

Department of Surgery Neurosurgery Teaching Unit

SEMINAR: INTRACRANIAL HYPERTENSION AND HYDROCEPHALUS

34484 Pathology of the nervous system

Neurosurgery

Prof. Vicente Vanaclocha Prof. Pedro Roldan Prof. Guillermo García-March Prof. José María Gallego Prof. Ricardo Prat Prof. Francisco Verdú <u>vivava@uv.es</u> pedro.roldan@uv.es

- Intracranial pressure and intracranial hypertension
- Benign intracranial hypertension
- Normal pressure hydrocephalus
- CSF drainage systems

Benign intracranial hypertension

Chronic adult hydrocephalus

CSF drainage systems

Monro-Kellie doctrine: intracranial content evolution if *\volume*

- 1st ↓ CSF
- $2^{nd} \downarrow$ venous blood
- $3^{rd} \downarrow arterial blood$
- 4th decompensationbrain, herniationsbrain, ischemi cerebral vascularization collapse - brain death

Decompensated state - ICP elevated

Evolution of intracranial space contents & intracranial pressure

CSF-venous blood-arterial blood-brain herniations

ntracranial Pressure

Brain herniations

- Intracranial space = partition = pressure increases in one compartment = displacement of nerve tissue = brain herniations
 - Compression of nerve tissue + vessels against falx and tentorium = added cerebral infarctions

Intracranial pressure monitoring techniques

- Surgically implanted
 - Epidural (E)
 - Subdural
 - Intraparenchymal (P)
 - Intraventricular (V) Transcranial ultrasound Sur
 - Allows CSF drainage → ICP reduction
- Percutaneous (ultrasound)
 - Transcranial
 - Optic nerve

P

E

Cerebrospinal fluid (CSF)

VNIVERSITAT DVALENCIA Facultative Medicina Odontologia

Benign intracranial hypertension

- ↑ICP of cause not always known
- Not as benign = possibility of vision loss
- Physiopathology
 - ♀
 - Obesity
 - Contraceptives
 - Other drugs

Benign intracranial hypertension: risk factors

 Obesity and contraceptive medication (OCP) the most important thing

Obesity and benign intracranial hypertension (BIH) relationship

Benign intracranial hypertension: clinical features

Not as benign = visual acuity loss in 61%

space

Benign intracranial hypertension: causes

Benign intracranial Fecultare Medicina hypertension: eye fundus

 Not usually done in out-patient consultations = risk not diagnosing the condition

VNIVERSITAT D VALENCIA Facultate Medicina Odontologia

Benign intracranial hypertension: loss of visual acuity

- Affects peripheral visual fields
- It can go unnoticed if serial campimetry exams are not done
- This disease is not so benign

Benign intracranial hypertension: VALENCIA FOUNDORING VISUAL ACUITY IOSS pattern

 Changes will go initially unnoticed unless visual field examinations are done regularly

VNIVERSITAT D VALENCIA Facultation Medicina Odontologia

Benign intracranial hypertension: treatment

- Withdraw any suspicious drug
- Lose weight
- Stenting stenosis intracranial venous sinuses

Benign intracranial hypertension: CSF shunt

- The ideal is the ventricleperitoneal
 - Small ventricles = difficult to cannulate
- Lumboperitoneal technically easier
 - Induces Chiari type 1 malformation with nuchal headache

Ventriculo-peritoneal shunt

HYDROCEPHALUS

- Hydrocephalus = ↑ CSF at intracranial level
 - Hydros = water
 - Kefalos = head

Causes

- It production (very rare)
- Circulation block
 - Most frequent situation
- ↓ drainage (reabsorption)

VNIVERSITAT D VALENCIA Facultation Medicina Odontologia

Hydrocephalus and nerve tracts

- Lateral ventricles dilation = periventricular nerve fiber stretching
 - Affects lower limb and frontal-basal fibers (gait impairment, urinary incontinence + temporo-spatial disorientation)

Normal (coronal cut MRI)

Hydrocephalus

Hydrocephalus

Hydrocephalus

VNIVERSITAT DVALENCIA Facultative Medicina Odontologia

Types of hydrocephalus

- According to type
 - Communicating
 - CSF block in subarachnoid space

Non-communicating

- CSF flow block inside ventricles
 - Foramen of Monro
 - Third ventricle
 - Aqueduct of Silvius
 - Fourth ventricle

According to presentation time

- Congenital
 - Causes
 - Intraventricular haemorrhage (prematurity)
 - Stenosis aqueduct of Silvius
- Acquired

Prematurity

Silvio aqueduct stenosis

Non-communicating hydrocephalus: ENCIA obstruction to CSF circulation inside ventricles at de Medicina

• Tumors/parasitic cysts

Odontologia

- Lateral ventricles
- Foramen of Monro
- Third ventricle
- Pineal region
- Fourth ventricle

Malformations

- Stenosis aqueduct of Silvius
- Atresia foramina Luschka and Magendie
- Dandy-Walker malformation

Pineal region tumor

Fourth ventricle tumor

Atresia Luschka and Magendie

Silvio aqueduct stenosis

Dandy-Walker

Communicating hydrocephalus = CSF circulation obstruction in subarachnoid space or reabsorption impairment

- Subarachnoid haemorrhage
- Meningitis
- Meningeal carcinomatosis
- Meningeal lymphomatosis
- Intracranial venous sinus thrombosis
- Dural arteriovenous fistulas

Subarachnoid haemorrhage

Meningitis

Meningeal carcinomatosis

Dural AV fistula

Stenosis of the aqueduct of Sylvius

- Congenital malformation
- Triventricular hydrocephalus = abnormal skull development
- Lack of nerve tissue development = slight psychomotor retardation
- Clinical symptoms often present after 40 years of age

VNIVERSITAT TO VALENCIA Feculation Medicina Generations Defentional Contrologia

Supratentorial macrocrania + small posterior fossa

Dandy-Walker syndrome

- Very low incidence
- Partial cerebellum atrophy with atresia foramina Luschka & Magendie = cystic dilation of fourth ventricle
- Normal cognitive development

Dilation lateral ventricles

Fourth dilated ventricle Partial agenesis

cerebellum

Dilated fourth ventricle

Partial agenesis cerebellum

Hydrocephalus: pineal region tumors

- Uncommon
- Great histological variety
- Treatment hydrocephalus: endoscopic ventriculostomy

Endoscopic ventriculostomy

Fourth ventricle tumors

- ↑in children than in adults
 - Medulloblastoma
 - Ependymoma
- Obstructive hydrocephalus
- Possibility of tumor spread by CSF pathways
 - Carcinomatous meningitis
 - Meningeal carcinomatosis

Carcinomatous meningitis

Normal pressure hydrocephalus: clinical features

Normal pressure hydrocephalus: communicating, CSF resorption impairment

 CSF blockage in subarachnoid space and/or reabsorption impairment at arachnoid villi

Normal pressure hydrocephalus: differential diagnosis

- Confusion with many other pathologies
- Possible coincidence hydrocephalus & Alzheimer's disease = poor results with surgical treatment

Common	Uncommon
Alzheimer disease	Lewy body dementia
Parkinson disease Vascular dementia (Binswanger disease)	Behavioral variant frontotemporal degeneration Progressive supranuclear
Urologic bladder outflow obstruction	Vestibular disorder Peripheral neuropathy
Neurodegenerative disorder	Lumbar stenosis Cerebral tumor Thyrotoxicosis

Normal pressure hydrocephalus: radiological diagnosis

• Evans index (A/B) normal <30

Normal pressure hydrocephalus: periependymal edema

Also occurs in other pathologies

Normal pressure hydrocephalus: corpus callosum thinning

Also occurs in brain atrophy

Normal pressure hydrocephalus: corpus callosum angle in coronal MRI images

Angle forming the upper surface of the lateral ventricles

Normal pressure hydrocephalus: CSF flow measurement by magnetic resonance imaging

- Measures CSF throbbing motion during each heartbeat
 - Non-invasive and rapid CSF flow quantification
 - Measured at third ventricle, Silvius aqueduct & prepontine cistern
- Values (ml/min)
 - 18 to 27 normal pressure hydrocephalus
 - > 46 unreliable

Normal pressure hydrocephalus: lumbar puncture

- CSF pressure is usually normal
 - Reason: lumbar puncture done during day and not at nighttime during the sleep REM phase
 - CSF pressure has NO diagnostic / prognostic value

Normal pressure hydrocephalus: at de Medicina methods of diagnostic confirmation (1)

Lumbar puncture with CSF drainage

- Opening pressure measurement
- Drainage ~ 50 ml CSF

Odontología

- Monitor symptom response •
- Practical but unreliable

Katzman infusion test

- 1st lumbar puncture
- 2nd lumbar infusion 20 ml Ringer's lactate at constant pressure and volume
- 3rd ICP measurement at the lumbar level
- 4th calculation of drainage resistance (ROF)
- 5th drainage ~ 50 ml CSF
- Frequent false positives and negatives

Lumbar drainage

- 1st lumbar puncture
- 2nd insertion of lumbar CSF drainage catheter
- 3rd CSF drainage for 1-3 days
- More reliable but uncomfortable for patients

Lumbar puncture with CSF drainage

Normal pressure hydrocephalus: methods of diagnostic confirmation (2)

- Intracranial pressure monitoring
 - Requirements
 - Minor surgical procedure
 - 5-day hospital admission
 - The most specific and reliable diagnostic technique

HYDROCEPHALUS: TREATMENT

- Goal: ICP between -5 and +15 cm H₂O
- Position of the patient modifies
- ICP |CP = 4.6 Volume of CSF drained €HP = 3.3 TIAP = 5.7 $P_1 = P_2 = P_3 = P_a + \rho x q x h$ P2 P3 А h=15 cm P1=P2=P3= +15 cm H2O ICP = -14.2В С P3=Pa-pxgxh3 $P_3 = P_a - p \times q \times h_3$ $P'_3 = P_a - \rho x q x h'_3$ h₃=10 cm h₃=10 cm h'3=10 cm P1= -10 cm H20 P'_= -10 cm H_2O P3= -10 cm H2O $P_2 = P_a + \rho x g x h_2$ HP =42.9 ↓h₃ h₂=0 cm $P_2 = 0 \text{ cm } H_2O$ PP =14.0 h₁ h'3 h₃ |AP = 14.7 $P_1 = P_a + \rho x g x h_1$ h1=60 cm $P_1 = +60 \text{ cm H}_2O$ UGB D

CSF drainage options

External ventricular drainage

- Temporary measure
- If intraventricular haemorrhage (prematurity) or infection

Permanent CSF shunt ~ 80% cases

- Ventricleperitoneal
- Ventricleatrial
- Lumboperitoneal
- Ventriclepleural

Ventriculostomy ~ 15% cases

- Opening floor third ventricle = CSF comes out directly into the subarachnoid space
- CSF circumvents obstruction in third ventricle, Silvio's aqueduct or posterior fossa
 Ventriculostomy

Ventriculostomy floor third ventricle

- Few indications
- Ideal: NO need for CSF shunt = no reoperations

VERSITAT Components of the CSF shunt systems t de Medicina

Ventricular catheter

 With time it is obstructed by the choroid plexus

Valve

Adontologie

- Regulates CSF drainage
- Various mechanisms
- Must adapt to patient's postural changes

Distal catheter

- Drainage depending on pressure cavity where it is directed
 - Abdomen pressure changes with recumbentstanding position
 - Atrium constant pressure
 - Pleura negative pressure

Ball valve

Rotor valve

Operation of CSF shunt systems

- CSF produced by choroid plexuses (in the ventricles)
- Ventricular catheter drains CSF from the ventricles
- Valve regulates CSF outlet pressure
- Distal catheter drains CSF into the chosen cavity
 - CSF drainage depending on pressure of chosen cavity
 - Atrium: constant pressure
 - Peritoneum: variable with the patient position
 - Pleural cavity: negative pressure with suction

VNIVERSITAT D VALENCIA Facultat de Medicina i Odontología

30-**P**IV

 20^{-}

Pv

Pressures regulating CSF drainage through ventricleperitoneal shunt

- Intraventricular pressure (Piv)
- Hydrostatic pressure (Рн)
- Abdominal pressure (PA)

CSF drainage in standing position: VALUACINA CONTRIBUTION VALUACINA VALUA

Subdural hematoma

 In standing position = suction effect of the water column of the distal catheter = excess CSF drainage = ↓PIC = headache → ventricular collapse → possibility of subdural hematoma

Siphon effect in standing position

Siphon effect

- CSF flow \rightarrow suction effect = drains more CSF than desirable

- Slit ventricle syndrome
- Chronic hygroma/subdural hematoma
- Orthostatic headache

Possibilities of CSF shunt systems

- Inadequate drainage
 - Excessive abdominal pressure
 - Shunt colonisation by bacteria
- Adequate drainage
- Excessive drainage
 - Shunt without anti-siphon mechanism

Inadequate drainage Adequate drainage Excessive drainage

VNIVERSITAT ENCIA Facultat de Medicina Odontología

Excess CSF drainage: consequences

- Ventricular collapse
 - Lower tolerance ↑ICP
- Chronic subdural hematoma
- Secondary craniosynostosis

Ventricular collapse

Chronic uni- or bilateral subdural hematoma

Coronal izquierd;

Excessive CSF drainage and chronic subdural hematoma

 Excess CSF drainage = possibility of chronic subdural hematoma

A - Monro-Kellie hypothesis- Normal state.

Chronic subdural hematoma

B - Monro-Kellie hypothesis- Spontaneous intracranial hypotension with CSF leak and compensatory increase in venous blood volume and formation of SDC (Subdural collections)

S D Venous blood Arterial Brain CSF Leaks

VNIVERSITAT D VALENCIA Facultation Medicina Odoncología

Anti-siphon mechanisms

 Control excess drainage while sitting and standing but drainage not always adequate in recumbent position

CSF drainage: obesity & sleep apnea

 ↑ abdominal pressure = malfunction shunt recumbent

RELAT

ultat de Medicina Odontología

> Sleep apnea = abdominal & chest pressure ↑ during apneas = shunt malfunction during sleep

> > Lung volume reduction

Apnea sleep

obstruction

Option: ventriculoatrial shunt

VNIVERSITAT Wide variety of CSF shunt valve types ALENCIA Facultat de Medicina

Odontologia

Current valves = programmable percutaneously

- Both ventricleperitoneal and lumboperitoneal
 - Allow pressure to be adjusted to patient needs
- Drawback: intense magnetic fields can affect valve parameters
 - High field magnetic resonance imaging (3 Tesla)
 - High voltage electric power lines
 - Theft detectors in shopping centers
 - Not mobile telephones

Valve reservoir puncture in emergency

- Usefulness
 - Check ventricular catheter patency
 - Rule out CSF infection
 - Temporary measure to drain CSF?
- Risk of inducing shunt infection

Infantile hydrocephalus problems

Patient growth

VNIVERSITAT

D VALENCIA Facultat de Medicina

- Sufficiently long peritoneal catheter
- Impossible in ventricleatrial shunt
- Hydrostatic pressure changes as patient height increases
- Intracranial and abdominal pressure changes
 - Baby = recumbent, child standing
 - Siphoning effect?
 - Valve that works in infant not suitable in child / adolescent / adult
- Result = frequent CSF shunt surgical replacement in children

Lumbo-peritoneal shunt

- Advantage: easy surgical implantation
- Drawback: induction Chiari type 1 malformation
 - Occipital headache

Complications CSF shunts: catheter rupture

- Common in children as they grow
- \uparrow at the collarbone level

Complications CSF shunts: ventricular catheter obstruction

 The choroid plexus grows obstructing the ventricular catheter = frequent intraventricular haemorrhage when removed

Complications CSF shunts: infection shunt system (1)

Shunt = foreign body = ease of infection

Complications CSF shunts: infection shunt system (2)

Need shunt surgical replacement

Complications CSF shunts: peritoneal pseudocyst

Indicates shunt infection = surgical removal + antibiotics + new shunt

Plain x-ray

Abdominal ultrasound

Abdominal CT

Complications CSF shunts: subclinical infection cause of CSF shunt malfunction (1)

- ↑ Cause CSF shunt malfunction
- Cause: bacteria secreting 'slime'
 - No infection symptoms
 - Mucoprotein = valve blockage
- Prophylaxis: asepsis + implanting a shunt embedded with antibiotics
- Treatment: shunt removal, external ventricular drainage implantation, antibiotic treatment, new shunt implantation

Gram-Positive Organisms	Gram-Negative Organisms
Staphylococcus epidermidis	Pseudomonas aeruginosa
Staphylococcus aureus	Serratia marcescens
Corynebacterium spp	Stenotrophomonas spp
Streptococcus spp	Enterobacter spp
Enterococcus spp	Escherichia coli
Propionibacterium spp	Klebsiella spp

Pressure

dots

Needle

chield

Complications CSF shunts: subclinical infection cause of valve malfunction (2)

- Mucoprotein-secreting bacteria = immune system isolation
 persistence low grade infection
 - = persistence low-grade infection

KEY CONCEPTS SEMINAR INTRACRANIAL HYPERTENSION AND HYDROCEPHALUS

Intracranial pressure

- Intracranial space volume = constant
- Any increase in volume of one component = decrease of the other two or $\uparrow ICP$

Benign intracranial hypertension

- Mostly affects obese women of childbearing age taking contraceptive drugs
- Treatment to correct overweight, withdraw contraceptives, and shunt CSF

Hydrocephalus

- Intracranial CSF volume increase
- Dangers: atrophy cerebral parenchyma, psychomotor retardation, & blindness

Normal pressure hydrocephalus

- Better response for gait disorder and urine incontinence than for neurocognitive impairment
- Vital differential diagnosis with other types of dementia

CSF shunt systems

- Valve selection appropriate for patient needs
- Frequent complications due to inappropriate or excessive drainage or infections

ANY QUESTIONS?

Prof. Vicente Vanaclocha Prof. Pedro Roldan <u>vivava@uv.es</u> <u>pedro.roldan@uv.es</u>