- 

ectivity inequalities. The first algorithm, A 1, separates aggregate 

onnectivity inequalities (12) . It is based on computing the con- 

ected components of the graph induced by the arcs a such that 
 

k ∈ K x k a ≥ ε , where ε is a given parameter. For each weakly con- 

ected component, its corresponding aggregate connectivity in- 

quality is checked for violation. We try ε = 0 , 0 . 25 , 0 . 5 , 0 . 75 , but

 given value is tried only when the previous one did not succeed 

n finding a violated inequality. 

The second heuristic, A 2, is based on the Gomory–Hu algo- 

ithm. It also works on the aggregate graph induced by the sum 

f the variables corresponding to all the vehicles. If there is a vi- 

lated (aggregate) connectivity inequality in this graph, it means 

hat there will be a violated (disaggregate) connectivity inequality 

6) for at least one vehicle. 

Two more separation procedures for connectivity inequalities 

13) have been implemented. The first one, A 3, works like the first 

lgorithm described in this section, but using the graph induced by 

he arcs of each single vehicle. 

The last algorithm, A 4, is based on the computation, for each 

ehicle k and each customer c , of the maximum flow on a net- 

ork containing the arcs for which x k 
i j 

> 0 plus an artificial sink 

nd some artificial arcs from the end vertices of the arcs in H c ser-

iced by vehicle k (i.e. those arcs a such that y kc 
a > 0 ) to the sink.

he capacity of the arcs is defined as x k 
i j 

for the arcs in the origi-

al graph, and as infinity for the artificial ones. The maximum flow 

rom the depot to the sink defines a minimum cutset ( S , V �S ), with

 ∈ V �S , and the associated connectivity inequality (13) is checked 

or violation. 
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.1.2. Parity inequalities 

We have developed several heuristic algorithms to identify vio- 

ated parity inequalities. They work as follows. 

Given a fractional solution, let ( x k , y k , z k ) be its part corre-

ponding to vehicle k . We build the graph induced by the arcs 

atisfying x k a − ȳ k a ≥ ε, if a is required, and x k a ≥ ε otherwise, where 

¯ k a = max 
c∈ H 

{ y kc 
a : a ∈ H c } , i.e. the maximum value of y kc 

a among

he customers serviced by arc a . Let S 1 , . . . , S r be the sets of

ertices of the weakly connected components of the induced 

raph. For each cutset δ( S i ), we now try to select the set of

ustomers F H = { c 1 , . . . , c q } and the corresponding sets of arcs

 = { F c 1 , . . . , F c q } . Two different strategies have been implemented

n order to find these sets. 

In strategy 1 (algorithm A 5), we create a list of pairs of required

rcs and customers ( a , c ) such that a ∈ δ( S i ) ∩ H c . We order this list

ccording to the value of y kc 
a in a decreasing order. Starting from 

he first pair ( a , c ) of the list, we iteratively add c to F H and a to

 c if neither arc a nor customer c have been previously selected. 

nce the set of customers has been built, we try to enlarge sets 

 c by including each unselected arc a of the list in the set F c with

aximum y kc 
a . 

Now, for each vehicle k , we calculate x k (δ(S)) − ∑ q 
i =1 

2 y kc i (F c i ) .

f this value is less than 0, we add k to the set of chosen vehicles

. 

If 
∑ 

k ∈ �
∑ 

e ∈ F c y 
kc 
e < 0 . 5 for some customer c ∈ F H , this customer

s removed from F H . If | F H | is even, we add or remove one more

ustomer according to the value of 
∑ 

k ∈ �
∑ 

e ∈ F c y 
kc 
e in order to make 

 F H | odd. For each removed customer c , the arcs that belonged to

 c are studied to see if they can be included in another arc subset 

f F . 

Finally, we check if the corresponding �-aggregate parity in- 

quality (17) is violated. 

Strategy 2 (algorithm A 6) considers only the cutsets δ( S i ) for 

hich x k ( δ( S i ) ∩ A R ) is close to an odd number, i.e. 2 n + 0 . 75 ≤
 

k (δ(S i ) ∩ A R ) ≤ 2 n + 1 . 25 for some n ∈ { 1 , 2 , . . . } . Let us call A S i 
=

 a ∈ δ(S i ) ∩ A R : 
∑ 

c: a ∈ H c y 
kc 
a > 0 } and H S i 

= { c ∈ H : 
∑ 

a ∈ δ(S i ) ∩ A R y 
kc 
a >

 } , which denote the set of required arcs in cutset δ( S i ) servicing

ome customer and the set of customers that are serviced by some 

rc in the cutset, respectively. 

We calculate 
∑ 

a ∈ A S i 
y kc 

a for all the customers in H S i 
and select 

he customer c that maximizes this value. This customer is added 

o F H and F c = H c ∩ A S i 
. Now we update A S i 

by A S i 
\ F c and H S i 

by

 S i 
\ { c} and repeat the procedure for choosing the following cus- 

omers until | F H | = 2 n + 1 . 

As in strategy 1, we include in � all the vehicles k for which 

 

k (δ(S)) − ∑ q 
i =1 

2 y kc i (F c i ) < 0 and check if the corresponding �- 

ggregate parity inequality (17) is violated. 

In order to separate parity inequalities (16) when | �| = K, al- 

orithm A 7 uses a similar procedure with strategy 2 adapted to 

he graph induced by the arcs satisfying 
∑ 

k ∈ K x k a − 1 ≥ ε, if a is re-

uired, and 

∑ 

k ∈ K x k a ≥ ε otherwise. 

We have also tried an alternative method for selecting the set of 

ustomers F H based on the solution of the following integer pro- 

ram. As before, we define H S i 
as the set of customers that are 

erviced by some arc in the cutset δ( S i ). For each customer c ∈ H S i 
,

e define a binary variable μc that takes value 1 if c is included 

n F H and 0 otherwise. Let us define w c = 

∑ 

a ∈ δ(S i ) 
y kc 

a for each cus-

omer c ∈ H S i 
and consider two customers c r , c s as incompatible if

here is an arc a ∈ δR ( S i ) such that y kc r 
a > 0 and y kc s 

a > 0 . Then, we

olve the following IP: 

aximize 
∑ 

c∈ H S i 

w c μc 

s.t. : 
41 
∑ 

c∈ H S i 

μc ≡ odd (45) 

c r + μc s ≤ 1 ∀ c r , c s incompatible (46) 

c ∈ { 0 , 1 } ∀ c ∈ H S i (47) 

In order to study the performance of the above method, we 

ave compared it with the heuristic procedure for selecting F H . On 

 sample of 27 randomly selected instances, the IP-based method 

sed, on average, 123.53 seconds per instance to find, on aver- 

ge, 0.22 violated parity inequalities per call, while the heuristic 

ethod found, on average, 0.13 parity cuts in 0.46 seconds of com- 

uting time. Based on these results, we have decided not to use 

he IP-based method. 

.1.3. K-C, K-C 02 and Path-Bridge inequalities 

Algorithm A 8 looks first for the graph structure associated with 

he disaggregate K-C inequalities (20) and (21) . Again, let ( x k , y k ,

 

k ) be the part corresponding to vehicle k of a given fractional so- 

ution. Let G 

k be the graph induced by the arcs a with x k a > 0 and

abel the depot and the arcs a ∈ A R such that x k a ≥ ε and y k a ≥ x k a / 2

s ‘required’, where ε is a given parameter. We compute the con- 

ected components induced by these arcs and the depot. Let us 

all C i to these components. We then apply a procedure based on 

hat described in Corberán, Letchford, and Sanchis (2001) for the 

ndirected GRP to obtain the sets M 0 , M 1 , M 2 , . . . , M Q , which con-

ists of, given a component C i , checking if it is connected to two 

ifferent com ponents by arcs with x k a > 0 . For such a component,

e try to split it in two parts such that each part is connected to a

ifferent com ponent. These two parts will be the “seeds” for defin- 

ng sets M 0 and M Q . Now we shrink these seeds and the remaining

omponents into a single vertex each and compute a spanning tree 

y iteratively adding the arc of maximum weight not forming a cy- 

le (and not connecting the seeds). This tree is transformed into a 

ath linking the seeds by (iteratively) shrinking each non-seed ver- 

ex with degree one into its (unique) adjacent vertex. If the length 

f the path is at least 3, the vertices of the path define the seeds

or sets M 0 , M 1 , . . . , M Q . All the vertices of G that do not belong to

 set M i yet are iteratively assigned to a set M i to which they are

djacent. 

Set F is formed by some sets of ‘required’ arcs in M 0 ∪ M Q asso-

iated with different customers. For each set M j , j = 1 , . . . , Q − 1 ,

on containing the depot, we define G j as the set of arcs G j =
 c j ∩ 

(
A (M j ) ∪ δ(M j ) 

)
. If the corresponding K-C inequality for vehi- 

le k is not violated, we try to improve the inequality by shrinking 

ome consecutive sets M j . Several values for ε have been tried and, 

fter some computational testing, we finally decided to set ε = 0 . 2 .

At this point, a K-C structure has been found, and its corre- 

ponding disaggregate K-C inequality for vehicle k can, or not, be 

iolated. Since inequality (20) (if the depot belongs to M 0 ∪ M Q , 

therwise it would be similar) can be written as (22) , we evaluate 

ts left hand side for each vehicle k ′ = 1 , . . . , K. Then we include in

all the vehicles k ′ for which this expression is less than 0 and 

heck if the resulting �-aggregate K-C inequality (23) or (24) is vi- 

lated. 

Any K-C structure found by algorithm A 8 is used to look for vi- 

lated K-C 02 inequalities (algorithm A 9). As before, the inequality 

or each single vehicle k ′ is checked and those vehicles for which 

he left hand side is negative are included into �. The separation 

f 2 Path-Bridge inequalities is done with a similar procedure, al- 

orithm A 10, that is not described here for the sake of brevity. 

.1.4. Max-distance inequalities 

Two heuristic algorithms are used to separate max-distance in- 

qualities. The first heuristic, A 11, is the one described in Ávila 
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Table 1 

Inequalities and separation procedures. 

Class Inequalities Separ. proc. Type Complexity New? Reference 

Connectivity 

(12) A1 H O ( | A || H | ) No Corberán et al. (2001) 

(6) A2 AE O (| V | 3 | A |) No Ávila et al. (2017) 

(13) A3 H O ( K| A || H | ) No/Yes Ávila et al. (2017) , [TP] 

(13) A4 AE O ( K| H || V | 2 | A | ) No/Yes Ávila et al. (2017) , [TP] 

Parity 

(17) A5 H O ( K| H || V || A | ) Yes [TP] 

(17) A6 H O ( K| H || V || A | ) Yes [TP] 

(16) A7 H O ( | V || A || H | ) Yes [TP] 

K-C (20), (21), (23), (24) A8 H O ( K | V | 2 | A |) No/Yes Corberán et al. (2001) , [TP] 

K-C 02 (25) –(28) A9 H O ( K | V | 2 | A |) No/Yes Corberán et al. (2003) , [TP] 

2 Path-Bridge (29), (30), (33), (34) A10 H O ( K | V | 2 | A |) No/Yes Corberán et al. (2001) , [TP] 

Max-distance 
(36) –(38) A11 H O ( | H | ) ∗ No Ávila et al. (2017) 

(36) –(38) A12 H O (K) ∗ Yes [TP] 
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t al. (2017) for separating inequalities (36) . If a violated max- 

istance constraint (36) is found, at least one of the inequalities 

37) is also violated and it is added. Furthermore, the correspond- 

ng inequality (38) is also added. 

The second heuristic, A 12, looks for violated inequalities (38) . 

t is designed to cut fractional solutions in which, for a vehicle k , 

everal z k c variables take values close to 1 and another one takes a 

alue close to 0.5. It works as follows. 

Given a fractional solution associated with vehicle k , ( x k , y k ,

 

k ), let { c 1 , c 2 , . . . , c q } be the set of customers such that z k c 1 
≥

 

k 
c 2 

≥ · · · ≥ z k c q 
≥ 0 . 5 . We define F H = { c 1 , c 2 , . . . , c f } , where f is

he maximal number such that z k c (F H ) > | F H | − 1 + ε (initially we

et ε = 0 . 5 ), and we call ‘potential customers’ to the remaining

 c f+1 , c f+2 , . . . , c q } . We check if v (F H ) is greater than one and,

herefore, the corresponding inequality (38) is violated. Otherwise, 

or each potential customer c ∈ { c f+1 , c f+2 , . . . , c q } , we iteratively

onsider the set F 
H = F H ∪ { c } and check if v ( F H ) is greater than

ne. Finally, if no violated inequality has been found for any set F 
H 

, 

e set ε = 0 and define the set F H as above ( f is now the maximal

umber such that z k c (F H ) > | F H | − 1 ) and check if v (F H ) is greater

han one. If a subset F H (or F 
H 

) for which the corresponding in- 

quality (38) is violated is found, this inequality is added. Then, 

e look for the cutset of minimum weight between the depot and 

he arcs of the customer in F H and the corresponding max-distance 

nequalities (36) and (37) are checked for violation. 

Given a set of customers F H , the value of v (F H ) (either the

umber of vehicles needed to service F H or a lower bound) is com- 

uted by solving the corresponding CEARP using the branch-and- 

ut algorithm in Ávila et al. (2016) . Since solving the CEARP in- 

tances to optimality can be time consuming, we have limited the 

xecution time of the CEARP solver to 10 seconds. 

.1.5. Inequalities and separation procedures: a summary 

Table 1 summarizes the separation procedures described be- 

ore and provides information on their computational complexity 

nd the references where they were proposed or used. In partic- 

lar, the first column shows the inequalities class, while column 

wo gives the exact family of inequalities being separated. Column 

Separ. Proc.” provides the name of the separation procedure used 

nd column “Type” indicates if the procedure is heuristic (“H”) or 

lmost exact (“AE”). This last type means that the algorithm is an 

daptation of an exact procedure for identifying a violated inequal- 

ty with similar characteristics. For example, algorithm A 4 is based 

n the exact separation of inequalities 

 

k (δ+ (S) ) ≥
∑ 

(i, j) ∈ H c 
y kc 

i j , ∀ S ⊂ V \{ 1 } , ∀ c ∈ H , ∀ k ∈ K . 

owever, note that the sum in this inequality is done for all the 

rcs ( i , j ) ∈ H c , while in inequalities (13) the sum is for all ( i ,
42 
 ) ∈ H c �A ( V �S ). The computational complexity of the algorithms is

iven in Column 5. An asterisk ( ∗) means that the reported value 

s the computational complexity of the corresponding separation 

lgorithm if no call to the B&C algorithm described in Ávila et al. 

2016) is done. If the B&C is executed to compute the minimum 

umber of vehicles needed to service a given subset of customers, 

he resulting computational effort is non-polynomial (but each call 

s limited to 10 seconds). The last two columns indicate if the pro- 

edure has already been used in other works and report the cor- 

esponding references. A “No/Yes” entry indicates that some new 

arts have been added in this work to the existing procedures and 

[TP]” is used to refer to this paper. 

.2. Comparison of separation strategies and cutting-plane algorithms 

To analyze the contribution of the valid inequalities and the 

eparation algorithms presented in the previous sections, we com- 

are the gaps in the root node and the performance profiles ( Dolan 

 More, 2002 ) of the different versions of our branch-and-cut pro- 

edure using different combinations of separation algorithms. 

Let S be the set of versions of our algorithm and P the set 

f instances selected for this comparison. Then, for each version 

 ∈ S, we calculate Gap0 s = 

1 
|P| 

∑ 

p∈P (BKS p − LB 0 p,s ) /LB 0 p,s ∗ 100 ,

here BKS p denotes the value of the optimal or best known so- 

ution obtained by any version for instance p and LB 0 p , s the lower 

ound obtained by s at the root node. We also compute the per- 

ormance ratio r p,s = t p,s / min { t p,s : s ∈ S} , where t p , s is the comput- 

ng time required by algorithm s to solve instance p . If algorithm 

 is not able to solve the instance p within the time limit, we set

 p,s = ∞ . Thus, the performance profile of each version s , 

s (τ ) = 

|{ p ∈ P : r p,s ≤ τ }| 
|P| , 

escribes the percentage of instances that can be solved by s 

ithin a factor τ ≥ 1 compared to the fastest algorithm. Note, for 

xample, that ρs (1) is the percentage of instances for which algo- 

ithm s is the fastest and that ρs ( ∞ ) is the percentage of instances

hat are solved by algorithm s within the time limit. 

We started with a “full version” of the branch and cut, denoted 

y V 1234, with the following characteristics. The initial LP relax- 

tion contains all the inequalities in the formulation, except for the 

onnectivity inequalities (6) that are exponential in number and, 

ence, only the following subset of them are included: 

 

k (δ−(S c )) ≥ z k c , ∀ k ∈ K , ∀ c ∈ H , 

here S c is the set of vertices incident with the arcs in H c . 

Furthermore, the symmetry breaking inequalities (42) –(44) , 

ome max-distance inequalities (38) and (39) associated with some 

ubsets of customers that cannot be serviced with a single vehicle, 

nd inequalities x k (δ+ (1)) ≥ 1 , ∀ k ∈ K , which force each vehicle
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Fig. 7. Impact of the connectivity inequalities: performance profile. 
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Table 2 

Results on the subset of 48 instances – connectivity. 

# opt Gap0 (%) Time0 (seconds) Time (seconds) 

V 1234 46 5.874 252.38 1031.19 

V 234 41 11.560 198.83 1654.31 

V 1(a ) + 234 44 5.824 265.86 1209.48 

V 1(b) + 234 41 8.693 192.62 1491.66 
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o leave the depot, are included. At each iteration of the cutting- 

lane algorithm in the root node, the separation procedures de- 

cribed above are applied using the following general scheme and 

he violated inequalities found are added to the LP relaxation: 

1. All the heuristic separation algorithms for connectivity inequal- 

ities (A1–A4) are applied. The algorithm based on flow compu- 

tations (A4) is used only if the other ones fail to find violated 

inequalities. 

2. Heuristic parity separation algorithms (A5–A7). 

3. Algorithms for separating K-C, K-C 02 , and Path-Bridge inequali- 

ties (A8–A10) are applied for each vehicle k only if no violated 

connectivity inequalities have been found for this vehicle. 

4. Heuristic algorithms A11 and A12 for separating max-distance 

inequalities. 

Only the fastest separation algorithm for disaggregate connec- 

ivity inequalities (A3) is applied in the nodes of the branch-and- 

ut tree. 

The above cutting-plane procedure is applied until no new vio- 

ated inequalities are found. When this happens, we branch using 

he Strong Branching strategy implemented in CPLEX with higher 

riority given to the z k c and y kc 
i j 

variables. 

All other B&C versions are based on different cutting-plane al- 

orithms associated with different separation strategies. The B&C 

lgorithms were tested on a subset of 48 instances taken from the 

our sets of DC-CEARP instances proposed in Ávila et al. (2017) and 

hose characteristics are described in Section 5.1 . Twelve in- 

tances, three for each value of k ∈ {2, 3, 4, 5}, were chosen at

andom from each subset. The experiments were performed on a 

esktop PC with an Intel(R) Core(TM) i7 at 3.4 gigahertz CPU with 

2 gigabyte RAM running Windows 10 Enterprise 64 bits using a 

ingle thread. The algorithms were coded in C++ combined with 

PLEX 12.10 and all the experiments were carried out with a time 

imit of 7200 seconds. 

We first studied the impact of connectivity inequalities and 

heir separation procedures. To do this, we compared the V1234 

&C with three new versions. In the first version, called V234, we 

emove all the separation algorithms for connectivity inequalities 
43 
A1–A4), except for algorithm A1 when the obtained solution is 

nteger. The second version, V1(a)+234, uses all the separation al- 

orithms except for A2, while the last one, V1(b)+234, uses all the 

eparation algorithms except for A4. Note that A2 and A4 are the 

ost time-consuming procedures. 

Fig. 7 shows the performance profile of the four compared ver- 

ions and Table 2 reports for each version the number of optima 

btained (out of 48 instances), the average gap in the root node, 

nd the average computing time spent at the root node and the 

verage total computing time in seconds. V1234, as expected, and 

urprisingly V1(a)+234, are the best versions in terms of gap, al- 

hough this last version shows a worse performance profile and 

orse behavior in terms of averages and number of optima. The 

ther two versions, V234 and V1(b)+234, are clearly dominated by 

 1234. Therefore, we decided to include all separation procedures 

or connectivity in the final version of the B&C. 

Then, we studied the effect of parity inequalities and their sep- 

ration by comparing the full version V1234 with two versions ob- 

ained from it by removing all the separation algorithms for par- 

ty inequalities (A5–A7), version V134, and removing algorithms 

5 and A7 (V1+2(a)+34). The results obtained are summarized in 

ig. 8 and Table 3 . 

As Fig. 8 shows, all three versions compared have similar per- 

ormance profiles. However, the gaps in the root node and other 

easures reported in Table 3 for V134 and V1 + 2(a) + 34 are worse

han those of the full version, and therefore none of the latter ver- 

ions is considered interesting. 

We also considered different options regarding the max- 

istance inequalities. Here, three new versions were implemented. 
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Fig. 8. Impact of the parity inequalities: performance profile. 

Table 3 

Results on the subset of 48 instances – parity. 

# opt Gap0 (%) Time0 (seconds) Time (seconds) 

V 1234 46 5.874 252.38 1031.19 

V 134 44 6.065 258.00 1069.87 

V 1 + 2(a ) + 34 45 6.034 268.13 1165.09 

Table 4 

Results on the subset of 48 instances – max-distance. 

# opt Gap0 (%) Time0 (seconds) Time (seconds) 

V 1234 46 5.874 252.38 1031.19 

V 123 46 9.835 114.34 902.39 

V 123 + 4(a ) 46 7.738 136.99 1036.11 

V 123 + 4(b) 46 6.655 241.18 1054.21 
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Table 5 

Results on the subset of 48 instances – K − C, K − C 02 , and Path-Bridge. 

# opt Gap0 (%) Time0 (seconds) Time (seconds) 

V 1234 46 5.874 252.38 1031.19 

V 123 46 9.835 114.34 902.39 

V 124 46 6.064 228.98 1127.72 
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n the first one, V123+4(a), we removed the separation algo- 

ithm A11, while algorithm A12 was removed in the second one 

123+4(b). The third version, V123, did not include any separation 

lgorithm for max-distance inequalities. These three versions are 

ompared again with version V1234. Performance profiles, average 

aps in the root node, and other measures are presented in Fig. 9 

nd Table 4 . 

From Fig. 9 we can see that V123 is the fastest version in 60%

f the instances, followed by V123+4(a), although they are the two 

ersions with the worst gaps. V123+4(b) is not an interesting op- 

ion because its performance profile is similar to that of V1234 but 

t shows worse gaps. The V123+4(a) version has a better perfor- 

ance profile than the full version but a worse average gap, and it 

s clearly dominated in terms of computing time and performance 

rofile by V123. Therefore, we selected V123 as the most interest- 

ng option among the three tested versions. 

Finally, we compared a new version V124 resulting from re- 

oving the separation algorithms A8-A10 for K-C, K-C 02 , and Path- 

ridge inequalities, with the most promising versions obtained 

rom the previous experiments, V1234 and V123. Note that sep- 
44 
ration algorithms A8, A9, and A10 have many parts in common, 

nd thus removing only some of them would produce no benefit 

n terms of the overall algorithm efficiency. 

Fig. 10 shows the performance profiles for the three versions. 

ersion V123 is the fastest one to reach the optimal solution in 

ore than 80% of the instances and can optimally solve all 46 in- 

tances in less that 2 times the time of the fastest version. The 

erformance profile of the other two versions is similar and it can 

e seen that they reach the 46 optimal solutions only with fac- 

ors τ = 20 and τ = 21 . As for the average gaps in the root node,

124 does not improve the results obtained by V1234 either. Look- 

ng at the Table 5 , we can see that V124 has no advantage over

1234 and is therefore not considered an interesting alternative. 

verall, version V123, although produces greater gaps at the root 

ode, is considerably faster and has a better performance profile 

han V1234. Therefore, we decided to use version V123 for our fi- 

al computational experiments. 

. Computational experience 

In this section we study the performance of the final version 

V123) of the branch-and-cut algorithm, Algorithm 1 in what fol- 

ows. As in the previous analysis, the experiments were performed 

n a desktop PC with an Intel(R) Core(TM) i7 at 3.4 gigahertz CPU 

ith 32 gigabyte RAM running Windows 10 Enterprise 64 bits. 

gain, we used CPLEX 12.10 with a single thread. The performance 

f Algorithm 1 has been compared with that of the best of four 

ranch-and-cut procedures described in Ávila et al. (2017) , Algo- 

ithm 2 in what follows, and, for illustrative purposes, with the 
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Fig. 9. Impact of the max-distance inequalities: performance profile. 

Fig. 10. Impact of the K-C, K-C 02 and Path-Bridge inequalities: performance profile. 

f

e

C

h

c

T

w

o

o

5

s

g

d

r

n

e

a

ull version V1234, denoted as Algorithm 0 . Algorithm 2 has been 

xecuted on the same machine and using the same version of 

PLEX. 

All the experiments were carried out with a time limit of two 

ours. CPLEX heuristic algorithms were turned off, and CPLEX own 

uts, including zero-half cuts, were activated in automatic mode. 

he optimality gap tolerance was set to zero, best bound strategy 

as selected and CPLEX presolve phase was reapplied at the end 

f the root node. The instances used and the computational results 

btained are described in what follows. 
45 
.1. Instances 

We have tested our branch-and-cut algorithm on the four 

ets of DC-CEARP instances proposed in Ávila et al. (2017) . The 

raphs of the two first sets of instances, Random50 and Ran- 

om75 , were generated randomly and have 50 and 75 vertices 

espectively. Sets Albaida and Madrigueras are based on the street 

etworks of these two Spanish towns. As pointed out in Ávila 

t al. (2017) , generating the value of D max for each instance is 

 hard task, because depending on this value, the instance can 
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Table 6 

Characteristics of the instances. 

| V | | A | | A R | | A NR | | H | 
Min Max Min Max Min Max Min Max 

Random50 50 296 300 105 292 7 193 10 97 

Random75 75 448 450 143 438 10 305 15 140 

Albaida 116 259 305 124 172 109 162 18 33 

Madrigueras 196 453 544 224 305 197 281 22 47 
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Table 8 

Results on the 11 instances not solved by 

any algorithm. 

Gap0(%) Final Gap(%) 

Algorithm 0 14.20 8.98 

Algorithm 1 14.36 7.80 

Algorithm 2 15.35 9.23 

Table 9 

Results on the 27 instances not solved by at least 

one algorithm. 

# opt Gap(%) Final Gap(%) 

Algorithm 0 7 12.07 4.98 

Algorithm 1 10 11.86 3.68 

Algorithm 2 5 12.94 5.27 
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e infeasible or trivial (some of the vehicles are not needed). A 

etailed description of how these values have been generated can 

e found in that paper. The characteristics of these 251 instances 

re summarized in Table 6 . The complete data, including the 

alues of D max and the number of vehicles with the correspond- 

ng best solutions found, can be downloaded from http://www. 

v.es/corberan/instancias.htm in the class “Distance-Constrained 

DRPP”. 

.2. Computational results 

The computational results obtained with Algorithm 0 , Algorithm 

 , and Algorithm 2 , are shown in Table 7 , where instances have

een grouped by number of vehicles and number of customers, 

hich are shown in columns 1 and 2. Column 3 reports the num- 

er of instances of each subset. For both algorithms, the columns 

abeled ‘# opt’, ‘Gap0 (%)’, and ‘Time’ report the number of op- 

imal solutions found, the average gap in the root node, and the 

verage computing time in seconds, respectively. The bold rows at 

ach group of instances with the same number of vehicles show 

he total number of instances, in the case of the ‘inst’ and ‘# opt’ 

olumns, and the average values for the remaining columns. The 

ast row of the table summarizes the results for all the instances. 

As can be seen in Table 7 , the number of optima obtained with

lgorithm 1 is very good (234 out of 251 instances) and is a bit 

etter than those obtained with Algorithm 0 (231 optima) and Al- 

orithm 2 (229 optima), although the average gap in the root node 

s slightly higher than that of Algorithm 2 (8.94% versus 8.42%), 

nd, as expected, higher than the one obtained using all the sep- 

ration procedures described in Section 4.1 (6.5%). However, it is 
Table 7 

Computational results for all the instances grouped by number of 

Veh | H | inst Algorithm 2 ( Ávila et al., 2017 ) Alg

# opt Gap0(%) Time # o

2 [10,21] 18 18 1.80 19.2 18

[12,30] 21 21 1.62 111.6 21

[31,46] 16 16 1.19 109.3 16

[47,140] 17 17 1.64 365.1 16

72 72 1.57 147.8 71

3 [10,21] 17 17 7.75 40.4 17

[12,30] 21 21 7.07 238.7 21

[31,46] 16 16 4.74 696.8 16

[47,140] 17 16 5.23 1218.9 16

71 70 6.27 529.2 70

4 [10,21] 12 12 14.53 49.6 12

[12,30] 19 19 14.33 766.9 19

[31,46] 16 13 11.65 2253.8 16

[47,140] 17 11 9.45 3178.5 13

64 55 12.40 1644.7 60

5 [10,21] 9 9 19.35 73.9 9 

[12,30] 10 10 19.63 956.8 10

[31,46] 10 5 15.64 3963.6 8 

[47,140] 15 8 15.61 4516.9 6 

44 32 17.29 2673.3 33

Total 251 229 8.42 1080.1 23

46 
n the computing times where we can appreciate the main dif- 

erences. The average computing time is 976.3 seconds with Al- 

orithm 1 versus 1080.1 seconds obtained with Algorithm 2 and 

300.9 of Algorithm 0 . Although for 2 and 3 vehicles the times for 

lgorithm 2 are better on average, when the number of vehicles in- 

reases, the times of Algorithm 1 are significantly lower. The same 

omputational results organized by sets of instances are shown in 

ables 10 –13 in the Appendix A.4 . 

To study the running times in more detail, we compare the 

erformance profiles of the three branch-and-cut algorithms (see 

ig. 11 ). Comparing the performance ratios of the three methods 

t τ = 1 , we observe that Algorithm 1 is the fastest one in almost

0% of the instances, while Algorithm 0 is the slowest one. As τ
ncreases, the difference between Algorithm 1 and Algorithm 2 de- 

reases, but note that five more instances can be solved using Al- 

orithm 1 . 

Table 7 does not report the average final gaps since 

ost instances are optimally solved by all algorithms. Instead, 

able 8 compares the average gaps in the root node and the aver- 

ge final gaps obtained by the three procedures in the 11 instances 

hat are not solved by any of the algorithms, while Table 9 pro- 

ides the same information but in the 27 instances that have not 

een optimally solved by at least one of the algorithms. Note that 
vehicles and customers. 

orithm 1 Algorithm 0 

pt Gap0(%) Time # opt Gap0(%) Time 

 2.4 8.8 18 0.74 36.5 

 2.6 75.2 21 1.19 240.5 

 1.9 86.9 16 1.12 256.5 

 1.6 712.5 16 1.74 1030.8 

 2.14 211.7 71 1.19 379.7 

 8.5 21.0 17 4.67 55.5 

 7.7 140.4 21 5.70 324.9 

 5.3 578.7 16 4.32 775.0 

 4.6 1477.1 16 5.17 1718.2 

 6.61 530.7 70 5.02 695.5 

 15.8 27.3 12 6.88 71.9 

 15.6 344.2 19 11.20 1236.5 

 11.0 908.1 14 10.05 1790.2 

 8.6 3454.6 13 9.02 3862.8 

 12.66 1251.9 58 9.52 1854.2 

24.0 60.6 9 6.39 100.7 

 22.5 589.0 10 17.04 983.1 

15.2 2858.8 7 14.01 3684.5 

14.5 5132.1 6 14.13 5571.8 

 18.45 2545.6 32 13.18 2980.9 

4 8.94 976.3 231 6.50 1300.9 

http://www.uv.es/corberan/instancias.htm
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Table 10 

Results for the Random50 instances. 

Algorithm 2 ( Ávila et al., 2017 ) Algorithm 1 Algorithm 0 

Veh | H | inst # opt Gap0(%) Time # opt Gap0(%) Time # opt Gap0(%) Time 

2 10 3 3 1.286 4.15 3 1.654 2.42 3 0.000 4.05 

[24,25] 3 3 0.485 12.96 3 0.064 8.82 3 0.203 23.32 

[45,50] 3 3 0.641 42.42 3 1.717 33.85 3 0.877 90.87 

[92,97] 3 3 2.317 124.04 3 2.242 282.22 3 2.382 333.59 

12 12 1.182 45.89 12 1.419 81.83 12 0.865 112.96 

3 10 2 2 4.894 4.58 2 4.950 3.53 2 0.832 5.43 

[24,25] 3 3 2.945 17.06 3 7.099 14.34 3 2.572 25.19 

[45,50] 3 3 4.135 41.79 3 4.167 47.30 3 3.958 102.06 

[92,97] 3 3 7.362 204.18 3 6.629 546.30 3 7.448 665.87 

11 11 4.829 72.57 11 5.780 166.45 11 3.963 217.29 

4 [24,25] 3 3 10.132 21.05 3 11.284 19.08 3 8.870 43.11 

[45,50] 3 3 11.697 61.31 3 10.745 91.27 3 9.593 225.55 

[92,97] 3 3 9.457 296.30 3 8.818 897.77 3 9.405 1286.17 

9 9 10.429 126.22 9 10.282 336.04 9 9.290 518.28 

5 [45,50] 1 1 23.557 177.30 1 23.713 362.52 1 16.785 247.67 

[92,97] 2 2 15.064 1257.17 1 14.388 3838.74 2 12.212 3652.98 

3 3 17.895 897.21 2 17.496 2680.00 3 13.736 2517.87 

Total 35 35 6.138 147.90 34 6.447 396.49 35 5.108 456.11 

Table 11 

Results for the Random75 instances. 

Algorithm 2 ( Ávila et al., 2017 ) Algorithm 1 Algorithm 0 

Veh | H | inst # opt Gap0(%) Time # opt Gap0(%) Time # opt Gap0(%) Time 

2 15 3 3 0.000 8.65 3 0.428 5.91 3 0.000 15.18 

[36,37] 3 3 1.341 38.57 3 1.657 25.69 3 1.022 74.42 

[70,75] 3 3 1.754 117.15 3 1.397 165.33 3 1.796 568.20 

[138,140] 3 3 2.417 1301.58 2 1.927 3224.57 2 2.482 3727.94 

12 12 1.378 366.49 11 1.352 855.38 11 1.325 1096.44 

3 15 3 3 9.063 17.45 3 10.801 11.70 3 3.483 29.04 

[36,37] 3 3 4.843 46.26 3 6.286 56.64 3 3.970 97.40 

[70,75] 3 3 6.122 251.25 3 5.843 331.01 3 6.231 1057.64 

[138,140] 3 3 4.516 1469.63 2 3.340 3927.21 2 4.207 4156.80 

12 12 6.136 446.15 11 6.567 1081.64 11 4.473 1335.22 

4 15 3 3 11.781 31.76 3 16.834 24.41 3 4.454 68.39 

[36,37] 3 3 15.312 158.04 3 16.322 205.91 3 12.860 371.22 

[70,75] 3 3 10.046 1392.74 3 9.670 2157.84 3 9.146 3341.02 

[138,140] 3 1 6.741 5481.51 1 6.267 6669.73 2 6.645 5945.34 

12 10 10.970 1766.01 10 12.273 2264.47 11 8.276 2431.49 

5 15 1 1 13.345 66.69 1 26.376 55.98 1 7.505 102.25 

[36,37] 1 1 32.737 542.60 1 30.940 427.73 1 23.325 855.11 

[70,75] 3 3 14.646 2265.34 2 13.820 4881.76 1 13.076 5785.79 

[138,140] 3 0 16.209 7200.00 0 15.359 7200.00 0 15.960 7200.00 

8 5 17.331 3625.66 4 18.106 4591.13 3 14.742 4989.34 

Total 44 39 8.192 1362.48 36 8.799 1980.61 36 6.519 2233.47 

Table 12 

Results for the Albaida instances. 

Algorithm 2 ( Ávila et al., 2017 ) Algorithm 1 Algorithm 0 

Veh | H | inst # opt Gap0(%) Time # opt Gap0(%) Time # opt Gap0(%) Time 

2 18 6 6 3.538 34.25 6 4.034 15.20 6 1.763 58.01 

21 6 6 1.219 16.83 6 2.015 7.12 6 0.457 41.95 

28 6 6 1.970 32.24 6 2.641 18.76 6 1.385 152.69 

33 6 6 1.154 36.06 6 2.575 47.90 6 1.243 114.10 

24 24 1.970 29.85 24 2.816 22.24 24 1.212 91.69 

3 18 6 6 8.455 61.72 6 8.943 25.13 6 5.488 73.85 

21 6 6 7.351 42.59 6 8.022 27.41 6 5.735 67.13 

28 6 6 2.997 90.50 6 2.514 44.05 6 2.462 145.30 

33 6 6 4.751 170.06 6 4.609 78.64 6 4.126 270.38 

24 24 5.889 91.22 24 6.022 43.81 24 4.453 139.17 

4 18 4 4 12.813 73.04 4 13.200 30.87 4 9.794 78.07 

21 5 5 17.543 41.55 5 17.172 26.10 5 5.995 68.98 

28 6 6 12.621 336.71 6 13.281 177.52 6 12.903 1790.16 

33 6 6 11.328 307.19 6 10.677 135.02 6 10.536 861.09 

21 21 13.460 207.78 21 13.448 101.39 21 9.990 788.79 

5 18 3 3 12.669 85.19 3 18.844 47.46 3 4.144 123.25 

21 5 5 24.553 68.58 5 26.648 69.39 5 7.522 86.78 

28 6 6 18.300 557.79 6 23.032 357.12 6 16.521 647.22 

33 3 3 15.245 411.98 3 14.827 404.20 3 13.235 398.89 

17 17 18.606 304.77 17 21.908 226.16 17 11.110 346.09 

Total 86 86 9.158 144.77 86 10.081 87.90 86 6.216 325.45 

47 



Á. Corberán, I. Plana, M. Reula et al. European Journal of Operational Research 291 (2021) 32–51 

Table 13 

Results for the Madrigueras instances. 

Algorithm 2 ( Ávila et al., 2017 ) Algorithm 1 Algorithm 0 

Veh | H | inst # opt Gap0(%) Time # opt Gap0(%) Time # opt Gap0(%) Time 

2 22 6 6 1.546 130.35 6 2.930 93.79 6 0.678 253.73 

28 6 6 1.900 221.49 6 3.508 146.33 6 2.011 423.49 

42 6 6 1.229 229.38 6 1.288 166.10 6 1.097 519.50 

47 6 6 1.204 248.47 6 1.161 170.64 6 1.280 573.65 

24 24 1.470 207.42 24 2.222 144.22 24 1.267 442.59 

3 22 6 6 10.609 337.95 6 11.965 182.74 6 8.103 421.24 

28 6 6 9.670 398.32 6 8.916 257.54 6 8.103 558.15 

42 6 6 4.608 1659.23 6 5.422 1429.00 6 4.552 1736.76 

47 6 5 4.600 2476.03 6 4.044 1766.47 6 4.588 1887.95 

24 23 7.372 1217.88 24 7.587 908.94 24 6.337 1151.03 

4 22 5 5 22.932 1389.99 5 26.800 492.66 5 13.243 1467.63 

28 5 5 10.310 1107.49 5 9.979 590.93 5 8.524 1057.10 

42 6 3 9.993 5616.06 6 8.653 2167.21 4 8.505 3709.02 

47 6 2 9.893 5397.74 4 8.655 4896.17 3 9.493 5563.51 

22 15 12.978 3571.37 20 13.079 2172.65 17 9.855 3102.67 

5 22 2 2 21.667 1216.51 2 22.989 1139.78 2 20.618 1974.83 

28 2 2 21.565 1894.25 2 20.549 733.89 2 15.022 998.91 

42 6 1 12.981 6309.60 4 12.805 4491.22 3 12.841 5798.89 

47 6 2 14.655 6110.96 2 12.979 5449.31 2 13.931 6177.68 

16 7 15.768 5046.55 10 15.111 3961.91 9 14.494 4862.93 

Total 86 69 8.721 2250.26 78 8.894 1586.80 74 7.340 2143.17 

Fig. 11. Performance profile. 
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n these harder instances, Algorithm 1 obtains better gaps at the 

oot node, as well as final gaps. Table 9 also reports the number of

nstances solved optimally by each algorithm. 

Looking at the computational results disaggregated by sets of 

nstances, Tables 10 –13 in the Appendix A.4 , we note that the per-

ormance of Algorithm 1 is better than that of Algorithm 2 in those 

nstances that are based on real street networks like the Albaida 

nd Madrigueras sets. Another particularity of these two sets of in- 

tances is that their number of customers is not too large, from 19 

o 34 and from 23 to 48 in the Albaida and Madrigueras instances, 

espectively, because they are defined following “geographical” cri- 

eria, as it was assumed that it can occur in real-life problems. 

lgorithm 2 , on the other hand, performs better on the Random 

0 and 75 sets, which were randomly generated and have a larger 

umber of customers (many of them defined by larger subsets of 

rcs). 
48 
. Conclusions 

In this paper we study the Distance-Constrained Close Enough 

rc Routing Problem, which generalizes the Close Enough Arc 

outing Problem to the case in which there is a fleet of vehicles 

ased on a depot that jointly serve a set of customers. Each cus- 

omer is associated with a set of arcs which are close enough to 

t, such that the customer can be served by traversing any of these 

rcs. The length of the routes is limited by a given value and the 

bjective is to minimize the sum of the route distances. The DC- 

EARP is inspired by and has application to meter reading prob- 

ems. 

In this work, we propose a new formulation for the DC-CEARP 

nd study its associated polyhedron. Several families of valid in- 

qualities are introduced and separation procedures are devised 

or them. Extensive computational experiments are carried out to 
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easure the contribution of each of these separation procedures. 

 branch-and-cut algorithm is presented, that is able to solve to 

ptimality instances with up to 140 customers, 196 vertices, 544 

rcs, and 5 vehicles. 

In what refers to future work, and taking into account the kind 

f applications of this problem, we plan to study the variant in 

hich the routes of the vehicles have to be balanced. One way of 

alancing routes consists of minimizing the length of the longest 

ne. For this problem we are planning to design and implement 

 branch-and-cut-and-price algorithm capable of solving instances 

ith a large number of vehicles. 
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.1. Proof of Theorem 1 

heorem 1. For each vehicle k , disaggregate K-C inequalities (20) and 

21) are valid for the DC-CEARP. 

roof. Let us suppose that 1 ∈ M 0 ∪ M Q (the proof for the case

 �∈ M 0 ∪ M Q is similar). We have to prove that all the routes ( x k , y k )

or vehicle k corresponding to DC-CEARP solutions satisfy inequal- 

ty (20) . We consider the following cases: 

(a) Routes ( x k , y k ) servicing each customer c i from a required 

rc in F i , i = 1 , . . . , q, and servicing each customer c j from a re-

uired arc in G j , j = 1 , . . . , Q − 1 . On the one hand, these tours x k 

raverse at least q times the arcs in ( M 0 , M Q ), and visit at least

nce each node set M 0 ∪ M Q , M 1 , . . . , M Q−1 , and, hence, they sat-

sfy (19) : ∑ 

i, j) ∈ A 
αi j x i j ≥ (Q − 2) q + 2(Q − 1) . 

dditionally, variables y k satisfy y kc i (F i ) = 1 , for each i = 1 , . . . , q,

nd y kc j (G j ) = 1 , for each j = 1 , . . . , Q − 1 . Substituting them in

he RHS of (20) , we obtain 

Q − 2) 

q ∑ 

i =1 

(2 y 
kc i (F i ) − 1) + 

Q−1 ∑ 

j=1 

2 y 
kc j (G j ) 

= (Q − 2) q + 2(Q − 1) . 

ence, 
∑ 

(i, j) ∈ A αi j x i j ≥ (Q − 2) 
∑ q 

i =1 
(2 y kc i (F i ) − 1) + 

 Q−1 
j=1 

2 y kc j (G j ) holds and routes ( x k , y k ) satisfy inequality 

20) . 

(b) Routes ( x k , y k ) servicing each customer c i from a required 

rc in F i , i = 1 , . . . , q, and each customer c j from a required arc in

 j , j = 1 , . . . , Q − 1 , except one of them, say c l . These tours x k tra-

erse q required arcs between M 0 and M Q and visit all but one the

ubgraphs G (M 1 ) , . . . , G (M Q−1 ) . Note that, regarding a K-C struc-

ure (see Fig. 2 ), this cannot be done at an α-cost lower than

Q − 2) q + 2(Q − 1) − 2 (otherwise, by adding two arcs connect- 

ng M l with M l−1 we would obtain a tour satisfying (a) and (b) 

ith α-cost less than (Q − 2) q + 2(Q − 1) , which is impossible)

nd, hence, these tours satisfy ∑ 

i, j) ∈ A 
αi j x i j ≥ (Q − 2) q + 2(Q − 1) − 2 . 

n the other hand, variables y k satisfy y kc i (F i ) = 1 , for each i =
 , . . . , q, and y kc j (G j ) = 1 , for all j = 1 , . . . , Q − 1 , except one of
49 
hem, for which y kc l (G l ) = 0 . Thus, if we substitute these values

n the RHS of (20) , 

Q − 2) 

q ∑ 

i =1 

(2 y 
kc i (F i ) − 1) + 

Q−1 ∑ 

j=1 

2 y 
kc j (G j ) 

= (Q − 2) q + 2(Q − 2) = (Q − 2) q + 2(Q − 1) − 2 , 

s obtained and, thus, ( x k , y k ) satisfies (20) . 

(c) Routes ( x k , y k ) servicing each customer c i from a required 

rc in F i , i = 1 , . . . , q, and each customer c j from a required arc in

 j , j = 1 , . . . , Q − 1 , except a number b of them ( b = 2 , 3 , . . . ). As

efore, it can be seen that these tours x k satisfy ∑ 

i, j) ∈ A 
αi j x i j ≥ (Q − 2) q + 2(Q − 1) − 2 b, 

nd the RHS of inequality (20) takes the value 

Q − 2) 

q ∑ 

i =1 

(2 y 
kc i (F i ) − 1) + 

Q−1 ∑ 

j=1 

2 y 
kc j (G j ) 

= (Q − 2) q + 2(Q − 1 − b) = (Q − 2) q + 2(Q − 1) − 2 b. 

d) Routes ( x k , y k ) servicing each customer c i from a required arc 

n F i , for all i = 1 , . . . , q except one of them, say c l , and each cus-

omer c j from a required arc in G j , j = 1 , . . . , Q − 1 . These tours x k 

raverse q − 1 (an odd number) required arcs between M 0 and M Q 

nd visit all the subgraphs G (M 1 ) , . . . , G (M Q−1 ) . Regarding a K-C

tructure, this cannot be done at an α-cost lower than (Q − 2)(q −
) + 2(Q − 1) (otherwise, by adding two arcs connecting M 0 with 

 Q , with α-cost Q − 2 each, we would obtain a tour satisfying (a) 

nd (b) with α-cost less than (Q − 2) q + 2(Q − 1) , which is impos-

ible) and, hence, these tours satisfy ∑ 

i, j) ∈ A 
αi j x i j ≥ (Q − 2)(q − 2) + 2(Q − 1) . 

oreover, variables y k satisfy y kc i (F i ) = 1 , for each i = 1 , . . . , q ex-

ept one of them, for which y kc l (F l ) = 0 , and y kc j (G j ) = 1 , for all

j = 1 , . . . , Q − 1 . Thus, after substituting these values in the RHS of

20) we obtain 

Q − 2) 

q ∑ 

i =1 

(2 y 
kc i (F i ) − 1) + 

Q−1 ∑ 

j=1 

2 y 
kc j (G j ) 

= (Q − 2)(q − 1 − 1) + 2(Q − 1) , 

nd ( x k , y k ) satisfies (20) . 

(e) Routes ( x k , y k ) servicing each customer c i from a required 

rc in F i , for all i = 1 , . . . , q except two of them, and each customer

 j from a required arc in G j , j = 1 , . . . , Q − 1 . These tours x k tra-

erse q − 2 (an even number) required arcs between M 0 and M Q 

nd visit all the subgraphs G (M 1 ) , . . . , G (M Q−1 ) , so they satisfy ∑ 

i, j) ∈ A 
αi j x i j ≥ (Q − 2)(q − 2) + 2(Q − 1) . 

ariables y k satisfy y kc i (F i ) = 1 , for each i = 1 , . . . , q except two of

hem, for which y kc l (F l ) = 0 , and y kc j (G j ) = 1 , for all j = 1 , . . . , Q −
 , and the RHS of inequalities (20) takes the value 

Q − 2) 

q ∑ 

i =1 

(2 y 
kc i (F i ) − 1) + 

Q−1 ∑ 

j=1 

2 y 
kc j (G j ) 

= (Q −2)(q − 2 − 1 − 1)+2(Q − 1) < (Q − 2)(q − 2) + 2(Q − 1) ,

nd ( x k , y k ) satisfies (20) . 

(f) Routes ( x k , y k ) servicing each customer c i from a required 

rc in F , for all i = 1 , . . . , q except three, four,...of them, and each
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ustomer c j from a required arc in G j , j = 1 , . . . , Q − 1 . By using a

imilar reasoning, it can be proved that they satisfy inequality (20) . 

(g) Routes ( x k , y k ) similar to those in the cases (d)–(f) but 

here each customer c j is serviced from a required arc in G j , 

j = 1 , . . . , Q − 1 , except a number b of them ( b = 1 , 2 , . . . ). It can

e seen that both the term 

∑ 

αi j x i j and the RHS of inequality 

20) decrease in 2 b units, thus satisfying inequality (20) . �

.2. Proof of Theorem 2 

heorem 2. Given a set of vehicles � ⊆ K , the �-aggregate K-C in- 

qualities (23) and (24) are valid for the DC-CEARP. 

roof. Again, let us suppose that 1 ∈ M 0 ∪ M Q (the proof for the

ase 1 �∈ M 0 ∪ M Q is similar). We have to prove that every DC-CEARP

olution satisfies inequality (23) . Let ( x 1 , y 1 , . . . , x K , y K ) be a DC-

EARP solution. Then, 
∑ 

k ∈ � x k is a tour on the arcs of G since it 

epresents a connected and even graph. On the other hand, for 

ach i = 1 , . . . , q, the sum 

∑ 

k ∈ � y kc i (F i ) , is a binary value indicating

f any of the vehicles in � services the customer c i from an arc in

 i (see inequalities (3) ). In the same way, for each j = 1 , . . . , Q − 1 ,

he sum 

∑ 

k ∈ � y kc j (G j ) is a binary value indicating if any of the 

ehicles in � services the customer c j from an arc in G j . Hence, 

 similar reasoning to that of the proof of Theorem 1 , but replac-

ng ( x k , y k ) by ( 
∑ 

k ∈ � x k , 
∑ 

k ∈ � y k ) , concludes that the following in-

quality, which can be rewritten as inequality (23) , is satisfied: 

∑ 

i, j) ∈ A 
αi j 

∑ 

k ∈ �
x 

k 
i j ≥ (Q −2) 

q ∑ 

i =1 

(
2 

∑ 

k ∈ �
y 

kc i (F i )−1 

)
+ 

Q−1 ∑ 

j=1 

2 

∑ 

k ∈ �
y 

kc j (G j ) . 

�

.3. Proof of Theorem 5 

heorem 5. For each vehicle k , disaggregate Path-Bridge inequalities 

29) and (30) are valid for the DC-CEARP. 

roof. Let us suppose that 1 ∈ M 0 ∪ M Z (the proof for the case

 �∈ M 0 ∪ M Z is similar). We have to prove that all the single routes

 x k , y k ) for vehicle k ∈ K corresponding to DC-CEARP solutions sat- 

sfy inequality (29) . We consider the following cases: 

(a) Routes ( x k , y k ) servicing each customer c i from an arc in F i ,

 = 1 , . . . , B, and servicing each customer c j from an arc in G 

t 
r , t =

 , . . . , P and r = 1 , . . . , n t . On the one hand, these tours x k traverse

t least B times the arcs in ( M 0 , M Z ), and visit at least once all

he node sets M 0 ∪ M Z and M 

t 
r . It can be seen (see Corberán et al.,

001 ) that these tours satisfy: 

∑ 

i, j) ∈ A 
αi j x 

k 
i j ≥ B + 

P ∑ 

t=1 

2 n t 

n t − 1 

− P + 1 . 

On the other hand, variables y k satisfy y kc i (F i ) = 1 , for each 

 = 1 , . . . , B, and y kc j (G 

t 
r ) = 1 , for each t = 1 , . . . , P and r = 1 , . . . , n t .

ubstituting these values in the RHS of (29) we obtain 

B 
 

i =1 

(
2 y 

kc i (F i ) −1 

)
+ 

P ∑ 

t=1 

n t ∑ 

j=1 

2 y 
kc j (G 

t 
j 
) 

n t − 1 

−P + 1 = B + 

P ∑ 

t=1 

2 n t 

n t − 1 

−P + 1 . 

ence, 
∑ 

(i, j) ∈ A αi j x 
k 
i j ≥

∑ B 
i =1 

(
2 y kc i (F i ) − 1 

)
+ 

∑ P 
t=1 

∑ n t 
j=1 

2 y 
kc j (G t 

j 
) 

n t −1 −
 + 1 holds, and routes ( x k , y k ) satisfy inequality (29) . 

(b) Routes ( x k , y k ) servicing each customer c i from a required 

rc in F i , i = 1 , . . . , B, and servicing each customer c j , except one

f them ( H c l 
∈ G 

t 0 
r ), from a required arc in G 

t 
r , t = 1 , . . . , P, r =
0 

50 
 , . . . , n t . These tours x k traverse B times some required arcs be-

ween M 0 and M Z and visit all the sets M 

t 
r except the set M 

t 0 
r 0 

.

ote that this cannot be done with an α-cost lower than B + 

 P 
t=1 

2 n t 
n t −1 − P + 1 − 2 

n t 0 
−1 . Otherwise, by adding two arcs connect- 

ng M 

t 0 
r 0 

with M 

t 0 
r 0 −1 

, with α−cost 2 
n t 0 

−1 , we would obtain a tour, 

raversing at least B times the arcs in ( M 0 , M Z ) and visiting all the

ode sets M 0 ∪ M Z and M 

t 
r , with α-cost less than B + 

∑ P 
t=1 

2 n t 
n t −1 −

 + 1 , which is impossible. Hence, these tours x k satisfy 

∑ 

i, j) ∈ A 
αi j x 

k 
i j ≥ B + 

P ∑ 

t=1 

2 n t 

n t − 1 

− P + 1 − 2 

n t 0 − 1 

. 

Moreover, variables y k satisfy y kc i (F i ) = 1 , for each i = 1 , . . . , B,

nd y kc j (G 

t 
r ) = 1 , for all t = 1 , . . . , P and r = 1 , . . . , n t , except one

f them, for which y kc l (G 

t 0 
r 0 

) = 0 . Thus, the RHS of inequalities

29) takes the value 

2 B − B ) + 

P ∑ 

t = 1 

t � = t 0 

2 n t 

n t − 1 

+ 

2(n t 0 − 1) 

n t 0 − 1 

− P + 1 

= B + 

P ∑ 

t=1 

2 n t 

n t − 1 

− P + 1 − 2 

n t 0 − 1 

nd, hence, the routes ( x k , y k ) satisfy (29) . 

(c) Routes ( x k , y k ) servicing each customer c i from a required 

rc in F i , for all i = 1 , . . . , B except one of them, say c l , and each

ustomer c j from a required arc in G 

t 
r , t = 1 , . . . , P, r = 1 , . . . , n t . 

Tours x k traverse B − 1 required arcs between M 0 and M Z and 

isit all the sets M 

t 
r . Considering that P + B − 1 is an even number,

his cannot be done with a α-cost lower than B + 

∑ P 
t=1 

2 n t 
n t −1 − P + 

 − 2 . Otherwise, by adding two arcs connecting M 0 with M Z , with

-cost 1 each, we would obtain a tour, traversing at least B times 

he arcs in ( M 0 , M Z ) and visiting all the node sets M 0 ∪ M Z and M 

t 
r ,

ith α-cost less than B + 

∑ P 
t=1 

2 n t 
n t −1 − P + 1 , which is impossible. 

ence, these tours x k satisfy 

∑ 

i, j) ∈ A 
αi j x i j ≥= B + 

P ∑ 

t=1 

2 n t 

n t − 1 

− P + 1 − 2 . 

Additionally, variables y k satisfy y kc i (F i ) = 1 , for each i = 1 , . . . , B

xcept one of them, for which y kc l (F l ) = 0 , and y kc j (G 

t 
r ) = 1 , for all

 = 1 , . . . , P, r = 1 , . . . , n t . Thus, after substituting them in the RHS

f (29) , we obtain 

(B − 1) − B + 

P ∑ 

t=1 

2 n t 

n t − 1 

− P + 1 = B + 

P ∑ 

t=1 

2 n t 

n t − 1 

− P + 1 − 2 , 

nd the routes ( x k , y k ) satisfy (29) . 

(d) In a similar way, it can be seen that inequalities (29) are 

atisfied by all the routes ( x k , y k ) servicing any other number of 

ustomers c i and c j . �

.4. Computational results per set of instances 

In this appendix we show, for each set of instances, the com- 

utational results obtained with the proposed branch and cut and 

heir comparison with those obtained with the exact algorithm de- 

cribed in Ávila et al. (2017) and with the version using all the sep-

ration procedures. Tables 10, 11 , 12 , and 13 report the results for 

he sets Random50, Random75, Albaida, and Madrigueras, respec- 

ively. 



Á. Corberán, I. Plana, M. Reula et al. European Journal of Operational Research 291 (2021) 32–51 

R

A  

Á  

Á  

B

C  

C  

C

C  

C  

C  

C  

C  

C  

C  

D

D  

D

D

E

F

G  

G  

H  

H  

L

M

M  

R  

S  

U  

Y  
eferences 

ráoz, J. , Fernández, E. , & Franquesa, C. (2017). The generalized arc routing problem.

TOP, 25 (3), 497–525 . 

vila, T. , Corberán, Á. , Plana, I. , & Sanchis, J. M. (2016). A new branch-and-cut al-
gorithm for the generalized directed rural postman problem. Transportation Sci- 

ence, 50 , 750–761 . 
vila, T. , Corberán, Á. , Plana, I. , & Sanchis, J. M. (2017). Formulations and exact al-

gorithms for the distance-constrained generalized directed rural postman prob- 
lem. EURO Journal on Computational Optimization, 5 , 339–365 . 

ehdani, B. , & Smith, J. (2014). An integer-programming-based approach to the 

close-enough traveling salesman problem. INFORMS Journal on Computing, 26 , 
415–432 . 

arrabs, F. , Cerrone, C. , Cerulli, R. , & Gaudioso, M. (2017). A novel discretization
scheme for the close enough traveling salesman problem. Computers & Oper- 

ations Research, 78 , 163–171 . 
errone, C. , Cerulli, R. , Golden, B. , & Pentangelo, R. (2017). A flow formulation for

the close-enough arc routing problem. In S. A., & S. C. (Eds.), Optimization and 
decision science: Methodologies and applications, ODS 2017 . In Springer proceed- 

ings in mathematics & statistics: 217 (pp. 539–546). Springer . 

orberán, A. , & Laporte, G. (2014). Arc routing: Problems, methods, and applications. 
MOS-SIAM series on optimization . SIAM, Philadelphia . 

orberán, A., Eglese, R., Hasle, G., Plana, I., & Sanchis, J. (2020). Arc routing prob-
lems: A review of the past, present, and future. Networks . https://doi.org/10. 

1002/net.21965 . 
orberán, A. , Letchford, A. , & Sanchis, J. (2001). A cutting plane algorithm for the

general routing problem. Mathematical Programming, 90 , 291–316 . 

orberán, Á. , Plana, I. , Reula, M. , & Sanchis, J. (2019). A matheuristic for the dis-
tance-constrained close-enough arc routing problem. TOP, 27 , 312–326 . 

orberán, A. , Romero, A. , & Sanchis, J. (2003). The mixed general routing problem
polyhedron. Mathematical Programming, 96 , 103–137 . 

orberán, A. , & Sanchis, J. (1994). A polyhedral approach to the rural postman prob-
lem. European Journal of Operational Research, 79 , 95–114 . 

ornuèjols, G. , Fonlupt, J. , & Naddef, D. (1985). The traveling salesman problem on

a graph and some related inequalities. Mathematical Programming, 33 , 1–27 . 
outinho, W. , Subramanian, A. , do Nascimento, R. , & Pessoa, A. (2016). A

branch-and-bound algorithm for the close enough traveling salesman problem. 
INFORMS Journal on Computing, 28 , 752–765 . 

olan, E. , & More, J. (2002). Benchmarking optimization software with performance 
profiles. Mathematical Programming, 91 (2), 201–213 . 

ong, J. , Yang, N. , & Chen, M. (2007). Heuristic approaches for a TSP variant:

The automatic meter reading shortest tour problem. In Extending the horizons: 
Advances in computing, optimization, and decision technologies (pp. 145–163). 

Springer . 
51 
rexl, M. (2007). On some generalized routing problems . Rheinisch-Westfälische Tech- 
nische Hochschule, Aachen University Ph.D. thesis. . 

rexl, M. (2014). On the generalized directed rural postman problem. Journal of the 
Operational Research Society, 65 , 1143–1154 . 

glese, R. , Golden, B. , & Wasil, E. (2014). Route optimization for meter reading and 
salt spreading, Philadelphia. In A. Corberán, & G. Laporte (Eds.), MOS-SIAM Series 

on Optimization . Arc routing: Problems, methods and applications (pp. 303–320). 
SIAM, Philadelphia . 

ischetti, M. , Salazar-González, J. J. , & Toth, P. (1995). Experiments with a multi–

commodity formulation for the symmetric capacitated vehicle routing problem. 
In Proceedings of the 3rd meeting of the euro working group on transportation 

(pp. 169–173) . 
endreau, M. , Laporte, G. , & Semet, F. (1997). The covering tour problem. Operations

Research, 45 (4), 568–576 . 
ulczynski, D. , Heath, J. , & Price, C. (2006). The close enough traveling salesman

problem: A discussion of several heuristics. In Perspectives in operations re- 

search . In Operations research/computer science interfaces series: 36 (pp. 217–283). 
Springer . 

à, M.-H. , Bostel, N. , Langevin, A. , & Rousseau, L.-M. (2012). An exact algorithm for
close enough traveling salesman problem. In Proceedings of the 1st international 

conference on operations research and enterprise systems (pp. 233–238) . 
à, M.-H. , Bostel, N. , Langevin, A. , & Rousseau, L.-M. (2014). Solving the close

enough arc routing problem. Networks, 63 , 107–118 . 

etchford, A. (1997). New inequalities for the general routing problem. European 
Journal of Operational Research, 96 , 317–322 . 

ennell, W. (2009). Heuristics for solving three routing problems: Close-enough trav- 
eling salesman problem, close-enough vehicle routing problem, sequence-dependent 

team orienteering problem . College Park: University of Maryland Ph.D. thesis. . 
ourão, M. C. , & Pinto, L. S. (2017). An updated annotated bibliography on arc rout-

ing problems. Networks, 70 , 144–194 . 

enaud, A. , Absi, N. , & Feillet, D. (2017). The stochastic close-enough arc routing
problem. Networks, 69 , 205–221 . 

huttleworth, R. , Golden, B. , Smith, S. , & Wasil, E. (2008). Advances in meter read-
ing: Heuristic solution of the close enough traveling salesman problem over a 

street network. In B. Golden, S. Raghavan, & E. Wasil (Eds.), The vehicle routing 
problem: Latest advances and new challenges (pp. 487–501). Springer . 

ribe-Pérez, N. , Hernández, L. , De la Vega, D. , & Angulo, I. (2016). State of the art

and trends review of smart metering in electricity grids. Applied Sciences, 6 (68), 
1–24 . 

uan, B. , Orlowska, M. , & Sadiq, S. (2007). On the optimal robot routing problem in
wireless sensor networks. IEEE Transactions on Knowledge and Data Engineering, 

19 (9), 1252–1261 . 

http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0001
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0001
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0001
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0001
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0001
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0002
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0002
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0002
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0002
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0002
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0002
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0003
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0003
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0003
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0003
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0003
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0003
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0004
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0004
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0004
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0004
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0005
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0005
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0005
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0005
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0005
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0005
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0006
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0006
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0006
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0006
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0006
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0006
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0007
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0007
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0007
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0007
https://doi.org/10.1002/net.21965
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0009
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0009
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0009
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0009
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0009
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0010
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0010
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0010
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0010
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0010
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0010
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0011
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0011
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0011
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0011
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0011
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0012
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0012
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0012
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0012
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0013
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0013
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0013
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0013
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0013
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0014
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0014
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0014
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0014
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0014
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0014
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0015
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0015
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0015
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0015
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0016
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0016
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0016
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0016
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0016
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0017
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0017
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0018
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0018
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0019
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0019
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0019
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0019
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0019
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0020
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0020
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0020
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0020
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0020
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0021
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0021
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0021
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0021
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0021
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0022
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0022
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0022
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0022
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0022
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0023
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0023
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0023
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0023
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0023
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0023
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0024
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0024
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0024
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0024
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0024
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0024
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0025
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0025
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0026
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0026
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0027
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0027
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0027
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0027
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0028
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0028
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0028
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0028
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0028
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0029
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0029
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0029
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0029
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0029
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0029
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0030
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0030
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0030
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0030
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0030
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0030
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0031
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0031
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0031
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0031
http://refhub.elsevier.com/S0377-2217(20)30798-0/sbref0031

	On the Distance-Constrained Close Enough Arc Routing Problem
	1 Introduction
	2 Problem definition and formulations
	3 Valid inequalities
	3.1 More connectivity inequalities
	3.2 Parity inequalities
	3.3 K-C inequalities
	3.3.1 Disaggregate K-C inequalities
	3.3.2 &#x03A9;-aggregate K-C inequalities

	3.4 K-C02 inequalities
	3.4.1 Disaggregate K-C02 inequalities
	3.4.2 &#x03A9;-aggregate K-C02 inequalities

	3.5 Path-Bridge inequalities
	3.5.1 Disaggregate path-bridge inequalities
	3.5.2 &#x03A9;-aggregate Path-Bridge inequalities

	3.6 Max-distance constraints
	3.7 Symmetry breaking inequalities

	4 The branch-and-cut algorithm
	4.1 Separation algorithms
	4.1.1 Connectivity inequalities
	4.1.2 Parity inequalities
	4.1.3 K-C, K-C02 and Path-Bridge inequalities
	4.1.4 Max-distance inequalities
	4.1.5 Inequalities and separation procedures: a summary

	4.2 Comparison of separation strategies and cutting-plane algorithms

	5 Computational experience
	5.1 Instances
	5.2 Computational results

	6 Conclusions
	Acknowledgments
	A.1 Proof of Theorem 1
	A.2 Proof of Theorem 2
	A.3 Proof of Theorem 5
	A.4 Computational results per set of instances

	References


