

Department of Surgery Neurosurgery Teaching Unit

TRAUMATIC BRAIN INJURY (II). ACUTE POST-TRAUMATIC ICHT. SECONDARY AND TERTIARY LESIONS

34484 Pathology of the nervous system

Neurosurgery

Topic 18

Prof. Vicente Vanaclocha Prof. Pedro Roldan Prof. Guillermo García-March <u>vivava@uv.es</u> <u>pedro.roldan@uv.es</u> <u>guillermo.garcia-march@uv.es</u>

Key points

- Traumatic brain injury (TBI)
- Cranial and brain lesions

- Evaluation and staging in emergency room
- Intracranial haemorrhage
 - Subdural haematoma (SDH) and epidural haemorrhage (EDH)
- Progressive injury: Hypoxia and hypotension in TBI
- Severe TBI
 - Edema, congestion, ischemia, and brain herniation
 - Treatment of severe TBI
- Complications and sequalae

Types of lesions

Seconds, minutes or days

Time

- Primary
 - Contusion and scalp wounds
 - Skull / facial fracture
 - Brain concussion
 - Brain contusion
 - Brain laceration
 - Diffuse axonal injury

- Secondary ⇒ ↑ ICP
 - Intracranial hematomas
 - Brain edema / herniation
 - Brain congestion (hyperaemia)
 - Extracerebral causes: cerebral ischemia / hypoxia

 Tertiary (complications and sequelae)

- Hydrocephalus
- Epilepsy
- CSF fistula
- Septic (meningitis, empyema, abscess)
- Post-traumatic encephalopathy

Types of lesions: progressive damage

- Free radicals
- Lipidic oxidation

Rupture of BBB

- Hypoxia
- Ischaemia
- Mitochondrial stress

Inflammation

- Cytokines
- Nitric oxide
- PG
- (+) Microglia
- (+) Astrocytes

Excitotoxicity

Cell

death

CDP3

CID

- Glutamate
- NMDA
- Ca++
- Synaptic disfunction

Hypoxic ischemic damage

Activation microglia (inflammatory response)

Release of free radicals

↑Excitotoxicity
(↑Glutamate)

Cell death

(CDP3 caspase-dependent factor 3, CID caspase-independent factor)

Hypoxic-ischaemic encephalopathy ⇒ ↑mortality

↓O2 availability	↓Arterial pressure	↑ICP
Hypoxemia	Hypotension	ICHT (ischemia)
Ventilation Gas exchange Anaemia (hemorrhage, hemodilution, coagulopathy)	Hypovolemia ↓Cardiac output (Shock)	Cerebral hematoma Edema Congestion Pneumocephalus Hydrocephalus

Secondary lesions

CEREBRAL EDEMA

- "Increase of water content in brain tissue in sufficient magnitude to produce clinical symptoms"
 - CAREFUL! Brain swelling = result of the volume expansion of <u>any</u> of the intracranial contents (including edema and congestion)
- Types of cerebral oedema
 - Cellular edema = cytotoxic
 - Extracellular edema = vasogenic > interstitial, osmotic
- Urgent CT in case of clinical suspicion
 - Disappearance of sulci and ventricles, possible midline deviation or hernia

Cerebral edema

Cellular	Extracellular		
Cytotoxic	Vasogenic	Interstitial	Osmotic
Cell membrane damage (astrocytes, neurones) ⇒ Intracellular edema	Endothelial damage	Transependymal CSF flow ⇔ Periventricular edema	Hypoosmolar vascular content ⇒ movement of liquid towards parenchyma
Brain ischemia	TBI, tumours, infections	Hydrocephalus	Toxic haemodilution, iatrogenic
Endothelial cell Astrocyte	BBB disruption	Astrocytes Transependymal edema	Astrocytes Interal Neuropean Osmosis

110

Cerebral edema

Cellular

Cytotoxic

Cell membrane damage (astrocytes, neurones) ⇒ Intracellular edema

Brain ischaemia

- Cytotoxic edema
 - Ischemia (energy failure)
 - \rightarrow Release histamine and serotonin
 - \rightarrow Cell membrane injury
 - Disruption Na⁺/K⁺ pump
 - *↑* intracellular Ca (balances Na⁺ with chloride Cl)
 - Release excitatory neurotransmitters
 - Glutamate contributes to mitochondrial damage and edema → cell death
 - Affects astrocytes > neurones and endothelial cells
 - Usually appears on third day post-TBI
 - Image: only in MRI DWI series (diffusion weighted imaging).

Cerebral edema

Extracellular

Vasogenic

Endothelial damage ⇒ BBB disruption

TBI, tumours, infections

- Vasogenic edema
 - Endothelial damage with BBB disruption (cerebral contusion, intraparenchymal haemorrhage tumours, abscesses)
 - "Leak" due to BBB malfunction \rightarrow H₂O in extracellular space
 - MRI: hyperintense signal in T2 and Flair series

Blood brain barrier

Disruption blood brain barrier

H₂O leak to interstice

Cerebral congestion

- Cerebral hyperemia = pathologic ↑ of blood in the cerebral intravascular compartment
 - Arterial vasodilation (cerebral autoregulation)
 - Venous congestion (venous drain obstruction)
- Intracerebral vascular response

- > pCO2, pO2, hydrostatic pressure, sympathetic innervation...
- Pathological = maintained arterial dilation
 - Global ischemia, prolonged hypercapnia, seizures, loss of autoregulation

Loss of cerebral autoregulation

vasodilation

Cerebral congestion: aetiology

Loss of cerebral autoregulation

- Dysfunction of the brainstem vasomotor centres (mesencephalic reticular substance) + nerve endings of the cerebral vessels
- Brain inflammatory biochemical changes \rightarrow alt regulatory response of vascular endothelium
- Metabolic factors:
 - Hypoxemia \rightarrow hypoxia (local $\downarrow pO_2$)
 - Hypoventilation / alt blood gas exchange \rightarrow local $\uparrow pCO_2$
 - Acidosis \downarrow pH (respiratory and metabolic)
- Venous congestion
 - Mechanical ventilation with PEEP (positive end expiratory pressure)
 - Compression of jugular veins (head position, endotracheal tube fixation) or superior vena cava

Normal cerebral autoregulation

When CPP *î* (~MAP), response is *î* CVR (VC) to maintain CBF within an adequate range.

The other way round, when CPP \checkmark , the response is a \checkmark CVR (VD) to keep CBF.

Circulation autoregulates to maintain flow... but only in the range of CPP 50-150 mmHg

> CPP = MAP - ICP

Lost cerebral autoregulation

A normal CPP does not result in an adequate CBF (ischaemia)

We need to reach a MAP ≥ [75 mmHg + PIC] to maintain CBF

REMEMBER?

➢ If ICP 20 mmHg, we need MAP ≥ 95 mmHg to maintain adequate CBF

Consider pCO₂, temperature...

Direct relation CPP/CBF (higher pressure, higher flow)

50

CBF

mL/min/100a

60 40 20

... But it only results in an adequate CBF when CPP > 75-80 mmHg

TBI, ischemia, tumours, inflammation, deep hypothermia...

CPP

mmHg

150

Lost cerebral autoregulation

Cerebral congestion: evolution

- After a TBI:
 - First hours, and up to days 1-3 = hypoperfusion phase (CBF ↓) ⇒
 Regional and global ischemia
 - Autoregulation fails \rightarrow CBF depends on MAP
 - Neuronal ischemia: cytotoxic oedema and \rarphi ICP
 - First weeks, and until days 7-10 = hyperemia phase (25-30 %) ⇒
 Possible vasogenic edema
 - Treatment to maintain CBF may produce hyperemia and \rat{T} ICP
 - Vasospastic phase (10-15%), days 4-14 ⇒ Regional and global ischemia
 - Patients with severe primary or secondary damage, or SAH
 - Hypoperfusion due to vasospasm, hypometabolism, and impaired autoregulation
 - Day 14 onwards = chronic state with normal CBF

1CP (haemorrhage, biochemical alt)

Brain herniation

Cerebral hypoxia

CEREBRAL HYPOXIA

- Hypoxemia ($\downarrow pO_2$ in blood)
 - Airways obstruction, thoracic trauma, bronchial aspiration, pneumonia
- Regional or global cerebral hypoperfusion
 - $-\uparrow$ CMRO₂ (cerebral metabolic rate of oxygen)
 - -↓CPP (= MAP ICP): hypotension (hypovolemia, shock), ↑ICP (haemorrhage, edema, brain congestion)
- Other factors that worsen the prognosis
 - Altered pCO₂
 - $\checkmark pCO2 \rightarrow VC \rightarrow cerebral$ ischemia
 - $\Uparrow pCO2 \rightarrow VD \rightarrow brain \ congestion \ and \ \Uparrow ICP$
 - Hyperthermia, hyperglycaemia

BRAIN HERNIATION

- "Displacement of portions of the brain through the openings left by the falx and tentorium"
- Progressive symptoms

 Rostral-to-caudal deterioration
- Types
 - 1. Transtentorial downwards or uncal
 - 2. Central
 - 3. Subfalcine
 - 4. Transcranial or external
 - 5. Transtentorial upward
 - 6. Tonsillar

Brain hernias

- Subfalcine hernia (most common)
 - Under the falx, it may be asymptomatic
 - May compress anterior cerebral artery
- Transtentorial herniation
- Central or diencephalic hernia
- Tonsillar herniation

Brain hernias

- Subfalcine hernia
- Transtentorial herniation
 - Central: Caudal displacement of diencephalon and midbrain through the tentorial notch
 - Uncal: Displacement of the medial part of temporal lobe towards the tentorial notch
 - Compression III cranial nerve (unilateral mydriasis), posterior cerebral art (contralateral homonymous hemianopsia), peduncles (contralateral hemiparesis, coma, and decerebration posture - ARAS -)
 - If brainstem is pushed against tentorium, then contralateral mydriasis or ipsilateral hemiparesis (Kernohan's or false localizing sign) occurs
- Central or diencephalic hernia
- Tonsillar hernia

Brain hernias

- Subfalcine hernia
- Transtentorial hernia
- Central or diencephalic hernia
 - Displacement of diencephalon and midbrain through the tentorial notch
 - Impaired CSF circulation (hydrocephalus) \rightarrow depressed LOC
- Tonsillar herniation
 - Displacement of cerebellar tonsils towards the foramen magnum, compressing the brainstem
 - Possible cardiorespiratory arrest

CT: Brain edema and tonsillar herniation

TBI management in E

- Low-risk patients
- Moderate-risk patients
- High-risk patients
 - Decreased or decreasing level of consciousness
 - GCS < 14
 - Neurological focal signs
 - Penetrating traumatic brain injury, depressed fractures
 - ▷ CT scan + admission (ICU?)
 - >Evaluation: neurosurgery

NITIAL MANAGEMENT OF SEVERE

- Primary fast exam + resuscitation if necessary
 - **A**irway = Free airway, early intubation
 - **B**reathing = Ventilation O_2 100%
 - Circulation = Adequate iv access, correct hypotension
 - Disability = neurological evaluation (awake speaks responds to pain – no response), GCS, pupillary reaction.
- Secondary exam (head to toes)
 - Causes of hypoxia, haemorrhage, spine lesion, other injuries
- Specific cerebral resuscitation ICU GOALS
 - Maintain pCO₂, pO₂ (250-300 mmHg), volemia, glycemia, MAP, temperature all within normal limits
- Image: CT
- ICU management

INITIAL MANAGEMENT OF SEVERE TBI

- Primary fast exam + resuscitation if necessary
- Secondary exam (head to toe)
- Specific cerebral resuscitation
- Image: CT
 - Rule out or confirm surgical lesions
 - Evaluation of secondary lesions (haemorrhage, edema, congestion, brain herniation) and plan a treatment
- ICU management goals:
 - Maintain CPP and ICP within normal limits
 - Maintain homeostasis
 - Avoid biochemical / metabolic damage
 - Avoid systemic damage

ICU management of severe TBI

Targets evolve over time, as does damage.
 Avoid secondary biochemical – metabolic damage
 Maintain CPP and reduce ICP

VNIVERSITAT DVALENCIA Facultate & Medicina Odontologia

ICU management of severe TBI

- Head section raised by 20-30° to improve drainage
- Ensure a MAP high enough to achieve CPP > 60 mmHg to guarantee adequate CBF (45-50 mL / 100g / min)
 - Vasoactive drugs (Norepinephrine)
 - Avoid cerebral vasospasm (Nimodipine)
- Reduce ICP to normal limits
 - ICP monitoring \rightarrow evaluate response to treatment
 - Ventricular CSF drain
 - Treatment of brain edema
 - Hypertonic saline 3% or Mannitol 20%
 - Decompressive craniectomy?
- Consider subclinical status epilepticus (→ edema)
- Anticonvulsants and antibiotic prophylaxis?

VNIVERSITAT D VALENCIA Facultation Medicina Odontologia

ICU management of severe TBI

- Enteral protection
 - Early nutrition to duodenum
 - ✓ mortality, morbidity and infectious complications
- Maintain haematocrit 33-38 %
 - Haemodilution, haemorrhage, chronic disease, coagulopathy...
- Avoid systemic damage
 - >Anti-inflammatory drugs?
 - NSAIDs?
 - In study
 - Glucocorticoids? NO!!
 - ✓ EXCEPTION: VASOGENIC EDEMA

ANS - Autonomous nervous system HPA - Hypothalamus-pituitary-adrenal

ICU management of severe TBI

- Avoid early complications
 - Medical complications = main cause of secondary brain damage => PROGNOSIS
 - Most common medical complications: 1 glucose, fever, SIRS (systemic inflammatory response syndrome)
 - Most common neurological complications: ICHT, brain herniation and \uparrow haematoma
 - Complications related to bad prognosis:
 - ✓ MAP that requires vasopressors (hemodynamic instability)
 - Cerebral edema and brain herniation
 - Pneumonia (fifth most frequent complication). Early tracheostomy (< eighth day) is associated to lower morbidity, although does not modify hospital mortality
 - Hypoxia and hyperoxia (↑ cerebral glutamate)

Normoglycemia **Euvolemia** MAP [↑] (CPP ok) **Avoid infection Normothermia** pO₂ 250-300 mmHg Normocarbia (pCO₂ 30-35 mmHg)

Neurosurgical management of severe TBI

- Surgery of haematomas and contusive foci
- ICP monitor
 - Ventricular or intraparenchymal
- Decompressive craniectomy?
 - Lower mortality, higher mild and severe disability
 - Only in areas with limited access to advanced medical treatment, in the first 5 hrs after TBI, and young patients with GCS >5

CT images of the evolution of the brain after decompressive craniectomy

Tertiary (complications and sequelas) Sometimes detected by

General

- Hydrocephalus
- Epilepsy
- CSF fistula

- Septic (meningitis, empyema, and abscess)
- Post-traumatic encephalopathy

Practitioner Post-traumatic hydrocephalus

- Variable incidence: 4 % TBI (1-80%, according to definition criteria)
- Usually *communicans* (arachnoiditis)
- Patients with intraventricular or subarachnoid haemorrhage, cranial base fractures, long stay in ICU
- Hakim-Adams triad = cognitive impairment (slow) thinking), gait impairment (apraxia), urinary incontinence (urgency)
- Surgical treatment (VP shunt)

Post-traumatic epilepsy

- TBI = common cause of epilepsy in adolescents and adults
- Type of crisis: focal with or without secondary generalization
- Usually severe TBI (cortical lesion), incidence 4 %
 - Maintain anticonvulsant therapy for 3 months
 - Afterwards, if no crisis, withdraw meds
- Timing presentation of epileptic seizures
 - First 24-48 h = not related to a later epilepsy
 - Days 3-14 = related to development of epilepsy
 - Development of "post-traumatic epilepsy": 75 % within the first year
 - May appear 10 years after TBI
- Treatment:
 - Anticonvulsants
 - Surgery? If focus is clearly identified, and crisis is not controlled

- CSF leak
 - TBI with skull base fracture
 - Presentation: otorrhea and/or rhinorrhoea that \uparrow with Valsalva
 - Diagnosis
 - Is it CSF? Glucose > 30 mg/dL and presence of beta-2transferrin
 - Origin?
 - Intrathecal fluoresceine and isotopic cisternography
 - MRI: sequences CISS 3D (T2W high resolution) with MIP reconstruction ^(*)
 - Treatment
 - Bed rest + antibiotics
 - Surgery: dural tear repair
 - Complications:
 - Bacterial meningitis (pneumococcus), may be recurrent
 - Intracranial hypotension

(*) T2-weighted, MIP maximal intensity projection

Carotid-cavernous fistula (CCF)

- TBI with skull base fracture or penetrating
 - Partial rupture of carotid artery inside cavernous sinus
- Presentation
 - Diplopia, unilateral loss of vision, "hears a murmur"
 - Pulsatile exophthalmos, conjunctival chemosis
 - Possible lesion III, IV, <u>VI</u> > V (1^a-2^a branches) cranial nerves
 - \uparrow IOP + fundoscopy venous stasis, haemorrhage and papilledema
- Diagnosis
 - Cerebral angiography = gold standard
 - May be therapeutic: irritation in veins and carotid compression may close the fistula
- Treatment
 - Endovascular: trans-arterial embolization

- Infections
 - Most common causes
 - TBI: open, scalp injury, \checkmark immunity
 - ICU: instrumentalization, intubation
 - Localization
 - Intracranial:
 - Meningitis, subdural empyema, cerebral abscess
 - Labyrinthitis, mastoiditis
 - Venous sinus thrombosis
 - Extracranial
 - PNEUMONIA ⇒ BAD PROGNOSIS
 - Sepsis
 - Treatment: AVOID INFECTION + antibiotics
 - Profuse cleaning of the scalp wound
 - Maximal asepsis when handling the patient
 - Dural tear repair

Post-traumatic encephalopathy

- Long term deterioration (PCS, post-concussion syndrome)
 - Affects personal, family, work, social environment
- Subtle and sometimes the cause of disability
- EARLY NEUROPSYCHOLOGICAL REHABILITATION

Cognitive deficits Bradypsychia, memory loss

Emotional deficits Personality disorders

Motor deficits

Cerebellar dysfunction, parkinsonism, corticospinal pathway lesion

Sequelae

REMEMBER?

COGNITIVE DEFICITS Short term memory deficit, concentration problems, slow thinking, limited attention, deterioration of different cognitive abilities

PHYSICAL DEFICITS Speech, visual, hearing, deficits. Low motor coordination, spasticity, paralysis, epilepsy, loss of balance, and fatigue

EMOTIONAL DEFICITS

TBI

Mood swings, egocentrism. Anxiety, depression, low self-esteem, sexual dysfunction, nervousness, loss of motivation, uncontrolled emotions

Severity of damage Extension of white matter damage Localization of lesion

OELATED TO TBI

Psycho-social status in the moment of injury

Rehabilitation

PRE- TB,

Education level Economic status Genetic susceptibility

Socioeconomic status Family environment Mental health

Age

Access to resources Social environment Co-morbid deficits

田

POST-1B

Sequelae: irritability

Chronic traumatic encephalopathy

- Chronic traumatic encephalopathy, CTE
 - 1928 "punch drunk" in boxers → 1954 pathology dementia pugilistica → 1957 CTE → 2005 American football(*)
 - <u>Repeated</u> TBI (concussion): boxing, American football, ice hockey... ⇒ Neurodegenerative disease
- Behaviour and mood disorders, including dementia in relatively young people
- NEURONAL lesion
 - NFT (neurofibrillary tangles) and neurites, with or without p-tau immunoreactive astrocytes
 - Loss of neurones, with cortical atrophy (frontal, temporal, temporo-medial), white matter changes, amyloid plaques
- No treatment

(*) "Concussion" (Life of Dr Bennet Omalu), Will Smith 2015

SUMMARY KEY CONCEPTS TOPIC 4 (1/2)

- Secondary lesion: metabolic / biochemical damage
 - Microglia activation and inflammation, free radical release, excitotoxicity, cell death
 - Hypoxic-ischemic encephalopathy: $\downarrow pO_2 / \downarrow MAP / \uparrow ICP$
- Cerebral edema
 - Cellular cytotoxic membrane failure \uparrow glutamate
 - Extracellular vasogenic disruption BBB water leak to interstice

Cerebral congestion

- Loss of autoregulation (paralytic VD) and/or venous congestion
- Hyperemic phase: days 4-10 TBI (vasogenic edema)

Cerebral hypoxia

- $-\downarrow pO_2$ and/or $\downarrow CPP$ (due to $\downarrow MAP$ and/or $\uparrow ICP$)
- Membrane failure

Brain herniation

- Transtentorial hernia and possible Kernohan's sign

SUMMARY KEY CONCEPTS TOPIC 4 (1/2)

- Management of severe TBI
 - Maintain CPP and ICP
 - Keep MAP high enough (monitor invasive PA)
 - Monitor ICP if suspicion of ICHT
 - Maintain homeostasis: pO₂ 250-300 mmHg, normocarbia, normovolemia, normoglycemia, normothermia
 - CT: diagnosis of complications
 - Avoid biochemical metabolic systemic damage
- Complications related to bad prognosis
 - $-\downarrow$ MAP, edema/brain herniation, pneumonia, hypoxia/hyperoxia
- Sequelae (sometimes detected by GP)
 - Suspect hydrocephalus, CSF fistula, carotid-cavernous fistula

Bibliography (1)

- https://www.aans.org/Patients/Neurosurgical-Conditions-and-Treatments
- https://www.mayoclinic.org/diseases-conditions
- https://radiopaedia.org/cases
- Izquierdo Rojo JM, Martin Láez R, Punto Rafael JI. Neurocirugía básica para residentes. Acceso pdf en la Biblioteca Nacional (www.bne.es > solicitar reproducción de fondos)
- Greenberg M.S. Handbook of Neurosurgery. Thieme. 7^a ed. 2010.
- Greenberg M.S. Handbook of Neurosurgery. Thieme. 9^a ed. 2018.
- Agarwal V. Fundamentals Neurosurgery. Thieme 1^a ed. 2018
- Bartomeus Jené, F. Nociones básicas de Neurocirugía. Pub. Permanyer. Lab Esteve. 2^a ed. 2011.

vivava@uv.es

Free specialized bibliography (2)

- Frequency and impact of intensive care unit complications on moderate-severe traumatic brain injury: early results of the Outcome Prognostication in Traumatic Brain Injury (OPTIMISM) Study. Muehlschlegel S, Carandang R, Ouillette C et al.. Neurocrit Care. 2013 Jun;18(3):318–31
- Neurotrauma: The Crosstalk between Neurotrophins and Inflammation in the Acutely Injured Brain. Da Silva Meirelles L, Simon D and Regner A. Int J Mol Sci 2017 May;18(5):1082
- Brain oedema in focal ischaemia: molecular pathophysioloy and theoretical implications. Simard JM, Kent TA, Chen M et al. Lancet Neurol. 2007 Mar; 6(3): 258–268.
- Response of the cerebral vasculature following traumatic brain injury. Salehi A, Zhang JH, Obenaus A. J Cereb Blood Flow Metab. 2017 Jul; 37(7): 2320–2339.
- Emergency Neurological Life Support: Intracranial Hypertension and Herniation. Stevens RD, Shoykhet M and Cadena R. Neurocrit Care 2015 Dec;23/Suppl 2):S76-S82.
- Emerging Therapies in Traumatic Brain Injury. Kochanek PM, Jackson TC, Ferguson NM et al. Semin Neurol. 2015 Feb; 35(1): 83–100.
- Encefalopatía crónica postraumática: aquella gran desconocida. Martínez-Pérez R, Paredes I, Munárriz PM et al. Neurología 2017:32(3):185-191

vivava@uv.es

