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Abstract

This article evaluates the evolution of environmental performance in the context
of the European Union (EU), over the period 1993-2010. The context is
particularly relevant, due to the traditionally high concerns of the EU about these
issues, which has triggered off several initiatives and regulations on
environmental protection. In this setting, we conduct a two-stage analysis which
develops environmental performance indicators in the first stage for each pair
country-year, and evaluates its evolution in the second. More specifically, in the
first stage we estimate specific efficiencies for three air-pollutants (CO,e, SO,
NOy), along with an eco-efficiency indicator, for which we use the slack-free
directional distance functions in the Data Envelopment Analysis framework (as
opposed to the more extended intensity ratios), whereas in the second stage we
propose using a model of explicit distribution dynamics which takes into account
how the entire distributions of these indicators evolve. Our results indicate that the
dynamics underlying the evolution of the indicators analyzed are indeed
remarkable. Although the eco-efficiency indicator has improved over the last two
decades, it has been during the last decade when performance has shown a more
convergent path. However, in the case of the more traditional indicators (COxe,
SO,, NOy) the abatement opportunities are still remarkable, especially in the case
of SOze.
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1. Introduction

There is compiled evidence about the relationship between global warming/climate change and the amount
of greenhouse gases (GHG) released into the atmosphere (IEA, 2010). Similar anthropogenic interactions

! or ground-level ozone and certain

have been established between acid rain, acidification, eutrophication
pollutants like sulphur dioxide (SO2), nitrogen oxides (NO, ), non-methane volatile organic compounds
(NMVOC) and ammonia (NH;3).? These problems are closely linked to the fact that pollution is mainly
a by-product of the manufacturing activity, and as a result of this, there is a branch of studies suggesting
that a correct assessment of economic performance should also incorporate costs resulting from environ-
mental degradation or benefits of environmental improvements (Zaim, 2004). Environmental performance
measurement, can provide the public decision-makers with meaningful information so as to implement rele-
vant economic and/or regulatory instruments. Also, their results can be used to evaluate the effectiveness
of environmental regulations, taxes or any other economic instruments used to improve the quality of
the environment and to account for these costs. As a matter of fact, environmental preoccupations have
come to the top of international and domestic policy agendas and academic literature is paying increasing
attention to assessing environmental performance.

The complexity of the interactions among global environmental changes and its influence on economic
and social life has motivated a significant response to this challenge among the scientific community, with
an increasing concern according to which, unless a principle of sustainability is included in productive
processes, the long term growth of human welfare will be jeopardised by environmental destruction (Zofio
and Prieto, 2001).

In recent years, we find a series of studies dealing with economic and ecological efficiency, more popu-
larly known as eco-efficiency, with the aim of measuring the ability of firms, industries, regions or economies
to produce more goods and services with less impact on the environment and less consumption of natural
resources (Korhonen and Luptacik, 2004; Camarero et al., 2013a; Figge and Hahn, 2004; Kuosmanen and
Kortelainen, 2005). In particular, some of these assessments of environmental performance have been
carried out by specific ratios or intensity indicators such as COze over GDP emission at a macro level, or
units of outputs per unit of waste (or environmental pressure) at the micro-level.

Jointly with these intensity indicators, there are compilations of them, as for instance, the Environ-
mental Sustainability Index (ESI) defined by Esty et al. (2008). This particular index is obtained at the
country level and is based on 21 indicators, which in turn are assessed from 76 data sets, and computed
as a weighted average of indicators with equal weights. Other indicators follow the same structure, but
give more emphasis to certain aspects (either the environment, the society, or the economy) such as the
Ecological Footprint introduced by Rees (1992) or the Sustainable Society Index (SSI) due to Van de
Kerk and Manuel (2008), an index based on 22 environmental and societal indicators that are aggregated
into 5 main categories using equal weights. These 5 categories are then aggregated into SSI using unequal

weights and the 150 evaluated countries are ranked accordingly. In line with this, Prescott-Allen (2001)

IEutrophication is defined as an increase in the rate of supply of organic matter in an ecosystem. When their effects
are undesirable, eutrophication may be considered a form of pollution. Eutrophication is a natural, slow-aging process for a
water body, but human activity greatly speeds up the process.

2The Gothenburg Protocol, also known as the Multi-effect Protocol, was a multi-pollutant protocol aimed to set emissions
ceilings for the most important pollutants, to be accomplished by 2010. This Protocol is part of the Convention on Long-
Range Transboundary Air Pollution. Its geographic scope includes Europe, Noth America and countries of Eastern Europe,
Caucasus and Central Asia.



propose a Barometer of Sustainability. This approach was introduced by the International Union for the
Conservation of Nature (IUCN), and is an intuitive tool of sustainability assessment. In this index, the
sustainability of a country has two fundamental components, Ecosystem Well-Being and Human Well-
Being, and the primary indicators lie in the [0,100] range, where 0 is the worst performance and 100
the best performance of an indicator. These scores are computed by a straightforward aggregation. The
development of all these indicators is not free of controversy due to its multidimensionality and the dis-
crepancies among scientists, governments and agencies, about how to balance the most important factors
involved.

Complementary to the indirect methods presented above, there is a trend development of indicators
where the theory of productive efficiency (Fire and Primont, 1995) plays an important role. Pollutants
arise as negative externalities linked with production processes where a bundle of inputs is transformed into
desirable outputs. For this reason, environmental performance may be properly assessed in the context of
production theory. This direct approach provides a synthetic performance index based on the observed
data using mathematics as an aggregating tool. The advantage of this methodology is that, based on the
observed quantities of inputs and outputs, it is possible to establish a benchmark or ranking among the
evaluated units with very few assumptions.

The development of Environmental Performance Indicators (EPI) originates from the idea of incor-
porating pollutants (also called, undesirable outputs) within the well established productive efficiency
measurement techniques. In recent years, there has been an ongoing research that has gained popularity
in measuring environmental performance with this methodology and examples of these studies include
Fére et al. (1996), Tyteca (1997, 1998), Zaim and Taskin (2000), Zofio and Prieto (2001) or Zhou et al.
(2007). A comprehensive review of the literature involving environment and pollution related to the energy
sector can be found in Zhou et al. (2008a), which complements a previous survey from the same authors
(Zhou et al., 2006) in this field. In the literature, we can find environmental performance indicators not
only at firm or industry level (Tyteca, 1996, 1998; Olsthoorn et al., 2001; Chung et al., 1997; Kuosmanen
and Kortelainen, 2005), but also at a country or regional level (Zaim and Taskin, 2000; Zofio and Prieto,
2001; Fare et al., 2004; Arcelus and Arocena, 2005; Camarero et al., 2013a).

In this context, the aim of this study is to jointly evaluate the economic and ecological performance
of EU countries (EU27) during the 1993-2010 period. This analysis is carried out in two stages. In the
first stage, we compute an eco-efficiency score and pollutant pressures-specific indicators, through the
proposal by Picazo-Tadeo et al. (2011), but making use of the Directional Distance Function (DDF),
instead of a radial approach, both of them considering Data Envelopment Analysis (DEA) techniques.
Throughout this analysis we obtain specific pollutant pressure indicators for three pollutants: Carbon
Dioxide equivalent (COgze) and Nitrogen Oxides (NO,), which are the main sources of GHG, as well as
Sulphur Oxides (SO,,), responsible for acidification of soil and the decrease in the richness of plant species.
Secondly, we study the dynamics of these specific pollutant pressure indicators using the model of explicit
distribution dynamics initially devised by Quah (1993) for analysing their convergence (or divergence)
patterns.

Our contribution to the eco-efficiency literature is therefore at two levels. Firstly, although DEA-DDF
models have been applied in the pollutants literature (Kumar, 2006; Yoriik and Zaim, 2005; Picazo-Tadeo

et al., 2011), as far as we know, none of them have considered the presence of non-directional slacks on



this particular model. Recent theoretical contributions (Fukuyama and Weber, 2009; Asmild and Pastor,
2010) have pointed out that neglecting the existence of slacks leads to over-estimated efficiency indicators.
Our eco-efficiency score is developed using DDF, but it also includes a proposal of a balanced influence
of these slacks in the final indicator, leading to a comprehensive technical efficiency measure.?

Secondly, several research initiatives have analysed convergence in emissions using econometric tech-
niques using either indirect (Lanne and Liski, 2004; Aldy, 2006; Westerlund and Basher, 2008; Romero-
Avila, 2008) or direct approaches (Camarero et al., 2013b; Panopoulou and Pantelidis, 2009). In our
case, we analyse the convergence and dynamics of these indicators using an explicit model of distribution
dynamics which operates in three stages, namely, analysing the evolution of the external shapes of the
distributions, examining if intra-distibution mobility (or churning) exists, and computing the station-
ary distribution of the efficiencies. This detailed analysis of how distributions evolve over time encodes
meaningful information which is usually difficult to summarise considering other methodologies.

The paper is organised as follows. After this introduction, Section 2 is devoted to the development
of the model, methodology and construction of the indicators. Section 3 briefly explains the model of
distribution dynamics. Section 4 describes the data and sources, followeb by Section 5 which focuses on

the results. Finally, Section 6 outlines some conclusions.

2. Model and methodology

One of the most popular nonparametric methods for measuring efficiency is the DEA framework. It has
been widely used since the eighties after the influential study by Charnes et al. (1978), who developed
the ideas on efficiency measurement by Farrell (1957). DEA methods combine the estimation of the
technology that defines a performance standard (usually referred to as technology), and the evaluation of
the achievements against the established standard.

The background of the DEA literature is production theory, and the main underlying idea is that the
units being compared have a common underlying technology. In particular, once the inputs and outputs
are defined, the technology set or the production possibilities set S which models the transformation of

inputs x € R into good outputs y? € Ri' and bad outputs yb € R is:

8= {(x,y%y") : x can produce (y%,y")}. (1)

The technological frontier represents best practice, whereas the distance to the frontier from each
Decision Making Unit (DMU) in the sample is used to compute a measure of its relative performance.
In the particular context of eco-efficiency, DEA models are being increasingly applied. For instance,
Korhonen and Luptacik (2004) propose a two-tier approach, firstly a two DEA model to evaluate economic
and ecological efficiency and from this, a new DEA model that determines the eco-efficiency performance
is developed. The second approach, proposed by the same authors, consists of building up a ratio which
simultaneously takes into account both desirable and undesirable output in a unique model.

In this line of research, two contributions worth mentioning are Kuosmanen and Kortelainen (2005)

and Picazo-Tadeo et al. (2011). Both find a definition for eco-efficiency as a quotient between one unique

3In the operations research literature, models that may not provide Pareto-Koopmans efficiency measure are considered
as lacking for indication. See Russell and Schworm (2009).



desirable output (economic output) and environmental pressures (undesirable outputs or pollutants).
Based on this characterisation of technology, we borrow their formal definition, and with all the feasible
combinations of economic results (v) and environmental pressures (p) we build a pressure generating
technology (PGT) as follows:

PGT = {(v,p) : v can be generated with pressuresp} (2)

Following Kuosmanen and Kortelainen (2005), the eco-effiency of a particular DMU is formally defined

as:
Vo

P(po)

P being a function that aggregates a set of K environmental pressures into an scalar. In the literature a

Eco-efficiency, =

(3)

common approach consists of taking a linear weighted average of the particular environmental pressures

as an aggregating function in the following way:

K
P(po) = anpn (4)

where w,, is the weight assigned to pressure n.

Yet in real world applications we seldom know the technology PGT, but all DEA variants overcome
this problem by estimating the technology PGT from observed data. Clearly this estimation process can
also be performed using statistical methods. The particularities about the DEA approach are the way
the approximation of the technology is constructed (performed using mathematical programming and
an activity analysis approach instead of maximum likelihood or Bayesian estimation) and the resulting
properties of the evaluations.

For this purpose, there are L DMUs each having two sets of factors: good, or desirable outputs, and
bad, or undesirable outputs. Regarding the former, we will only consider one output, v € Ri_XL, whereas
regarding the latter they will be represented by p = [p1,...,pL] € RiXL, which will be the most relevant
pollutants.

In the DEA approach, the estimation of PGT will consist of a linear convex combination together with

free disposability as:

L L
PGT ={ (v,p)lv <Y N, p> Y Apj, [<eA<u (5)

j=1 j=1

where A € Rf; is the intensity vector, and the [ and u parameters determine the return to scale assumption.
For the aim of this analysis, the best practice, or benchmark, of the production process is defined
considering the set of all possible DMUs showing maximum output, and minimum environmental pressure
combinations. In addition, the production process has three characteristics of interest: how to measure
the efficiency, disposability of undesirable outputs and scale of operations.
The efficiency measure for each unit is calculated relative to a reference point on the best practice
frontier, on the basis of the Pareto-Koopmans efficiency concept, i.e. a DMU would be deemed as fully

efficient, if and only if, it is not possible to improve any good or undesirable outputs without worsening



some good or undesirable outputs (Cooper et al., 2007).

Regarding the second characteristic, although weak disposability is a common practice when undesir-
able outputs are present, we have to assume this when there is a clear dependence between good outputs
production and bad output generation. Conversely, when there are opportunities to either reduce, decou-
ple, or even eliminate bad outputs without reduction of good output or increase of input consumption,
this assumption might be dropped. In this vein, Yang and Pollitt (2010) or Forsund (2009) have presented
some guidance on this issue, showing that the disposability assumption must be established when there is
a functional relationship or dependence between bad outputs and other factors. In our particular analysis,
we do not assume weak disposability of undesirable outputs as, at a country level, there are alternatives
to minimise emissions within the present input consumption and output production.

Regarding the scale of operations, constant returns to scale (CRS) is a common assumption in studies
at the country level (Camarero et al., 2013b; Korhonen and Luptacik, 2004; Zofio and Prieto, 2001). Barla
and Perelman (2005) have tested for the robustness of the returns to scale hypothesis in a similar study at
a country level, concluding that CRS is the right assumption. In our particular data set, the test proposed
by Simar and Wilson (2002) has been applied for every year, and we have found that there is no evidence
to reject the CRS assumption.

The next step in the theoretical background is the measure of the distance to the frontier. For this
aim, we follow the theory of directional distance functions proposed by Fire and Grosskopf (2000). This

distance is computed for each inefficiency unit as the distance to the PGT frontier defined as:

Do {v,p; & = (gv, —8p)} = sup {8/ (v + Bgu, P — Bep) € PGT} (6)

where g = (g, —8p) is commonly defined as the direction vector. The parameter 5 provides the measure
of this distance, and can be understood as an inefficiency score, i.e. if 5 = 0 then the DMU lies on the
frontier and it is said to be efficient, and the higher the 3, the higher the inefficiency.

Any efficiency analysis implies optimisation of a certain set of variables, and the direction vector has
an influence on its choice. When there is a clear interest in the optimisation of a particular variable, the
direction vector points toward this variable, and these models are known as oriented models. Conversely
if our concern is in more than one variable, the direction vector should account for all of them. In recent
years, empirical research on efficiency measurement has focused much more on non-oriented models, in
what is known as the full space of inputs and outputs. Authors such as Russell and Schworm (2009) or
Briec (1997) refer to it as (input-output) space. In environmental performance analysis, it is a common
practice to evaluate the performance in the space of good and bad outputs, or even the full space of inputs
and all outputs. In our case, we propose to apply a Directional Distance Function (DDF) with orientation

to the outputs space (desirable and undesirable outputs) for an overall eco-efficiency indicator, and based

on the total slacks for each pollutant we compute a specific environmental pressure indicator.

As introduced above, the direction vector g = (g, —8p), determines a reference point in the frontier
that will serve as a benchmark for efficiency (or more properly inefficiency) measurement. In the literature,
we can find several alternatives. The first one is an arbitrary direction based on expert prescription, a
second choice is the alternative proposed by Briec (1997) and its version with undesirable outputs from

Chung et al. (1997). In this case, the vector of observed variables for each DMU determines the direction



for optimisacion. More sophisticated alternatives are the Multi-directional Efficiency Analysis (MEA)
proposed by Bogetoft and Hougaard (1999) or the Range Directional Model (RDM) by Silva Portela et al.
(2004) which is particularly convenient in the presence of negative data.

In our analysis we apply the DDF model using Briec’s (1997) improvement vector, which, as mentioned
above, is defined by the observed variables for each individual DMU, but reversing for the undesirable
outputs, that is: ¢ = (vo, —po)- This approach has been followed by Chung et al. (1997), Blancard
et al. (2006), Lee et al. (2002), Fére and Grosskopt (2000), Watanabe and Tanaka (2007), Picazo-Tadeo

and Prior (2009), among others. The mathematical program for our particular problem is:

B* = max
s.t. vA > g+ Bug

PA < Ppo— BPo (7)
e >0, [ free

We may rearrange the right hand side of the constraints:

B* = max (8
st. VA >wu(1+0)

PA <po(l-5) (8)
eX > 0,0 free

This program provides an inefficiency score in the [0, 1) range, where 0 is the benchmark for efficient
units. Conversely, we may define an efficiency index by subtracting from one the inefficiency score obtained.
This is the first stage of the analysis and provides a first inefficiency measure.

Nevertheless, this model has a drawback due to the lack of indication,* as the projection determined by
the directional vector may not belong to the strongly efficient frontier. Consequently, if a weakly efficient
frontier point is used as reference, the true amount of slack (compared to the strongly efficient frontier)
will not be considered and the inefficiency will be under estimated.

When dealing with small size samples relative to the number of input and output dimensions, the
extent of inefficiency cannot be fully assessed by computing only the first stage inefficiency measure, but
also slacks need to be considered in order to provide a comprehensive performance measure (as slacks may
be hiding an important part of potential environmental pressure reduction; Picazo-Tadeo et al., 2009).

Assuring that only strongly efficiency benchmarks are selected, the application of a second stage to
account for non-directional slacks is required. For this complementary stage, we propose a new mathe-
matical program that finds the non-directional slacks and computes a new inefficiency measure (§) based

on the inefficiency obtained in the first stage () plus an average mean of the relative non-directional

4In the Operations Research literature (e.g. Cooper et al., 1999) an index satisfying the property of indication of efficiency
(an efficiency index is equal to one if and only if the input vector is efficient in the sense of Koopmans, 1951) is said to be
comprehensive.



slacks:

0" = max

R T A T
6+1+s<++zpro>

st. vVA—ST = vy (1+p5%) 9)
PA+SP = po(1—7%)
ex>0,S">0,87>0

Ounce the weak efficiency is determined (8* from the first stage) and the non directional slacks are
determined (ST and S? in the second stage), it is not difficult to establish a target for each variable and
DMU. This target represents the desired value in order to become a strong efficient unit, and can be
expressed as:

v =g+ B+ 57 (10)
Py =Po—["po—S”

Also, we can express an inefficiency measure, in the interval [0,1), for each variable in the following

way:
' * 00 4+ ST St
For the desirable output: Y =% _ Bov =065+ —
Vo Vo Vo
Po — Py Bypo + SP SP (11)
For each undesirable output: 0o =X =5+ —
Po Po Po

In summary, the quotient between the absolute improvement quantity and the observed variable can be
understood as the specific pollutant pressure indicator. This approach has also been followed by Camarero
et al. (2013a) in the context of a radial model when analysing pressure specific eco-efficiency indicators
for the most important pollutants in the OECD countries.

In our particular context, pollutant specific pressures are established based on this inefficiency score
defined in (11). For each pollutant, a score in the [0,1) interval shows that the larger it is, the larger
the extent of inefficiency and the greater abatement opportunity. Conversely, we may define an efficiency
score by subtracting from one the inefficiency score. For convenience, we will use efficiency scores in the

empirical application.

3. On the dynamics of the indicators of interest

We now present a model which captures the dynamics of the indicators under analysis, i.e. not only eco-
efficiency but also COze, NO, and SOs, based on the analysis of the evolution of their distributions. One
of the main advantages of the method (based on previous contributions in the field of empirical growth
and convergence analysis) is an ability to shed light on the movement of countries’ performance within
the cross-sectional distribution of the variable of interest—in our case either eco-efficiency, COse, NO,
or SO,.° This implies that it we will ultimately find out whether either eco-efficiency (or the specific

pollutant pressure being investigated improves steadily over time), if countries’ positions in the ranking

5Tor a review on the different approaches to convergence analysis see, for instance, Tslam (2003).



vary, or if there is the tendency for countries is to become more alike (i.e. to converge) or disparate (i.e.
to diverge) in their pollution abatement characteristics—either towards the best or worst practice.

Our approach to analysing dynamics, which we may refer to as a model of explicit distribution dy-
namics, can be decomposed into three stages. In the first one we analyze the cross section distribution of
the variables at different points in time through the nonparametric estimation of density functions. In the
second one we model the law governing the motion of such a distribution (i.e., its law of motion or how it
evolves over time). Finally, we identify its long-run characterisation, which we will refer to indistinctly as
ergodic or stationary distribution. The joint consideration of these three components provides a complete
picture of the dynamics of the indicators of interest, not based on some summary statistics only (i.e. mean

and standard deviation) but rather on the evolution of the entire distributions.

3.1. The evolution of the external shape of the distributions (densities)

In the first stage of the model, we evaluate the evolution over time of the shape of the distributions
of pollutant pressure indicators (i.e. of their densities). They will indicate whether the tendency is to
become more alike (converge), disparate (diverge), or to remain stagnant. The first two scenarios would be
revealed by probability mass becoming either tighter (convergence) or more spread (divergence), although
there is a wide range of possibilities. For instance, if several modes emerged this would unveil the existence
of inefficient behaviours, or the possibility that some countries are achieving the objectives, whereas others
are not.

The methods considered in this stage will be based on estimating nonparametrically density functions

via kernel smoothing, for which a kernel estimator for each pollutant pressure indicator, as well as the

~

eco-efficiency indicator, are considered, namely, f(z) = 1/(Nh) % K(Hx — Xl||z/h) In this equation, z
is the point of evaluation, X is the indicator of interest (eco—e%fziéiency or pollutant pressure), N is the
number of observations (countries), h is the bandwidth, || - ||, is a distance metric on the space of X, and
K(x) is a kernel function (see Hérdle and Linton, 1994). As for the choice of K (x), which may be defined
in terms of univariate and unimodal probability density functions, we considered the Gaussian kernel,

which is a reasonable choice in many settings (Silverman, 1986).

3.2. Law of motion of the distributions: transtion probability matrices

In the second stage, our model evaluates the law governing the evolution of the distributions of the
variables of interest. The rationale for considering a second stage deals with the hidden characteristics of
the evolution of the densities, since there could exist a remarkable amount of changes in countries’ relative
positions—i.e. intra-distribution mobility or churning—regardless of whether convergence, divergence,
or stagnancy is taking place. Should this type of mobility exist, it could occur that an a priori static
distribution concealed high intra-distribution mobility. In this scenario, a mere analysis of the evolution
over time of the densities of interest would be misleading—we might conclude that no tendencies existed,
but the implications of this high intra-distribution mobility would be relevant, as we shall see.

We will refer to s; ; as country ¢’s indicator of interest (eco-efficiency, as well as COge, NO, and SO3)
in period ¢, whereas F;(s) refers to the cumulative distribution of s; ; across countries and, corresponding

to Fi(s), we can define a probability measure A\;((—o0, s]) = Fy(s), Vs € R, which would be the probability



density function for each indicator in period t. The model would then analyze the dynamics of A, i.e.
the dynamics of the cross-section distribution of either eco-efficiency or any of the pollutant pressure

indicators of interest, for which we will consider a stochastic difference equation:
)\t = P*(/\tfl, Ut), integer t, (12)

where {u; : integer t} is the sequence of disturbances of the entire distribution, and P* is the operator
mapping disturbances and probability measures into probability measures. Hence, P* would unveil infor-
mation on how the distribution of any of the indicators considered at time ¢ — 1 transforms into a different
one at time t. We may assume that the stochastic difference equation is first order and that operator P*
is time invariant. Therefore, setting null values to disturbances, and iterating in (12) we obtain the future

evolution of the distribution (Redding, 2002):
Aer = (P* - P* ... P\ = (P*)" (13)

By discretizing the set of possible values of s into a finite number of cells k € {1,..., K}, P* would
become a transition probability matrix
Aer1 = P* -\ (14)

where \; is now a K x 1 vector of probabilities, according to which an indicator for a particular country
is located in a given grid at time ¢. In our case, the discretization implies dividing the space of possible
F, values into several grid cells (also labelled as states, or classes), i.e., ey, &k = 1,..., K. Then, after
classifying each country-year observation into one of the K classes, we construct a 5 x 5 matrix whose
pri entries indicate the probability that a country initially in state k will move to state [ over the period
considered (T'). Each row of the matrix would constitute a vector of transition probabilities, adding up
to unity.’

The transition probability matrices therefore enable measurement of the probability that a given
country moves to a higher (or lower) position (in the particular rankings of our indicators of interest). For
calculating the transition matrices, we start discretizing the observations into a certain number of states
er. This implies that state e, = (0.2,0.4) would include countries with given values for these indicators
between 0.2 and 0.4. The value for each entry in the matrix reports the probability that a given country
will transit out during the period considered—from its initial class to other classes. We can estimate
the transitions by counting the number of transitions out of and into each cell, i.e., for each pg; cell,

T-1 ,
— 1 Ny . . t = - -
Pkl = 71 t§ s where T' is the number of years or periods, n;; is the number of countries moving

during one period from class k to class [, and nf is the total number of countries that started the period

in class (.

6The boundaries between grid cells are chosen such that country-year observations are equally divided across cells, and
each cell corresponds to one fifth of the distribution of each indicator of interest—considering a pool of all years. For
instance, in the case of eco-efficiency, observations in the first state refer to countries with the lowest value corresponding to
this indicator. This criterion has been followed extensively (see, for instance Redding, 2002); however, other criteria are also
valid (Kremer et al., 2001; Quah, 1993). An alternative strategy to avoid the discretization problem is to consider stochastic
kernels (Quah, 1996; Bashtannyk and Hyndman, 2001).



3.3. Ergodic distributions

In the final (third stage), our model aims to characterise the hypothetical ergodic (stationary) distribution,
for which we use the information offered by the transition probability matrices. In this respect, several
results (scenarios) might arise. For instance, on the one hand we might find a distribution with the
probability mass concentrated mainly in the central class or classes (indicative of convergence towards the
mean). On the other hand, we might find a more polarised distribution, or one with the probability mass
distributed in either the upper or lower states of the distribution. In sum, the ergodic distribution helps
us to uncover the degree to which the countries in our dataset present a tendency to convergence, diverge,
to polarise, or for other different scenarios, for any of the indicators considered—eco-efficiency as well as
CO4e, NO,, and SOs.

This ergodic (stationary) distribution, formally, corresponds to the eigenvector associated with the
largest eigenvalue of the transition probability matrix. If {X,,} is a Markov chain with transition prob-
ability matrix P, and there is a probability vector V = (vq,va,...) (i.e., v; € [0,1], > v; = 1) such that
VP =V, then V is called the ergodic (stationary) distribution for the Markov chain {X,,}. Furthermore,
for a finite and irreducible Markov chain with probability matrix P, a unique ergodic distribution exists,
i.e. there exists V (a probability vector) such that VP =V, Ve=1, e=(1,1,...).

We may compute ergodic distributions following more straightforwardly. The only non-zero estimated
transition probabilities are those between adjacent groups, and we will assume that the true transition
probabilities satisfy this condition, what is referred to as the triple diagonal condition (Kremer et al.,
2001). In a wide variety of scenarios (which also affects ours) this assumption is reasonable (the indicators
do not halve or double in a single year). If the triple diagonal condition is then satisfied, the ergodic
probabilities (7;) maintain a relatively simple relation to the probability of transition between groups ¢

and j, denoted p;;:
T1 P21 T2 P32 T3 _ P43 T4 _ D54
— Ty T T Ty T o Ty T
2 P12 T3 P23 T4 P34 Ts5 P45

4. Data and sources

Pollutants data for this analysis have been obtained from the Eurostat database, section “Environment
and Energy”, that compiles this information from the European Environment Agency (EEA). Though the
most harmful pollutants have been considered, data availability (just for the period from 1993 to 2010)
has been an important constraint in this study.

Regarding the pollutants that exert pressure on the environment, we propose the inclusion of three
of them:” two are harmful pollutants, Nitrous Oxides (NO,) and Sulphur Dioxide (SOz) responsible for
acidification of soil and water resources, and the third one is the release into the atmosphere of GHG,
which are commonly measured in Carbon Dioxide equivalent (COse) units. These three variables are
included in the model as undesirable outputs on the input side. In the literature, many authors have
considered pollutants like CO» in efficiency analysis (Zhou et al., 2008b; Arcelus and Arocena, 2005; Zofio
and Prieto, 2001; Ezcurra, 2007; Camarero et al., 2013a) or SOs (Yaisawarng and Klein, 1994; Barla and

"Besides data availability, another important reason for this decision has been the risk of dimensionality, or the risk of
losing discriminatory power of the DEA method when the balance between the amount of variables and decision units is
not appropriate. As a rule of thumb, it is recommended that in order to achieve a satisfactory balance between efficient and
non-efficient DMUs, the number of decision making entities should be three times as large as the sum of inputs and outputs
(Nunamaker, 1985).
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Perelman, 2005). The Unit of measurement are tonnes for NO, and SOs and million tonnes for COqe.
As a desirable output, we account for the Gross Domestic Product (GDP) as a proxy of the activity of a
country. A brief summary of the data is presented in Table 1.

The evolution of the aggregate data for each variable has been depicted in Figure 1. There are
remarkable differences in observed reduction among the three pollutants during the evaluated period. On
the left vertical axis of Figure 1, independent scales for each pollutant have been depicted using zero
emissions as the lowest range value. In particular, observed reduction in the SO, emissions are close
to 75%, whereas COse accounts for the worst abatement (about 5%) both of them under the evaluated
period (1993-2010).

5. Results

For each sample year during the 1993-2010 period, and for each country (EU27), we have computed four
environmental performance indicators, namely eco-efficiency and three pollutant specific efficiencies. This
has resulted in the evaluation of 27 countries during 18 years and 4 indicators: eco-efficiency, COse, SO9
and NO,, efficiencies. All these indicators represent a total amount of 1,944 efficiency scores. A summary
of the eco-efficiency scores, grouped in different enlargements, has been reported in Table 2 and plotted
in Figures 2 and 3 for the unweighted and weighted averages, respectively.®

We begin our study describing the time path of the eco-efficiency indicator for each EU enlargement.
In Table 2 and Figures 2 and 3 we present a summary of the eco-efficiency results (first indicator), there
we show that eco-efficiency has improved regardless of the country aggregated selected. Nonetheless,
this improvement has differed both between and within enlargements. When comparing results from the
unweighted and weighted averages plotted in Figures 2 and 3 respectively, we observe that both averages
differ, showing the presence of differences between country sizes. This is the case of the EU25 enlargement
which took place in 2004 which presents better performance for the unweighted rather than the weighted
average. For this group of countries, it seems that small countries performed better than larger ones.
Conversely, the rest of enlargement follows an opposite trend. It is also relevant to note that the EU15
enlargement has been setting the benchmark, or reference, for the rest of countries during all periods,
showing an almost steady efficiency average.

These summary statistics (unweighted and weighted mean) represent a first approximation to the dy-
namics of efficiency distributions. However, these dynamics can be much more complex to be summarised
into only two summary statistics. Standard deviation, also reported in Table 2 helps in shedding some
light about this dispersion, but it hardly informs us on the (likely) existence of multi-modality, for in-
stance. The inclusion of higher moments of distribution may help in overcoming these limitations, but it
does not fully inform on the evolution of the entire distribution of efficiency scores.

In order to achieve a fuller view of the dynamics, we have applied the model of explicit distribution
dynamics considered in Section 3 to the evolution of the indicators of interest during the 1993-2010
period. In the first state of this approach, described in Section 3.1, we proposed to examine the evolution
of the external shapes of the distributions of the variables of interest. The results for the eco-efficiency

indicator are provided in Figure 4 for every other sample year, in order to save space. Unlike previous

8Weighted averages have been obtained using GDP as a weighting factor.
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contributions such as, for instance, Ezcurra (2007), we do not normalise the efficiency indicators dividing
by the corresponding year average, since the values are already bounded in the )0, 1] interval.

The results plotted in Figure 4 indicate that the shape of the distribution has remained almost invariant
during the first half of the period. Conversely, from 2000 and onwards, there is a clear trend towards an
increase of the probability mass on the right side of the distribution. Moreover, from 2002 to 2008 there is
evidence of bi-modality in the distribution that vanishes in 2010 in favour of a unimodal distribution, with
higher efficiency levels—although given the low number of observations, this tendency could be driven by
some anomalous behaviour. In summary, regarding the eco-efficiency, the second half of the period has
been characterised by a generalized efficiency improvement, but the emergence of multi-modality in the
upper tail of the distribution indicates that this seems to be driven by only some of the countries. This
period in which bi-modality seemns to emerge is coincidental with the establishment of important milestones
related to the energy sector and environmental protection, such us the Kyoto Protocol negotiations and
signature, the Renewable Energy Directives, the Energy Efficiency Action Plan, and the establishment of
the EU Emission Trading System (Phase 1 and 2).

Analogously, the densities for the pollutant specific efficiencies have been plotted in Figure 5 for
the same sample of years as above. For the sake of brevity, each figure includes densities for the three
pollutants. The solid line represents the COqe efficiency, the dotted line the NO,, efficiency, and the dashed
line the SO; efficiency. Some interesting points emerge for these plots. Firstly, the shape of the densities
is similar for COze and NO, but completely different for SO5. In particular for the first two pollutants,
there is a trend for probability mass to concentrate towards upper efficiency values, whereas for SO5 the
distribution is almost uniform along all evaluated periods. It seems that despite the remarkable observed
SO, abatement achieved during the last two decades, there are still a set of countries with low efficiencies
for this particular pollutant, which would therefore present further pollution abatement opportunities.
Secondly, the densities for the other two pollutants (COse and NO,) show similar patterns, with slightly
better performance for the NO, in some periods (2002 to 2008). It should also be pointed out that NO,,
efficiency has shown a steady positive evolution (probability mass shifting to the right), whereas for COqe
efficiency this trend is partially blurred. More specifically, during the 2004-2006 period there has been a
positive evolution followed by a decline in 2008 and improvement in the last analysed period (2010).

Although the information conveyed by the evolution of the densities is relevant, there are some spe-
cific trends they cannot capture. Specifically, regardless of the tendency which might have existed for
the evolution of the densities, they cannot disclose the likely existence of intra-distribution mobility (or
churning) of efficiency scores. The densities described in the previous paragraphs provide detailed infor-
mation on how the external shape of the whole set of efficiencies evolves over time, but they do not inform
on whether changes in the relative positions among countries are actually taking place. In other words,
although the external shape of the densities might be unaffected, changes in countries’ relative positions
could be taking place, which would require further analysis.

Therefore, in the second stage of the analysis we propose an analysis of the law of motion of the
cross-section distribution of efficiencies, in order to detect whether this type of mobility is actually taking
place. According to the methodology described in Section 3, the second stage in this analysis is the
estimation of transition probability matrices between selected periods. Specifically, our analysis will focus

on how distributions in ¢ turn into other distributions in ¢ + 1, ¢t + 5 and ¢ + 17, i.e. we consider annual,
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quinquennial, and 17-year transitions.

The results are reported in Tables 3—6. The upper limits for each table correspond to the quintiles
of the total amount of observations (country-year) considered for each variable of interest, which is a
usual criterion. In the first column in each table (“# observations”) we report the number of observations
starting in each state of relative efficiency during the first period (). Regarding the interpretation of each
entry of the matrix, they correspond to the probability of a given country with a certain level of efficiency
to either remain in the same state, or move to another state of efficiency—either better or worse. For
instance, the entry @17 in the first matrix of Table 3 indicates that, in the following period (¢ + 1 in this
particular case), 92.6% out of the 95 observations remained in the same state of efficiency, whereas entry
a12 indicates that 7.4% of the 95 observations starting in state 1 in period ¢ moved to the following state of
higher efficiency—whose upper limit is 0.565. Note that, since these are probability matrices, the entries
in each row sum to one.

In the extreme case of full persistence, the transition matrix would be the identity matrix—i.e. prob-
ability mass fully concentrated along the main diagonal. In contrast, if the diagonal values were close to
zero it would be indicating that intra-distribution mobility is quite high.

The probability mass concentrated in the main diagonal of the transition matrices (Tables 3-6) is lower
for large transition and in fact, there are some cases in which probability mass completely abandons some
entries of the main diagonal. This result is to be expected, since movements are more likely to occur over
long time periods. This is the case for the SO, efficiency for the 1993-2010 transition that presents three
out of the five stages in the main diagonal with almost zero probability mass concentrated on the entries
on the right.

Another important point that can be deduced from the transition matrices is the persistence of the
set of efficient countries. Almost all efficient countries present high persistence for all periods as can be
inferred from the high values (high probability) in the main diagonal. Only those matrices related to the
COqe efficiency present lower probabilities compared with the rest. This specific pollutant presents certain
particularities which differ from the rest; in particular, we observe that the initial density distribution is
mainly skewed to the right and, more interestingly, the final distribution has moved further to the top
with lower dispersion.

A deeper analysis of the tendencies observed in the matrices contained in Tables 3—6 indicate that
intra-distribution mobility differs across both the indicators and transitions considered. Regarding the
annual transitions, displayed in the upper matrix in each table, the highest persistence correspond to the
eco-efficiency indicator (Table 3) and the SO, indicator (Table 5), whose respective entries on the main
diagonal correspond to 0.84 and 0.87, respectively. In contrast, both COse and NO, show more mobility,
since the averages in the main diagonal are 0.753 and 0.787 (Tables 4 and 6). This ranking is virtually
unchanged when considering quinquennial transitions. In this case, the highest mobility still corresponds
to COse, as indicated by the middle panel in Table 4—whose entries in the main diagonal average to
0.523.

These rankings are more volatile when considering 17-year transitions. However, this result was to be
expected due to the relatively low number of observations (compared to the number of states). Of special
note is the as5 entry found in all matrices with the only exception being for COse. As shown in the lower

panel in Tables 3, 5 and 6, probability mass collapses in those entries. This merely indicates that the
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countries which were in those states in 1993 remained in that state in 2010—i.e. there has been no leaking
of probability to other states of less efficiency; in contrast, there are several countries which have moved
to this state of highest efficiency.

Ouly for COse (lower panel in Table 4) do we observe that some probability abandoned the state of
highest efficiency, as indicated by as; = 0.500. Since only 4 observations started in that class of highest
efficiency in 1993 (see the first column in the lower panel of Table 4), this would imply that only 2 countries
of those 4 who were initially in that state remained there in 2010, whereas the other two moved to state
4—as shown by as4 = 0.500. We will elaborate further on this below.

The last stage of the model of explicit distribution dynamics corresponds to the analysis of the ergodic,
or stationary, distribution. Having constructed the five states considering probability uniformly distributed
(20%) across states, it indicates which would be the long-run distribution according to these states if the
tendencies observed during the analysed period persisted, i.e. under current trends.

The results corroborate with what was found for the intra-distribution mobility analysis. The more
favourable future scenario, in terms of efficiency, corresponds to both eco-efficiency and, more especially,
SOs, for which the probability mass tends to concentrate in the highest states of relative efficiency,
regardless of the transitions considered (see Tables 3 and 5). However, in the case of NO, and, very
especially, COqe (see Tables 6 and 4) the distribution of the probability is closer to the initial state.
This is especially the case for COse, for which, regardless of whether we consider yearly or quinquennial

transitions, a substantial amount of probability mass remain in the three states of lowest efficiency.

6. Conclusions

In this research we have proposed a two-stage evaluation of the evolution of environmental performance
in the context of the European Union (EU27). In the first stage we constructed four environmental
performance indicators (namely, eco-efficiency and three pollutant specific indicators: COge, SO2 and
NO. ), and the second stage was devoted to analysing their dynamics during the 1993-2010 period.

The environmental performance indicators have been developed using nonparametric frontier tech-
niques based on a directional distance function accounting for non-radial slacks, whereas the analysis of
the evolution has been evaluated considering a model of explicit distribution dynamics which attempts
to unveil questions such as how the distribution of the environmental performance indicators evolves
(estimating density functions using kernel methods), to analyse whether there have been changes in coun-
tries’ relative positions over time, and also to ascertain which the long-run (ergodic distribution) of these
indicators might be, under current trends.

The results of the study reveal some improvements for some of the four proposed environmental
performance indicators. The results obtained for these indicators suggest that there are still opportunities
for further improvements in pollutants like SO9, and to a lesser extent for the rest of the indicators. Our
results also reveal that the convergence process between 1993 and 2010 has not been a continuous process,
which is a consideration for policymakers and decision makers when designing future plans to preserve
the environment. More specifically, although the general tendency is an improvement in several of the
indicators considered, the underlying dynamics are complex, and they reveal that the degree of fulfillment

of the objectives pursued is heterogeneous. Some of the opposite tendencies which affect the different EU
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countries are ultimately jeopardising the process of convergence in different key areas developed by the

EU climate policies.
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Table 3: Transition probability matrices and ergodic distributions for eco-efficiency (1-year, 5-year and
17-year transitions)

Upper limit ‘
(t,t+1) # observations | 0.464  0.565  0.658  0.794 1.000

95 0.926 0.074 0.000 0.000 0.000
91 0.022 0.835 0.143 0.000 0.000
93 0.000 0.086 0.753 0.161 0.000
92 0.000 0.000 0.087 0.750 0.163
88 0.000 0.000 0.000 0.080 0.920

| Ergodic distribution | 459 | 0.024 0.081 0.134 0.249 0.511

Upper limit
(t,t+5) 7+ observations 0.464 0.565 0.656 0.794 1.000

79 0.759 0.228 0.013 0.000 0.000
68 0.044 0.632 0.265 0.059 0.000
71 0.000 0.141 0.507 0.296 0.056
74 0.000 0.000 0.189 0.473 0.338
59 0.000 0.000 0.000 0.102 0.898

‘ Ergodic distribution ‘ 351 | 0.007 0.040 0.094 0.187 0.672

Upper limit
(1993,2010) 7+ observations 0.485 0.588 0.691 0.807 1.000

0.375 0.375 0.125 0.125 0.000
0.000 0.400 0.200 0.400 0.000
0.000 0.143 0.000 0.429 0.429
0.000 0.000 0.250 0.250 0.500
3 0.000 0.000 0.000 0.000 1.000

Ergodic distribution 27 | 0.000 0.000 0.000 0.000 1.000

> ~J Ut Co
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Table 4: Transition probability matrices and ergodic distributions for COse efficiency (1-year, 5-year and
17-year transitions)

Upper limit
(t,t+1) # observations | 0.552  0.659  0.759  0.892 1.000

95 0.853 0.105 0.042 0.000 0.000
92 0.087 0.674 0.152 0.043 0.043
92 0.011 0.130 0.685 0.130 0.043
90 0.000 0.044 0.122 0.722 0.111
90 0.000 0.022 0.000 0.144 0.833

| Ergodic distribution | 459 | 0.114 0.168 0.196 0.257 0.266

Upper limit
(t,t+5) 7+ observations 0.531 0.657 0.757 0.883 1.000

78 0.654 0.205 0.128 0.013 0.000
69 0.174 0.406 0.232 0.072 0.116
72 0.000 0.292 0.403 0.181 0.125
65 0.000 0.092 0.200 0.508 0.200
67 0.000 0.000 0.015 0.343 0.642

‘ Ergodic distribution ‘ 351 | 0.083 0.164 0.185 0.289 0.279

Upper limit
(1993, 2010) 7+ observations 0.573 0.701 0.787 0.929 1.000

8 0.375 0.250 0.125 0.250 0.000
5 0.000 0.400 0.400 0.000 0.200
7 0.000 0.286 0.000 0.286 0.429
3 0.000 0.000 0.000 0.667 0.333
4 0.000 0.000 0.000 0.500 0.500

Ergodic distribution 27 | 0.000 0.000 0.000 0.600 0.400
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Table 5: Transition probability matrices and ergodic distributions for SO, efficiency (1-year, 5-year and
17-year transitions)

Upper limit
(t,t+1) 7+ observations 0.073 0.141 0.312 0.612 1.000

94 0.915 0.085 0.000 0.000 0.000
93 0.043 0.806 0.151 0.000 0.000
93 0.000 0.075 0.785 0.129 0.011
91 0.000 0.000 0.044 0.868 0.088
88 0.000 0.000 0.000 0.023 0.977

| Ergodic distribution | 459 | 0.014 0.028 0.056 0.180 0.721

Upper limit
(t,t+5) 7+ observations 0.072 0.139 0.312 0.612 1.000

80 0.650 0.275 0.075 0.000 0.000
78 0.115 0.410 0.410 0.064 0.000
68 0.000 0.132 0.426 0.382 0.059
64 0.000 0.000 0.063 0.688 0.250
61 0.000 0.000 0.000 0.033 0.967

Ergodic distribution ‘ 351 | 0.001 0.004 0.015 0.110 0.869

Upper limit
1993 - 2010 7+ observations 0.094 0.153 0.370 0.728 1.000

0.222 0.444 0.111 0.222 0.000
0.000 0.167 0.667 0.000 0.167
0.000 0.000 0.000 1.000 0.000
0.000 0.000 0.200 0.000 0.800
3 0.000 0.000 0.000 0.000 1.000

Ergodic distribution 27 | 0.000 0.000 0.000 0.000 1.000

Tt Y ©
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Table 6: Transition probability matrices and ergodic distributions for NO,, efficiency (1-year, 5-year and
17-year transitions)

Upper limit
(t,t+1) # observations | 0.565  0.667  0.746  0.900 1.000

95 0.842 0.126 0.000 0.000 0.032
92 0.087 0.652 0.250 0.011 0.000
91 0.000 0.198 0.692 0.110 0.000
93 0.000 0.011 0.065 0.817 0.108
88 0.023 0.000 0.000 0.045 0.932

| Ergodic distribution | 459 | 0.133 0.144 0.158 0.196 0.370

Upper limit
(t,t+5) 7+ observations 0.565 0.666 0.749 0.902 1.000

78 0.603 0.282 0.051 0.013 0.051
66 0.227 0.318 0.364 0.091 0.000
72 0.000 0.403 0.458 0.125 0.014
73 0.000 0.027 0.096 0.589 0.288
62 0.016 0.000 0.000 0.145 0.839

351 | 0.087 0.122 0.130 0.224 0.438

‘ Ergodic distribution

Upper limit
(1993,2010) 7+ observations 0.562 0.683 0.753 0.920 1.000

0.375 0.500 0.000 0.125 0.000
0.000 0.200 0.200 0.200 0.400
0.000 0.200 0.400 0.200 0.200
0.000 0.000 0.333 0.333 0.333
3 0.000 0.000 0.000 0.000 1.000

Ergodic distribution 27 | 0.000 0.000 0.000 0.000 1.000

8
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Figure 1: EU27 aggregated pollutant and GDP evolution.

Source: Authors. Data: European Environmental Agency and Eurostat
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Figure 2: Eco-efficiency simple averages for each enlargement set of countries
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Figure 3: Eco-efficiency weighted averages for each enlargement set of countries
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Figure 4: Evolution of eco-efficiency density in EU27
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Figure 5: Evolution of pollutant efficiency densities in EU27.

Solid line: COqe efficiency.

Dotted line: NO, efficiency.

Dashed line: SOs efficiency
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