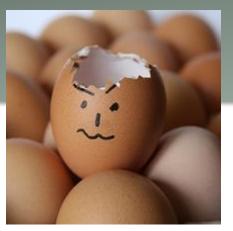


Department of Surgery Neurosurgery Teaching Unit

#### TRAUMATIC BRAIN INJURY (I). BRAIN CONCUSSION. TRAUMATIC INTRACRANIAL HEMATOMAS

#### 34484 Pathology of the nervous system

Neurosurgery


**Topic 17** 

Prof. Vicente Vanaclocha Prof. Pedro Roldan Prof. Guillermo García-March <u>vivava@uv.es</u> <u>pedro.roldan@uv.es</u> <u>guillermo.garcia-march@uv.es</u>



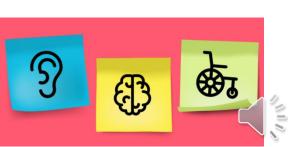
## Key points

- Traumatic brain injury (TBI)
- Cranial and brain lesions



- Evaluation and staging in emergency room
- Intracranial haemorrhage
  - Subdural hematoma (SDH) and epidural hematoma (EDH)
- Progressive injury: Hypoxia and hypotension in TBI

#### • Severe TBI


- Edema, congestion, ischemia, and brain herniation
- Treatment of severe TBI
- Complications and sequalae





# TRAUMATIC BRAIN INJURY (TBI)

- What is a TBI?
  - "A traumatically induced structural injury and/or physiologic disruption of brain function as a result of an external force"
     > Result of a traumatic action on the brain and its coverings
  - Loss of consciousness may NOT happen (conscience ≠ consciousness)
- Importance
  - First cause of loss of consciousness in general population
  - Most frequent cause of epilepsy 18-25 years
  - High mortality
    - 1<sup>st</sup> cause of death < 20 years and 15-45 years
  - Morbidity: sequelae (many and severe) ⇒ 15 % result in disability
    - 20 cases/million people severe disability
    - 40 cases/million people moderate disability
    - Long-term brain deterioration (memory, movement, senses, emotions)



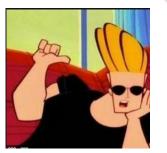






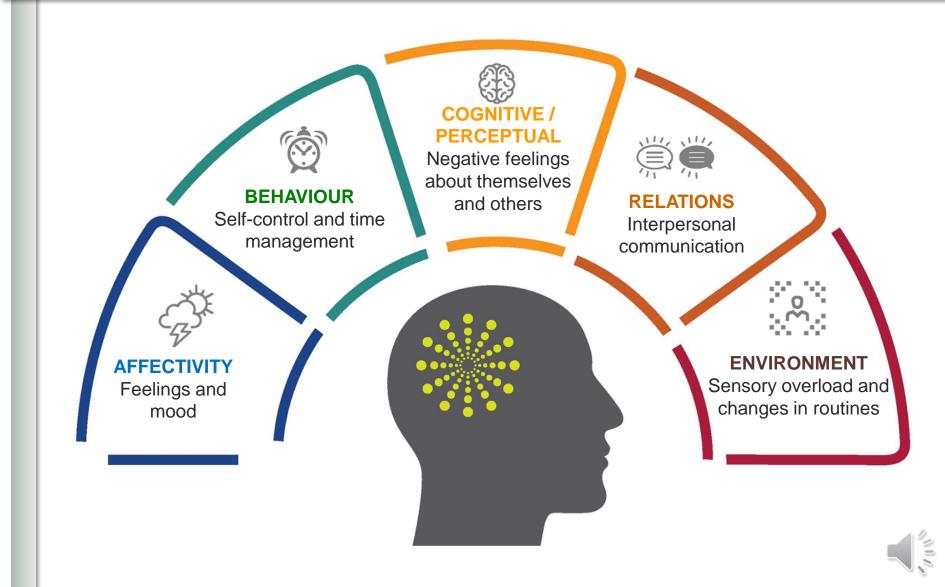
#### Sequelae

GA-GA-


COGNITIVE DEFICITS Short term memory loss, concentration problems, slow thinking, limited attention, deterioration of different cognitive abilities

#### PHYSICAL DEFICITS Speech, visual, hearing, deficits. Low motor coordination, spasticity, paralysis, epilepsy, loss of balance, and fatigue

EMOTIONAL DEFICITS


TBI

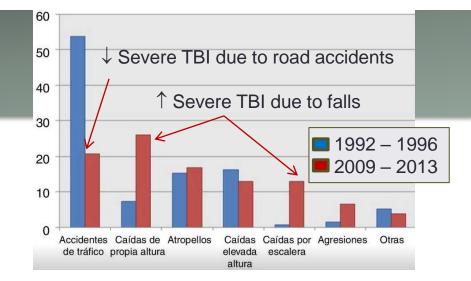
Mood swings, egocentrism. Anxiety, depression, low self-esteem, sexual dysfunction, nervousness, loss of motivation, and uncontrolled emotions





### Sequelae: Irritability





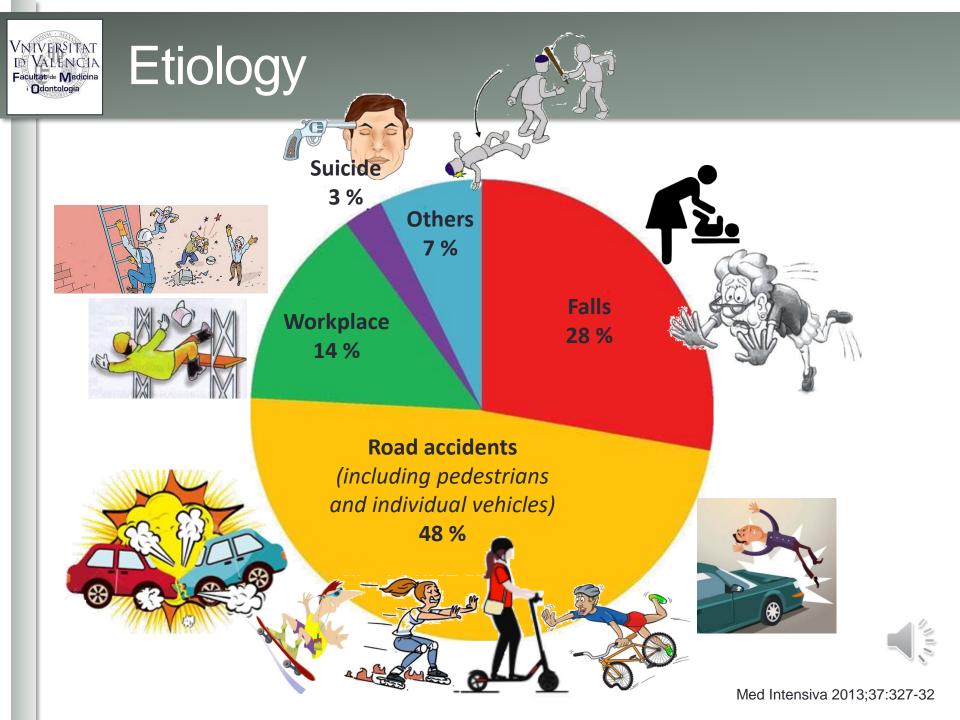

#### Incidence

- Incidence of TBI per 100,000 people:
  - 2000 emergencies
  - 300 admissions (125 severe)
  - 10-20 deaths
- High mortality (42 % of TBI are severe):
  - 15-17 % TBI result in death
  - Increasing cohort: fall of patients on anticoagulants

TBI as cause of death:

- 1 % deaths
- 25 % deaths due to trauma
- 50 % deaths due to road accidents




Severe trauma with pre-hospital death:

- 2/3 due to polytrauma
- 10 % due to TBI

Mortality of severe TBI that arrives to hospital:

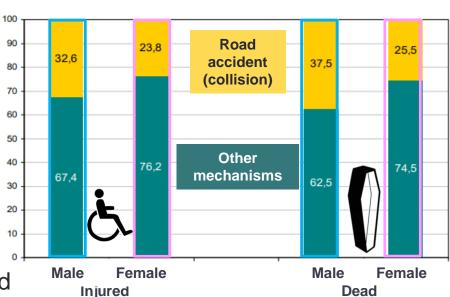
- 35 % due to primary lesions
- 50 % due to secondary lesions
- 8 % due to extracranial complications







### Etiology


- Most affected population:
  - Infants: falls > abuse
  - Schoolchildren: bikes, falls, and collisions (road)
  - Teenagers (male): risky attitudes and activities
  - Young male: road accident > workplace and risk activities
  - Older women: other causes (falls + anticoagulants)





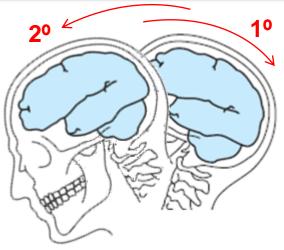


%



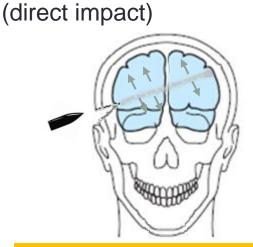




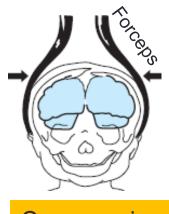



Blunt contusion

### Basic mechanisms of TBI




Coup (strike)




Coup – contrecoup

Acceleration - Deceleration

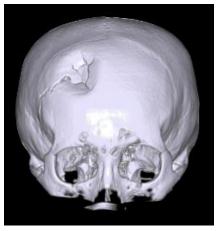


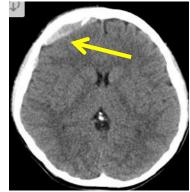
Penetrating / perforating (low / high speed)

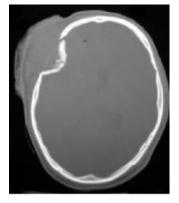








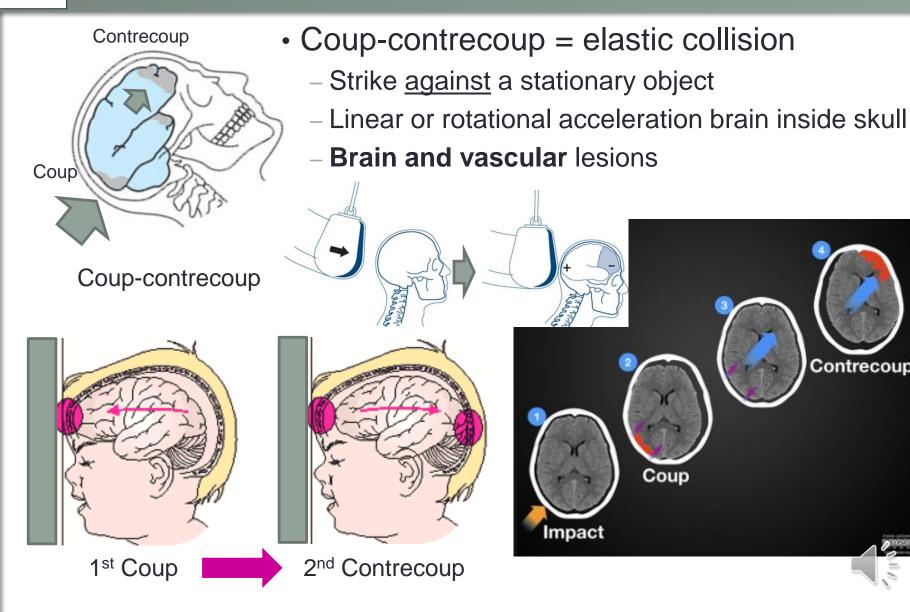





Collision (direct impact)

 Direct impact = inelastic collision

- Impact object against head
- Skull lesions (fracture)
- Direct lesion of subjacent brain
- Indirect lesion (contrecoup, haemorrhage)

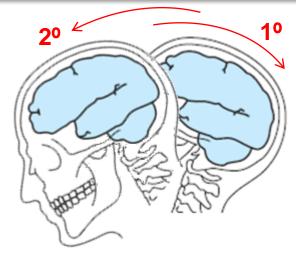




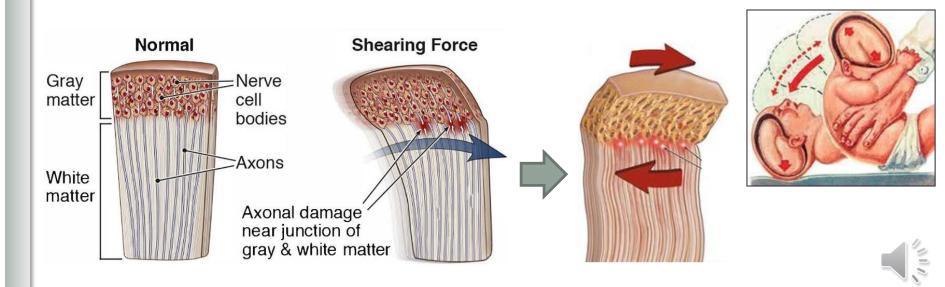



lwisa zulú

(knobkerrie)







Contrecou



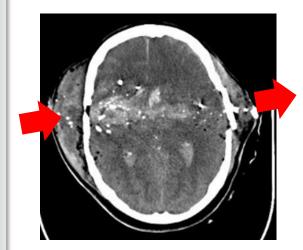
- Acceleration deceleration
  - Brisk flexion extension (punch, shaking infants)
  - Shear grey / white matter
  - Diffuse axonal injury
    - Both in brain and in brainstem
    - BAD PROGNOSIS

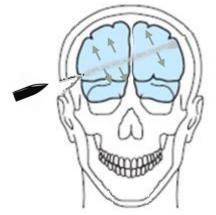


#### Acceleration – deceleration

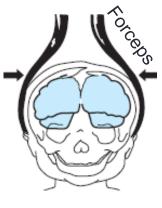








High speed (bullet)



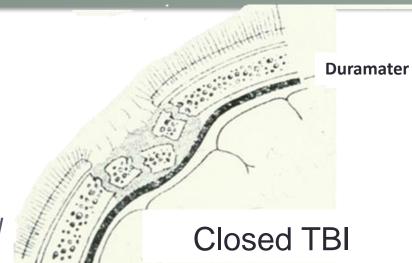

Low speed (knife, pen)

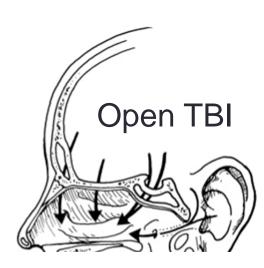


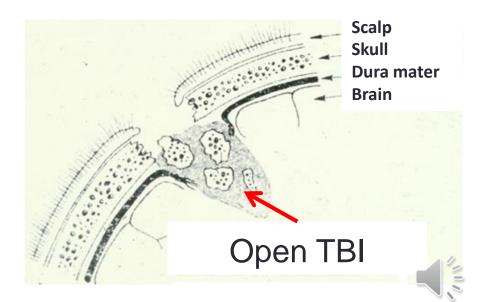




Perforating / penetrating (high / low speed)





Compression (forceps, entrapment)




# Types of TBI

- According to dura mater:
  - Closed TBI = Dura mater intact
  - Open TBI = Dura mater opened
    - Possible infection
    - Skull base → Direct communication with paranasal sinuses, mastoid, and middle ear









# Types of lesions

Primary injury





- Primary
  - Contusion and scalp wounds
  - Skull / facial fracture
  - Brain concussion
  - Brain contusion
  - Brain laceration
  - Diffuse axonal injury

- Secondary ⇒ ↑ ICP
  - Intracranial hematomas
  - Brain edema / herniation
  - Brain congestion (hyperaemia)
  - Extracerebral causes: cerebral ischemia / hypoxia

 Tertiary (complications and sequelae)

- Hydrocephalus
- Epilepsy
- CSF fistula
- Septic (meningitis, empyema, abscess)
- Post-traumatic encephalopathy

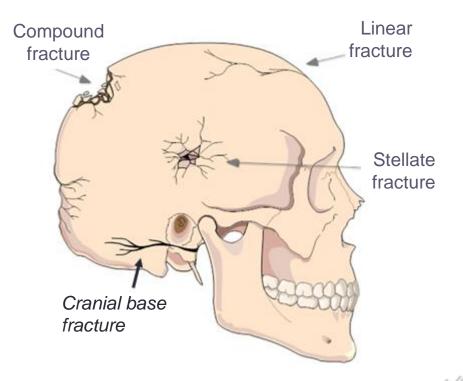




# SCALP LESIONS

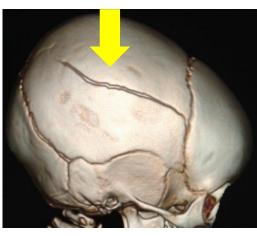
- Skin abrasion or scrapes (impact)
- Contusion: blood and edema in skin
- Subcutaneous hematoma
  - Children: difficult to differentiate from depressed fracture
- Subgalea hematoma
  - Under the galea, soft, fluctuating
  - DO NOT PUNCTURE
- Subperiosteal hematoma
  - Between periosteum and bone
  - Obstetric trauma (cephalohematoma)
  - DO NOT PUNCTURE

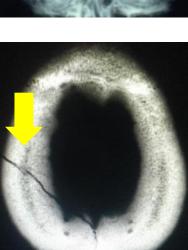
#### • Wounds


- Not always with TBI
- Types:
  - Perforating
  - Incised-blunt
  - Partial scalp detachment
    - Skin, Connective tissue,
       Aponeurosis, Loose connective tissue, Periosteum
- Heavy haemorrhage
- Compression
- Rx: fracture and foreign bodies ruled out
- Shaving, cleaning, and suturing

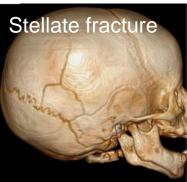


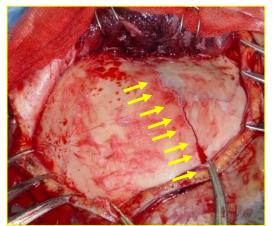


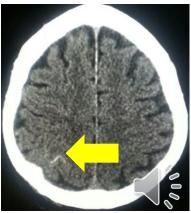

# SKULL FRACTURES


- High-energy impact
- Prognosis determined by brain lesion (NOT by bone)
- Localisation:
  - Vault
    - Linear and stellate
    - Depressed and with sinking of fragments
    - Compound
  - Skull base







- 1. Cranial vault fractures
  - Linear fracture (80% of fractures)
    - Differentiate from sutures and vessels
    - *Diastatic* = *fracture* of a suture
    - Stellate = higher impact
    - Underlying vessels lesion?
  - Depressed fracture
  - Compound fracture



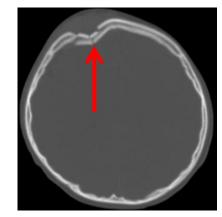


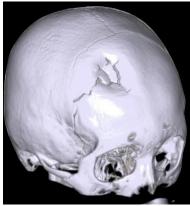






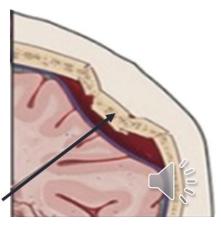


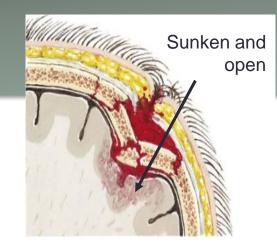

# 1. Cranial vault fractures

- -Linear fracture (80 %)
- -Depressed fracture
  - Outer table sunk below inner table
  - Possible contusion of subjacent brain → ↑
     Risk of post-traumatic epilepsy
  - Usually accompanied by laceration of scalp and dura mater
- -Compound fracture








Depressed Fracture closed





- 1. Cranial vault fractures
  - Linear fracture (80 %)
  - Depressed fracture
  - Compound fracture
    - With bone chips and splinters that exit through skin
    - Bone impacts in dura 
       ⇒ Lesion of dura (= OPEN fracture) 
       ⇒ Possible lesion of brain tissue
    - Related to severe brain damage



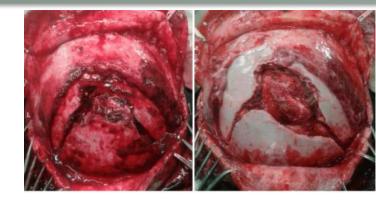






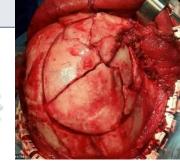


- 1. Cranial vault fractures
  - Clinical features: depend on BRAIN lesion
    - Examination may be normal, especially in linear fractures
  - Diagnosis:


|                    | Linear fracture                                                            | Depressed or compound fracture                  |
|--------------------|----------------------------------------------------------------------------|-------------------------------------------------|
| Examir<br>plain x- | nation with no findings: head<br>rays                                      | Urgent head CT                                  |
| plain x-           | al suspicion of brain lesion, or<br>ray shows fracture, request<br>head CT |                                                 |
| Consid             | er risk of haematoma                                                       | Consider risk of opened dura mater (meningitis) |

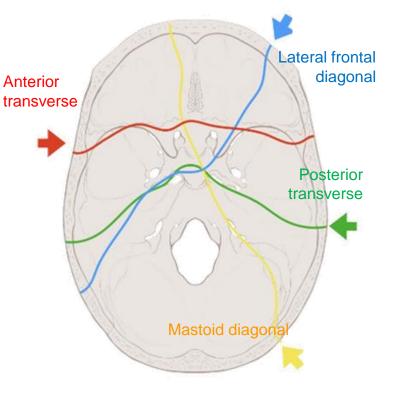
- Treatment






- 1. Cranial vault fractures
  - Clinical features
  - Diagnosis
  - Treatment:




| Linear fracture     | Depressed or compound fracture                                                                                                          |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| 24-hour observation | Hospital admission                                                                                                                      |
| No treatment needed | Surgical intervention: elevate<br>fragments, remove splinters, and<br>bruised brain area (avoid possible<br>epilepsy foci). Antibiotic. |
|                     |                                                                                                                                         |

#### Prognosis depends on brain injury





- 2. Skull base fractures
  - Very strong traumatism
  - Most frequent: frontoethmoidal and petrous bone (anterior and middle fossae)
  - Affect structures:
    - Paranasal sinuses or petrous bone ⇒ rupture of dura mater ⇒ leakage CSF or blood (rhinorrhoea, otorrhea), pneumocephalus
    - Cranial nerves
      - I-VI in anterior fossa
      - VII and VIII > V-VI in petrous bone Fracture (Granedigo syndrome)
      - IX-XII in posterior fossa
    - Large vessels (carotid), less common



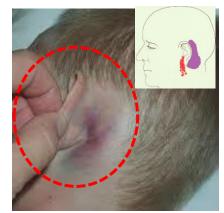
Transsphenoidal fracture





#### 2. Skull base fractures

Clinical features


Periorbital ecchymosis (racoon eyes)



#### Subconjunctival hemorrhage



#### Retromastoid ecchymosis **(Battle sign)**

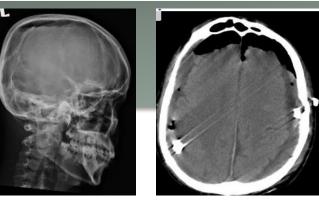






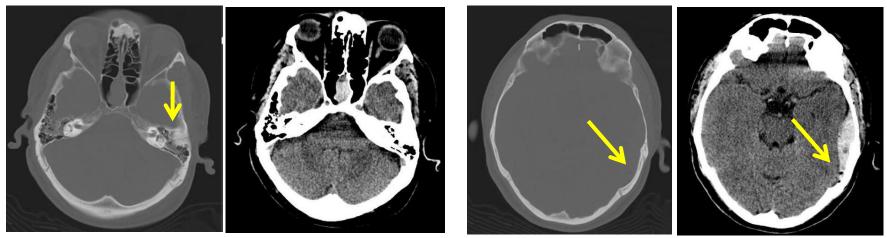
CSF leak (rinoliquorrhea)




Hemotympanum, otorrhagia



V-XII cranial

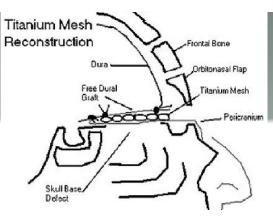


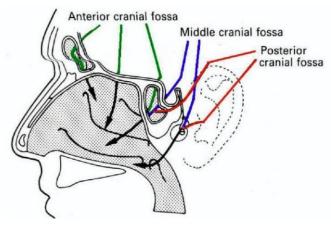

- 2. Skull base fractures
  - Clinical features
  - Diagnosis: CT

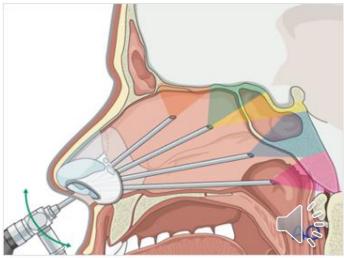


Pneumocephalus (X-ray and CT scan)

- Suspicion: periorbital or retromastoid hematoma
- May associate dural tear  $\rightarrow$  risk of meningitis (pneumococcus)
- Pneumocephalus = open traumatic brain injury
- Treatment

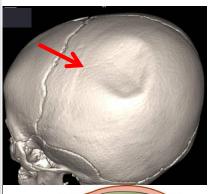


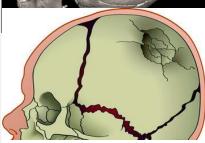


Left: Right petrous-temporal fracture (carotid channel → request angiography to rule out vascular lesion) Right: Same patient, left temporoparietal fracture with left epidural hematoma (air inside)




#### 2. Cranial base fractures

- Clinical features
- Diagnosis
- Treatment
  - 24-h observation, even if no focal signs or loss of consciousness
  - Most do not need treatment
  - If liquorrhea, do NOT plug (*î* risk meningitis)
  - If CSF leak:
    - Antibiotics
    - Conservative treatment: bed rest 7-10 days
       → repeated lumbar punctures or lumbar
       drain
    - Surgical treatment (after 3 weeks): dural repair (endoscopic or craniotomy)



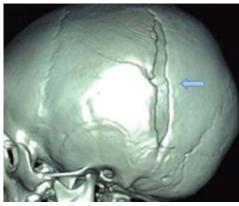



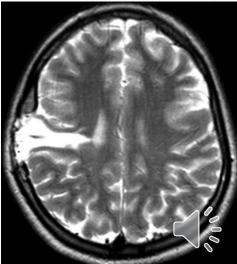










Ping pong fracture (pond fracture)

#### 3. Skull fractures in paediatrics

- Ping pong skull fracture
  - Depressed skull fracture with no skin or dura lesions
  - Surgical treatment
- Growing skull fracture
  - Enlarging fracture, post-traumatic leptomeningeal cyst
  - Fractures with dural tear
  - ⇒Arachnoid herniates through the fracture
  - ⇒ Pulsing CSF→ Progressive enlargement of the fracture
  - Surgical treatment









# PRIMARY BRAIN DAMAGE

- General or focal
- Cortex or brainstem
- According to loss of consciousness (OBSOLETE):
  - Commotion (< 6 hours, no pathological lesions)</p>
  - Concussion (> 6 hours, with microscopic lesions)
  - Laceration (with macroscopic lesions)

Consciousness ↔ brainstem damage (due to swaying or secondary ICHT)

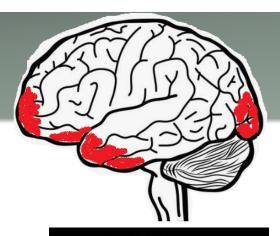
Not reported in international literature

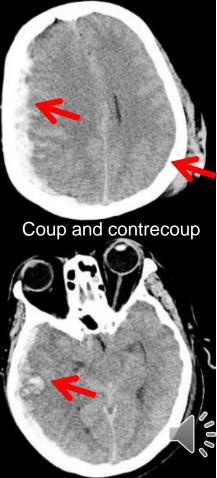
Amnesia ↔ diffuse cortical damage (depends on energy of traumatic agent and severity of TBI)



#### Brain concussion

- "Immediate and transitory loss of consciousness, of variable duration (<6 hours), secondary to non-penetrating traumatic brain injury" (violent shaking of the brain)
  - Patient immobile, shallow breathing, light pulse, no response to external stimuli, mydriasis, no swallowing / cough / pupillary reflex
  - Short period of amnesia, no focal deficits
  - Other symptoms: blurred vision, nausea/vomiting, headache, light-headedness, strange behaviour, lack of coordination and concentration...
- No image or pathology lesions
  - Biochemical disfunction with ↓ mitochondrial ATP ± alterations excitatory neurotransmitters
- Does not need specific treatment






### Brain contusion

- Produced by mechanical forces that move the brain → areas of coup and contrecoup
   Direct impact, acceleration-deceleration
- From petechiae to haemorrhagic destruction and extensive necrosis (CT, MRI)
  - Possible deep haemorrhage due to torsion and shearing of brain and vessels
  - Rupture blood brain barrier  $\rightarrow$  vasogenic edema,  $\uparrow$ ICP
- Clinical features: anodyne ⇒ focal lesion⇒ complex and severe picture
- May require treatment to avoid secondary lesions and/or <sup>1</sup>ICP

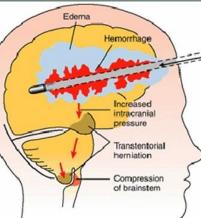




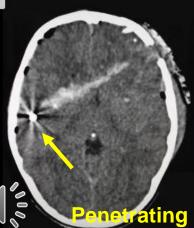


# Diffuse axonal injury

- Primary lesion due to sudden rotational acceleration-deceleration movement
  - Shear between grey and white matter  $\rightarrow$  diffuse injury in axons
  - Early and sustained deterioration of level of consciousness
- CT / MRI
  - Microhaemorrhages in corpus callosum, corticosubcortical junction, and brainstem
  - MRI: diagnosis of choice, even with normal CT
- Bad prognosis
  - First cause of post-traumatic vegetative state (occurs in 40-50 % of severe traumatic brain injury)







### **Brain laceration**

- Affects skull, dura, and brain
- Types:
  - Stab or sharp item (penetrating, slow speed) ⇒ focal lesion
    - ➤ Knife, nail, harpoon, scissors, pen
    - Squama temporalis, orbit, or anterior fossa floor
  - Firearm (penetrating or perforating, high velocity) ⇒
     expansive wave ⇒ Greater destruction of nervous tissue
    - >20 % survive initial impact, only half of these individuals survive the consequences











# INITIAL EVALUATION OF TBI

- History of the facts
  - Hit, run over, fall
  - Driver, accompanying person, passenger
  - Car, motorbike, bike, bus, individual 2-wheel vehicle
  - Fall, sports accident, aggression, self-aggression
- Recent personal history
  - Drug, food (latex-fruit), environmental allergies
  - Last intake of solids, liquids, medication, drugs
- Level of consciousness
  - How has it changed since the accident
  - Normal consciousness, bradypsychia, space-time disorientation, stupor, coma
- Consider polytrauma



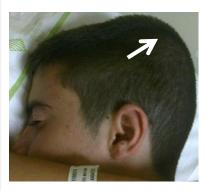


### Initial exam: "visual exam"








Vomiting

Signs of



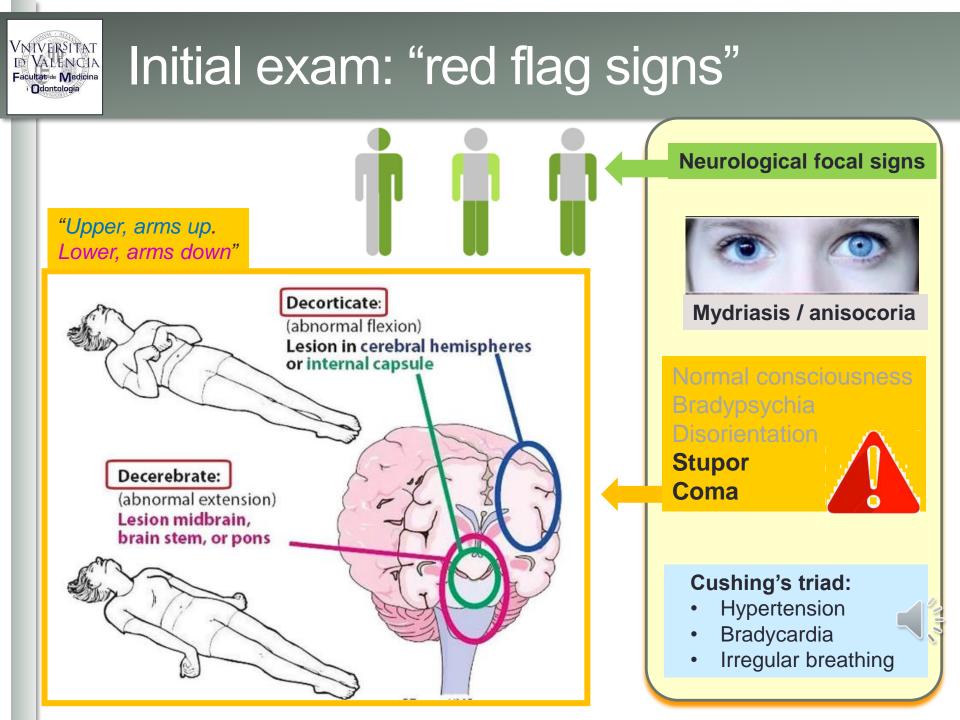
#### Confusion





skull fracture

**RED FLAG** SIGNS?


Normal consciousness **Bradypsychia Disorientation Stupor** Coma





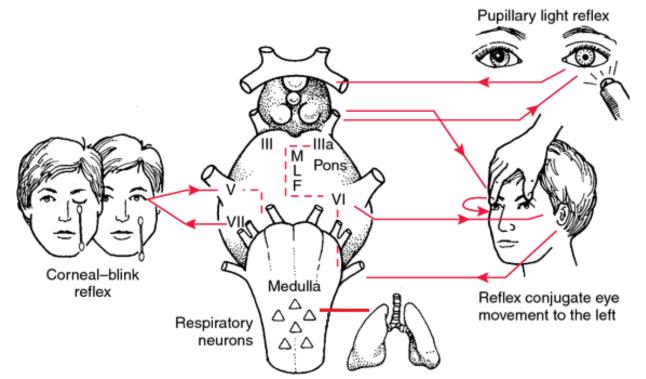






#### VNIVERSITAT D VALENCIA Facultar de Medicina Odontología

# Initial exam: "fast examination"


- Patient with stupor of coma:
  - -Response to pain
  - -Facial 🔺
  - Movement of limbs
  - –Pupils 🤞
  - –Neck stiffness <</p>
  - Plantar cutaneous reflex

- How to do it:
  - Press a fingernail
  - Open an eyelid before a light
  - Exam neck stiffness
     (except if there could be cervical fracture)
  - Plantar cutaneous reflex (cortico-spinal pathway, Babinski)

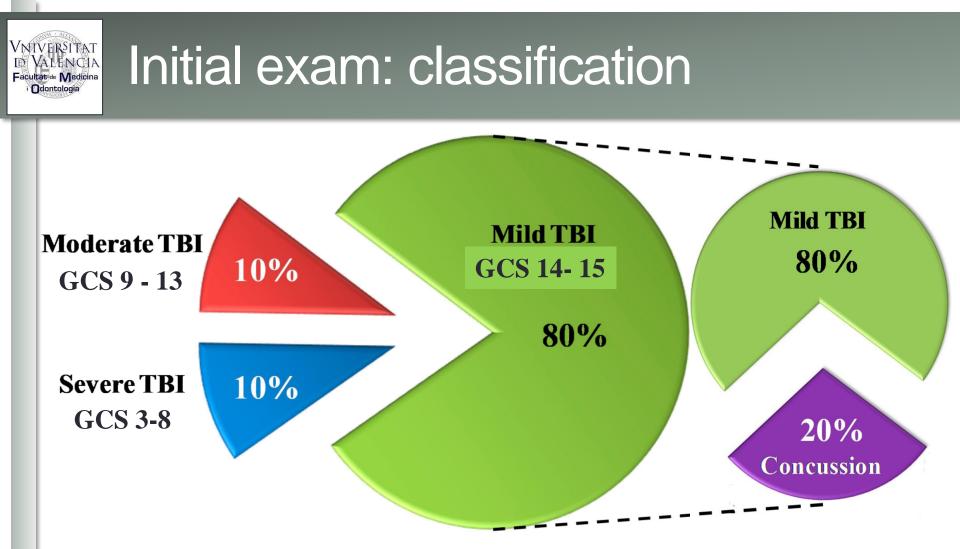


# Lesion site localization through neurological exam findings

- Pupillary dilatation = mesencephalon
- Corneal reflex = fifth cranial nerve = pons
- Oculocephalic reflexes = eighth cranial nerve = pons
- Respiratory abnormalities = medulla






#### Initial exam

#### GCS

- Glasgow coma scale
  - Traumatic brain injury or any brain damage
  - <u>Best</u> ocular, verbal, and motor response
  - Routine in emergencies and ICU ⇒ progression
  - 3 to 15 points
- GCS-P (2017)
  - Pupil reactivity score (subtract points)
    -2 = 2 pupils unreactive
    -1 = 1 pupil unreactive
    -0 = normal pupils
- Modified for children and intubated patients

15-14

|          | Spontaneous        | 4            |
|----------|--------------------|--------------|
|          | To sound           | 3            |
|          | To pressure        | 2            |
|          | None               | 1            |
|          | Oriented           | 5            |
|          | Confused           | 4            |
|          | Inapropriate       | 3            |
|          | Sounds             | 2            |
|          | None               | 1            |
|          | Obey commands      | 6            |
| Ť        | Localising         | 5            |
|          | Normal flexion     | 4            |
|          | Abnormal flexion   | 3            |
|          | Abnormal extension | 2            |
|          | None               |              |
| 4 = Mild | 13 – 9 = Moderate  | ≤ 8 = Severe |



- GCS-pupillary reaction
  - Subtract 1-2 points if there is 1-2 unreactive pupil  $\rightarrow$  MAY MODIFY STAGING
  - Patients with GCS 14: if 1 pupil is unreactive, patient is GCS-P 13 

     → MODERATE
     Traumatic brain injury (ADMISSION TO HOSPITAL)



#### TRAUMATIC BRAIN INJURY MANAGEMENT IN EMERGENCY ROOM

- Low-risk patients
  - Headache, dizziness, abrasion, or contusion of the scalp
  - Treatment: home observation by a responsible adult
  - Do not require image tests EXCEPT:
    - Coagulopathies, alcoholism, drug abuse, epilepsy, or elderly with some disability
- Moderate-risk patients
- High-risk patients

 Tabla V.
 Recomendaciones para observación domiciliaria después

 de un traumatismo craneoencefálico

- El niño debe ser vigilado por una persona responsable, al menos, durante las 24 horas siguientes, por si se detecta algún problema
- Debe acudir de nuevo al hospital para ser reevaluado, si observa alguna de las siguientes alteraciones:
- Dolor de cabeza intenso o progresivo
- Comportamiento anormal: confuso, irritabilidad inconsolable, somnoliento con dificultad para despertar
- Vómitos
- Movimientos anormales, dificultad para caminar, pérdida de fuerza en alguna extremidad
- · Alteraciones en la visión, pupilas de tamaño diferente
- Salida de líquido o sangre por la nariz o los oídos
- Puede dejarle dormir, pero debe despertarle cada 2 a 4 horas y comprobar brevemente sus reacciones
- Puede tratar el dolor de cabeza con paracetamol o ibuprofeno a las dosis habituales



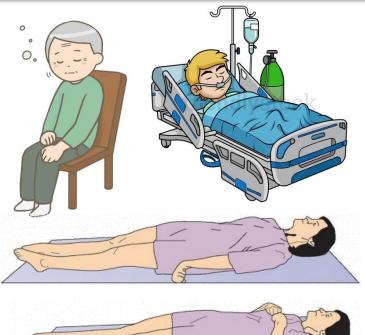


#### TRAUMATIC BRAIN INJURY MANAGEMENT IN EMERGENCY ROOM

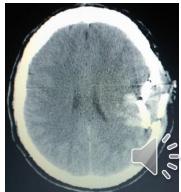
- Low-risk patients
- Moderate-risk patients
  - Post-traumatic amnesia, loss of consciousness
  - Significant subgaleal swelling
  - Vomiting, seizures, progressive headache
  - Infants < 2 years</p>
  - History of drug abuse
  - Head CT and admission to 24hour observation
- High-risk patients





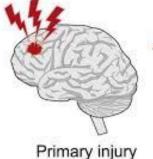





#### TRAUMATIC BRAIN INJURY MANAGEMENT IN EMERGENCY ROOM

- Low-risk patients
- Moderate-risk patients
- High-risk patients
  - Decreased or decreasing level of consciousness
  - GCS < 14
  - Neurological focal signs
  - Penetrating traumatic brain injury, skull depressed fracture
  - CT scan + admission (ICU?)
    Evaluation: neurosurgery










# Types of lesions



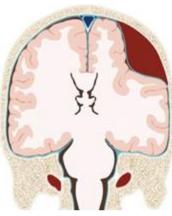
Seconds, minutes or days

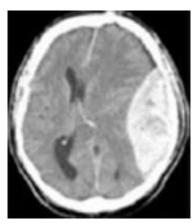
Time



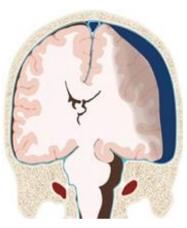
- Primary
  - Contusion and scalp wounds
  - Skull / facial fracture
  - Brain concussion
  - Brain contusion
  - Brain laceration
  - Diffuse axonal injury

- Secondary ⇒ ↑ ICP
  - Intracranial hematomas
  - Brain edema / herniation
  - Brain congestion (hyperaemia)
  - Extracerebral causes: cerebral ischemia / hypoxia


 Tertiary (complications and sequelae)

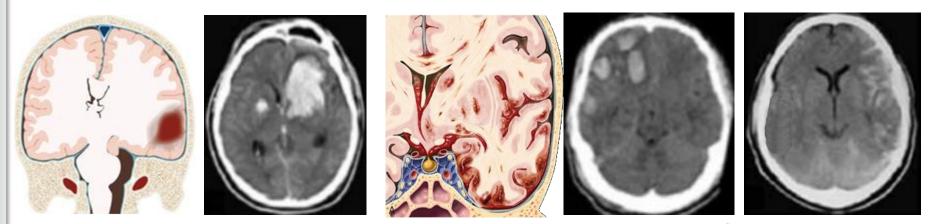

- Hydrocephalus
- Epilepsy
- CSF fistula
- Septic (meningitis, empyema, abscess)
- Post-traumatic encephalopathy






### INTRACRANIAL HEMORRHAGE






Epidural hematoma

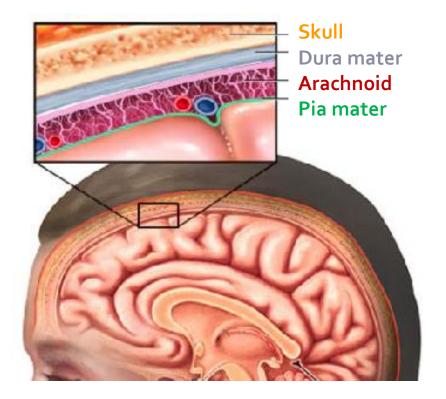




Subdural hematoma

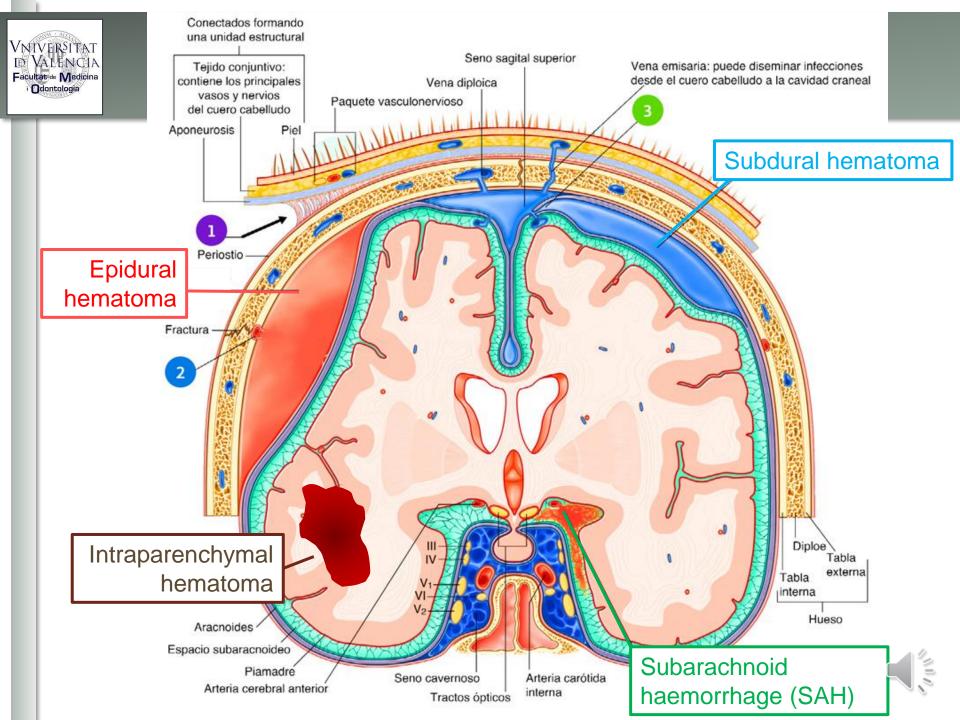


Intracerebral haemorrhage


Brain contusion






# INTRACRANIAL HEMORRHAGE

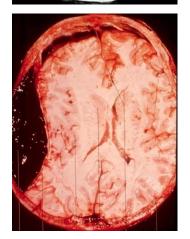
- Epidural hematoma (2% traumatic brain injury): young people, severe
- Subdural hematoma: very frequent, torpid evolution
  - Acute
  - Subacute
  - Chronic
- Intracerebral hematoma (intraparenchymal): direct contusion, coup, contrecoup
- Subarachnoid haemorrhage: mainly aneurysmal



#### Diagnosis of bleeding = CT





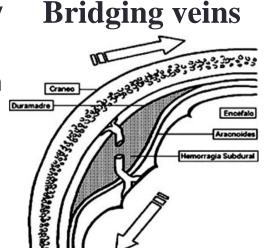



#### Epidural hematoma

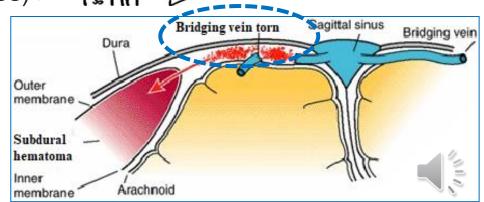
- Between dura mater and skull
   CT scan: shape of biconvex lens
- Incidence: 1-3 % TBI, young people
- Etiology:
  - 85 % arterial ⇒ rupture of middle meningeal artery in temporal squama
  - 15 % venous (tearing venous sinus)
  - Location: temporal, parietal > frontal > posterior fossa
- Clinical features: typical in 30 %
  - 1. Loss of consciousness
  - 2. Lucid interval
  - 3. Rapid neurological deterioration
- Treatment = emergency surgery (10-30 % mortality)

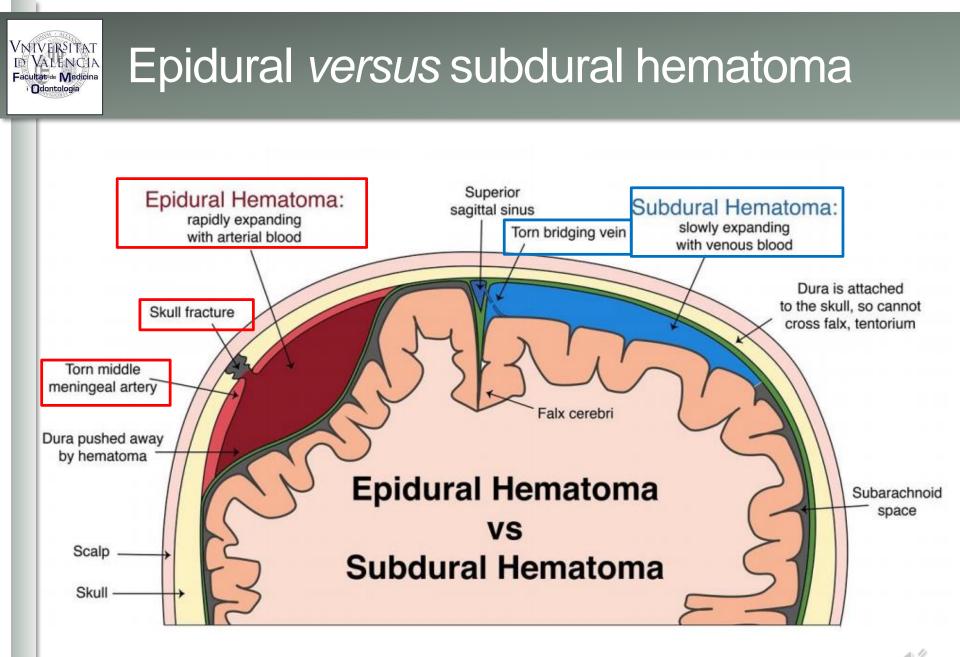










# Subdural hematoma


- In subdural space, between cortex and dura mater, usually frontotemporal
  - CT: crescent shape, expands directly on the cortex
  - MRI: different degrees of liquefaction depending on time of evolution
- Etiology:
  - Rupture of cortico-dural vessels (bridging veins >> cortical arteries) > cortical laceration
- Classification (time)
  - Acute 0 3 days
  - Subacute 3 days -3 weeks
  - Chronic > 3 weeks

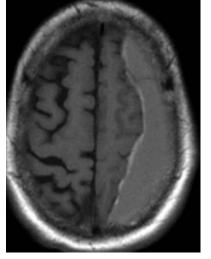













#### Subdural hematoma (SDH)

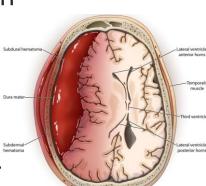




Subacute SDH

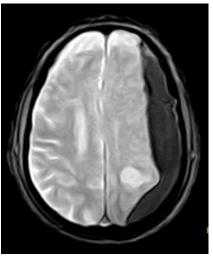


Chronic SDH (MRI)




Acute on chronic SDH

#### VNIVERSITAT D VALENCIA Facultar de Medicina • Odontologia

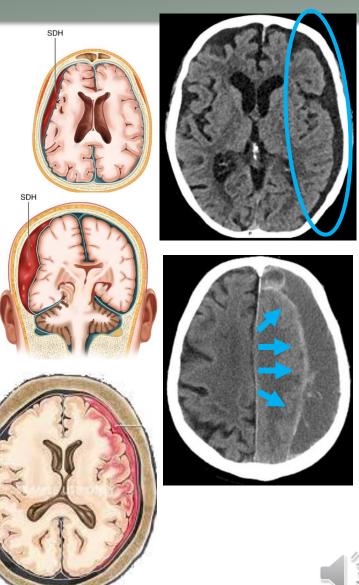

# Acute subdural hematoma

- Etiology
  - Requires stronger impact than epidural
    - Possible lesion of underlying brain parenchyma
      - ⇒ Worst prognosis
- Clinical presentation
  - Somnolence or coma minutes or hol<sup>™</sup>
     after traumatic brain injury
  - Possible neurological focal signs
    - Location, mass effect, transtentorial herniation
- Treatment: emergency surgery (craniotomy)
  - Mortality 50 90 % depending on severity





CT: SDH + brain herniation



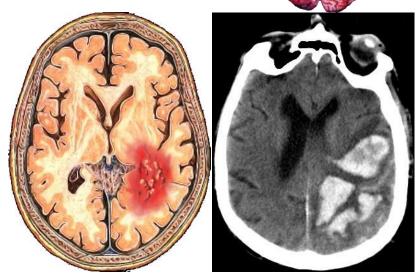




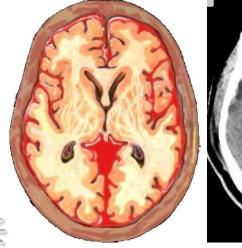

# Chronic subdural hematoma

- Etiology
  - Trivial trauma, unnoticed
  - Elderly, diabetic, children, alcoholic, anticoagulated patients...
- Clinical presentation
  - Symptom-free interval (weeks, months)
  - Headache, neurological deficits, cognitive disfunction
    - May simulate stroke, tumours, dementia...
- CT
  - <u>Hypodense</u> lesion, crescent shape, does not respect sutures
- Treatment: surgical (trephine and drainage)




# Other intracranial hemorrhage

- Contusion intraparenchymal hemorrhage
  - Major trauma ⇒ Contusive focus ± brain laceration
  - Focal neurological lesion and /or epilepsy
  - General lesion due to **1CP** (hemorrhage + vasogenic oedema Blood brain barrier rupture-)


May require treatment

#### Traumatic subarachnoid hemorrhage (SAH)

- Frequent
- Accompany other traumatic brain injury lesions
  - Little importance, although may hinder clinical course
- Does not require specific treatment



#### Intracerebral contusion-hemorrhage





Traumatic subarachnoid hemorrhage



#### SUMMARY KEY CONCEPTS TOPIC 3

- Traumatic brain injury
  - The most important: BRAIN LESION
  - Types according to dura mater: closed versus open

#### Lesions

– Primary (immediate) > secondary (minutes-hours) > tertiary (days)

#### Evaluation in ER

- Facts and circumstances + rapid exam
- Rule out other lesions
- Staging Glasgow coma scale and GCS-P

#### Intracranial hematomas

- Secondary lesion that requires early diagnosis (CT) and treatment
- Differential diagnosis epidural versus subdural hematoma





# Bibliography (1)

- https://www.aans.org/Patients/Neurosurgical-Conditions-and-Treatments
- https://www.mayoclinic.org/diseases-conditions
- https://radiopaedia.org/cases
- Izquierdo Rojo JM, Martin Láez R, Punto Rafael JI. Neurocirugía básica para residentes. Acceso pdf en la Biblioteca Nacional (www.bne.es > solicitar reproducción de fondos)
- Greenberg M.S. Handbook of Neurosurgery. Thieme. 7<sup>a</sup> ed. 2010..
- Greenberg M.S. Handbook of Neurosurgery. Thieme. 9<sup>a</sup> ed. 2018.
- Agarwal V. Fundamentals Neurosurgery. Thieme 1<sup>a</sup> ed. 2018.
- Bartomeus Jene, F. Nociones básicas de Neurocirugía. Pub. Permanyer. Lab Esteve. 2<sup>a</sup> ed. 2011.

#### vivava@uv.es



# Free specialised bibliography (2)

- Lesiones medulares y traumatismos craneoencefálicos en España. https://www.mscbs.gob.es/profesionales/saludPublica/prevPromocion/Lesiones/docs /cPerez.pdf
- glasgowcomascale.org
- Concussion is confusing us all. Sharp DJ, Jenkins PO. Pract Neurol. 2015 Jun;15(3):172-86
- Pathophysiology and clinical management of moderate and severe traumatic brain injury in the ICU.Sheriff FG, Hinson HE.Semin Neurol. 2015 Feb;35(1):42-9.
- The Incidence and Management of Moderate to Severe Head Injury. Maegele M, Lefering R, Sakowitz O, et al. Dtsch Arztebl Int. 2019 Mar 8;116(10):167-173
- Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research. Maas AIR, Menon DK, Adelson PD, et al. Lancet Neurol. 2017; 16(12):987-1048.
- Traumatic brain injury pharmacological treatment: Recommendations. Anghinah R, Amorim RLO, Paiva WS, Schmidt MT, Ianof JN.Arq Neuropsiquiatr. 2018 Feb;76(2):100-103.



