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Abstract 

The increasing interest in understanding the role of lipids in cell 

function and disease has promoted great advances in the field of 

lipidomics during the last decade. Yet lipid identification stands out as 

the main bottleneck in the lipidomic analysis workflow. Additionally, 

the biological interpretation of the specific functions of different lipid 

species remain unknown. The main objective of this thesis was to 

develop analytical methods and computational tools that facilitate the 

analysis of the human lipidome and assist the analyst to unravel the 

complex metabolic network behind fatty acid metabolism. To this end, 

two different tools have been developed and evaluated in different 

relevant biological scenarios. LipidMS, a tool for data management and 

lipid annotation in LC-MS-based lipidomic analysis, and FAMetA a tool 

aimed to determine the complex fatty acid metabolic network using 13C-

istope tracers and MS-based analysis. 
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1. Metabolomics 

Bioinformatics and state-of-the-art analytical technologies have 

promoted the development of the so-called omics sciences, which are 

aimed to study the whole set of biomolecules and biopolymers in a 

particular biological sample such as genes (genomics) and their 

epigenetic modifications (epigenomics), mRNA (transcriptomics), 

proteins (proteomics) and metabolites (metabolomics). Particularly, 

metabolomics, understood as the unbiased determination of all the 

small molecules (<1.5kDa) present in a biological system1, has 

experienced a continuous growth over the last two decades. Metabolites 

are the end products of the “omics cascade” and their levels constitute  

a direct reflection not only of the metabolism of the system under 

study but also of all levels of regulation upstream to the metabolism2 

(Figure 1).  

Figure 1. The “omics cascade”. Metabolites are the downstream end products of the 
“omics cascade” and, as such, are the closest reflection of the phenotype of the system 
under study. Adapted from ref.2. 
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Therefore, the metabolome integrates intrinsic (i.e., genome) and 

extrinsic (i.e., diet, exposure to drugs/xenobiotics…) information at 

a specific and unique physiological state, providing a closer readout 

of the phenotype than other omics3–5. Comparison of different 

metabolomic profiles (e.g., control versus disease, external stimuli, 

drug intake…) may provide both the discovery of biomarkers and 

new knowledge of the biochemical mechanisms underlying the 

pathophysiology of human diseases1,6,7. Improvements in analytical 

techniques and the development of new bioinformatic tools have 

allowed the fast evolution and impact of this discipline8. 

 

1.1. Analytical techniques used in metabolomics 

Currently, nuclear magnetic resonance (NMR) and mass 

spectrometry (MS) are the most widely used analytical platforms in 

metabolomics. NMR is a highly reproducible spectroscopic technique, 

but its metabolome coverage is limited to detect most abundant and 

highly concentrated metabolites (≥1µM), depending on the spectral 

resolution and biospecimen9,10. Conversely, MS has the potential to 

measure metabolites at very low concentrations (fM to aM) within a 

wide dynamic range. Additionally, MS can be easily coupled to a 

variety of separation techniques, which contribute to expand the 

number of detected metabolites. Furthermore, the combination of 

spectral resolution, mass accuracy and mass fragmentation have 

considerably improved MS-based metabolite identification 

capabilities. These technical breakthroughs have promoted MS as the 

foremost analytical technique used in metabolomics8 (Figure 2). 
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MS-based metabolomics analysis is typically performed by two 

different but complementary approaches, known as targeted and 

untargeted metabolomics. The former focuses on the quantification of a 

pre-determined set of known metabolites, while the latter aims to 

determine the widest range of metabolites possible. An alternative 

approach is to combine them into what is called pseudotargeted analyses, 

in which a pooled sample is first characterized using an untargeted 

method and then the identified metabolites are quantified in individual 

samples using a targeted method11. Targeted approaches are usually 

performed using low-resolution mass spectrometers as triple 

quadrupole, triple quadrupole ion trap or quadrupole linear ion trap, 

which offer high sensitivity and usually work in multiple reaction 

monitoring in which each metabolite of interest is quantified by 

monitoring one or more characteristic precursor to product transitions12. 

Conversely, untargeted approaches requires high-resolution mass 

spectrometers (HRMS) such as quadrupole time of flight (Q-ToF), (Q)-

Orbitrap, or Fourier transform ion cyclotrone resonance. In HRMS, 

Figure 2. Systematic literature analysing the use of MS and NMR platforms in 
metabolomics. Bar plot showing the number of published articles per year using NMR 
(grey) and MS (LC-MS in green, GC-MS in blue, CE-MS in dark green and DI-MS in orange) 
for metabolomic analysis during the last decade based on the Web of Science. Up to 
August 20208. 
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metabolite identification is usually performed by combining accurate 

mass (<1-10ppm) with mass fragmentation data13.  

Due to sample complexity, MS is usually hyphenated to different 

separation techniques such as liquid chromatography (LC), gas 

chromatography (GC) or capillary electrophoresis. This previous sample 

separation may reduce matrix interference, where compounds affect each 

other’s ionization efficiency leading mainly to ion suppression effects. In 

addition, these separation techniques improve the identification of 

isobaric metabolites (particularly those with very similar or 

indistinguishable fragmentation patterns) or metabolites with identical 

fragment ions generated in source (e.g., ATP fragmenting ADP, or 

glutathione fragmenting glutamate). Between them, LC-MS has enjoyed a 

growing popularity as the platform for metabolomic studies due to its high 

throughput, soft ionization (e.g., through electrospray ionization (ESI))), 

and good coverage of the metabolome (Figure 2). 

 

1.2. Untargeted LC-MS metabolomics 

As mentioned above, untargeted metabolomics is focused on 

global detection and relative quantification of the maximum number of 

metabolites possible. This approach does not require any previous 

knowledge and can provide a comprehensive view of the samples under 

study, what may allow the generation of new hypothesis that will need 

to be further validated using targeted approaches13. Untargeted 

approaches can be classified into three different categories based on 

the aim of the study: i) biomarkers discovery, where the objective is to 

find metabolites for diagnosis, prognosis or treatment response related 

to a disease progression; ii) pathogenesis studies, which aim to unravel 

the mechanisms under a disease; and iii) association studies, which are 
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focused on the search of correlations between the metabolome and 

physiological or clinical factors14.  

A general workflow for untargeted LC-MS metabolomics analysis 

is shown in Figure 3, which includes experimental design, sample 

Figure 3. General workflow in untargeted LC-MS metabolomics. It comprises 5 main steps: 
i) experimental design, which consists of selecting the required number and type of samples 
to answer the biological question; ii) sample preparation, which implies extracting the 
metabolites of interest from the samples; iii) LC-MS analysis, which consists of separating 
and detecting those metabolites; iv) data processing, which is transforming the three 
dimensional raw data into features that can be compared between samples; and v) data 
analysis, which consists of extracting the biological variation, identifying the metabolites of 
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metabolite identification is usually performed by combining accurate 

mass (<1-10ppm) with mass fragmentation data13.  

Due to sample complexity, MS is usually hyphenated to different 

separation techniques such as liquid chromatography (LC), gas 

chromatography (GC) or capillary electrophoresis. This previous sample 
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focused on the search of correlations between the metabolome and 

physiological or clinical factors14.  

A general workflow for untargeted LC-MS metabolomics analysis 

is shown in Figure 3, which includes experimental design, sample 

Figure 3. General workflow in untargeted LC-MS metabolomics. It comprises 5 main steps: 
i) experimental design, which consists of selecting the required number and type of samples 
to answer the biological question; ii) sample preparation, which implies extracting the 
metabolites of interest from the samples; iii) LC-MS analysis, which consists of separating 
and detecting those metabolites; iv) data processing, which is transforming the three 
dimensional raw data into features that can be compared between samples; and v) data 
analysis, which consists of extracting the biological variation, identifying the metabolites of 
interest and interpreting the results. 
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preparation, LC-MS analysis, data processing and data analysis. Since 

there is no predefined set of metabolites of interest, each step of this 

workflow should aim to detect as many compounds as possible without 

introducing any kind of bias. The following sections will briefly present 

the main aspects to be considered in each step of this workflow, paying 

special attention into data processing, since the main objective of this 

thesis is related to this step.  

 

1.2.1. Experimental design 

The very first step in any biological experiment is the study 

design, which must be focused in the biological question to be 

answered. In this regard, the selected samples (e.g., in vivo vs in vitro, 

biological matrix, cell cultures…) need to be representative of the 

population under study. For example, although non- or minimally-

invasive samples as urine and serum are easily obtained and are highly 

recommended, the information provided by them would not be 

necessarily informative of the specific condition under study (e.g., 

metabolic reprogramming in tumors), and in this situation maybe a 

biopsy of the tissue could be more suitable.  

On the other hand, the number of samples must ensure a good 

representation of the target population, sufficient homogeneity (e.g., 

physiological and/or demographic factors) and provide enough 

statistical power based on the aim of the study14. For example, when 

further cross-validation procedures are going to be applied in order to 

assess the predictive power of a biomarker, a training and validation 

datasets will be needed and they must be representative of the 

population and large enough to construct a robust model. 
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Additionally, the use of quality control (QC) pooled samples also 

need to be considered in order to ensure good quality and 

reproducibility of the results. QC samples, prepared from a small 

aliquot of all the samples included in a study, allow the evaluation and 

correction of the technical variation occurred along all the steps of the 

metabolomic analysis. In addition, QC samples can also be used for 

signal correction and data normalization during the data processing 

step14–16. 

 

1.2.2. Sample preparation  

Sample preparation is a critical step within the metabolomics 

workflow, which affects both the eventual metabolome coverage and 

the quality of the obtained data17. It must guarantee the stability of the 

metabolome, avoiding metabolite losses and the occurrence of 

artefacts. In addition, to obtain the closest snapshot of the whole 

metabolome underlying a specific biological condition, the sample 

preparation approach should enable the extraction of the largest 

number of metabolites possible, without introducing any kind of bias 

toward certain chemical families or physical localizations. Briefly, an 

ideal sample preparation method for untargeted metabolomics should 

be: i) unselective; ii) simple and rapid with a minimum number of steps; 

and iii) reproducible18. Unfortunately, there is not a common method for 

all the biospecimens, thus, sample preparation should be carefully 

adapted to the nature (e.g., liquid, solid, soft, hard…) and the chemical 

properties (e.g., protein content, salts, expected metabolome 

composition...) of the available biological sample19. 
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1.2.3.  LC-MS analysis 

In LC-MS, metabolites are first separated by liquid 

chromatography based on their affinity to the chromatographic column 

and the mobile phases employed. Then, metabolites are ionized and 

detected by the mass spectrometer, what results in three-dimensional 

raw data characterized by: retention time (RT), mass-to-charge ratio 

(m/z) and intensity (Figure 4). The intensity values represent the counts 

in a short time frame (i.e., a scan) of each ionized molecule, which are 

characterized by a unique m/z value.   

The most commonly used LC approaches are: i) reversed-phase 

(RP), which depending on the stationary and mobile phases is able to 

separate a wide range of metabolites in the medium to non-polar range; 

ii) hydrophilic interaction liquid chromatography, which properly 

separates polar compounds; and iii) ion-pairing, which is most suited to 

separate ionic and ionizable metabolites using typical RP 

chromatography configuration thanks to the use of an ion pairing agent. 

Figure 4. Schematic diagram of LC-MS in untargeted metabolomics. Metabolites are 
separated based on their affinity to the column, ionized and detected, which results in 
three dimensional raw data characterized by m/z, RT and intensity. Optionally, the 
ionized molecules can be filtered at the quadrupole (Q1) and fragmented at the collision 
cell.  
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After LC separation, molecules in the liquid phase have to be 

ionized into gas-phase ions in order to be MS-detected. Currently, ESI is 

the most used atmospheric ionization technique, as it provides a soft 

ionization of small semi-polar and polar molecules, what allows the 

detection of intact molecules, in both positive (mainly as [M+H]+) and 

negative (mainly as [M-H]-) ionization modes20,21. The analysis of LC-MS 

spectral databases shows that most metabolites can be detected either 

in positive or in both positive (ESI+) and negative (ESI-) modes22–27. 

Furthermore, ESI- provides additional information in the case of organic 

acids, lipids and lipid-like molecules and carbohydrates and conjugates. 

Finally, MS analysis is usually performed using high-resolution 

mass spectrometers such as Q-ToF or Q-Orbitrap which reach a mass 

accuracy below 1-10ppm. Usually, untargeted LC-MS metabolomics 

require the combination of full scan acquisitions (MS1 level), which 

provide information about the nominal mass and formula of the 

metabolites, and MS/MS acquisitions (MS2 level), where parent ions are 

fragmented by a collision energy providing information about the 

structure of the metabolites. Both levels of information will be required 

for subsequent metabolite annotation. Currently, there are two main 

approaches to generate LC-MS/MS data (Figure 5): data-dependent 

acquisition (DDA), in which some precursors (i.e., top N most intense 

precursors of each MS1 scan or precursors present in a inclusion list) 

from MS1 are selected and immediately fragmented to provide a clean 

spectrum that can be directly queried against a spectra database28; and 

data-independent acquisition (DIA), where no precursors from MS1 are 

isolated and all the ions are subsequently fragmented29. This avoids 

missing information about less abundant precursors or closely 

coeluting isomers that would not be selected for fragmentation in DDA. 

While DDA approaches offer easier-to-interpret but more limited data, 

DIA approaches return more complex data sets containing the MS2 
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information for all coeluting precursors present in the sample. Unlike 

for DDA acquisitions, in DIA approaches the precursor-fragments links 

are lost, so it is necessary to reconstruct these relationships by a 

deconvolution process based on the peak shape of precursors and 

fragments to be able of combining MS1 and MS2 information for 

metabolite identification29. 

 

1.2.4. Data processing 

Once the LC-MS analysis has been performed and in order to 

obtain meaningful results, raw LC-MS data need to be processed to 

extract the levels of the metabolites that are present in the samples of 

interest. The objective of this data processing step is to build a 

numerical matrix that contains the intensity of each detected peak for 

all the samples analyzed. This matrix will be used subsequently to 

perform the required downstream analysis (e.g., normalization and 

statistical analysis). This specific data processing workflow comprises 

Figure 5. Scheme of common acquisition modes in untargeted LC-MS metabolomics. In 
DDA, specific precursors (MS1) are selected to be fragmented (MS2), while in DIA, all 
precursors are fragmented at the same time. While in DDA, the link between MS1 
precursors and MS2 fragments is straightforward, in DIA, a deconvolution process is 
required.    
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several steps: i) extraction and quantification of all features or peaks 

present in each sample (peak-picking); ii) time-drift correction occurred 

between samples along the analytical sequence (alignment); iii) grouping 

of those signals from different samples that belong to the same feature 

(peak grouping); iv) peak filling for retrieving missing peaks; and v) 

identification of the detected metabolites (Figure 6). 

Figure 6. Main steps in untargeted LC-MS data processing. i) Peak-picking, which extracts 
features from the raw data for each sample; ii) alignment, which corrects the time drifts 
occurred along the analytical sequence; iii) grouping, which matches peaks from different 
samples that correspond to the same feature; iv) peak filling, which retrieves missing 
peaks; and v) metabolite identification, which annotates the detected features based on 
the MS1 + MS2 information. 
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1.2.4.1. Peak-picking  

The first step in LC-MS data processing is peak-picking, which 

consists of extracting and quantifying the features present in each 

sample. Each feature refers to a peak defined by a unique combination 

of m/z and RT, and it can be a molecular ion, adduct, isotope or 

fragment of a metabolite, so several features could come from a unique 

metabolite. 

Most common peak-picking algorithms, comprise two steps: i) 

construction of extracted ion chromatograms (EIC) and ii) detection of 

peaks from those EIC. The EIC construction consists of bucketing all 

m/z values found along the time axis within a certain m/z range as a 

unique m/z signal30, in order to reduce data dimensions from 3D to 2D 

(RT and intensity). Several methods based on binning31 and clustering 

have been developed to this end30,32–34. After EIC construction, peak 

detection algorithms try to find the time bounds that define each peak. 

For this purpose, different algorithms based on peak shape, peak width, 

signal-to-noise ratio and/or signal-to-baseline ratio have been 

developed to extract unique peaks from the previously defined EIC34–36. 

At the end of this step, each peak will represent a feature. 

 

1.2.4.2.  Alignment 

When multiple samples are analyzed within a study, it is 

common to observe m/z and RT drifts throughout the sample batch, 

which are attributed to different factors that affect the LC-MS 

instrument (e.g., temperature, changes in the mobile phases or ion 

suppression, among others). Unfortunately, these drifts in m/z and RT 

are translated into changes in the extracted features for each sample, 

what may difficult the subsequent data analysis. Alignment consists of 
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correcting those RT drifts between samples so that peaks that represent 

the same feature have a similar RT. 

Most common alignment algorithms are based on warping, 

which consists on shifting, stretching or squeezing different parts of 

the chromatogram to minimize differences between runs37. Correlation 

Optimized Warping38,39 and Dynamic Time Warping40 algorithms try to 

minimize differences in the total ion chromatogram (TIC) between a 

reference sample and the others, while OBI-warp algorithm41 uses EICs. 

On the other hand, mzMine42,43 and XCMS31 alignment algorithms, among 

others, minimize RT deviations between matched features from 

different samples. 

 

1.2.4.3.  Grouping 

As well as RT drifts, m/z variations along the sample batch 

need to be considered to compare the features obtained for different 

samples. Grouping or matching consists of linking peaks from 

different samples that correspond to a unique feature considering 

the small variations in m/z and RT between samples37. Most grouping 

methods are based on clustering algorithms that use predefined m/z 

and RT tolerances31,42. Once all peaks have been grouped, only those 

features that are present in a sufficient number of samples, which is 

usually customizable, will be kept. 

 

1.2.4.4.  Peak filling 

Due to the analytical variations or the parameter setting used for 

data processing, some peaks may not have been extracted correctly in 

the previous steps. Once alignment and grouping have been performed, 

all the features present in the sample batch have been defined (m/z and 
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RT), and this information can be used, optionally, to search for those 

missing peaks in a targeted manner or to improve the area integration 

of all peaks. 

 

1.2.4.5.  Metabolite identification 

Metabolite identification, which is the major bottleneck of 

untargeted metabolomics, is required to give biological meaning to the 

results of any untargeted metabolomic analysis. Most common approaches 

for metabolite identification rely on querying metabolomic databases with 

a given tolerance to find candidates for the features extracted. According 

to the Metabolomics Standards Initiative there are four levels of metabolite 

identification44: level 1, the highest, where the metabolite identification is 

confirmed by using a chemical standard that is detected using the same 

analytical conditions and comparing its m/z, isotope pattern, RT and 

MS/MS spectrum with the feature; levels 2 and 3, when no standard is 

available or employed but MS/MS spectra is matched by similarity against 

a spectral library (in case of level 3, only the chemical class is confirmed); 

and  level 4, which comprises unknown compounds. 

Generally, MS1 and MS2 levels of information are required to 

annotate unknown metabolites. In MS1, molecular ions m/z depend on 

several factors such as ionization mode (i.e., ESI+ or ESI-), adducts 

formation (i.e., Na+, NH4
+) and neutral losses (i.e., H2O, HCOOH), so that 

multiple features may represent a unique metabolite. Thus, the use of a 

unique m/z value may lead to false positive annotations. In addition, the 

existence of isobaric and isomeric compounds, makes necessary the use of 

the MS2 information to further elucidate the metabolite structure. As 

mentioned above, querying MS/MS spectra against metabolomics 

databases has become the most common method to annotate unknown 

metabolites and comprises two steps: i) precursor ion m/z is used to filter 
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candidates from the whole database, and ii) MS/MS similarity between the 

unknown feature and the selected candidates are scored and ranked based 

on m/z values and product ion intensities45. Several databases such as 

Human Metabolome Database (HMDB)22, METLIN25, MassBank24 or The 

Massbank of North America (MoNA)46, among others, contain thousands of 

experimental and in silico generated MS/MS spectra, yet the known 

metabolome is far of being complete. 

 

1.2.5.  Data analysis 

The final step in untargeted LC-MS metabolomics consists of 

finding those metabolites or features whose variation may explain the 

differences between the sample groups and interpreting their biological 

meaning. To this end, experimental variation introduced at different levels 

of the metabolomic workflow (e.g., sample collection and preparation, 

metabolite extraction, analytical platforms) need to be firstly removed47. In 

addition, data analysis has to deal with some challenges such as high noise 

levels, highly correlated features due to the presence of isotopologues, 

adducts and in-source fragments and variability in signal sensitivity (i.e., 

intensity), mass accuracy (i.e., m/z) and RT due to long periods of analysis48. 

First, processed peak tables are corrected, normalized and filtered to 

remove unwanted variation47,49–51. Then, proper statistical analysis can be 

performed. Two different strategies can be differentiated in untargeted 

metabolomics data analysis: “bottom-up” and “top-down”52. In “bottom-

up” approaches, also known as “metabolite profiling”, predefined sets of 

metabolites, which usually have been previously identified, are analyzed in 

order to extract the most significant variables that explain the underlying 

research questions. In this strategy, features are treated individually. 

Univariate statistical methods, Hierarchical Clustering Analysis (HCA) or 

unsupervised Principal Component Analysis (PCA) are commonly used 

methods for this kind of analysis53. On the other hand, “top-down” 
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on m/z values and product ion intensities45. Several databases such as 

Human Metabolome Database (HMDB)22, METLIN25, MassBank24 or The 

Massbank of North America (MoNA)46, among others, contain thousands of 

experimental and in silico generated MS/MS spectra, yet the known 

metabolome is far of being complete. 

 

1.2.5.  Data analysis 

The final step in untargeted LC-MS metabolomics consists of 

finding those metabolites or features whose variation may explain the 

differences between the sample groups and interpreting their biological 

meaning. To this end, experimental variation introduced at different levels 

of the metabolomic workflow (e.g., sample collection and preparation, 

metabolite extraction, analytical platforms) need to be firstly removed47. In 

addition, data analysis has to deal with some challenges such as high noise 

levels, highly correlated features due to the presence of isotopologues, 

adducts and in-source fragments and variability in signal sensitivity (i.e., 

intensity), mass accuracy (i.e., m/z) and RT due to long periods of analysis48. 

First, processed peak tables are corrected, normalized and filtered to 

remove unwanted variation47,49–51. Then, proper statistical analysis can be 

performed. Two different strategies can be differentiated in untargeted 

metabolomics data analysis: “bottom-up” and “top-down”52. In “bottom-

up” approaches, also known as “metabolite profiling”, predefined sets of 

metabolites, which usually have been previously identified, are analyzed in 

order to extract the most significant variables that explain the underlying 

research questions. In this strategy, features are treated individually. 

Univariate statistical methods, Hierarchical Clustering Analysis (HCA) or 

unsupervised Principal Component Analysis (PCA) are commonly used 

methods for this kind of analysis53. On the other hand, “top-down” 
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approaches, also known as “metabolite fingerprint”, aim to extract 

metabolite or feature signatures underlying the differences between the 

groups under study. In this case, all features are usually analyzed before 

the identification step. Supervised Multivariate methods such as 

(Orthogonal) Partial Least Squares Discriminant Analysis or machine 

learning methods such as Random Forest, Support Vector Machines or 

Neural Networks are applied in this case to reduce high-dimensional 

data54,55. In addition, feature selection methods such as Recursive Feature 

Elimination, Lasso, Elastic Net, Ridge Regression or Sparse N-way Partial 

Least Squares can also be employed56,57. Finally, once data analysis has been 

performed, biological interpretation is required to understand the results. 

Recently, a great number of algorithms have been developed to facilitate 

this functional analysis using predefined sets of related metabolites based 

on prior knowledge of metabolic pathways or biological functions instead 

of treating them as single units. Most common algorithms are Metabolite 

Set Enrichment Analysis58, Metabolic Pathway Analysis59 or Metabolic 

Network Analysis60. In this sense, MetaboAnalyst61, which is one of the most 

commonly used tools for data analysis, includes a wide variety of these 

methods for data processing, data analysis, functional analysis and data 

integration from multiple omics. 
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2. The human metabolome 

The human metabolome can be defined as the collection of all 

metabolites present in the human body under a particular condition and 

it includes a heterogeneous group of intermediates and end products 

of the metabolism such as lipids, amino acids, peptides, carbohydrates 

and their conjugates, nucleic acids and amines among others. The 

human metabolome has been estimated to comprise from several 

thousands to a few millions of metabolites, but only a few thousands of 

them have actually been detected and quantified8,22,62. Although 

improvements in analytical techniques and the development of theoretical 

metabolites databases and bioinformatics tools have allowed to notably 

extend the metabolome coverage, a large part of it still remains unknown 

or undetected8. This thesis is mainly focused on the use of LC-MS, 

therefore, we first attempted to ascertain which is the current and actual 

human metabolome coverage that can be obtained when LC-MS is used and 

which part of it correspond to lipids. To this end, we first analyzed 

metabolite data from four of the main publicly and downloadable 

databases comprising; i) the human metabolome database (HMDB)22, ii) 

the Virtual Metabolic Human database (VMH)63, iii) HumanCyc64 and iv) 

KEGG database65. InChI codes66 were used to identify unique compounds 

across different databases66. Our analysis estimated that the current 

known human metabolome is around 118,000 compounds8 (Figure 7). 

However, it should be noted that such figure and the number of 

metabolites represented are biased due to the own nature of our current 

knowledge and the methodology used to build the databases. On the 

one hand, many lipid classes have a backbone structure that defines the 

class to which various fatty acyl moieties are attached. This modular 

nature allows the prediction of thousands of lipids, which in turn causes 

their artificial overrepresentation in the expected human metabolome. 
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Figure 7. Analysis of the human metabolome coverage provided by LC-MS.  The 
workflow followed to define the expected human metabolome is based on freely 
available metabolome databases, and the fraction of this metabolome that can be 
analyzed by LC-MS is based on open spectral databases. The taxonomic classification of 
metabolites was performed with a combination of chemical structures and biological 
functions based on HMDB and KEGG classification, as described in the Supplementary 
Information. 
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On the other hand, most of the metabolites comprised in those 118,000 

are endogenous metabolites. However, within humans a huge variety of 

exogenous compounds (e.g., diet, chemicals, microbiota, drugs…) are 

also present and have important biological roles. In addition, such 

exogenous compounds can be transformed through a variety of 

enzymatic reactions (e.g., oxidation, reduction, hydrolysis, 

conjugation….), which importantly increases their number and 

diversity. In this regard, Wishart and colleagues have recently 

introduced BioTransformer, a computational tool that predicts 

metabolite biotransformation62. Based on the current figures of 

metabolites across several databases (including endogenous and 

exogenous metabolites), the authors estimated that the metabolome 

size could reach around 5,000,000 compounds. However, it remains 

difficult to ascertain how many of them would be actually found in 

human samples and most likely only a small fraction of them would be 

present at enough concentration to be detected with currently available 

technology. Then, to estimate which part of this human metabolome 

has actually been detected by LC-MS, we queried the estimated human 

metabolome against a variety of open downloadable spectral databases, 

including MoNA46, GNPS23, Massbank24 and HMDB22. Common databases 

such as METLIN25, mzCloud27 or LIPID MAPS26 were not considered for 

the survey because they did not meet the criteria of being free, 

downloadable and experimental. Again, InChI codes were used as 

unique compound identifiers66. Standard untargeted LC-MS techniques 

are not suitable for enantiomers separation and in many cases only a 

particular enantiomer is expected, active or abundant enough, thus it 

was decided to consider only one enantiomer of each pair. Such 

criterion reduced the figure into around 14,000 compounds. 

Intriguingly, for the remaining 104,000 metabolites, only around 3,200 

have an experimental LC-MS spectra in these databases, which only 
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accounts for a 3% of the estimated human metabolome (Figure 7). As 

pointed above, such low percentage can be attributed to the 

overrepresentation of predicted lipids in the databases. For example, in 

the HMDB, 80% of the listed metabolites are lipids and 92% of them are 

predicted (Figure 8), that is, without experimental spectra and in most 

cases without known biological role. In addition, the lack of lipid 

standards hinders the availability of experimental spectra in the 

databases. In this respect, the use of bioinformatics tools to analyze LC-

MS data has considerably extended the lipidome coverage in a variety of 

biological samples62,67–69, but there is still an important disagreement 

between the expected number of lipids and those actually detected in 

untargeted LC-MS studies. Apart from the issues related to the nature 

of lipids, we have to consider that databases are not always updated at 

the same pace that new LC-MS methods for extending human 

metabolome appear or new metabolites are proposed. Incorporation of 

experimental LC-MS data into databases requires huge efforts, thus, a 

gap between new metabolomics achievements and incorporation of 

such information into databases will always be present.  

 

Figure 8. Representation of predicted lipids in main metabolomic databases. 
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3. Lipidomics 

As mentioned in the previous section, lipids comprise a large 

and heterogeneous class of metabolites composed by the combination 

of different building blocks (Figure 9). Lipids are involved in many 

biological functions as intermediates or products in signaling pathways, 

structural components of cell membranes and energy store sources, 

Figure 9. Main lipid classes and key building blocks of the human lipidome. Blue 
represents the main building block for each group (e.g., carnitine, glycerol, sphingoid 
base, cholesterol…), green shows the phosphate groups and red shows the different head 
groups in the glycerophospholipids.  
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among others70. For all these reasons, lipidomics has emerged as a 

subdiscipline of metabolomics by its self, which refers to the systemic-

scale analysis of all lipids present in a biological sample71.  The LIPID 

MAPS Consortium, classifies lipids into eight classes: fatty acyls, 

glycerolipids, glycerophospholipids, sphingolipids, sterol lipids, prenol 

lipids, saccharolipids and poliketides, with a heterogeneous 

distribution within species and tissues72,73, being the first five categories 

the most common and abundant lipid classes in human samples22,74. 

 

3.1. Fatty acyls 

Fatty acids (FA) are the key building blocks of main lipid classes 

and are composed by a linear alkyl chain of variable length with a 

terminal carboxyl group. They usually have an even number of carbons 

(commonly from 14C to 24C) and a variable number of desaturations 

giving rise to a wide variety of saturated (with no double bounds within 

the alkyl chain), monounsaturated (with one double bound) and 

polyunsaturated (with two or more double bounds) FA, also referred as 

SFA, MUFA and PUFA, respectively. While free fatty acids (FFA) play a 

central role in cellular biology, they are mainly found in their esterified 

form as part of complex lipids75. Oleic acid (FA(18:1)n9), where 18 

informs about the number of carbons of the alkyl chain, 1 represents 

the number of desaturations and n9, also referred as omega 9 (ω9), 

indicates the position of the last double bound, followed by palmitic 

(FA(16:0)) and stearic acid (FA(18:0)) are the most abundant FA in 

human samples, representing about an 80% of all FFA of human 

plasma74. 

FA can be either synthesized de novo inside cells or imported 

from external sources (Figure 10). The main product of de novo 
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lipogenesis (DNL) is FA(16:0), which results from the condensation of 

acetyl-CoA molecules through the enzymatic action of acetyl-CoA 

carboxylase (ACACA/B) and FA synthase (FASN). The acetyl-CoA pool is 

generated via ATP citrate lyase (ACLY) from citrate which can, in turn, 

be produced from several carbon sources (i.e., glucose, glutamine, 

amino acids, FA), or from acetate via acetyl-CoA synthetases 

(ACSS1/2)76. Linoleic (FA(18:2n6)) and γ-linolenic acid (FA(18:3n3)) are 

essential FA that must be exogenously acquired. Free FA import occurs 

by either passive diffusion or the action of translocases like CD36 and 

FA transport proteins (FATP). FA can be elongated via the elongation of 

very long-chain FA proteins (ELOVL1-7). They can also be unsaturated 

via the action of stearoyl-CoA desaturases 1/5 (SCD1/5) and FA 

desaturases 1/2 (FADS1/2) enzymes77,78. All these transformations 

produce the wide variety of FA required for the cellular functioning. 

 

Figure 10. Main FA biosynthetic reactions. End product of the de novo lipogenesis (DNL) 
is the palmitic acid (FA(16:0)) and essential FA (n3 and n6 series) are imported from 
external sources. From these FA, elongation and desaturation reactions give rise to the 
whole FA variability. ELOVLx represent different elongases. 
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3.2. Glycerolipids 

Glycerolipids (GL) are simple lipids composed by a variable 

number of FA molecules (from 1 to 3) esterified to a glycerol backbone 

resulting in monoacylglycerols (MG), esterified by a unique FA, 

diacylglycerols (DG), esterified by 2 FA molecules, and triacylglycerols 

(TG), containing 3 FA molecules (Figure 9). TG are the most abundant 

subclass of glycerolipid and serve as an energy storage for the organism 

and as precursors for membrane lipid synthesis (FA and DG). In 

addition, cellular lipid droplets can play an important role in lipid 

mobilization and membrane trafficking. Conversely, while MG and DG 

are considered partial glycerides or intermediates of TG synthesis and 

degradation, they also have important biological functions as cellular 

messengers, surfactants and key intermediates for the synthesis of 

glycerophospholipids, among others79. 

TG are mainly synthesized at the liver or the adipose tissue from 

several FA and glycerol-3-phosphate (G3P), which may come from 

glycerol, via glycerol kinase, or from dihydroxyacetone phosphate 

(DHAP), via glycerol-3-phosphate dehydrogenase 1 (GPD1) (Figure 11). 

FA need to be activated as fatty acyl-CoA in order to be attached to the 

glycerol backbone. This activation is performed by different acyl-CoA 

synthases at the endoplasmic reticulum. The first acylation is 

performed by glycerol-3-phosphate acyltransferases (GPAT), which add 

a fatty acyl-CoA molecule to the sn1 position of the G3P, resulting in 

lysophosphatidic acid (LPA). Then, the acylglycerol acyltransferases 

(AGPAT) add a second fatty acyl-CoA unit at the sn2 position, resulting 

in phosphatidic acid (PA). At this point, the phosphate group is removed 

by phosphatidic acid phosphatases, also known as lipins (LPIN), to 

generate DG. Finally, a third fatty acyl-CoA unit is added by 

diacylglycerols acyltransferases (DGAT)80. 
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3.3. Glycerophospholipids 

Glycerophospholipids, also known as phospholipids (PL), are the 

key constituents of cell membranes and are synthesized from 

phosphatidic acids (PA) and DG, intermediates of the TG biosynthetic 

pathways. They are composed by a glycerol backbone joined to different 

polar head groups (phosphocholine, phosphoethanolamine, etc.) and 

esterified by two FA molecules, resulting in a variety of phospholipid 

subclasses with different locations and functions within the cell 

membranes (Figure 9). In addition to being linked by two ester bounds, 

which represent the vast majority of phospholipid bounds in human 

and animal cells81, phospholipid FA chains can also be linked to the 

glycerol molecule by ether or vinyl ether bounds, usually at the sn1 

position. These phospholipids are known as plasmanyl and plasmenyl 

PL, respectively75. Lysophospholipids (LPL) are intermediates of the PL 

biosynthesis which contain a unique FA chain and have important roles 

as surfactants and as signaling molecules. 

Phosphatidylcholines (PC) and phosphatidylethanolamines (PE), 

which contain a phosphocholine (PCho) or phosphoethanolamine (PEt) 

Figure 11. Main biosynthetic pathways of TG. Enzymes are shown in blue. 
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group linked to the glycerol backbone as head group, are the two most 

abundant structural components of animal cell membranes. While PC 

are usually found in the external face of the bilayer, PE are mostly found 

in the inner leaflet82. PC can be de novo synthesized through the 

Kennedy pathway, which involves phosphorylation of choline (Cho) to 

PCho by a choline kinase (CK), which is then activated by condensation 

with cytidyl triphosphate (CTP) to generate cytidyl diphosphate (CDP)-

Cho by a CDP-Cho transferase (CCT). This CDP-Cho is finally transferred 

to a DG molecule releasing cytidyl monophosphate (CMP) to give rise to 

PC by a choline phosphotransferase (CPT) (Figure 12). Alternatively, PC 

can also be synthesized through methylation of PE by a 

phosphatidylethanolamine N-methyltransferase (PEMT)83,84 (Figure 12). 

Otherwise, PE can also be de novo synthesized through de Kennedy 

pathway by phosphorylation of ethanolamine (Et) to PEt by a 

ethanolamine kinase (EK), which is then activated as a CDP-Et by a CDP-

Et transferase (ECT). Finally, this CDP-Et is condensed by a ethanolamine 

phosphotransferase (EPT) with a DG to form PE (Figure 12). 

Alternatively, PE can also be synthesized from phosphatidylserines (PS) 

through decarboxylation by a phosphatidylserine decarboxylase 

proenzyme (PISD)83–85 (Figure 12). 

Figure 12. Main biosynthetic pathways of PL. Enzymes are shown in blue. 
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Phosphatidylinositols (PI) are acidic PL with inositol at the polar 

head and are intermediates of other lipids such as 

phosphatidylinsositol phosphates (PIP) and DG, which have important 

signaling functions related to cell growth and survival among others79,86. 

In addition, PI can serve as an anchor between the external membrane 

and different proteins87. Similarly, phosphatidylserines (PS), which are 

also acidic PL and are usually found in the inner leaflet of the 

membrane, present important signaling functions related to apoptosis 

or as a cofactor for the activation of the protein kinase C88, and 

phosphatidic acids (PA) are important precursors for other PL and GL 

and they are related to signaling functions89. Finally, 

phosphatidylglycerols (PG), which are minor components of animal cell 

membranes, are key intermediates of cardiolipins (CL), PL with four FA 

chains that are mainly found at the mitochondrial membrane and are 

essential for its function (i.e. mitochondrial protein transport, 

morphology, signaling and oxidative phosphorilation)90. PI and PG are 

synthesized through the activation of DG with CTP to generate CDP-DG 

followed by the displacement of CMP by specific groups depending on 

the PL subclass (Figure 12). In the case of PI, inositol is added by the 

phosphatidylinositol synthase (PIS)91, while for the synthesis of PG, G3P 

Is first condensed with CDP-DG by a phosphatidylglycerol phosphate 

synthase (PGPS) to form phosphatidylglycerol phosphate (PGP), which is 

then dephosphorylated by a mithochondrial phosphatase (PTPMT) to 

generate PG92. An additional step is required for the synthesis of CL, 

where a CDP-DG molecule is added to a PG by a cardiolipin synthase 

(CLS)93 (Figure 12). Finally, PS is synthesized from PC or PE by different 

phosphatidylserine synthases (PSS)94 (Figure 12). 
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abundant structural components of animal cell membranes. While PC 
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Figure 12. Main biosynthetic pathways of PL. Enzymes are shown in blue. 
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3.4. Sphingolipids 

Sphingolipids (SL) are composed by a sphingoid base (Sph) 

linked to a FA chain by an amide bound (Figure 9) and, usually, to 

different phosphoryl or carbohydrate moieties. Free Sph can be found 

at trace levels in animal tissues and they present important signaling 

functions such as stimulation of cell proliferation95. Ceramides (Cer), 

which present only a FA chain esterified to the Sph, have important 

functions in cellular signaling related to cell differentiation and 

proliferation and they are precursors of more complex sphingolipids, 

such as sphingomyelins (SM)96. SM contain a glycerophosphocholine 

group linked to the sphingoid base and are structural components of 

the cell membrane mainly located at the lipid rafts97. They are the most 

abundant sphingolipids in animal tissues. 

SL synthesis (Figure 13) begin with the conversion of serine, or 

other aminoacids in a lesser extent, and a fatty acyl-CoA to 3-

ketosphinganine by a serine palmitoyl transferase (SPT), which is then 

reduced to dihydrosphingosine by a 3-ketosphinganine reductase 

(3KSR) in a NADPH-dependent manner to give rise to different Sph96. 

Then, different fatty acyl-CoA can be N-acylated to those Sph by a Cer 

synthase (CERS) to form a dihydroceramide, which is then desaturated 

by a dihydroceramide desaturase (DEGS) on the 4,5-bound of the 

sphingoid part to generate a Cer95,96. From Cer, different SL can be 

obtained such as SM, CerP or glycosphingolipids.  SM are synthesized 

by the action of a SM synthase (SMS) which transfers the PCho group of 

a PC to a ceramide to form SM and DG98. Alternatively, Cer can be 

phosphorylated by a ceramide kinase (CERK) to form a ceramide 

phosphate (CerP)96. Sph can also be phosphorylated by a sphingosine 

kinase (SPHK) to form sphingosines phosphate (SphP)95,96. Finally, Cer 

can be glycosylated to give rise to a great variety of glycosphingolipids96. 
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3.5. Sterol lipids 

Sterols are polycyclic lipids derived from sterane, which play an 

important role modulating the membranes fluidity and stability by 

interacting to other structural components such as phospholipids, 

sphyngomyelins or lipoproteins99. Cholesterol is the most common 

sterol in animal tissues and it can be used to synthesize hormone and 

bile acids, followed by 7-dehydrocholesterol, which is used to 

synthesize vitamin D. Cholesterol is responsible for the order of the 

fatty acyl chains of phospholipids in cellular membranes, and it is a key 

component of lipid rafts99. In blood, cholesterol can be found free or 

esterified to FA75. Cholesterol biosynthesis starts with the condensation 

of three acetyl-CoA molecules to form hydroxymethylglutaryl-CoA 

(HMG-CoA), in a NADPH-dependent manner, which is then reduced by a 

HMG-CoA reductase to generate mevalonate. Then, through a series of 

reactions, mevalonate is converted into cholesterol. Cholesterol is then 

Figure 13. Main biosynthetic pathways of SL. Enzymes are shown in blue. 
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transported to high and low density molecules (HDL and LDL) where it 

can be esterified to a FA chain (Figure 9) from a PC through the action 

of a lecithin cholesterol acyltransferase (LCAT) giving rise to cholesteryl 

esters (CE) and  lysophocphocholines (LPC)100 (Figure 14). 

 

3.6. Lipids and disease 

Lipid metabolism plays a central role in biological systems and 

its study may contribute to the understanding of mechanisms 

underlying different pathological conditions. In recent years, alterations 

in general lipid profiles and in particular lipid species have been 

identified in highly prevalent diseases as cancer101,102, non-alcoholic fatty 

liver disease103,104, diabetes105, heart disease106, and neurological 

diseases107. Currently, great efforts are being directed to ascertain not 

only lipid-related mechanism underlying diseases but also to find new 

biomarkers that allow for prediction in diagnosis, prognosis or 

treatment response108. 

Figure 14. Main biosynthetic pathway of CE. Enzymes are shown in blue. 
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In the context of cancer, changes in lipid metabolism allow the 

adaptation of cancer cells to the harsh changing tumor 

microenvironment by supporting tumor cell requirements such as 

energy production, cell proliferation and growth, resistance to oxidative 

stress, intercellular communication and evasion of the immune 

system109,110. For example, several studies have associated phospholipid 

composition of cell membranes and fatty acid metabolism with better 

survival and prognosis in breast cancer patients101,111. Changes in the 

uptake and use of FA have also been observed in different types of 

cancer112 such as lung113, ovarian114, colorectal115  and breast cancer116,117, 

and FA translocase CD36 has been related to metastasis114,118. In 

colorectal carcinoma cells, an increase in fatty acid uptake and 

oxidation (FAO) has been found to promote epithelial-to-mesenchymal 

transition, angiogenesis, tissue invasion and therapy resistance, and 

this dependency on FAO could be exploited by the inhibition of different 

enzymes involved in this pathway115. In this case, the authors propose 

to target CES1, which promotes TG breakdown to fuel FAO and oxidative 

phosphorylation to prevent toxic lipid accumulation. FA desaturation 

has also been proposed as a potential target in different tumors due to 

its relevance in supporting cell proliferation, but only some cancer cells 

are sensitive to this approach due to the plasticity of the fatty acid 

metabolism in tumors. In this sense, the biosynthesis of sapienic acid 

(FA(16:1)n10) from FA(16:0) by FADS2 allows some cancer cells to 

bypass the inhibition of SCD119. 

Despite promising results are being published in clinical 

lipidomics research, most of the proposed lipid biomarkers are not 

validated or are not useful as clinical biomarkers due to the lack of 

specificity or sensitivity of these molecules. In addition, biological 

interpretation of lipid metabolism alterations is limited because specific 

functions of most of lipid species are still unknown. In most cases, only 
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global levels of lipid classes and total FFA are used for interpretation 

overlooking FA composition of complex lipids. Therefore, advances in 

analytical methods and bioinformatic tools that improve the analysis of 

the lipidome are still required to fully understand lipid metabolism and 

its implications in human disease112. 
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4. Metabolomics and isotope tracing 

The main objective of metabolomics is the characterization and 

measurement of the metabolites present in a biological sample. However, 

metabolite abundances are not enough to understand pathway activities 

as concentrations depend both on production and consumption rates120. 

In this sense, the use of stable-isotope tracers has enabled the study of 

the metabolism dynamics and the assessment of the contribution of 

different reactions to the production or consumption of specific 

metabolites121. Stable isotopes are non-radioactive different forms of the 

same element that differ in their mass due to a different number of 

neutrons in their nucleus. Besides this difference in their mass, which can 

be distinguished by MS, these elements are chemically identical and have 

the same functionalities122. These properties have allowed the use of 

stable isotope tracers, molecules in which one or several atoms have been 

replaced by their heavier less abundant isotopic equivalent (12C-13C, 14N-
15N, 16O-18O, 1H-2H or D)122, to map metabolic routes by following the 

incorporation of these isotopic labels into downstream products121. 

Usually, these tracers are organic compounds such as FA, amino acids or 

sugars that are supplied to a biological system and are used to “trace” 

the metabolic fate of these compounds within that biological system122.  

Regarding lipid metabolism, many aspects such as building 

block sources, function of related enzymes and transporters or lipid-

lipid interactions, remain poorly understood. In order to clarify some of 

these aspects, stable isotope experiments can be performed. Some 

efforts have been made in studying the metabolism of complex lipids 

(e.g., phospholipids, glycosphingolipids)123–125, although most studies 

have been mainly focused on the FA metabolism119,126–130. 
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The general objective of this thesis was to develop new methods 

and freely available computational tools that facilitate the 

characterization of the lipidome and the study of lipid metabolism, with 

particular focus on FA. To this end, two main objectives were proposed:  

 

1) Development of a new bioinformatic tool that improves lipid 

annotation in untargeted LC-MS lipidomics. This tool should 

cover the whole workflow required for data processing and 

implement rule-based identification for both DIA and DDA 

acquisition modes.  

 

2) Development of a method that allows the study of the whole 

set of reactions involved in fatty acid biosynthesis based on 

the combined use of LC-MS and 13C-tracers. 
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1. Lipid identification in LC-MS lipidomics 

As mentioned above, lipids can be described as a combination of 

different building blocks, usually a core structure that defines their class 

(e.g., glycerol, sphingoid bases or cholesterol) and subclass (e.g. polar head 

groups of phospholipids as phosphocholine and phosphoethanolamine) and 

a variable number of FA chains attached to the core structure131 (Figure 9). 

As a result of the different structural arrangements of FA and core 

structures, a great number of isobaric, isomeric and adducts overlaps can be 

found132 (e.g., PC(18:1/18:1) vs PC(18:0/18:2), PC(16:0/20:4) vs PC(20:4/16:0), 

PC(34:1) as [M+Na]+ vs PC(36:4) as [M+H]+ or PC(32:0) as [M+H]+ vs PS(32:1) as 

[M+H]+), which evidences the complexity of analysing the lipidome. 

Therefore, lipid annotation in untargeted LC-MS based lipidomics requires 

the accurate determination of the detected adducts and the particular 

building blocks that compose a given lipid and the way in which those blocks 

are arranged131, which in turn requires fragmentation of the precursor ions.  

 

1.1. Challenges in lipid annotation in LC-MS-based 

lipidomics 

The precise identification of any metabolite in LC-MS, level 1 of the 

Metabolomics Standard Initiative classification, requires the match of its RT, 

m/z and MS/MS spectra between the candidate feature and a commercially 

available standard44. In case of lipids, due to the huge variety of lipid species 

and the reduced number of available standards, this strategy cannot be fully 

implemented. In this regard, the definition of fragmentation patterns for 

different lipid classes has allowed the construction of in silico MS/MS spectra 

libraries22,25,67, which are used for lipid annotation based on spectral matching 

algorithms133,134. Yet this strategy still has some limitations45. First, a unique 
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m/z value from a precursor is not enough to identify the molecular ion (i.e., 

its chemical formula) due to the great amount of overlaps between isomeric 

and isobaric species. Table 1 shows the most common overlaps132. For this 

reason, working with high-resolution mass spectrometers and a correct 

isotope and adduct annotation is of utmost importance in untargeted 

lipidomics. In addition, although MS2 information might help to distinguish 

some of these overlaps, it is not enough in many cases where common 

fragments are obtained. Moreover, if the MS/MS spectra contains a low 

number of fragments with high intensities, similarity scores can be skewed, 

and equal results can be obtained for those isobaric and isomeric species. 

This is very frequent in lipids, where class specific fragments that only 

inform about the subclass of a lipid (e.g., head group fragments) or fatty acyl 

chain fragments that only inform about the fatty acyl composition but not 

about the class or subclass of the lipid specie of interest, are common to a 

great number of species. Otherwise, when isobaric or isomeric compounds 

coelute during the chromatographic separation, which is also common due 

to the building block nature of lipids, complex MS/MS spectra are obtained 

for both DDA and DIA data, which hinders lipid annotations. 

As an alternative, lipid identification based on fragmentation rules 

and the presence or absence of the expected fragments for each lipid class 

have been implemented in a few number of bioinformatic tools68,135. These 

rules comprise class specific fragments that will only allow the annotation 

of a lipid class and its sum composition of carbons and double bound (e.g., 

PC(34:1)), chain specific fragments that will inform about the composition of 

its FA chains (e.g., PC(16:0_18:1)), and relative ratios of those chain 

fragments that will inform about the specific position of each FA (e.g., 

PC(18:1/16:0)). Although important efforts have been made regarding these 

fragmentation rules, most tools were developed only for DDA data or did 

not cover the whole data processing workflow required for untargeted LC-

MS analysis (i.e., from peak-picking to lipid annotation).   
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m/z value from a precursor is not enough to identify the molecular ion (i.e., 

its chemical formula) due to the great amount of overlaps between isomeric 

and isobaric species. Table 1 shows the most common overlaps132. For this 

reason, working with high-resolution mass spectrometers and a correct 

isotope and adduct annotation is of utmost importance in untargeted 

lipidomics. In addition, although MS2 information might help to distinguish 

some of these overlaps, it is not enough in many cases where common 

fragments are obtained. Moreover, if the MS/MS spectra contains a low 

number of fragments with high intensities, similarity scores can be skewed, 

and equal results can be obtained for those isobaric and isomeric species. 

This is very frequent in lipids, where class specific fragments that only 

inform about the subclass of a lipid (e.g., head group fragments) or fatty acyl 

chain fragments that only inform about the fatty acyl composition but not 

about the class or subclass of the lipid specie of interest, are common to a 

great number of species. Otherwise, when isobaric or isomeric compounds 

coelute during the chromatographic separation, which is also common due 

to the building block nature of lipids, complex MS/MS spectra are obtained 

for both DDA and DIA data, which hinders lipid annotations. 

As an alternative, lipid identification based on fragmentation rules 

and the presence or absence of the expected fragments for each lipid class 

have been implemented in a few number of bioinformatic tools68,135. These 

rules comprise class specific fragments that will only allow the annotation 

of a lipid class and its sum composition of carbons and double bound (e.g., 

PC(34:1)), chain specific fragments that will inform about the composition of 

its FA chains (e.g., PC(16:0_18:1)), and relative ratios of those chain 

fragments that will inform about the specific position of each FA (e.g., 

PC(18:1/16:0)). Although important efforts have been made regarding these 

fragmentation rules, most tools were developed only for DDA data or did 

not cover the whole data processing workflow required for untargeted LC-

MS analysis (i.e., from peak-picking to lipid annotation).   
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2.  Most used bioinformatic tools for LC-MS-

based lipidomics 

Bioinformatic tools used in untargeted LC-MS lipidomics can be 

divided into three categories based on their functionality: generalist tools, 

data processing tools and specific lipid annotation tools70. Generalist tools 

cover all the steps for the data processing workflow, from peak-picking to 

lipid identification, such as MS-DIAL133,136, Lipid Data Analyzer (LDA)68, 

Liquid137, LipidHunter138, LPPTiger139, LipidSearch (Thermo Scientific), 

SimLipid (Premier Biosoft)) or Lipostar140. From those, MS-DIAL, LDA, 

Liquid, LipidHunter and LPPTiger are platform-independent and freely 

available tools aimed to process LC-MS DDA data and DIA only in the case 

of MS-DIAL. In addition, LipidHunter was initially designed only for 

phospholipids analysis and LPPTiger for oxidized lipids, although 

LipidHunter has recently included DG and TG identification. Otherwise, 

MS-DIAL and Liquid were designed to annotate lipids based on spectral 

similarity using in silico-generated libraries such as LipidBlast67, while LDA, 

LipidHunter and LPPTiger used rule-based identification. Recently, MS-

DIAL has also included lipid annotation based on fragmentation rules136. 

The second group encompasses data processing tools, which cover most 

of the steps of the required workflow in lipidomics and generates 

feature/peak tables, but do not include lipid identification based on MS2 

information. Most common tools are XCMS31,134 and mzMine43. Finally, the 

third group is comprised by specific tools for lipid annotation such as 

LipidMatch135, LipiDex141 or LipidFinder142,143. Usually, these tools use the 

outputs of the two previous groups to perform the eventual lipid 

identification step. From those, LipidFinder only annotates lipids 

putatively (i.e., based on MS1 information) while LipidMatch and LipiDex 

annotate lipids based on MS2 data. In case of LipiDex, it uses in silico-
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2.  Most used bioinformatic tools for LC-MS-

based lipidomics 

Bioinformatic tools used in untargeted LC-MS lipidomics can be 

divided into three categories based on their functionality: generalist tools, 

data processing tools and specific lipid annotation tools70. Generalist tools 

cover all the steps for the data processing workflow, from peak-picking to 

lipid identification, such as MS-DIAL133,136, Lipid Data Analyzer (LDA)68, 

Liquid137, LipidHunter138, LPPTiger139, LipidSearch (Thermo Scientific), 

SimLipid (Premier Biosoft)) or Lipostar140. From those, MS-DIAL, LDA, 

Liquid, LipidHunter and LPPTiger are platform-independent and freely 

available tools aimed to process LC-MS DDA data and DIA only in the case 

of MS-DIAL. In addition, LipidHunter was initially designed only for 

phospholipids analysis and LPPTiger for oxidized lipids, although 

LipidHunter has recently included DG and TG identification. Otherwise, 

MS-DIAL and Liquid were designed to annotate lipids based on spectral 

similarity using in silico-generated libraries such as LipidBlast67, while LDA, 

LipidHunter and LPPTiger used rule-based identification. Recently, MS-

DIAL has also included lipid annotation based on fragmentation rules136. 

The second group encompasses data processing tools, which cover most 

of the steps of the required workflow in lipidomics and generates 

feature/peak tables, but do not include lipid identification based on MS2 

information. Most common tools are XCMS31,134 and mzMine43. Finally, the 

third group is comprised by specific tools for lipid annotation such as 

LipidMatch135, LipiDex141 or LipidFinder142,143. Usually, these tools use the 

outputs of the two previous groups to perform the eventual lipid 

identification step. From those, LipidFinder only annotates lipids 

putatively (i.e., based on MS1 information) while LipidMatch and LipiDex 

annotate lipids based on MS2 data. In case of LipiDex, it uses in silico-
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generated libraries to identify lipids by spectra similarity only for DDA 

data, while LipidMatch, performs lipid annotation based on fragmentation 

rules for DIA and DDA acquisition modes, although initially DIA data was 

only supported for Thermo (.raw) data. Attending to the number of cites, 

from all these tools, MS-DIAL and XCMS combined with specific tools for 

lipid annotation are the most common freely available tools used in 

untargeted LC-MS lipidomics.  

Despite the wide variety of free available bioinformatic tools have 

been developed for lipid annotation, lipid identification still remains as the 

most challenging step in untargeted LC-MS-based lipidomics workflow. Up 

the moment this thesis started, only MS-DIAL covered the whole lipidomics 

workflow and did not include rule-based annotation, whereas specific tools 

for lipid annotation based on fragmentation rules such as LDA and 

LipidMatch, were mainly developed for DDA data. 
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1. Chemicals and reagents 

Solvents for sample processing and LC-MS analysis were 

isopropanol, ammonium formate and ammonium acetate, all obtained from 

Sigma–Aldrich, and acetonitrile from Fisher Scientific. Commercial human 

serum was also obtained from Sigma-Aldrich (reference P2918). 

Lipid standards, obtained from Avanti Polar Lipids, Sigma-

Aldrich/Fluka, Larodan and Caiman Chemicals, were 1-O-oleoyl-N-

heptadecanoyl-D-sphingosine (AcylCer(18:1;18:1/17:0)), cholest-5-en-3b-yl 

heptadecanoate (CE(17:0)), N-heptadecanoyl-D-sphingosine (Cer(d18:1/17:0)), 

N-palmitoyl-D-sphingosine-1-phosphate (CerP(d18:1/16:0)), 1,3-bis-(1,2-di-

octadecenoyl-sn-glycero-3-phospho)-sn-glycerol (CL(18:1/18:1/18:1/18:1)), 

diheptadecanoylglycerol (DG(17:0/17:0)), capric acid (FA(10:0)), lauric acid 

(FA(12:0)), myristic acid (FA(14:0)), myristoleic acid (FA(14:1)n5), pentadecanoic 

acid (FA(15:0)), palmitic acid (FA(16:0)), palmitoleic acid (FA(16:1)n7), margaric 

acid (FA(17:0)), stearic acid (FA(18:0)), trans-vaccenic acid (FA(18:1)n7t), oleic 

acid (FA(18:1)n9), linoleic acid (FA(18:2)n6), alpha-linolenic acid (FA(18:3)n3), 

gamma-linolenic acid (FA(18:3)n6), nonadecanoic acid (FA(19:0)), arachidic acid 

(FA(20:0)), gondoic acid (FA(20:1)n9) , 11,14-eicosadienoic acid (FA(20:2)n6), 

dihomo-alpha-linolenic acid (FA(20:3)n3), arachidonic acid (FA(20:4)n6), 

eicosapentaenoic acid (FA(20:5)n3), behenic acid (FA(22:0)), erucic acid 

(FA(22:1)n9), docosadienoic acid (FA(22:2)n6), 10,13,16-docosatrienoic acid 

(FA(22:3)n6), adrenic acid (FA(22:4)n6), clupanodonic acid (FA(22:5)n3), cervonic 

acid (FA(22:6)n3), lignoceric acid (FA(24:0)), nervonic acid (FA(24:1)n9), cerotic 

acid (FA(26:0)), heptadecanoyl-sn-glycero-3-phosphocholine (LPC(17:0)), 

monoheptadecanoylglycerol (MG(17:0)), 1-hexadecanoyl-2-octadecenoyl-sn-

glycero-3-phosphocholine (PC(16:0/18:1)), 1,2-diheptadecanoyl-sn-glycero-3-

phosphatidylcholine (PC(17:0/17:0)), 1-octadecanoyl-2-octadecadienoyl-sn-

glycero-3-phosphocholine, (PC(18:0/18:2)), 1-hexadecyl-2-(5Z,8Z,11Z,14Z,17Z-
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eicosapentaenoyl)-sn-glycero-3-phosphocholine, (PC(O-16:0/20:5)), 1-(1Z-

octadecenyl)-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-sn-glycero-3-phosphocholine 

(PC(P-18:0/20:4)), 1,2-diheptadecanoyl-sn-glycero-3-phospholethanolamine 

(PE(17:0/17:0)), 1-hexadecanoyl-2-octadecenoyl-sn-glycero-3-

phosphoetyhanolamine (PE(16:0/18:1)), 1-hexadecyl-2-(9Z-octadecenoyl)-sn-

glycero-3-phosphoethanolamine (PE(O-16:0/18:1)), 1-(1Z-octadecenyl)-2-

(4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoyl)-sn-glycero-3-phosphoethanolamine 

(PE(P-18:0/22:6)), 1-hexadecanoyl-2-octadecenoyl-sn-glycero-3-phosphoglycerol 

(PG(16:0/18:1)), 1,2-diheptadecanoyl-sn-glycero-3-phosphoglycerol 

(PG(17:0/17:0)), 1-heptadecanoyl-2-(9Z-tetradecenoyl)-sn-glycero-3-phospho-(1'-

myo-inositol) (PI(17:0/14:1)), 1-hexadecanoyl-2-octadecenoyl-sn-glycero-3-

phosphoserine (PS(16:0/18:1)), 1,2-diheptadecanoyl-sn-glycero-3-

phosphoserine (PS(17:0/17:0)), N-palmitoyl-D-sphingomyelin (SM(18:1/16:0)), N-

heptadecanoyl-D-sphingomyelin (SM(18:1/17:0)), 1,2,3-octanoylglycerol 

(TG(8:0/8:0/8:0)), 1.2.3-tridecanoylglycerol (TG(10:0/10:0/10:0)), 1,2,3-

tridodecanoylglycerol (TG(12:0/12:0/12:0)), 1,2,3-tritetradecanoylglycerol 

(TG(14:0/14:0/14:0)), 1,2,3-trihexadecanoylglycerol (TG(16:0/16:0/16:0)), 1,2-

dipalmitoyl-3-oleoylglycerol (TG(16:0/16:0/18:1)), ,2,3-triheptadecanoylglycerol 

(TG(17:0/17:0/17:0)), 1.3-dioleoyl-2-palmitoylglycerol (TG(18:1/16:0/18:1)). 
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2. Sample preparation 

2.1. Preparation of standards 

Individual stocks for each compound were prepared at 2mg/mL 

following the recommendations of the suppliers. Working solutions for the 

elucidation of the fragmentation patterns of lipid standards were prepared at 

5µg/mL in isopropanol/water (80:20). A mixed solution containing all the lipid 

standards was prepared in isopropanol at 30µg/mL each and subsequently 

diluted at the suitable final concentrations.  

 

2.2. Lipid extraction from human serum samples 

For lipid extraction, 50µL of human serum were mixed with 10µL 

of solvent or a mixture of lipid standards at 20µg/mL and 150µL of 

isopropanol. After vortexing, samples were left for 20min at -20ºC and 

then centrifuged for 15min at 15000g and 4ºC. Finally, 100µL of the 

supernatants were transferred to an HPLC vial for their LC-MS-based 

analysis.  
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3.  LC-MS analysis 

3.1. Instrumentation 

LC-MS instruments used in this chapter were an Agilent 1290 

Infinity LC system coupled to an Agilent 6550 Q-ToF mass spectrometer 

equipped with an ESI source (Agilent Technologies, Santa Clara, CA, 

USA), an Acquity Ultra Performance LC (UPLC) system coupled to a 

Synapt G2-Si Q-ToF mass spectrometer equipped with an ESI source 

(Waters, Milford, MA, USA), and a Q–orbitrap mass spectrometer (Q-

Exactive, Thermo-Fisher Scientific) coupled to RP chromatography 

through an ESI source. Lipid fragmentation patterns were obtained 

using all three instruments, while comparison for untargeted LC-MS 

lipidomic analysis between MS-DIAL and LipidMS was performed using 

the Q-Exactive instrument.  

 

3.2. Chromatographic separation 

Lipids were separated on an Acquity UPLC CSH C18 column (100 

x 2.1mm; 1.7µm) (Waters, Milford, MA, USA). The mobile phases 

consisted of (A) 10mM ammonium formate for ESI+ or ammonium 

acetate for ESI- in 60:40 (v/v) acetonitrile:water and (B) 10mM 

ammonium formate for ESI+ or ammonium acetate for ESI- in 90:10 (v/v) 

isopropanol:acetonitrile. The separation was conducted under the 

following gradient at a flow of 0.4mL/min (adapted from reference144): 

0min 20% (B); 0–2min 40% (B); 2-4min 43% (B); 4-4.1min 50% (B); 4.1-

14min 54% (B); 14-14.1min 70% (B); 14.1–20min 99% (B); 20-24min 99% 

(B); 24-24.5min 20% (B); 24.5-27.5min 20% (B). Sample and column 

temperatures were maintained at 4ºC and 65ºC, respectively. The 

injection volume was 5μL.  
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3.3. MS detection 

For the Agilent Q-ToF 6550, the following conditions were 

employed for ESI+ and ESI- ionization modes, respectively: the capillary 

voltage was 3.5kV for ESI+ and 4.0kV for ESI-; the nozzle voltage was 

0.5kV for ESI+ and 1.5kV for ESI-; the gas temperature was 150ºC for 

ESI+ and 275ºC for ESI-; the drying gas (nitrogen) was 14L/min for ESI+ 

and 12L/min for ESI-; the nebulizer gas (nitrogen) was 35psi; the sheath 

gas temperature was 250ºC for ESI+ and 350ºC for ESI-; the sheath gas 

flow (nitrogen) was 11L/min for ESI+ and 12L/min for ESI-; and the 

fragmentor voltage was 200V for ESI+ and 150V for ESI-. Data was 

acquired in centroid mode using either full scan, DDA (using the Auto 

MS/MS mode), and DIA (using the all ions mode), and in both cases, 

using 0eV (full scan), 20eV and 40eV. For DDA mode, acquisition rate 

was set at 6 spectra/s in all cases.  

Otherwise, for the Synapt G2-Si Q-ToF, the following conditions 

were employed for ESI+ and ESI- ionization modes, respectively: the 

capillary voltage was 3.0kV for ESI+ and 2.5kV for ESI-; the sampling 

cone was 40V; the source offset was 80V; the source temperature was 

100ºC; the desolvation temperature was 250ºC; the cone gas flow was 

50L/h; the desolvation gas flow was 600L/h; and the nebulizer gas was 

6.5bar. Data was acquired in centroid mode using full scan, DDA and 

DIA (using MSe mode) with extended dynamic range, and using 0 and 

40V as collision energies. Scan time was set at 0.3 seconds. 

Finally, for the Q-Exactive instrument, the following conditions 

were employed for the ESI+ and ESI- ionization modes, respectively: the 

sheath gas flow rate was 25 (0-14 min) and 80 (14-27min) for ESI+ and 

25 for ESI-; the auxiliary gas flow rate was 10 (0-14min) and 25 (14-

27min) for ESI+ and 25 for ESI-; the spray voltage was 3kV for ESI+ and 
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2.5kV for ESI-; the capillary temperature was 215⁰C for ESI+ and 400⁰C 

for ESI-; the S-lens RF-level was 95 for ESI+ and 65 for ESI-; and the 

auxiliary gas heater temperature was 215ºC for ESI+ and 350ºC for ESI. 

The pooled samples were acquired in full scan, DDA and DIA modes, 

while individual samples were acquired only in the MS scan mode. For 

MS scan acquisition purposes, resolution was set at 70000, the AGC 

target at 1000000, the maximum IT at 100ms, the scan range was 113-

1700 and data type was centroid. For DDA acquisition purposes, the full 

scan parameters were as in the MS acquisition, while the MS2 parameters 

were: resolution 70000, AGC target 1000000, maximum IT 200ms, loop 

count 5, MSX count 1, isolation window 0.4 m/z, isolation offset 0.4 m/z, 

collision energies 30V and 40V, data type centroid, minimum AGC 

target 1000 and dynamic exclusion 5sec. Finally, for DIA acquisition 

purposes, the full scan parameters were as in the MS acquisition, while 

the MS2 parameters were: resolution 70000, AGC target 1000000, 

maximum IT 200ms, collision energies 30 and 40V, scan range from m/z 

80 to m/z 1200 and data type centroid. 
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4.  Data processing and analysis for untargeted 

LC-MS lipidomic analysis 

For the performance evaluation of LipidMS, the lipidomic profile 

of additivated and non-additivated commercial serum (Sigma-Aldrich 

reference P2918) were analyzed and processed using three different 

workflows: i) LipidMS workflow; ii) MS-DIAL workflow136; iii) data pre-

processing using XCMS134, isotope annotation using CAMERA145. The 

parameters employed for these software were: 

 

- LipidMS 3.0: all the samples were processed together (full scan, 

DDA and DIA) using the LipidMS R package. Files were 

previously converted into the mzXML format using the 

msConvert software (ProteoWizard 3.0.10800). 

 

o Peak-picking parameters: 

 dmzagglom: 15 

 drtagglom: 200 

 drtclust: 25 

 minpeak: 5 

 drtgap: 5 

 drtminpeak: 10 

 drtmaxpeak: 200 

 recurs: 5 for MS1 and 10 for MS2. 

 sb: 3 for MS1 and 2 for MS2. 

 sn: 3 for MS1 and 2 for MS2. 

 minint: 1000 for MS1 and 100 for MS2.  

 weight: 2 for MS1 and 3 for MS2.  

 dmzIso: 5 

 drtIso: 5 
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o Batch processing parameters (alignment and grouping): 

 dmzalign: 10 

 drtalign: 100 

 span: 0.4 

 minsamplesfracalign: 0.75 

 dmzgroup: 10 

 drtagglomgroup: 50 

 drtgroup: 15 

 minsamplesfracgroup: 0.30 

o Lipid annotation parameters: 

 dmz for precursors: 5, 

 dmz for products: 10 

 rttol: 6, 

 coelCutoff: 0.6 

 

- XCMS 3.16: all the samples were pre-processed together for MS 

level 1 (full scan, DDA and DIA) by the XCMS R package. Files 

were previously converted into the mzXML format using the 

msConvert software (ProteoWizard 3.0.10800). Several values 

for the bandwidth and binSize parameters were tested to 

optimize the extraction of isomeric peaks. 

 

o Peak-picking: 

 peakwidth: between 5 and 30 seconds 

 noise: 1000 

 ppm: 15 

 snthres: 3 

 prefilter: 5 scans with a minimum intensity of 

1000 
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o Alignment and grouping: 

 Alignment method: based on the peak groups. 

 Grouping: 

 minFraction: 0.3 

 bw = 2 

 binSize = 0.005 

o Isotope annotation using CAMERA 3.15: 

 perfwhm = 0.6 

 cor_eic_th = 0.75 

 maxcharge = 3 

 ppm = 5 

 mzabs = 0.01 

 filter (C12/C13) = TRUE 

 

- MS-DIAL 4.80: the full scan and DDA acquired samples were 

processed together, while the DIA files were analyzed in a 

different batch. Files were previously converted into the abf 

format using Reifycs Abf (Analysis Base File) Converter 4.0. Then 

the DIA identifications were added to the feature matrix 

obtained for the full scan and DDA files using an m/z tolerance 

of 0.005 and an RT tolerance of 10 seconds. 

 

o Data collection: 

 MS1 tolerance: 0.005 

 MS2 tolerance: 0.01 

o Peak detection: 

 Minimum peak height: 1000 

 Mass slice width: 0.1 Da 

 Smoothing method: Linear-weighted moving 

average 
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 Smoothing level 5 scan 

 Minimum peak width: 5 scan 

o Adducts: 

 ESI-: M-H, M-H-H2O, M+Na-2H, M+Hac-H, M+FA-H, 

2M-H and M-2H.  

 ESI+: M+H, M+NH4, M+Na, M+H-H2O, M+H-2H2O, 

2M+NH4 and 2M+Na. 

 

For all the three workflows, features were filtered and 

normalized based on QC samples. Only the features present in at least 

70% of the QC samples were kept. Then data were normalized using a 

LOESS function, which was fitted to the QC samples based on the 

injection order. The resulting interpolated curve for each feature was 

used to normalize its response16. Finally, a differential analysis between 

the additivated and non-additivated serum samples was performed 

using a Student’s t-test, corrected for multiple testing and magnitude of 

change. The features with an adjusted p-value < 0.05 and a fold change 

> 1.5 were considered to be differential variables between both groups. 
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1. LipidMS overview 

As mentioned above, the size, complexity and heterogeneity of the 

lipidome and the lack of available lipid standards makes lipid annotation 

hard and time-consuming. Additionally, most of the current MS/MS lipid 

annotation tools are restricted to DDA. To complement the information 

provided by DDA, LipidMS was initially conceived to annotate lipids in 

single samples using DIA and rule-based annotation, but it required the 

use of external data processing tools for conducting batch data 

processing146. To overcome this limitation, new releases of LipidMS package 

have incorporated the needed functionalities to cover the whole data 

processing workflow147. Furthermore, and since most of the LC-MS-based 

lipidomic studies are still conducted using DDA and that both approaches 

provide complementary information, we decided to implement the 

analysis of DDA within LipidMS. The last version of LipidMS’s workflow is 

depicted in Figure 15. Briefly, raw data files in mzXML format and a csv 

metadata file (sample, acquisition mode, which can be full scan, DDA or 

DIA, and sample type) are used as input. Data processing, including peak-

peaking, alignment, grouping and peak filling, is executed based on the MS1 

level information from all the samples to obtain a feature matrix that 

contains the peak intensities. Then, lipids are annotated based on the 

established fragmentation rules for those samples acquired in DIA or DDA 

using both MS1 and MS2 levels of information, and the identifications are 

incorporated into the feature matrix generated in step 2. Finally, two main 

outputs can be obtained: a data matrix containing the peak areas and lipid 

annotations, if obtained, for all the features and samples found in the 

dataset, and plots showing the fragments that support the proposed lipid 

identifications. The details of all these steps are described in the following 

sections. Furthermore, LipidMS also supports the simultaneous processing 

of all the following combinations of MS acquisitions modes: all the samples 
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in DIA; all the samples in DDA; combination of DIA and DDA samples; 

combination of full scan and DIA; combination of full scan and DDA; and 

combination of full scan, DIA and DDA. 

Figure 15. LipidMS v3.0 overview. Briefly, LipidMS uses raw data files in mzXML format 
and a metadata csv file as input. Then, raw data are pre-processed to extract all features 
for each sample and build a feature matrix that contains the peak area for all features 
and samples. Finally, lipids are annotated based on the MS1 and MS2 information of DIA 
and DDA acquired samples. Several tables and graphical outputs can be obtained.  
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2. Features and implementation 

2.1. Data processing 

LipidMS v3.0 covers the whole workflow required to process 

untargeted LC-MS lipidomics datasets, including peak-picking, alignment, 

grouping and filling missing peaks, before performing the actual lipid 

annotation. 

 

2.1.1. Peak-picking 

The first step of the LipidMS workflow, which is executed using the 

dataProcessing function, extracts all the peaks from each sample in the 

dataset. Peak-picking is performed for MS1 in all the samples, and MS2 in 

those files acquired in the DIA mode. This function is based on the enviPick 

algorithm34, which has been implemented into LipidMS. Briefly, enviPick 

uses a clustering-based algorithm, which extracts peaks in three steps: 

1) Partitioning. First, in order to accelerate the following steps, data 

is divided into multiple partitions or bins based on large user-

defined tolerances for m/z and RT so that data points from 

different partitions do not overlap. To this end, data is ordered by 

increasing m/z and RT and each point is initialized as a partition. 

Then, each partition is evaluated to decide whether it can be joined 

to the previous partition or not. If the m/z and RT of a partition 

match the tolerances of any point in the previous partition, it is 

reassigned. 

2) Clustering. For each partition, EIC are extracted based on smaller 

user-defined tolerances for m/z and RT. Data is ordered by 

intensity and first point is initialized as a cluster. Then, for each 

point, if it is assignable to any cluster based on the predefined 
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tolerances and no points with identical RT are already in the 

cluster, it is assigned to the cluster with the closest m/z mean. 

Otherwise, a new cluster is initialized. 

3) Peak-picking. Finally, peaks are searched within each EIC. To this 

end, data is ordered by RT and the most intense point is taken as 

the first peak apex candidate. From this point, lower and upper RT 

bounds are searched. Difference between the cumulative sum of 

intensity increases and decreases between the peak apex and its 

neighbour points towards lower and higher RT are calculated. 

Then, bounds are set where maximum differences between 

increases and decreases are reached. This process is repeated n 

times based on user-defined parameters. Finally, peaks are filtered 

based on signal-to-noise and signal-to-baseline ratios and intensity 

threshold. Peak areas are estimated by the sum of peak intensities 

within the RT bounds and baseline correction is performed. 

At this point, 13C isotopologues are also annotated based on 

CAMERA algorithm145. The following criteria must be met by a peak to be 

considered a 13C isotopologue: i) mass difference of 1.0033 between the 12C 

and the 13C isotopologues; ii) relative intensity between isotopologues, 

consistently with the known natural abundances of 12C and 13C isotopes; iii) 

co-elution, calculated using Pearson correlation based on peak shape148: 

 

𝑃𝑃𝑃𝑃1,𝑃𝑃2 =  
∑ (𝐼𝐼𝑃𝑃1𝑖𝑖 − 𝐼𝐼𝑃𝑃1̃)(𝐼𝐼𝑃𝑃2𝑖𝑖 − 𝐼𝐼𝑃𝑃2̃)𝑛𝑛

𝑖𝑖=1

√∑ (𝐼𝐼𝑃𝑃1𝑖𝑖 − 𝐼𝐼𝑃𝑃1̃)2𝑛𝑛
𝑖𝑖=1 √∑ (𝐼𝐼𝑃𝑃2𝑖𝑖 − 𝐼𝐼𝑃𝑃2̃)2𝑛𝑛

𝑖𝑖=1

 

(Equation 1) 

 

, where P1 refers to the peak of the M+0 isotopologue and P2 refers to a 

heavier isotopologue, 𝐼𝐼𝑃𝑃1𝑖𝑖 or 𝐼𝐼𝑃𝑃2𝑖𝑖 refer to the intensity of each scan of the 

aligned and smoothed peak, and 𝐼𝐼𝑃𝑃1̃ and 𝐼𝐼𝑃𝑃2̃ refer to the sum of the 
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intensity of all scans of each peak. Before calculating the peak coelution 

score, peaks are smoothed using the smooth.spline function from the R 

core package. 

The output of the dataProcessing function is an msobject 

containing a peaklist for MS1 and another for MS2 in case of DIA acquisition, 

and raw data for MS1 and MS2 when available. In addition, it contains all 

metadata required to perform the subsequent steps such as polarity, MS 

level for each scan or precursors for MS2 scans in DDA, among others. From 

LipidMS v3.0, the batchdataProcessing function can also be used, which 

returns an msobject for each sample and wraps all of them into an msbatch, 

which will be subsequently used for the following data processing steps. 

 

2.1.2. Peak alignment 

Once all the peaks for each sample have been extracted, time drifts 

during the acquisition queue need to be corrected. The alignmsbatch 

function performs peak alignment based on the MS1 information obtained 

for all the samples. First, peak partitions are created based on the enviPick 

algorithm34 described above to speed up the following clustering algorithm. 

Then, the clustering algorithm (Figure16) is executed to group peaks based 

on their RT for each partition as follows: 

1) Each peak in the partition is initialized as a new cluster. For each 

cluster, the minimum, maximum and mean values of the RT, which, 

at this point have the same values, are kept. 

2) Calculate a distance matrix between all the clusters. This distance 

will be the greatest difference between the minimum and 

maximum values of each cluster. Distances between the clusters 

containing peaks from the same samples will be set at not 
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containing peaks from the same samples will be set at not 
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available (NA) (i.e., if a sample has two peaks in two different 

clusters, these two clusters cannot be merged). 

3) If any distance differs from NA, search the minimum distance 

between two clusters. 

4) If distance is below the maximum distance allowed, join clusters 

and update the minimum, maximum and mean values. Otherwise, 

set the distance at NA and go back to point 3. 

Then, clusters with a sample representation over a defined 

minimum will be used for alignment. To this end, a matrix that contains 

the RT of the peaks for each sample from the selected clusters is built. The 

median RT is calculated for each cluster and an RT deviation matrix is 

Figure 16. Clustering algorithm used for peak alignment and grouping in LipidMS.  
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obtained. Finally, time drifts for each sample are corrected using LOESS 

regression by constructing a function based on RT deviation and the 

median. This same function is used to correct the time drifts of the MS2 

level for those samples acquired in DIA or DDA mode. 

 

2.1.3. Peak grouping 

Once alignment has been performed, peaks from the different 

samples that belong to the same feature are grouped using the 

groupmsbatch function (Figure 17). To this end, the same algorithms as 

those employed for alignment are applied in the following order: peak 

partitions are created based on the m/z and RT values using the enviPick 

algorithm34; m/z clustering is applied to each partition as described 

previously for RT; then, peaks are grouped by RT using the same clustering 

algorithm; and finally, clusters with a sample representation over the 

defined minimum are selected to build the feature table. An example of 

sequential partitioning and clustering executed for the alignment and 

grouping steps is summarized in Figure 17. 

Figure 17. Scheme of sequential partitioning and clustering of peaks executed during 
alignment and grouping steps. Each point represents a peak, each shape denotes a 
sample and each colour depicts a cluster. 
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2.1.4. Peak filling 

Once all feature peaks have been defined, areas are extracted again 

for each peak and sample based on the peak parameters defined for each 

feature (m/z tolerance, initial and final RT) using the fillpeaksmsbatch 

function. This step avoids missing peaks that were not found in the peak-

picking step and improves the area estimation by homogenizing peak 

bounds for all samples. 

 

2.2. Lipid annotation 

Lipid annotation based on the DIA or DDA acquired samples is 

performed with the annotatemsbatch function to search for lipids in the 

msbatch based on a set of predefined fragmentation rules, which are 

detailed below. 

 

2.2.1. Rationale behind LipidMS annotation 

The building block nature of most lipid species enables the 

establishment of generic structure-derived fragmentation rules that can be 

used for MS-based identification and structure elucidation. This strategy 

has been satisfactorily implemented for lipid identification in both DDA 

and DIA approaches67–69. However, to accomplish lipid identification these 

methods commonly relied on the use of most intense fragments, which can 

generate false positives due to the poor selectivity of these ions when 

coelution is present. In RP, among other factors, lipids elution depends 

both on the lipid class and their FA composition, thus each lipid class 

usually elutes within a narrow RT window, eluting first those with shorter 

FA chains and more unsaturations. As a result, many common fragments, 

as those corresponding to head groups, are poorly chromatographically 
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resolved as represented in Figure 18, which can strongly affect their 

selectivity for lipid annotation. This issue becomes particularly relevant 

when complex biological samples are analyzed. To overcome these 

drawbacks, lipid annotation in LipidMS is based on combining two 

complementary approaches. First, for DIA data, a parent-fragment 

coelution score (PFCS) is calculated in a predefined RT window around the 

parent ion RT to modulate the stringency in the association coeluting ions 

(adducts in MS1 or fragments in MS2). The PFCS score is formally defined as 

a Pearson correlation coefficient calculated based on the peak shape 

(distribution of intensities over elution time) of two peaks and it tests the 

similarity of the ion chromatograms between them. For each fragment ion 

or adduct coeluting with the parent ion in the predefined RT window, a 

PFCS is calculated based on Equation 1, where P1 refers to the 

parent/precursor peak (MS1) and P2 refers to an adduct (MS1) or fragment 

(MS2) peak. This procedure has been successfully applied in 

metabolomics148. In case of DDA data, only the closest MS2 scan to the RT 

of the MS1 peak is selected for annotation, which improves differentiation 

between coeluting isomeric lipid species. Second, and most importantly, 

LipidMS takes advantage of the use of fragmentation and intensity rules. 

The last are defined based on the relative intensity of different fragment 

ions and are used to elucidate the position of the different FA into the lipid 

backbone structure. Both fragmentation and intensities rules have been 

manually curated by using publicly available spectral information (i.e., 

LipidMaps26, METLIN25, LipidBlast67, HMDB22) and-in-house generated MS/MS 

spectra for DDA and DIA in three different MS/MS platforms (Thermo Q-

Exactive, Waters Synapt G2-Si Q-ToF and Agilent Q-ToF 6550). In the 

fragmentation rules curation procedure, the use of highly intense 

fragments common to several lipid classes has been avoided when possible 

and specific well-characterized fragments and adducts have been selected 

instead. Specific adducts selected fragments as well as the preferred 
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2.1.4. Peak filling 

Once all feature peaks have been defined, areas are extracted again 

for each peak and sample based on the peak parameters defined for each 

feature (m/z tolerance, initial and final RT) using the fillpeaksmsbatch 

function. This step avoids missing peaks that were not found in the peak-

picking step and improves the area estimation by homogenizing peak 

bounds for all samples. 

 

2.2. Lipid annotation 

Lipid annotation based on the DIA or DDA acquired samples is 

performed with the annotatemsbatch function to search for lipids in the 

msbatch based on a set of predefined fragmentation rules, which are 

detailed below. 

 

2.2.1. Rationale behind LipidMS annotation 

The building block nature of most lipid species enables the 

establishment of generic structure-derived fragmentation rules that can be 

used for MS-based identification and structure elucidation. This strategy 

has been satisfactorily implemented for lipid identification in both DDA 

and DIA approaches67–69. However, to accomplish lipid identification these 

methods commonly relied on the use of most intense fragments, which can 

generate false positives due to the poor selectivity of these ions when 

coelution is present. In RP, among other factors, lipids elution depends 

both on the lipid class and their FA composition, thus each lipid class 

usually elutes within a narrow RT window, eluting first those with shorter 

FA chains and more unsaturations. As a result, many common fragments, 

as those corresponding to head groups, are poorly chromatographically 
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resolved as represented in Figure 18, which can strongly affect their 

selectivity for lipid annotation. This issue becomes particularly relevant 

when complex biological samples are analyzed. To overcome these 

drawbacks, lipid annotation in LipidMS is based on combining two 

complementary approaches. First, for DIA data, a parent-fragment 

coelution score (PFCS) is calculated in a predefined RT window around the 

parent ion RT to modulate the stringency in the association coeluting ions 

(adducts in MS1 or fragments in MS2). The PFCS score is formally defined as 

a Pearson correlation coefficient calculated based on the peak shape 

(distribution of intensities over elution time) of two peaks and it tests the 

similarity of the ion chromatograms between them. For each fragment ion 

or adduct coeluting with the parent ion in the predefined RT window, a 

PFCS is calculated based on Equation 1, where P1 refers to the 

parent/precursor peak (MS1) and P2 refers to an adduct (MS1) or fragment 

(MS2) peak. This procedure has been successfully applied in 

metabolomics148. In case of DDA data, only the closest MS2 scan to the RT 

of the MS1 peak is selected for annotation, which improves differentiation 

between coeluting isomeric lipid species. Second, and most importantly, 

LipidMS takes advantage of the use of fragmentation and intensity rules. 

The last are defined based on the relative intensity of different fragment 

ions and are used to elucidate the position of the different FA into the lipid 

backbone structure. Both fragmentation and intensities rules have been 

manually curated by using publicly available spectral information (i.e., 

LipidMaps26, METLIN25, LipidBlast67, HMDB22) and-in-house generated MS/MS 

spectra for DDA and DIA in three different MS/MS platforms (Thermo Q-

Exactive, Waters Synapt G2-Si Q-ToF and Agilent Q-ToF 6550). In the 

fragmentation rules curation procedure, the use of highly intense 

fragments common to several lipid classes has been avoided when possible 

and specific well-characterized fragments and adducts have been selected 

instead. Specific adducts selected fragments as well as the preferred 
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acquisition mode (i.e., ESI+ and ESI-) for each lipid class are summarized in 

Tables 2-3. Additionally, the experimental data supporting the selection of 

the fragmentation rules used by LipidMS are represented in Additional 

Figures S1-S28 (Appendix 2). 

Figure 18. Coelution profile of common fragment 184.074 (phosphocholine) of PC and 
SM in a LC-MS analysis. A) Chromatographic peaks of all PC and SM detected in a sample 
using ESI+. B) Chromatographic profile of fragment 184.074 at collision energy 20eV. C) 
Chromatographic profile of fragment 184.074 at collision energy 40eV. 
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acquisition mode (i.e., ESI+ and ESI-) for each lipid class are summarized in 

Tables 2-3. Additionally, the experimental data supporting the selection of 

the fragmentation rules used by LipidMS are represented in Additional 

Figures S1-S28 (Appendix 2). 

Figure 18. Coelution profile of common fragment 184.074 (phosphocholine) of PC and 
SM in a LC-MS analysis. A) Chromatographic peaks of all PC and SM detected in a sample 
using ESI+. B) Chromatographic profile of fragment 184.074 at collision energy 20eV. C) 
Chromatographic profile of fragment 184.074 at collision energy 40eV. 

 

 

 

 

1
0

1
 

 

T
ab

le
 2

. 
P

re
fe

rr
ed

 a
d

d
u

ct
s 

an
d

 f
ra

g
m

en
ta

ti
o
n

 r
u

le
s 

se
t 

b
y

 d
ef

au
lt

 t
o
 a

n
n

o
ta

te
 l

ip
id

s 
in

 E
SI

+
. 

(*
) 

In
 c

as
e 

o
f 

T
G

, 
D

G
 s

n
X

 r
ef

er
s 

to
 t

h
e 

fr
ag

m
en

t 
io

n
 r

es
u

lt
in

g 
fr

o
m

 t
h

e 
lo

ss
 o

f 
th

e 
FA

 c
h

ai
n

 o
f 

th
e 

sn
X

 p
o

si
ti

o
n

, w
h

ic
h

 i
s 

a 
D

G
. 

 

C
la

ss
 

A
d

d
u

ct
s 

C
la

ss
 f

ra
g
m

en
ts

 
C

h
ai

n
 f

ra
g
m

en
ts

 
In

te
n

si
ty

 r
u

le
s 

C
ar

n
it

in
es

 
M

+
H

, M
+

N
a 

6
0

.0
8
0

7
, 8

5
.0

2
9
5
 

FA
 a

s 
M

+
H

-H
2
O

 
FA

 a
s 

M
+

H
-H

2
O

 
- 

C
E
 

2
M

+
N

H
4
, M

+
N

H
4

, 
2

M
+

N
a,

 M
+

N
a 

3
6

9
.3

5
1

6
 

FA
 a

s 
M

+
H

-H
2
O

 
FA

 a
s 

M
+

H
-H

2
O

 
- 

L
P
C

 
M

+
H

, M
+

N
a 

1
0

4
.1

0
7

5
, 1

8
4

.0
7

3
9
 

M
G

 a
s 

M
+

H
-H

2
O

 
- 

L
P
E
 

M
+
H

, M
+

N
a 

N
L 

o
f 

1
4

1
.0

1
9

0
9
 

M
G

 a
s 

M
+

H
-H

2
O

 
- 

P
C

 
M

+
H

, M
+

N
a 

1
0

4
.1

0
7

5
, 1

8
4

.0
7

3
9
 

N
L 

o
f 

1
8

3
.0

6
6

0
4
 

Sn
1

: L
PC

 a
s 

M
+

H
 o

r 
M

+
H

-H
2
O

 
Sn

2
: L

PC
 a

s 
M

+
H

 o
r 

M
+

H
-H

2
O

 o
r 

Pr
ec

u
rs

o
r 

– 
sn

1
 

LP
C

 s
n

1
 >

 2
 *

 L
PC

 s
n

2
 

P
E
 

M
+
H

, M
+

N
a 

D
G

 a
s 

M
+

H
-H

2
O

 
Sn

1
: L

PE
 o

r 
M

G
 a

s 
M

+
H

-H
2
O

 
Sn

2
: F

A
 o

r 
M

G
 a

s 
M

+
H

-H
2
O

 
LP

E 
sn

1
 >

 3
 *

 L
PE

 s
n

2
 

M
G

 s
n

2
 >

 2
 *

 M
G

 s
n

1
 

o
P

C
 

M
+
H

, M
+

N
a 

1
0

4
.1

0
7

5
, 1

8
4

.0
7

3
9
 

N
L 

o
f 

1
8

3
.0

6
6

0
4
 

Sn
1

: o
LP

C
 a

s 
M

+
H

 o
r 

M
+

H
-H

2
O

 
Sn

2
: L

PC
 a

s 
M

+
H

 o
r 

M
+

H
-H

2
O

 o
r 

Pr
ec

u
rs

o
r 

– 
sn

1
 

o
LP

C
 s

n
1

 >
 2

 *
 L

PC
 s

n
2
 

p
P

C
 

M
+
H

, M
+

N
a 

1
0

4
.1

0
7

5
, 1

8
4

.0
7

3
9
 

N
L 

o
f 

1
8

3
.0

6
6

0
4
 

Sn
1

: p
LP

C
 a

s 
M

+
H

 o
r 

M
+
H

-H
2
O

 
Sn

2
: L

PC
 a

s 
M

+
H

 o
r 

M
+

H
-H

2
O

 o
r 

Pr
ec

u
rs

o
r 

– 
sn

1
 

p
LP

C
 s

n
1

 >
 2

 *
 L

PC
 s

n
2

 

o
P

E
 

M
+
H

, M
+

N
a 

N
L 

o
f 

1
4

0
.0

1
2
 

Sn
1

: o
LP

E 
as

 M
+

H
 o

r 
M

+
H

-H
2
O

 
Sn

2
: M

G
 a

s 
M

+
H

-H
2
O

 
o
LP

E 
sn

1
 >

 2
 *

 M
G

 s
n

2
 

 

p
P

E
 

M
+
H

, M
+

N
a 

N
L 

o
f 

1
4

0
.0

1
2
 

Sn
1

: p
LP

E 
as

 M
+

H
 o

r 
M

+
H

-H
2
O

 
Sn

2
: M

G
 a

s 
M

+
H

-H
2
O

 
p

LP
E 

sn
1

 >
 2

 *
 M

G
 s

n
2
 

 

Chapter 1: LipidMS - Results and Discussion

                  101 



 

1
0

2
 

 

  
 

C
la

ss
 

A
d

d
u

ct
s 

C
la

ss
 f

ra
g
m

en
ts

 
C

h
ai

n
 f

ra
g
m

en
ts

 
In

te
n

si
ty

 r
u

le
s 

D
G

 
M

+
H

-H
2
O

, 
M

+
N

H
4
, M

+
N

a 
- 

Sn
1

: M
G

 a
s 

M
+

H
-H

2
O

 
Sn

2
: M

G
 a

s 
M

+
H

-H
2
O

 
M

G
 s

n
1

 >
 M

G
 s

n
2
 

T
G

 
M

+
N

H
4
, M

+
N

a 
- 

Sn
1

: P
re

cu
rs

o
r 

- 
D

G
 a

s 
M

+
H

-H
2
O

 
Sn

2
: P

re
cu

rs
o
r 

- 
D

G
 a

s 
M

+
H

-H
2
O

 
Sn

3
: P

re
cu

rs
o
r 

- 
D

G
 a

s 
M

+
H

-H
2
O

 

(*
) 
D

G
 s

n
2

 >
 D

G
 s

n
1

 >
 D

G
 s

n
3
 

Sp
h

 
M

+
H

 
- 

Sp
h

 a
s 

M
+

H
-H

2
O

 o
r 

M
+

H
-2

H
2
O

 
- 

Sp
h

P
 

M
+
H

 
- 

Sp
h

 a
s 

M
+

H
-H

2
O

. M
+

H
-2

H
2
O

 o
r 

M
+

H
-

H
2
O

-N
H

4
 

- 

A
cy

lC
er

 
M

+
H

, M
+

H
-H

2
O

, 
M

+
N

a 
- 

N
L 

o
f 

ac
yl

 c
h

ai
n

 (
C

er
 a

s 
M

+
H

, M
+
H

-H
2
O

 
o
r 

M
+

H
-2

H
2
O

) 
Sp

h
 a

s 
M

+
H

-H
2
O

 o
r 

M
+

H
-2

H
2
O

 
FA

 a
s 

M
+

H
 

- 

C
er

 
M

+
H

-H
2
O

, M
+

H
, 

M
+

N
a 

- 
Sp

h
 a

s 
M

+
H

-2
H

2
O

 
Pr

ec
u

rs
o
r 

- 
Sp

h
 

- 

C
er

P
 

M
+
H

 
N

L 
o

f 
p

h
o
sp

h
at

e 
gr

o
u

p
 (

C
er

 a
s 

M
+
H

-H
2
O

 o
r 

M
+

H
-2

H
2
O

) 
Sp

h
 a

s 
M

+
H

-2
H

2
O

 
Pr

ec
u

rs
o
r 

- 
Sp

h
 

- 

SM
 

M
+
H

, M
+

N
a 

1
0

4
.1

0
7

5
, 1

8
4

.0
7

3
9
 

N
L 

o
f 

1
8

3
.0

6
6

0
4
 

Sp
h

 a
s 

M
+

H
-2

H
2
O

 
Pr

ec
u

rs
o
r 

- 
Sp

h
 

- 

 

1
0

3
 

 

T
ab

le
 3

. P
re

fe
rr

ed
 a

d
d

u
ct

s 
an

d
 f

ra
g
m

en
ta

ti
o
n

 r
u

le
s 

se
t 

b
y

 d
ef

au
lt

 t
o
 a

n
n

o
ta

te
 l

ip
id

s 
in

 E
SI

-. 
 

C
la

ss
 

A
d

d
u

ct
s 

C
la

ss
 f

ra
g
m

en
ts

 
C

h
ai

n
 f

ra
g
m

en
ts

 
In

te
n

si
ty

 r
u

le
s 

F
A

 
M

-H
, 2

M
-H

 
FA

 a
s 

M
-H

 o
r 

M
-H

-H
2
O

 
- 

- 

F
A

H
F
A

 
M

-H
 

- 
H

FA
 a

s 
M

-H
 

FA
 a

s 
M

-H
 

- 

L
P
C

 
M

+
C

H
3
C

O
O

, M
-C

H
3
, 

M
+

C
H

3
C

O
O

-C
H

3
 

1
6

8
.0

4
2

6
, 2

2
4

.0
6

8
8

, 
LP

A
 a

s 
M

-H
 o

r 
LP

C
 a

s 
M

-C
H

3
 

FA
 a

s 
M

-H
 

- 

L
P
E
 

M
-H

 
1

4
0
.0

1
1

5
, 1

9
6

.0
3

8
, 2

1
4

.0
4

8
, 

N
o
 p

re
se

n
ce

 o
f 

N
L 

o
f 

C
H

3
 

FA
 a

s 
M

-H
 

- 

L
P
G

 
M

-H
 

1
5

2
.9

9
5

8
, 2

0
9

.0
2

2
, 2

2
7

.0
3

2
6

, 
N

L 
o

f 
7

4
.0

3
5

9
 

FA
 a

s 
M

-H
 

- 

L
P
I 

M
-H

 
2

2
3
.0

0
0

8
, 2

4
1

.0
1

1
5

, 2
5

9
.0

2
1

9
, 

2
9

7
.0

3
7

5
 

FA
 a

s 
M

-H
 

- 

L
P
S 

M
-H

, M
+

N
a-

2
H

 
N

L 
o

f 
8

7
.0

3
2
 

FA
 a

s 
M

-H
 

- 

P
C

 
M

+
C

H
3
C

O
O

, M
-C

H
3
, 

M
+

C
H

3
C

O
O

-C
H

3
 

N
L 

o
f 

C
H

3
, 1

6
8

.0
4

2
6
, 2

2
4

.0
6

8
8
 

Sn
1

: L
PC

 a
s 

M
-C

H
3
 

Sn
2

: L
PC

 a
s 

M
-C

H
3
 o

r 
FA

 a
s 

M
-H

 
LP

C
 s

n
1

 >
 3

 *
 L

PC
 s

n
2

 

P
E
 

M
-H

 
1

4
0
.0

1
1

5
, 1

9
6

.0
3

8
, 2

1
4

.0
4

8
, 

N
o
 p

re
se

n
ce

 o
f 

N
L 

o
f 

C
H

3
 

Sn
1

: L
PE

 a
s 

M
-H

 
Sn

2
: L

PE
 a

s 
M

-H
 o

r 
FA

 a
s 

M
-H

 
LP

E 
sn

1
 >

 3
 *

 L
PE

 s
n

2
 

P
G

 
M

-H
 

1
5

2
.9

9
5

8
, 2

0
9

.0
2

2
, 2

2
7

.0
3

2
6

, 
N

L 
o

f 
7

4
.0

3
5

9
 

Sn
1

: L
PG

 a
s 

M
-H

 
Sn

2
: L

PG
 a

s 
M

-H
 o

r 
FA

 a
s 

M
-H

 
LP

G
 s

n
1

 >
 3

 *
 L

PG
 s

n
2

 

P
I 

M
-H

 
2

2
3
.0

0
0

8
, 2

4
1

.0
1

1
5

, 2
5

9
.0

2
1

9
, 

2
9

7
.0

3
7

5
 

Sn
1

: L
PI

 o
r 

LP
A

 a
s 

M
-H

 
Sn

2
: L

PI
 a

s 
M

-H
 o

r 
FA

 a
s 

M
-H

 
LP

I 
sn

1
 >

 3
 *

 L
PI

 s
n

2
 

LP
A

 s
n

1
 >

 3
 *

 L
PA

 s
n

2
 

P
S 

M
-H

, M
+

N
a-

2
H

 
N

L 
o

f 
8

7
.0

3
2
 

Sn
1

: L
PA

 a
s 

M
-H

 o
r 

M
-H

-H
2
O

 
Sn

2
: L

PA
 a

s 
M

-H
 o

r 
M

-H
-H

2
O

 o
r 

FA
 

as
 M

-H
 

LP
A

 s
n

1
 >

 3
 *

 L
PA

 s
n

2
 

    102 



 

1
0

2
 

 

  
 

C
la

ss
 

A
d

d
u

ct
s 

C
la

ss
 f

ra
g
m

en
ts

 
C

h
ai

n
 f

ra
g
m

en
ts

 
In

te
n

si
ty

 r
u

le
s 

D
G

 
M

+
H

-H
2
O

, 
M

+
N

H
4
, M

+
N

a 
- 

Sn
1

: M
G

 a
s 

M
+

H
-H

2
O

 
Sn

2
: M

G
 a

s 
M

+
H

-H
2
O

 
M

G
 s

n
1

 >
 M

G
 s

n
2
 

T
G

 
M

+
N

H
4
, M

+
N

a 
- 

Sn
1

: P
re

cu
rs

o
r 

- 
D

G
 a

s 
M

+
H

-H
2
O

 
Sn

2
: P

re
cu

rs
o
r 

- 
D

G
 a

s 
M

+
H

-H
2
O

 
Sn

3
: P

re
cu

rs
o
r 

- 
D

G
 a

s 
M

+
H

-H
2
O

 

(*
) 
D

G
 s

n
2

 >
 D

G
 s

n
1

 >
 D

G
 s

n
3
 

Sp
h

 
M

+
H

 
- 

Sp
h

 a
s 

M
+

H
-H

2
O

 o
r 

M
+

H
-2

H
2
O

 
- 

Sp
h

P
 

M
+
H

 
- 

Sp
h

 a
s 

M
+

H
-H

2
O

. M
+

H
-2

H
2
O

 o
r 

M
+

H
-

H
2
O

-N
H

4
 

- 

A
cy

lC
er

 
M

+
H

, M
+

H
-H

2
O

, 
M

+
N

a 
- 

N
L 

o
f 

ac
yl

 c
h

ai
n

 (
C

er
 a

s 
M

+
H

, M
+
H

-H
2
O

 
o
r 

M
+

H
-2

H
2
O

) 
Sp

h
 a

s 
M

+
H

-H
2
O

 o
r 

M
+

H
-2

H
2
O

 
FA

 a
s 

M
+

H
 

- 

C
er

 
M

+
H

-H
2
O

, M
+

H
, 

M
+

N
a 

- 
Sp

h
 a

s 
M

+
H

-2
H

2
O

 
Pr

ec
u

rs
o
r 

- 
Sp

h
 

- 

C
er

P
 

M
+
H

 
N

L 
o

f 
p

h
o
sp

h
at

e 
gr

o
u

p
 (

C
er

 a
s 

M
+
H

-H
2
O

 o
r 

M
+

H
-2

H
2
O

) 
Sp

h
 a

s 
M

+
H

-2
H

2
O

 
Pr

ec
u

rs
o
r 

- 
Sp

h
 

- 

SM
 

M
+
H

, M
+

N
a 

1
0

4
.1

0
7

5
, 1

8
4

.0
7

3
9
 

N
L 

o
f 

1
8

3
.0

6
6

0
4
 

Sp
h

 a
s 

M
+

H
-2

H
2
O

 
Pr

ec
u

rs
o
r 

- 
Sp

h
 

- 

 

1
0

3
 

 

T
ab

le
 3

. P
re

fe
rr

ed
 a

d
d

u
ct

s 
an

d
 f

ra
g
m

en
ta

ti
o
n

 r
u

le
s 

se
t 

b
y

 d
ef

au
lt

 t
o
 a

n
n

o
ta

te
 l

ip
id

s 
in

 E
SI

-. 
 

C
la

ss
 

A
d

d
u

ct
s 

C
la

ss
 f

ra
g
m

en
ts

 
C

h
ai

n
 f

ra
g
m

en
ts

 
In

te
n

si
ty

 r
u

le
s 

F
A

 
M

-H
, 2

M
-H

 
FA

 a
s 

M
-H

 o
r 

M
-H

-H
2
O

 
- 

- 

F
A

H
F
A

 
M

-H
 

- 
H

FA
 a

s 
M

-H
 

FA
 a

s 
M

-H
 

- 

L
P
C

 
M

+
C

H
3
C

O
O

, M
-C

H
3
, 

M
+

C
H

3
C

O
O

-C
H

3
 

1
6

8
.0

4
2

6
, 2

2
4

.0
6

8
8

, 
LP

A
 a

s 
M

-H
 o

r 
LP

C
 a

s 
M

-C
H

3
 

FA
 a

s 
M

-H
 

- 

L
P
E
 

M
-H

 
1

4
0
.0

1
1

5
, 1

9
6

.0
3

8
, 2

1
4

.0
4

8
, 

N
o
 p

re
se

n
ce

 o
f 

N
L 

o
f 

C
H

3
 

FA
 a

s 
M

-H
 

- 

L
P
G

 
M

-H
 

1
5

2
.9

9
5

8
, 2

0
9

.0
2

2
, 2

2
7

.0
3

2
6

, 
N

L 
o

f 
7

4
.0

3
5

9
 

FA
 a

s 
M

-H
 

- 

L
P
I 

M
-H

 
2

2
3
.0

0
0

8
, 2

4
1

.0
1

1
5

, 2
5

9
.0

2
1

9
, 

2
9

7
.0

3
7

5
 

FA
 a

s 
M

-H
 

- 

L
P
S 

M
-H

, M
+

N
a-

2
H

 
N

L 
o

f 
8

7
.0

3
2
 

FA
 a

s 
M

-H
 

- 

P
C

 
M

+
C

H
3
C

O
O

, M
-C

H
3
, 

M
+

C
H

3
C

O
O

-C
H

3
 

N
L 

o
f 

C
H

3
, 1

6
8

.0
4

2
6
, 2

2
4

.0
6

8
8
 

Sn
1

: L
PC

 a
s 

M
-C

H
3
 

Sn
2

: L
PC

 a
s 

M
-C

H
3
 o

r 
FA

 a
s 

M
-H

 
LP

C
 s

n
1

 >
 3

 *
 L

PC
 s

n
2

 

P
E
 

M
-H

 
1

4
0
.0

1
1

5
, 1

9
6

.0
3

8
, 2

1
4

.0
4

8
, 

N
o
 p

re
se

n
ce

 o
f 

N
L 

o
f 

C
H

3
 

Sn
1

: L
PE

 a
s 

M
-H

 
Sn

2
: L

PE
 a

s 
M

-H
 o

r 
FA

 a
s 

M
-H

 
LP

E 
sn

1
 >

 3
 *

 L
PE

 s
n

2
 

P
G

 
M

-H
 

1
5

2
.9

9
5

8
, 2

0
9

.0
2

2
, 2

2
7

.0
3

2
6

, 
N

L 
o

f 
7

4
.0

3
5

9
 

Sn
1

: L
PG

 a
s 

M
-H

 
Sn

2
: L

PG
 a

s 
M

-H
 o

r 
FA

 a
s 

M
-H

 
LP

G
 s

n
1

 >
 3

 *
 L

PG
 s

n
2

 

P
I 

M
-H

 
2

2
3
.0

0
0

8
, 2

4
1

.0
1

1
5

, 2
5

9
.0

2
1

9
, 

2
9

7
.0

3
7

5
 

Sn
1

: L
PI

 o
r 

LP
A

 a
s 

M
-H

 
Sn

2
: L

PI
 a

s 
M

-H
 o

r 
FA

 a
s 

M
-H

 
LP

I 
sn

1
 >

 3
 *

 L
PI

 s
n

2
 

LP
A

 s
n

1
 >

 3
 *

 L
PA

 s
n

2
 

P
S 

M
-H

, M
+

N
a-

2
H

 
N

L 
o

f 
8

7
.0

3
2
 

Sn
1

: L
PA

 a
s 

M
-H

 o
r 

M
-H

-H
2
O

 
Sn

2
: L

PA
 a

s 
M

-H
 o

r 
M

-H
-H

2
O

 o
r 

FA
 

as
 M

-H
 

LP
A

 s
n

1
 >

 3
 *

 L
PA

 s
n

2
 

Chapter 1: LipidMS - Results and Discussion

                 103 



 

1
0

4
 

 

C
la

ss
 

A
d

d
u

ct
s 

C
la

ss
 f

ra
g
m

en
ts

 
C

h
ai

n
 f

ra
g
m

en
ts

 
In

te
n

si
ty

 r
u

le
s 

o
P

C
 

M
+

C
H

3
C

O
O

, M
-C

H
3
, 

M
+

C
H

3
C

O
O

-C
H

3
 

N
L 

o
f 

C
H

3
, 1

6
8

.0
4

2
6
, 2

2
4

.0
6

8
8
 

Sn
1

: o
LP

C
 a

s 
M

-C
H

3
 o

r 
M

-C
H

3
-H

2
O

 
Sn

2
: F

A
 a

s 
M

-H
 o

r 
M

-C
O

2
-H

 
FA

 s
n

2
 >

 3
 *

 o
LP

C
 s

n
1

 

p
P

C
 

M
+

C
H

3
C

O
O

, M
-C

H
3
, 

M
+

C
H

3
C

O
O

-C
H

3
 

N
L 

o
f 

C
H

3
, 1

6
8

.0
4

2
6
, 2

2
4

.0
6

8
8
 

Sn
1

: p
LP

C
 a

s 
M

-C
H

3
 o

r 
M

-C
H

3
-H

2
O

 
Sn

2
: F

A
 a

s 
M

-H
 o

r 
M

-C
O

2
-H

 
FA

 s
n

2
 >

 3
 *

 p
LP

C
 s

n
1
 

o
P

E
 

M
-.
H

, M
+

N
aC

H
3
C

O
O

 
1

4
0
.0

1
1

5
, 1

9
6

.0
3

8
, 2

1
4

.0
4

8
 

Sn
1

: o
LP

E 
as

 M
-H

 o
r 

M
-H

-H
2
O

 
Sn

2
: F

A
 a

s 
M

-H
 

FA
 s

n
2

 >
 3

 *
 o

LP
E 

sn
1

 

p
P

E
 

M
-.
H

, M
+

N
aC

H
3
C

O
O

 
1

4
0
.0

1
1

5
, 1

9
6

.0
3

8
, 2

1
4

.0
4

8
 

Sn
1

: p
LP

E 
as

 M
-H

 o
r 

M
-H

-H
2
O

 
Sn

2
: F

A
 a

s 
M

-H
 

FA
 s

n
2

 >
 3

 *
 p

LP
E 

sn
1

 

C
L
 

M
-H

, M
-2

H
 

7
8

.9
5
8

5
, 1

5
2
.9

9
5

8
 

Sn
1

: L
PA

 a
s 

M
-H

-H
2
O

 
Sn

2
: L

PA
 a

s 
M

-H
-H

2
O

 
Sn

3
: L

PA
 a

s 
M

-H
-H

2
O

 
Sn

4
: L

PA
 a

s 
M

-H
-H

2
O

 

- 

Sp
h

 
M

-H
 

- 
Sp

h
 a

s 
M

-H
-H

2
O

 o
r 

M
-H

-2
H

2
O

 
- 

Sp
h

P
 

M
-H

 
7

8
.9

5
8

5
, 9

6
.9

6
9
1
 

Sp
h

 a
s 

M
-H

-H
2
O

 
- 

A
cy

lC
er

 
M

+
C

H
3
C

O
O

, M
-H

 
- 

 
A

cy
l 

ch
ai

n
 >

 5
 *

 N
L 

o
f 

Sp
h

 >
 2

 
* 

FA
 

C
er

 
M

+
C

H
3
C

O
O

, M
-H

 
- 

Sp
h

 a
s 

M
-H

-H
2
O

 o
r 

N
L 

o
f 

Sp
h

 
(p

ar
ti

al
) 

FA
 a

s 
M

-H
 

- 

C
er

P
 

M
-H

 
 

 
- 

B
A

 
M

-H
 

B
A

 a
s 

M
-H

-H
2
O

 
C

o
n

ju
ga

te
 f

ra
gm

en
t 

- 
- 

 

105 
 

2.2.1. Lipid coverage and building block database 

customization 

As previously mentioned, most of the lipids can be defined by a 

backbone structure, which defines the lipid class and subclass, and a 

number of acyl residues attached to that core structure (Figure 19). Thanks 

to this feature, a lipid database can be built by combining both the lipid 

core and the set of acyl chains to be incorporated131. By default, the building 

block database (bbDB) of LipidMS comprises a set of 30 fatty acyl chains 

and 4 sphingoid bases (Table 4), which were selected based on their 

biological relevance73.  

These chains are combined with the core structures of 29 lipid classes 

(Tables 2-3) to build a query database (qDB) that will be eventually used to 

interrogate the MS1 data. This qDB contains, by default, 3726 unique 

putative lipids regardless of the composition of each fatty acyl chain, even 

though the bbDB can be customized to add, for example, additional odd 

fatty acyl chains as FA(19:0). 

Figure 19. Example of building block structure of a PC. Glycerophosphocholine is the 
core structure to which two FA chains are attached, FA(16:0) at the sn1 position and 
FA(18:1) at the sn2 position. 
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2.2.1. Lipid coverage and building block database 

customization 

As previously mentioned, most of the lipids can be defined by a 

backbone structure, which defines the lipid class and subclass, and a 

number of acyl residues attached to that core structure (Figure 19). Thanks 

to this feature, a lipid database can be built by combining both the lipid 

core and the set of acyl chains to be incorporated131. By default, the building 

block database (bbDB) of LipidMS comprises a set of 30 fatty acyl chains 

and 4 sphingoid bases (Table 4), which were selected based on their 

biological relevance73.  

These chains are combined with the core structures of 29 lipid classes 

(Tables 2-3) to build a query database (qDB) that will be eventually used to 

interrogate the MS1 data. This qDB contains, by default, 3726 unique 

putative lipids regardless of the composition of each fatty acyl chain, even 

though the bbDB can be customized to add, for example, additional odd 

fatty acyl chains as FA(19:0). 

Figure 19. Example of building block structure of a PC. Glycerophosphocholine is the 
core structure to which two FA chains are attached, FA(16:0) at the sn1 position and 
FA(18:1) at the sn2 position. 
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Table 4. Building blocks included by default in the bbDB to build the qDB.  
 

 

 

 

 

 

 

 

 

 

 

2.2.2. LipidMS annotation workflow 

LipidMS v3.0 contains 45 individual annotation functions (e.g., 

idPCpos, idPCneg) wrapped into two general functions aimed to annotate 

msobjects for ESI+ or ESI- (idPOS and idNEG). In addition, annotatemsbatch 

function can be used to automatically annotate all the DIA and DDA 

msobjects contained in the msbatch and to dump the results into the 

dataset feature table. To exemplify the LipidMS annotation workflow, the 

identification procedure for a PG(16:0/18:1) is described in Figure 20.  

  

FA chains Sphingoid bases 

FA(8:0)  FA(18:1)  FA(22:0) Sph(16:0) 

FA(10:0)  FA(18:2)  FA(22:1) Sph(16:1) 

FA(12:0)  FA(18:3) FA(22:2) Sph(18:0) 

FA(14:0)  FA(18:4) FA(22:3) Sph(18:1) 

FA(14:1)  FA(20:0)  FA(22:4)  

FA(15:0)  FA(20:1)  FA(22:5)  

FA(16:0)  FA(20:2)  FA(22:6)  

FA(16:1)  FA(20:3)  FA(24:0)  

FA(17:0)  FA(20:4)  FA(24:1)  

FA(18:0)  FA(20:5)  FA(26:0)   
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Figure 20. Lipid annotation workflow in LipidMS. The steps for the identification of m/z. 
747.5177 in a RT of 285 seconds are shown as an example: 1) Search for PG candidates as 
[M-H]- based on MS1 information; 2) isolation of MS2 fragments based on RT windows and 
PFCS score for DIA data or from the corresponding MS2 scan in case of DDA data; 3) 
identification of class specific fragments; 4) identification of chain specific fragments; 5) 
selection of combinations of FA chains that sum up the total carbon and double bound 
composition; and 6) confirmation of FA chains position based on relative intensities 
between the chain fragments.  



 

106 
 

Table 4. Building blocks included by default in the bbDB to build the qDB.  
 

 

 

 

 

 

 

 

 

 

 

2.2.2. LipidMS annotation workflow 

LipidMS v3.0 contains 45 individual annotation functions (e.g., 

idPCpos, idPCneg) wrapped into two general functions aimed to annotate 

msobjects for ESI+ or ESI- (idPOS and idNEG). In addition, annotatemsbatch 

function can be used to automatically annotate all the DIA and DDA 

msobjects contained in the msbatch and to dump the results into the 

dataset feature table. To exemplify the LipidMS annotation workflow, the 

identification procedure for a PG(16:0/18:1) is described in Figure 20.  

  

FA chains Sphingoid bases 

FA(8:0)  FA(18:1)  FA(22:0) Sph(16:0) 

FA(10:0)  FA(18:2)  FA(22:1) Sph(16:1) 

FA(12:0)  FA(18:3) FA(22:2) Sph(18:0) 

FA(14:0)  FA(18:4) FA(22:3) Sph(18:1) 

FA(14:1)  FA(20:0)  FA(22:4)  

FA(15:0)  FA(20:1)  FA(22:5)  

FA(16:0)  FA(20:2)  FA(22:6)  

FA(16:1)  FA(20:3)  FA(24:0)  

FA(17:0)  FA(20:4)  FA(24:1)  

FA(18:0)  FA(20:5)  FA(26:0)   

 

107 
 

  

Figure 20. Lipid annotation workflow in LipidMS. The steps for the identification of m/z. 
747.5177 in a RT of 285 seconds are shown as an example: 1) Search for PG candidates as 
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Overall, the following steps are executed internally within each 

identification function survey for lipid annotation (i.e., idPGneg): 

1) On the basis of the set of chemical entities included in the bbDB 

(Table 4) and on the ionization properties selected for each 

lipid class (Tables 2-3), a target ion list is used to interrogate 

the MS1 data within defined m/z and RT tolerances 

(findCandidates). These parameters can be easily set up by the 

user. At this step, putatively annotated lipids are identified 

based on the lipid class, and the number of carbons and double 

bonds is determined. This level of survey is not reported by 

LipidMS by default, as we considered it as non-informative. 

However, this information can be easily recovered by the 

findCandidates function, or the class identification functions 

(e.g., idPGneg). In this step, only those features confirmed as 

M+0 in the MS1 level (those for which at least an M+1 

isotopologue has been detected) are used for annotation to 

reduce false-positive annotations.  

2) Then, fragment ions (MS2) related to the selected parent ions 

(MS1) need to be isolated. In case of DIA data, coeluting fragment 

ions for each putatively annotated lipid are selected based on 

the defined RT window. Optionally, a PFCS is then calculated for 

each of the pair precursor-fragment ions and only those 

fragments above a previously defined threshold are retained. To 

minimize false positives, a value of 5 seconds for the RT window 

and a PFCS value of 0.8 are set by default (coelutingFrags). 

However, these values can be easily changed by the user. In the 

case of DDA data, where a direct link between parent and 

fragment ions is available, the algorithm searches for the MS2 

scans that fall within the limits of the MS1 peak and for which the 

precursor of interest has been selected. If multiple MS2 scans meet 
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the requirements, only the closest to the RT of the MS1 peak is 

selected for annotation, which improves differentiation between 

isomeric lipid species (ddaFrags). 

3) On the basis of the established fragmentation rules (Tables 2-3) and 

the defined m/z tolerance (10 ppm by default for product ions), a 

survey for informative fragment ions of the lipid class (e.g., head 

groups) is performed among those ions extracted in step 2 

(checkClass).  

4) Then, the same procedure is applied for searching informative 

fragments of the fatty acyl components (chainFrags). 

5) Based on the proposed fatty acyl components, combinations that 

sum up the expected total number of carbons and double bonds 

determined in step 1 are searched (combineChains). 

6) Once the fatty acyl components have been determined, intensity 

rules, which are based on the relative intensities ratio between the 

fragments, are applied to elucidate the position of those chains 

(checkIntensityRules). For further details regarding intensity rules, 

see Tables 2-3. 

Depending on the structural evidence reached for annotation, 

lipids are identified with four different confidence levels: i) “MS-only”, 

when no clear fragmentation pattern is known (this level is available only 

for MG and FA as they do not have defined fragmentation patterns); ii) 

“subclass level”, when specific subclass fragments are found, but only the 

total number of carbons and double bonds of the chains can be proposed 

based on the precursor ion. At this level, LipidMS cannot differentiate 

which fatty acids are linked to the backbone and a sum of several 

isobaric/isomeric compounds is proposed (e.g. PG(34:1)); iii) “fatty acyl 

level”, when  specific chain fragments inform about the composition of 

fatty acyl chains, but no positional information can be provided (e.g., 

PG(16:0_18:1)); iv) “fatty acyl position level”, when the specific chain 
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Depending on the structural evidence reached for annotation, 

lipids are identified with four different confidence levels: i) “MS-only”, 

when no clear fragmentation pattern is known (this level is available only 

for MG and FA as they do not have defined fragmentation patterns); ii) 

“subclass level”, when specific subclass fragments are found, but only the 

total number of carbons and double bonds of the chains can be proposed 

based on the precursor ion. At this level, LipidMS cannot differentiate 

which fatty acids are linked to the backbone and a sum of several 
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position can be elucidated based on the chain fragments’ intensity ratios 

(e.g., PG(16:0/18:1)).  

As a result of the execution of lipid identification functions (idPOS 

or idNEG), two separate items, which can be easily saved as tables, are 

generated (i.e., ‘results peak table’ and ‘annotated peak table’). On the one 

hand, the ‘results peak table’ (Figure 21A) contains the following 

information for each annotated lipid: i) feature identity, annotated as 

lipid class, total number of carbons, double bonds and fatty acid 

composition, ii) peak properties, including m/z, RT, peak intensity and 

peakID information and iii) identification criteria used, reporting 

information about the detected adduct/s, m/z error, structural 

annotation level, and score (mean value of PFCS of all fragments used for 

annotation in DIA or sum of the relative intensity of the fragments in 

DDA). On the other hand, the ‘annotated peak table’ (Figure 21B) links the 

original MS1 peak table with the ‘results peak table’, providing the 

following information for each feature: m/z, RT, peak intensity, peakID, 

all the possible identities ranked by the annotation level, ion adducts and 

the mean value of the PFCS used in each lipid identification. Further 

information about the fragments that support each identification can be 

explored using class-specific identification functions (i.e., idPGneg).  

In case of batch processing, after all DIA/DDA msobjects have 

been annotated individually, the whole set of potential identities are 

automatically dumped into the dataset feature matrix 

(joinAnnotationResults function) (Figure 21C). If different annotation 

levels are obtained for a given lipid, e.g. feature X is identified as PC(34:1) 

based on DIA and PC(16:1/18:0) based on DDA, the identification with 

the highest degree of structural information (i.e., PC(16:1/18:0)) is 

maintained. If several identifications with the same annotation level are 

obtained (e.g., PC(18:1/16:0), PC(16:1/18:0)), they are all maintained. 
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Figure 21. Examples of annotation results returned by LipidMS. 
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2.2.3. Additional functions 

Besides providing the feature table that summarizes the intensity 

and identity of all the detected lipids across samples, LipidMS allows to 

obtain different graphical outputs that improve the interpretation of the 

results. On the one hand, the plotLipids function allows depicting 

information that supports the proposed lipid identities, as well as the 

achieved level of confidence for each identification at the msobject level 

so that the user could have a file with all lipid identifications for each 

sample acquired in DIA (Figure 22) or DDA (Figure 23).  

Figure 22. Example of graphical output of the plotLipids function for DIA acquired 
data.  MS1 plots show the adducts found for the annotated lipid specie and MS2 plots show 
the fragments that support the identification. Plots displayed on the left side show raw 
data, while smoothed peaks are displayed on the right side. 
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On the other hand, functions such as rtdevplot, plotticmsbatch 

and ploteicmsbatch, allow users to check that peak-picking and 

alignment steps have worked properly by visualizing the whole dataset 

(Figure 24). 

Figure 23. Example of graphical output of the plotLipids function for DDA acquired 
data.  MS1 plots show the adducts found for the annotated lipid specie and MS2 plots show 
the fragments that support the identification. Plots displayed on the left side show raw 
data, while plots on the right side show the smoothed peak from MS1 (up) and the clean 
MS/MS spectra (down). 
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2.3. Implementation 

LipidMS has been developed in an R programming 

environment and is available via CRAN (https://CRAN.R-

project.org/package=LipidMS). The source code and development 

Figure 24. Examples of additional graphical outputs. A) rtdevplot function, B) 
plotticmsbatch function and C) ploteicmsbatch function. 
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version are also available at https://github.com/maialba3/LipidMS. 

In addition, a web-based implementation of LipidMS has been built 

using the Shiny R-package149, which is accessible at www.lipidms.es. 

Example data files, scripts, tutorials for the R package and web 

application and links to the development version can be found at 

http://www.lipidms.es via the “Resources” tab. 

 

2.3.1. R package 

LipidMS package works with two main types of objects: 

msobject and msbatch. On the one hand, the msobject is a list that 

contains all the raw and processed data for a single sample (raw 

scans, scans metadata, processing parameters, peaks properties and 

annotation results), while the msbatch consists of a list of all the 

msobjects that belong to a dataset and the information regarding to 

the alignment and grouping steps (i.e., processing parameters, 

clustering results, peak groups and feature matrix). With these two 

types of objects, LipidMS may be used to process and annotate single 

sample files acquired in DIA or DDA (msobjects) or to work with 

larger datasets that combine full scan, DIA and DDA acquisition 

(msbatch) (Figure25). In this case, several pre-processed msobjects 

are wrapped into a single msbatch to be aligned and grouped and 

then, DIA and DDA msobjects are annotated individually. Results are 

finally dumped into the general feature matrix. These two optional 

workflows are outlined in Figure25.  
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2.3.2. Web-based application 

In order to provide a user-friendly GUI interface, LipidMS has also 

been implemented as a web-based tool using Shiny149, which is accessed 

at www.lipidms.es. After accessing the tool, the following tabs will take 

users through the LipidMS workflow: 

Figure 25.  Alternative processing pipelines in LipidMS. A) Single files workflow, and B) 
batch data processing workflow. 
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- Data import. On the first tab (Figure 26), users must choose 

polarity and upload all the mzXML files and a metadata file in 

the csv format with three columns: sample (mzXML file 

names); acquisition mode (MS for full scan, DIA or DDA); 

sample type (e.g., QC, group1, group2, etc.).  

- Peak-picking. Then all the parameters required for peak-

picking can be tuned. On this tab (Figure 27), the MS1 and MS2 

values correspond to those parameters used to process the 

MS1 level in all cases and the MS2 level for the DIA data files, 

respectively. 

- Batch processing. The third tab (Figure 28) contains the 

parameters required for alignment, grouping and filling peak 

steps. 

- Annotation. On the annotation tab (Figure 29), the lipid 

classes to be searched, and the m/z and RT tolerances, can be 

defined. 

- Run. Finally, users can run their job (Figure 30). The results 

will be sent to the email provided by the user and will contain 

two or three csv files with the results tables (feature matrix if 

batch processing is performed, summary tables and the whole 

peak tables with annotations) and the pdf files with plots of 

the peaks supporting the lipid identifications for all the files. 

Extra documentation, examples and links to the source code in 

github or CRAN can be found by clicking on the “Resources” tab.   
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Figure 26. Data import tab of the LipidMS web tool. On this tab, users can upload mzXML 
data files and the csv metadata file. 

Figure 27. Peak-picking tab of the LipidMS web tool. On this tab, users can tune the 
peak-picking processing parameters for peak extraction in MS1 and MS2 levels separately. 
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Figure 29. Annotation tab of the LipidMS web tool. On this tab, users can tune the 
parameters used for lipid annotation.  

Figure 28. Batch processing tab of the LipidMS web tool. On this tab, users can tune the 
parameters used for alignment and grouping.  



 

118 
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data files and the csv metadata file. 

Figure 27. Peak-picking tab of the LipidMS web tool. On this tab, users can tune the 
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Figure 29. Annotation tab of the LipidMS web tool. On this tab, users can tune the 
parameters used for lipid annotation.  

Figure 28. Batch processing tab of the LipidMS web tool. On this tab, users can tune the 
parameters used for alignment and grouping.  
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Figure 30. Run tab of the LipidMS web tool. On this tab, users can tune the parameters 
used for alignment and grouping. 
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3. LipidMS performance evaluation 

To evaluate LipidMS performance, a commercial human serum pool 

(Sigma-Aldrich reference P2918) was analyzed by LC-MS using both the ESI+ 

and ESI- ionization modes and in full scan, DIA and DDA acquisition modes. 

To provide an objective qualifier for the comparison, serum was extracted 

with or without the addition of 68 lipid standards. Raw data files and results 

are available at Zenodo (https://doi.org/10.5281/zenodo.6645498). Three 

different workflows were compared: i) LipidMS workflow; ii) MS-DIAL 

workflow136; iii) data pre-processing using XCMS31 followed by isotope 

annotation using CAMERA145145. 

When employing the LipidMS workflow (i.e., data pre-processing 

and lipid annotation), the samples acquired in full scan, DIA and DDA were 

simultaneously processed, which was not possible using MS-DIAL. For MS-

DIAL, the MS and DDA files were processed together and the DIA files 

separately. Then DIA identifications were added to the feature matrix 

obtained for the full scan and DDA files using a m/z tolerance of 0.005 and 

an RT tolerance of 10 seconds. XCMS was exclusively applied to pre-

process the MS1 level of all the samples and CAMERA for the annotation of 

the isotopes in the generated feature matrix. In all cases, the reported 

features referred to the combination of the positive and negative ionization 

modes for the MS1 level, and lipid identities are based on the information 

obtained for MS2 from the DDA and DIA acquired samples. In all three 

cases, features were filtered and normalized based on quality control (QC) 

samples. Only the features that appeared in at least 70% of the QC samples 

were kept. Then, data was normalized using a LOESS function, which was 

fitted to the QC samples based on the injection order. Finally, a differential 

analysis between the spiked and non-spiked serum samples was 

performed using a Student’s t-test. 
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Figure 30. Run tab of the LipidMS web tool. On this tab, users can tune the parameters 
used for alignment and grouping. 
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3. LipidMS performance evaluation 

To evaluate LipidMS performance, a commercial human serum pool 

(Sigma-Aldrich reference P2918) was analyzed by LC-MS using both the ESI+ 

and ESI- ionization modes and in full scan, DIA and DDA acquisition modes. 

To provide an objective qualifier for the comparison, serum was extracted 

with or without the addition of 68 lipid standards. Raw data files and results 

are available at Zenodo (https://doi.org/10.5281/zenodo.6645498). Three 

different workflows were compared: i) LipidMS workflow; ii) MS-DIAL 

workflow136; iii) data pre-processing using XCMS31 followed by isotope 

annotation using CAMERA145145. 

When employing the LipidMS workflow (i.e., data pre-processing 

and lipid annotation), the samples acquired in full scan, DIA and DDA were 

simultaneously processed, which was not possible using MS-DIAL. For MS-

DIAL, the MS and DDA files were processed together and the DIA files 

separately. Then DIA identifications were added to the feature matrix 

obtained for the full scan and DDA files using a m/z tolerance of 0.005 and 

an RT tolerance of 10 seconds. XCMS was exclusively applied to pre-

process the MS1 level of all the samples and CAMERA for the annotation of 

the isotopes in the generated feature matrix. In all cases, the reported 

features referred to the combination of the positive and negative ionization 

modes for the MS1 level, and lipid identities are based on the information 

obtained for MS2 from the DDA and DIA acquired samples. In all three 

cases, features were filtered and normalized based on quality control (QC) 

samples. Only the features that appeared in at least 70% of the QC samples 

were kept. Then, data was normalized using a LOESS function, which was 

fitted to the QC samples based on the injection order. Finally, a differential 

analysis between the spiked and non-spiked serum samples was 

performed using a Student’s t-test. 
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The performance of each pre-processing software was evaluated by 

comparing the number of detected and identified lipid standard features 

(a single lipid can be annotated using different features that could result 

from the ionization of many adducts, e.g. [M+H]+ and [M+Na]+, thus, 129 

features were expected from the 68 lipids) and the differences in these 

lipid standard features between spiked and non-spiked samples. 

Additionally, for the comparison between MS-DIAL and LipidMS workflows, 

the number of correctly and wrongly annotated lipids was evaluated. 

 

3.1.  Comparison between LipidMS and XCMS data pre-

processing 

First LipidMS version was designed for lipid annotation of single 

samples, which required the use of external software as XCMS to perform 

data pre-processing (i.e., from peak-picking to fill missing peaks). From 

LipidMS v3.0, it includes the whole workflow for batch processing. To 

evaluate the performance of these pre-processing steps incorporated into 

LipidMS v3.0, we compared the results obtained by the LipidMS workflow 

to those obtained by employing one of the most widely used platforms in 

MS data processing: XCMS31. 

Despite the fact that XCMS found a larger total number of features 

than LipidMS (33352 in XCMS vs. 19382 in LipidMS) (Table 5), both software 

provide similar numbers in terms of the expected lipid standard features 

detected and significant changes in them (Table 5-7). These results validate 

the LipidMS pre-processing workflow, which for lipidomic studies provided 

results that were comparable to those obtained by XCMS. 
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The performance of each pre-processing software was evaluated by 

comparing the number of detected and identified lipid standard features 

(a single lipid can be annotated using different features that could result 

from the ionization of many adducts, e.g. [M+H]+ and [M+Na]+, thus, 129 

features were expected from the 68 lipids) and the differences in these 

lipid standard features between spiked and non-spiked samples. 

Additionally, for the comparison between MS-DIAL and LipidMS workflows, 

the number of correctly and wrongly annotated lipids was evaluated. 

 

3.1.  Comparison between LipidMS and XCMS data pre-

processing 

First LipidMS version was designed for lipid annotation of single 

samples, which required the use of external software as XCMS to perform 

data pre-processing (i.e., from peak-picking to fill missing peaks). From 

LipidMS v3.0, it includes the whole workflow for batch processing. To 

evaluate the performance of these pre-processing steps incorporated into 

LipidMS v3.0, we compared the results obtained by the LipidMS workflow 

to those obtained by employing one of the most widely used platforms in 

MS data processing: XCMS31. 

Despite the fact that XCMS found a larger total number of features 

than LipidMS (33352 in XCMS vs. 19382 in LipidMS) (Table 5), both software 

provide similar numbers in terms of the expected lipid standard features 

detected and significant changes in them (Table 5-7). These results validate 

the LipidMS pre-processing workflow, which for lipidomic studies provided 

results that were comparable to those obtained by XCMS. 
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3.1.  Comparison between LipidMS and MS-DIAL 

3.1.1. Data processing and annotation of known lipid 

standards 

The whole LipidMS workflow from data processing to lipid 

annotation was compared with one of the most employed tools in MS-

based lipidomics, which is MS-DIAL136. MS-DIAL found a larger number 

of features than LipidMS (75263 vs. 25574) (Table 5), but both 

provided similar numbers in terms of the expected lipid standard 

features that were detected and significant changes between 

additivated and non-additivated serum samples (Table 5-7). However, 

regarding lipid identification, LipidMS provided a larger number of 

both identified features (98/129 vs. 76/129) and identified lipid 

species (60/68 vs. 56/68) (Table 5-7). Most of the differences in the 

proposed identities are attributed to MS-DIAL incorrect assignation of 

some adducts, where ions [M+H]+ and [M-H]- were correctly annotated, 

but adducts like [M+Na]+, [M+CH3COO]-, [M-CH3]- or [M+Na-2H]- were 

not annotated or incorrectly identified (Table6-7). Thus, by means of 

this strategy, which focused on a subset of lipid classes covered by 

MS-DIAL and LipidMS, both software packages provided comparable 

results or LipidMS slightly outperformed MS-DIAL in some aspects. 

The improved LipidMS annotation of adducts compared to MS-DIAL 

was due to its underlying lipid annotation strategy in which features 

are first assigned as being related (e.g., putative [M+H]+ and [M+Na]+ 

ions of a given lipid), and then their lipid identity is proposed. This 

approach reduces the possibility of proposing different lipid identities 

for different adducts from a single lipid.  
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3.1.2. Annotation of lipids in human serum pool sample 

Finally, LipidMS performance was compared to MS-DIAL in 

relation to the total number of lipid annotations provided for the 

aforementioned commercial human serum pool (Sigma-Aldrich 

reference P2918) analyzed by LC-MS in both the ESI+ and ESI– ionization 

modes and by full scan, DIA and DDA acquisition modes. All the 

annotations provided by MS-DIAL and LipidMS were manually curated 

and their results compared. The raw data files and an Excel file 

containing all the curated lipid identities, the annotations proposed by 

LipidMS and the annotations proposed by MS-DIAL can be accessed at 

Zenodo (https://doi.org/10.5281/zendo.6645498). 

For both polarities, MS-DIAL provided a larger number of correct 

lipid annotations (580 vs. 387 in ESI– and 588 vs. 445 in ESI+) (Tables 8-

9). The main reasons for this increased coverage can be attributed to 

the following reasons: i) MS-DIAL covers more lipid classes than 

LipidMS; ii) MS-DIAL databases have a higher diversity of fatty acyl 

chains in terms of chain length and double bonds, including oxidized 

and hydroxylated fatty acyl chains; and iii) MS-DIAL presents a higher 

diversity of ceramides and sphingomyelins species than LipidMS. These 

results evidence that new releases of LipidMS should incorporate new 

lipid classes, sphingoid bases and fatty acyl moieties to fill this gap. 

Despite this lower number of identification, LipidMS provided higher 

structural information compared to MS-DIAL (i.e., a bigger proportion 

of lipids where the structural information level achieves an FA position). 

This improvement is because LipidMS uses the ratio between the 

intensity of fragments to elucidate the position of fatty acyl chains for 

most lipid classes, whereas MS-DIAL only discloses the fatty acyl 

position for ceramides and sphingomyelins. Additionally, MS-DIAL also 

provided more incorrect annotations in both polarities (669 vs. 79 in 
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ESI– and 897 vs. 50 in ESI+). For LipidMS, incorrect annotations 

represented less than the 20% of the proposed annotations, but added 

up to 60% of the proposed identities for MS-DIAL (Tables 8-9 and Figure 

31). Most of the incorrect annotations in MS-DIAL came from the DIA 

data, where many annotations were based on noisy spectra and the 

majority of the reference ions were not present in the samples. As 

previously mentioned, many incorrect annotations were due to the 

incorrect assignment of adducts. This was particularly relevant for 

cardiolipins because almost all of them were annotated incorrectly, and 

some phosphatidylcholines and phosphatidylethanolamines were 

erroneously assigned to a particular class due to the miss-annotation of 

[M+Na]+ as [M+H]+ or [M+CH3COO]- as [M-H]-.  

In short, when the performance of LipidMS and MS-DIAL to 

annotate lipids in a complex biological sample was compared, MS-DIAL 

annotated more lipids but also provided more incorrect annotations, 

(i.e., peaks that did not correspond to known lipids and were annotated 

or lipids with a miss-annotation), whereas LipidMS provided fewer 

annotated lipids, as well as lower false-positives and higher level of 

structural information (Tables 8-9 and Figure 31). In addition, while MS-

DIAL separately processes DDA and DIA files, what requires subsequent 

merging of the results and is time consuming, any combination of the 

different modes of MS acquisition can be simultaneously processed 

using LipidMS.  
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Table 8. Summary of the lipids identified in ESI-. Total: total number of annotated lipids. 
Correct: lipids whose proposed annotation is correct based on the observed spectra. Class: 
specific subclass fragments are found, but only the total number of carbons and double 
bonds of the chains can be proposed based on the precursor ion. FA: the specific chain 
fragments that inform about the composition of fatty acyl chains are found. FA position: 
when the specific fatty acyl chain position can be elucidated based on chain fragments 
intensity ratios. Incorrect: lipids for which an incorrect annotation is provided, or non-
lipidic features that are annotated as lipids. Unique: lipids that are annotated exclusively 
by one of the software packages. Missing: the lipids with confirmed lipid identity but are 
not annotated by one of the software packages. 
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Figure 31. Summary of lipid annotations provided by LipidMS and MS-DIAL for the 
human serum pool. Levels of structural information provided: Class, the detected 
fragments allow to provide information only about the total number of carbons and 
double bonds and the lipid class; FA, the identity of the fatty acyl moieties can be 
identified; FA position, the actual position of the fatty acyl moieties within the lipid 
structure can be deduced. 
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4. Future improvements of LipidMS 

In order to expand the lipidome coverage of LipidMS, future 

releases should incorporate new lipid classes such as oxidized and 

glycosylated lipids and a wider variety of fatty acyl chains and 

sphingoid bases (e.g., odd-chain fatty acids). In addition, it might be 

interesting to standarize LipidMS formats and workflows to make it 

compatible with other R packages such as those from the R for Mass 

Spectrometry Initiative (https://www.rformassspectrometry.org/). 

Additionally, most of the lipidomic studies only provide a static 

snapshot of the lipid profiles, lacking dynamic information about lipid 

metabolism such as building block sources, function of related enzymes 

and transporters or lipid-lipid interactions. For this reason, our next 

challenge is to adapt LipidMS to make it capable of analyzing DDA and 

DIA data when stable isotope tracers (e.g., 13C) are used. The modelling 

of isotopic patterns of complex lipids such as phospholipids, 

glycerolipids or sphingolipids and their building blocks (e.g. polar head 

groups, fatty acyl chains, sphingoid bases) may allow the estimation of 

the turnover of the different blocks used to synthetize an individual 

lipid and to better understand the complex metabolic reactions in which 

lipids are involved in. 
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Stable-isotope tracing combined with MS-based has been 

extensively used for interrogating FA metabolism. An example of a 

common experimental design for the study of FA biosynthesis using 13C-

tracers is shown in Figure 32. The total FA synthesis rate can be estimated 

by using D2O, which labels FA through direct solvent incorporation and 

NADPH-mediated hydrogen transfer150,151, while employing 13C-labelled 

tracer nutrients (e.g., U-13C-glucose, U-13C-glutamine, U-13C-acetate, etc.) 

allows the total FA synthesis rate and the relative contribution of a given 

nutrient to be estimated152. The framework for FA synthesis data analysis 

using 13C-labelled tracers and MS was initially set up by Isotopomer Spectral 

Analysis (ISA)153 and Mass Isotopomer Distribution Analysis (MIDA)154, 

which model FA synthesis following the incorporation of n 2-carbon units. 

In the ISA model, each isotopologue is modeled by an equation composed 

of the linear sum of two multinomial distributions representing the 

preexisting or imported fraction of the FA and the newly synthesized 

fraction. For each step in the synthesis process, a molecule of acetate (2 

carbon) is added to the FA chain containing 0, 1 or 2 13C atoms with a 

Figure 32. Classical isotope labelling experiment for FA analysis. After incubation with 
13C-tracers such as 13C-glucose or 13C-glutamine, isotopic label is incorporated to FA via 
acetyl-CoA. FA isotopologues distributions are obtained by LC-MS analysis and modelled 
using different algorithms based on multinomial distributions. 

 

Figure 1. FA metabolism network. Summary of the FA interconversions covered by 
FAMetA and the parameters that can be estimated for each one. In red, the FA for which 
no parameter can be estimated because they are either solely imported or result from 
desaturation being performed on them. Horizontal transitions denote elongations and 
vertical transitions depict desaturations. The responsible enzymes are indicated in both 
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probability D0, D1 or D2, respectively, depending on the contribution of 

the 13C-tracer to the pool of acetate (D). When data is previously corrected 

for the natural abundance of 13C, for FA up to 16 carbons, the model can 

be simplified to: 

𝑃𝑃(𝑀𝑀 + 0) = 𝑆𝑆 ∗ 𝐷𝐷0𝑥𝑥0 + 𝐼𝐼 
(Equation 2) 

𝑃𝑃(𝑀𝑀 + 𝑋𝑋)1≤𝑋𝑋≤𝑀𝑀 = 𝑆𝑆 ∗ (𝑀𝑀𝑋𝑋) ∗∑𝐷𝐷0𝑥𝑥0 ∗ 𝐷𝐷1𝑥𝑥1 ∗ 𝐷𝐷2𝑥𝑥2 

(Equation 3) 

, given that: 

𝑆𝑆 + 𝐼𝐼 = 1 

(Equation 4) 

𝐷𝐷0 + 𝐷𝐷1 + 𝐷𝐷2 = 1 

(Equation 5) 

𝑥𝑥0 + 𝑥𝑥1 + 𝑥𝑥2 = 𝑀𝑀/2 

(Equation 6) 

𝑥𝑥1 + 2 ∗ 𝑥𝑥2 = 𝑋𝑋 

(Equation 7) 

 

M is the total number of carbons in the FA chain, which may contain 

from 0 to M 13C atoms (X); S is the newly synthesized FA fraction and I is 

the preexisting or imported fraction, which only contributes to the M+0 

abundance; and x0, x1 and x2 refer to the number of acetate molecules 

containing 0, 1 or 2 13C atoms with a probability D0, D1 and D2, respectively. 

Unfortunately, these mass isotopologue modelling methods only provide 

information about the DNL of FA for which the contribution of elongation 

is minimal (i.e., FA of 14 or 16 carbons). ConvISA incorporated one 

elongation step to, thus, extending the analysis to 18-carbon FA155, and 

 

143 
 

recently, Fatty Acid Source Analysis (FASA) included many elongation 

steps, which extend the FA species that can be properly modelled to 26C129. 

In the FASA model, each isotopologue is modeled with a sum of several 

multinomial distributions which represent the preexisting or imported 

fraction of the FA, the fraction that is newly synthesized and those 

fractions that are imported and elongated n times (IEn). For example, for FA 

of 20 carbons, four different fractions (which are modeled by a different 

multinomial distribution) are distinguished: 

𝑆𝑆 + 𝐼𝐼𝐼𝐼1 + 𝐼𝐼𝐼𝐼2 + 𝐼𝐼 = 1 

(Equation 8) 
 

, where S represents the fraction that comes from newly synthesized 

FA(16:0) and elongated twice; IE1 represents the fraction of imported 

FA(18:0) and elongated once, and IE2, the fraction of imported FA(16:0) and 

elongated twice. In addition, for FA from n3 and n6 series, which come 

from imported linoleic (FA(18:2)n6) and α-linolenic (FA(18:3)n3) acids, S is 

fixed to 0 and elongation is assumed from those 18-carbon species. 

However, FASA has some limitations as it assumes de novo synthesis up to 

26-carbon FA (S) and it calculates multiple import-elongation terms, which 

does not accurately represent the actual biological process. Finally, a 

simple strategy for estimating the desaturation of FA(18:0) to FA(18:1)n9 

has also been described by Kamphorst and colleagues156. Yet this approach 

is based on the total labelling of precursor and product FA, and its 

application to the complete array of desaturations has not yet been 

explored. Despite these valuable advances, reliable FA elongation 

calculations are still to be fully addressed, whereas systematic 

desaturation estimations remain unresolved. Additionally, the above-

mentioned algorithms have been developed for platforms that require 

computational skills and commercial software, thus, they are not readily 

accessible to the broad metabolism community.  



 

142 
 

probability D0, D1 or D2, respectively, depending on the contribution of 

the 13C-tracer to the pool of acetate (D). When data is previously corrected 

for the natural abundance of 13C, for FA up to 16 carbons, the model can 

be simplified to: 

𝑃𝑃(𝑀𝑀 + 0) = 𝑆𝑆 ∗ 𝐷𝐷0𝑥𝑥0 + 𝐼𝐼 
(Equation 2) 

𝑃𝑃(𝑀𝑀 + 𝑋𝑋)1≤𝑋𝑋≤𝑀𝑀 = 𝑆𝑆 ∗ (𝑀𝑀𝑋𝑋) ∗∑𝐷𝐷0𝑥𝑥0 ∗ 𝐷𝐷1𝑥𝑥1 ∗ 𝐷𝐷2𝑥𝑥2 

(Equation 3) 

, given that: 

𝑆𝑆 + 𝐼𝐼 = 1 

(Equation 4) 

𝐷𝐷0 + 𝐷𝐷1 + 𝐷𝐷2 = 1 

(Equation 5) 

𝑥𝑥0 + 𝑥𝑥1 + 𝑥𝑥2 = 𝑀𝑀/2 

(Equation 6) 

𝑥𝑥1 + 2 ∗ 𝑥𝑥2 = 𝑋𝑋 

(Equation 7) 

 

M is the total number of carbons in the FA chain, which may contain 

from 0 to M 13C atoms (X); S is the newly synthesized FA fraction and I is 

the preexisting or imported fraction, which only contributes to the M+0 

abundance; and x0, x1 and x2 refer to the number of acetate molecules 

containing 0, 1 or 2 13C atoms with a probability D0, D1 and D2, respectively. 

Unfortunately, these mass isotopologue modelling methods only provide 

information about the DNL of FA for which the contribution of elongation 

is minimal (i.e., FA of 14 or 16 carbons). ConvISA incorporated one 

elongation step to, thus, extending the analysis to 18-carbon FA155, and 

 

143 
 

recently, Fatty Acid Source Analysis (FASA) included many elongation 

steps, which extend the FA species that can be properly modelled to 26C129. 

In the FASA model, each isotopologue is modeled with a sum of several 

multinomial distributions which represent the preexisting or imported 

fraction of the FA, the fraction that is newly synthesized and those 

fractions that are imported and elongated n times (IEn). For example, for FA 

of 20 carbons, four different fractions (which are modeled by a different 

multinomial distribution) are distinguished: 

𝑆𝑆 + 𝐼𝐼𝐼𝐼1 + 𝐼𝐼𝐼𝐼2 + 𝐼𝐼 = 1 

(Equation 8) 
 

, where S represents the fraction that comes from newly synthesized 

FA(16:0) and elongated twice; IE1 represents the fraction of imported 

FA(18:0) and elongated once, and IE2, the fraction of imported FA(16:0) and 

elongated twice. In addition, for FA from n3 and n6 series, which come 

from imported linoleic (FA(18:2)n6) and α-linolenic (FA(18:3)n3) acids, S is 

fixed to 0 and elongation is assumed from those 18-carbon species. 

However, FASA has some limitations as it assumes de novo synthesis up to 

26-carbon FA (S) and it calculates multiple import-elongation terms, which 

does not accurately represent the actual biological process. Finally, a 

simple strategy for estimating the desaturation of FA(18:0) to FA(18:1)n9 

has also been described by Kamphorst and colleagues156. Yet this approach 

is based on the total labelling of precursor and product FA, and its 

application to the complete array of desaturations has not yet been 

explored. Despite these valuable advances, reliable FA elongation 

calculations are still to be fully addressed, whereas systematic 

desaturation estimations remain unresolved. Additionally, the above-

mentioned algorithms have been developed for platforms that require 

computational skills and commercial software, thus, they are not readily 

accessible to the broad metabolism community.  

Chapter 2: FAMetA - Introduction



 

144 
 

 

  

 

145 
 

 

 

 

 

 

 

 

 

Methodology 
  



 

144 
 

 

  

 

145 
 

 

 

 

 

 

 

 

 

Methodology 
  



 

146 
 

  

 

147 
 

1. Chemicals and reagents 

Solvents for sample processing and LC-MS analysis were 

isopropanol, isooctane, potassium hydroxide, formic acid and ammonium 

acetate obtained from Sigma–Aldrich/Fluka, and acetonitrile, methanol and 

heptane, from Fisher Scientific. 

FA standards and internal standards, obtained from Avanti Polar 

Lipids, Sigma-Aldrich/Fluka, Larodan and Caiman Chemicals, were capric acid 

(FA(10:0)), lauric acid (FA(12:0)), myristic acid (FA(14:0)), deuterated myristic 

acid (FA(14:0)D27), myristoleic acid (FA(14:1)n5), pentadecanoic acid 

(FA(15:0)), palmitic acid (FA(16:0)), 11-hexadecanoic acid (FA(16:1)n5), 

palmitoleic acid (FA(16:1)n7), 7-hexadecenoic acid (FA(16:1)n9), sapienic acid 

(FA(16:1) n10), margaric acid (FA(17:0)), stearic acid (FA(18:0)), vaccenic acid 

(FA(18:1)n7), oleic acid (FA(18:1)n9), 6-octadecenoic acid (FA(18:1)n12), 5-

octadecenoic acid (FA(18:1)n13), linoleic acid (FA(18:2)n6), 6,9-octadecadienoic 

acid (FA(18:2)n9), 5,8-octadecadienoic acid (FA(18:2)n10), alpha-linolenic acid 

(FA(18:3)n3), gamma-linolenic acid (FA(18:3)n6), nonadecanoic acid (FA(19:0)), 

arachidic acid (FA(20:0)), 13-eicosenoic acid (FA(20:1)n7), gondoic acid 

(FA(20:1)n9) , 8-eicosenoic acid (FA(20:1)n12), 11,14-eicosadienoic acid 

(FA(20:2)n6), dihomo-alpha-linolenic acid (FA(20:3) n3), dihomo-gamma-

linolenic acid (FA(20:3)n6), 5,8,11-eicosatrienoic acid (FA(20:2)n9), 8,11,14,17-

eicosatetraenoic acid (FA(20:4)n3), arachidonic acid (FA(20:4)n6), 

eicosapentaenoic acid (FA(20:5)n3), behenic acid (FA(22:0)), erucic acid 

(FA(22:1)n9), docosadienoic acid (FA(22:2)n6), 10,13,16-docosatrienoic acid 

(FA(22:3)n6), 10,13,16,19-docosatetraenoic acid (FA(22:4)n3), adrenic acid 

(FA(22:4)n6), clupanodonic acid (FA(22:5)n3), 4,7,10,13,16-docosapentaenoic 

acid (FA(22:5)n6), cervonic acid (FA(22:6)n3), lignoceric acid (FA(24:0)), 

nervonic acid (FA(24:1)n9), 9,12,15,18-tetracosatetraenoic acid (FA(24:4)n6), 

9,12,15,18,21-tetracosapentaenoic acid (FA(24:5)n3), 6,9,12,15,18-
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tetracosapentaenoic acid (FA(24:5)n6), 6,9,12,15,18,21-tetracosahexaenoic 

acid (FA(24:6)n3), cerotic acid (FA(26:0)) and 1,2-dipalmitoyl-d62-sn-

glycero-3-phosphocholine (PC(16:0/16:0)D62). 
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(SC26196)158 were purchased from Sigma-Aldrich; SCD inhibitor A93572159,160 

was obtained from MedChemExpress. Antibodies anti-CD3 (ref BE0001-1) and 

anti-CD28 (ref BE0015-1) were provided by BioXCell. Recombinant IL-2 (ref 

212-12) was obtained from Peprotech. 
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2. Cell lines and growth conditions for cell 

metabolism studies 
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mice were used. 6-week-old wild-type C57BL/6 were purchased from 
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20:00h) and had free access to water and a standard chow diet. Animals 

were housed in the Health Research Institute–Hospital La Fe Valencia 

facilities. Mouse studies followed the protocols approved by the Health 

Research Institute–Hospital La Fe Valencia Ethics and Animal Care and Use 

Committee (Protocol number 2020/VSC/PEA/0048). To isolate naïve CD8+ 

T-cells, spleens were harvested. Single-cell suspensions were prepared by 

manual disruption and passage through a 70µm cell strainer in PBS 

supplemented with 0.5% BSA and 2mM EDTA. After RBC lysis, naïve CD8+ 

T-cells were purified by magnetic bead separation using commercially 

available kits following manufacturers’ instructions (naïve CD8a+ T-Cell 

Isolation Kit, mouse, Miltenyi Biotec Inc.)161. 

Cells were cultured in complete RPMI media (RPMI 1640 

supplemented with 10% FBS, 100U/mL penicillin, 100µg/mL streptomycin, 

55µM 2-mercaptoethanol). Naïve T-cells were stimulated for 48h with plate-

bound anti-CD3 (10µg/mL) and anti-CD28 (5µg/mL) in complete RPMI 

media supplemented with recombinant IL-2 (100U/mL). All the 

experiments on ‘active’ T-cells were performed on day 4–5 postactivation161. 

For FA metabolism studies, isotopically-labelled media were 

prepared from glucose, glutamine and amino acids-free RPMI media, 

and were supplemented with 10% dialyzed FBS, 100U/ml penicillin, 

100µg/ml streptomycin, recombinant IL-2 (100U/mL) and 55µM 2-
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mercaptoethanol. U-13C-glucose and U-13C-glutamine were added at the 

normal concentration found in RPMI 1640 media. U-13C-acetate was 

added at 100µM. U-13C-lactate was added at 11mM161–165. The CD8+ T-cells 

were seeded at 0.8 x 106cells/mL and incubated for 72h with labelled 

media (and inhibitors). At 24h and 48h, cells were counted using the 

Countess II automated cell counter (Thermo Fischer Scientific) and 

density was adjusted to 0.8x106cells/mL with complete fresh labelled 

media (and inhibitors). At 72h, the final cell density was determined. 

Then, cells were transferred to 1.5mL Eppendorf tubes and pelleted 

(500g, 3min). Media were removed. Cells were washed once with cold 

PBS 1x, resuspended in 500µL of cold PBS 1x and stored at -80ºC161,163. 

 

2.2. A549 cell line  

The KRAS-mutant non-small cell lung cancer (NSCLC) cell line 

A549 was originally obtained from ATCC. The A549 cells were 

maintained in RPMI-1640 media supplemented with 10% FBS, 100U/mL 

penicillin and 100µg/mL streptomycin, and were routinely screened for 

mycoplasma contamination. Identity was confirmed by STR sequencing. 

For FA metabolism studies, isotopically-labelled media were prepared 

from glucose, glutamine and amino acids-free RPMI media, and were 

supplemented with 10% dialyzed FBS, 100U/ml penicillin and 100µg/ml 

streptomycin. The NSCLC cell line A549, cells were seeded at 7x104 

cells/well in 6-well plates. After 24h, media were replaced with labelled 

media (and inhibitors). Cells were incubated for 48-72h until 80-90% 

confluence, the media was replaced with fresh media (and inhibitors) 

every 24h. At the end of the incubation, media were removed, cells were 

washed once with cold PBS 1x, scraped with 500 µL of cold PBS 1x, 

transferred to 1.5mL Eppendorf tubes and stored at -80ºC163. 
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3. Sample preparation 

3.1. Preparation of standards 

Individual stocks for each compound were prepared at 2mg/mL 

following the recommendations of the suppliers. Working solutions for FA 

standards were prepared at 1µg/mL in methanol/water/acetronitrile 

(25:25:50). A mixed solution containing all the fatty acid standards was 

prepared in methanol/water/acetronitrile (25:25:50) at 30µg/mL each and 

subsequently diluted at the suitable final concentrations. 

 

3.2. Saponification and extraction of total FA from 

cells 

To analyze the total FA, 450µL of cell suspension were 

transferred to a glass vial, and 1000µL of a 9:1 methanol:hydroxide 

potassium (3M in H2O) solution containing PC(16:0/16:0)D62 at 3ppm 

were added. Saponification was performed for 1h at 80ºC in a water 

bath. After saponification, samples were cooled on ice and acidified by 

adding 100µL of formic acid. FA were extracted with 2mL of 

heptane:isooctane (1:1) (2x), dried in a nitrogen flow, resuspended in 

200µL of mobile phase A containing FA(14:0)D27 at 1ppm and 

transferred to a glass HPLC vial127. 
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4. LC-MS analysis 

4.1. Instrumentation 

All the experiments conducted for fatty acid analysis were 

performed using a Q–orbitrap mass spectrometer (Q-Exactive, Thermo-

Fisher Scientific) coupled to RP chromatography through an ESI source.  

 

4.2. Chromatographic separation 

Liquid chromatography separation was performed in a Cortecs C18 

column (2.1mm × 150mm, 1.6µm particle size; Waters). Solvent (A) was 

2.5mM ammonium acetate in 60:40 water:methanol. Solvent (B) was 2.5mM 

ammonium acetate in 95:5 acetonitrile:isopropanol. The flow rate was 

0.3mL/min, the column temperature was 45ºC, the autosampler 

temperature was 5ºC and the injection volume was 5µL. The liquid 

chromatography gradient was: 0 min, 45% B; 0.5 min, 45% B; 19min, 55% B; 

23min, 99% B; 34min, 99% B. Between injections, the column was washed 

for 2min with 50:50 acetonitrile:isopropanol before being equilibrated to 

the initial conditions. 

 

4.3. MS detection 

The Q-Exactive instrument operated in the ESI- with the following 

conditions: the sheath gas flow rate was 60; the auxiliary gas flow rate was 

20; the spray voltage was 1.50kV; the capillary temperature was 300⁰C; the 

S-lens RF-level was 75; and the auxiliary gas heater temperature was 300ºC. 

Data was acquired in centroid mode using the full scan method with the 

following parameters: resolution 140000, AGC target 1000000, maximum 

IT 100ms, scan range from m/z 100 to m/z 450 and data type centroid.  
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5. Data processing and analysis for fatty acid 

analysis 

For the performance evaluation of FAMetA, all data was 

processed using FAMetA (using LipidMS for data pre-processing) except 

for the comparison between FAMetA and FASA, for which both software 

were employed. Scripts, parameters and files used for all experiments 

are available at Zenodo (accession number 6511248), but general 

parameters employed for FAMetA processing are described below: 

- FAMetA: data pre-processing was performed with the above 

LipidMS parameters, and then, FAMetA was employed for the FA 

metabolic analysis: 

 

o Peak-picking parameters: 

 dmzagglom: 15 

 drtagglom: 200 

 drtclust: 100 

 minpeak: 8 

 drtgap: 5 

 drtminpeak: 8 

 drtmaxpeak: 30 

 recurs: 10 

 sb: 5 

 sn 5 

 minint: 100000 

 weight: 2 

 dmzIso: 5 

 drtIso: 5 
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o Batch processing parameters (alignment and grouping): 

 dmzalign: 10 

 drtalign: 60 

 span: 0.2 

 minsamplesfracalign: 0.50 

 dmzgroup: 10 

 drtagglomgroup: 50 

 drtgroup: 10 

 minsamplesfracgroup: 0.20 

o FA annotation: 

 dmz: 5 

 adduct: M-H 

o Isotope annotation: 

 dmzIso: 10 

 coelCutoffIso: 0.2 

o Data correction: 

 correct13C: TRUE 

 resolution: 140000 

 purity13C: 0.99 

 externalnormalization: (keep empty) 

o Synthesis analysis: in case of experiments using 

inhibitors, S may decrease below the confidence interval 

and D2 parameter can be misestimated. To avoid this 

problem D2 values were fixed using the control group 

(misestimated values were replaced with the mean value 

of the control group for palmitic acid).  

 R2Thr: 0.95 

 maxiter: 1000 

 maxconvergence: 100 

 startpoints: 5 
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 propagated: TRUE 

o Elongation and desaturation analysis: 

 R2Thr: 0.95 

 maxiter: 10000 

 maxconvergence: 100 

 startpoints: 5 

 D2Thr: 0.1 

 SEThr: 0.05 
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 propagated: TRUE 

o Elongation and desaturation analysis: 

 R2Thr: 0.95 

 maxiter: 10000 

 maxconvergence: 100 

 startpoints: 5 

 D2Thr: 0.1 

 SEThr: 0.05 
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1. FAMetA overview 

The use of 13C-tracers and MS is the gold standard method for the 

analysis of the FA metabolism. This method relies on the incorporation 

of 13C atoms, through acetyl-CoA, to FA during synthesis and elongation 

reactions and the subsequent analysis of their mass isotopologue 

distributions (MID). Despite several algorithms and tools have been 

developed in order to extract information about FA metabolism by 

modelling these MID, they still provide a limited and difficult-to-interpret 

snapshot of FA metabolism. Most of these methods only provide 

information about de novo lipogenesis (DNL) for FA up to 16 or 18C155 or 

do not reflect the actual biological steps of the elongation processes129. In 

addition, desaturation is not considered for the complete FA network156. 

In order to overcome these limitations and motivated by an increasing 

body of evidence that suggest the key role of FA in cancer we decided to 

develop a tool that use 13C mass isotopologue profiles to estimate most 

of the biosynthetic reactions involved in FA metabolism: DNL, elongation, 

desaturation and FA import. 

 FAMetA is an R package (https://CRAN.R-

project.org/package=FAMetA) and a web-based platform 

(https://www.fameta.es) that relies on the MID obtained from 13C-labelled 

FA analyzed by LC-MS or GC-MS to estimate import (I), synthesis of FA up 

to 16C (S), fractional contribution of the 13C-tracer (D0, D1, D2, which 

represent the acetyl-CoA fraction with 0, 1 or 2 atoms of 13C, respectively), 

elongation (E) and desaturation (Δ) parameters for the expected 

biosynthetic network of FA up to 26C155 (Figure 33). FAMetA has been 

designed to model the actual reactions of the biosynthetic network so 

that each step of the reactions is represented as a unique parameter 

(Figure 34).  



 

158 
 

 

  

 

159 
 

1. FAMetA overview 

The use of 13C-tracers and MS is the gold standard method for the 

analysis of the FA metabolism. This method relies on the incorporation 

of 13C atoms, through acetyl-CoA, to FA during synthesis and elongation 

reactions and the subsequent analysis of their mass isotopologue 

distributions (MID). Despite several algorithms and tools have been 

developed in order to extract information about FA metabolism by 

modelling these MID, they still provide a limited and difficult-to-interpret 

snapshot of FA metabolism. Most of these methods only provide 

information about de novo lipogenesis (DNL) for FA up to 16 or 18C155 or 

do not reflect the actual biological steps of the elongation processes129. In 

addition, desaturation is not considered for the complete FA network156. 

In order to overcome these limitations and motivated by an increasing 

body of evidence that suggest the key role of FA in cancer we decided to 

develop a tool that use 13C mass isotopologue profiles to estimate most 

of the biosynthetic reactions involved in FA metabolism: DNL, elongation, 

desaturation and FA import. 

 FAMetA is an R package (https://CRAN.R-

project.org/package=FAMetA) and a web-based platform 

(https://www.fameta.es) that relies on the MID obtained from 13C-labelled 

FA analyzed by LC-MS or GC-MS to estimate import (I), synthesis of FA up 

to 16C (S), fractional contribution of the 13C-tracer (D0, D1, D2, which 

represent the acetyl-CoA fraction with 0, 1 or 2 atoms of 13C, respectively), 

elongation (E) and desaturation (Δ) parameters for the expected 

biosynthetic network of FA up to 26C155 (Figure 33). FAMetA has been 

designed to model the actual reactions of the biosynthetic network so 

that each step of the reactions is represented as a unique parameter 

(Figure 34).  

Chapter 2: FAMetA - Results and Discussion



 

160 
 

 

Figure 33. FA metabolism network. Summary of the FA interconversions covered by 
FAMetA and the parameters that can be estimated for each one. In red, the FA for which 
no parameter can be estimated because they are either solely imported or result from 
desaturation being performed on them. Horizontal transitions denote elongations and 
vertical transitions depict desaturations. The responsible enzymes are indicated in both 
cases. We assume DNL up to FA(16:0), although the calculation of the DNL parameters 
can be estimated for both FA(14:0) and FA(16:0). For the transformations of FA(18:2)n6 
into FA(20:3)n6 and FA(18:3)n3 to FA(20:4)n3, the preferred route is desaturation, 
followed by elongation. The asterisk denotes a secondary route. 

 

Figure 2. Example of the FAMetA calculations for FA(16:0) to FA(20:1)n9. A detailed 
description of the calculation of FA sources, reported endogenous synthesis and the 
parameters calculated for the FA FA(16:0), FA(18:0), FA(18:1)n9 and FA(20:1)n9.Figure 3. 
FA metabolism network. Summary of the FA interconversions covered by FAMetA and 
the parameters that can be estimated for each one. In red, the FA for which no parameter 
can be estimated because they are either solely imported or result from desaturation 
being performed on them. Horizontal transitions denote elongations and vertical 
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For FA up to 16C, DNL is modelled by using quasi-multinomial 

distributions, which allow the estimation of the following parameters: I, 

S and D0, D1, D2; apart from accounting for data overdispersion (Φ). The 

equations employed to fit the experimental isotopologue distribution 

are equivalent to those employed by the ISA algorithm153,154  when both 

the Φ parameter is set to 0 and data is corrected by the natural 

abundance of 13C.  For FA of 18 to 26C, apart from the parameters S and 

I, up to five elongation terms (En, n=1 for 18C to n=5 for 26C FA) are 

estimated. Each elongation term represents the direct estimation of the 

fraction that comes from the elongation of the total pool of the 

precursor FA (Figure 34). Compared to previous tools (i.e., FASA, where 

the synthesis of a FA longer than 16C is described as DNL up to the total 

length and multiple import-elongation terms129), the way in which 

elongations are calculated by FAMetA better reflects how FA are 

elongated within the cells, which permits the straightforward 

Figure 34. Example of the FAMetA calculations for FA(16:0) to FA(20:1)n9. A detailed 
description of the calculation of FA sources, reported endogenous synthesis and the 
parameters calculated for the FA FA(16:0), FA(18:0), FA(18:1)n9 and FA(20:1)n9. 

 

Figure 4. FAMetA overview. FAMetA is an R package and a web-based platform for the 
estimation of FA metabolism based on mass isotopologue data, generated after 
incubation with suitable 13C-tracers and based on LC-MS or GC-MS analysis of fatty acid 
extracts. The main steps within FAMetA workflow include data processing, estimation of 
metabolism parameters for each sample and fatty acid based on the obtained mass 
isotopologue distributions and finally the combination of those individual results to 
provide a global view of fatty acid metabolism network for each condition of interest and 
the comparison between them. The most relevant biologically relevant outputs that can 
be obtained, depending on the experimental design include the fractional contribution of 
each tested carbon source, the detailed description of the metabolic origin of each 
detected fatty acid and the elucidation of alterations in fatty acid metabolism between 
conditions of interest.Figure 5. Example of the FAMetA calculations for FA(16:0) to 
FA(20:1)n9. A detailed description of the calculation of FA sources, reported endogenous 
synthesis and the parameters calculated for the FA FA(16:0), FA(18:0), FA(18:1)n9 and 
FA(20:1)n9. 
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can be estimated for both FA(14:0) and FA(16:0). For the transformations of FA(18:2)n6 
into FA(20:3)n6 and FA(18:3)n3 to FA(20:4)n3, the preferred route is desaturation, 
followed by elongation. The asterisk denotes a secondary route. 

 

Figure 2. Example of the FAMetA calculations for FA(16:0) to FA(20:1)n9. A detailed 
description of the calculation of FA sources, reported endogenous synthesis and the 
parameters calculated for the FA FA(16:0), FA(18:0), FA(18:1)n9 and FA(20:1)n9.Figure 3. 
FA metabolism network. Summary of the FA interconversions covered by FAMetA and 
the parameters that can be estimated for each one. In red, the FA for which no parameter 
can be estimated because they are either solely imported or result from desaturation 
being performed on them. Horizontal transitions denote elongations and vertical 
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For FA up to 16C, DNL is modelled by using quasi-multinomial 

distributions, which allow the estimation of the following parameters: I, 

S and D0, D1, D2; apart from accounting for data overdispersion (Φ). The 

equations employed to fit the experimental isotopologue distribution 

are equivalent to those employed by the ISA algorithm153,154  when both 

the Φ parameter is set to 0 and data is corrected by the natural 

abundance of 13C.  For FA of 18 to 26C, apart from the parameters S and 

I, up to five elongation terms (En, n=1 for 18C to n=5 for 26C FA) are 

estimated. Each elongation term represents the direct estimation of the 

fraction that comes from the elongation of the total pool of the 

precursor FA (Figure 34). Compared to previous tools (i.e., FASA, where 

the synthesis of a FA longer than 16C is described as DNL up to the total 

length and multiple import-elongation terms129), the way in which 

elongations are calculated by FAMetA better reflects how FA are 

elongated within the cells, which permits the straightforward 

Figure 34. Example of the FAMetA calculations for FA(16:0) to FA(20:1)n9. A detailed 
description of the calculation of FA sources, reported endogenous synthesis and the 
parameters calculated for the FA FA(16:0), FA(18:0), FA(18:1)n9 and FA(20:1)n9. 

 

Figure 4. FAMetA overview. FAMetA is an R package and a web-based platform for the 
estimation of FA metabolism based on mass isotopologue data, generated after 
incubation with suitable 13C-tracers and based on LC-MS or GC-MS analysis of fatty acid 
extracts. The main steps within FAMetA workflow include data processing, estimation of 
metabolism parameters for each sample and fatty acid based on the obtained mass 
isotopologue distributions and finally the combination of those individual results to 
provide a global view of fatty acid metabolism network for each condition of interest and 
the comparison between them. The most relevant biologically relevant outputs that can 
be obtained, depending on the experimental design include the fractional contribution of 
each tested carbon source, the detailed description of the metabolic origin of each 
detected fatty acid and the elucidation of alterations in fatty acid metabolism between 
conditions of interest.Figure 5. Example of the FAMetA calculations for FA(16:0) to 
FA(20:1)n9. A detailed description of the calculation of FA sources, reported endogenous 
synthesis and the parameters calculated for the FA FA(16:0), FA(18:0), FA(18:1)n9 and 
FA(20:1)n9. 
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biological interpretation of the reported elongation parameters. For 

FA that result from the direct desaturation of a precursor FA, Δ is 

indirectly estimated based on the calculated synthesis parameters of 

the precursor (S or E) and the FA of interest (S’ or E’) (i.e. Δ= S’/S or Δ= 

E’/E) (Figure 34). The strategy proposed here is based on the simple 

approach previously described by Kamphorst et al.126,156, where 

desaturation of FA(18:1)n9 is calculated based on the total labelling  

found in FA(18:0) and FA(18:1)n9. In FAMetA, we extend this strategy to 

the complete set of desaturations within the FA metabolic network and 

refine the calculation by using an approach that uses the estimated 

synthesis parameter of interest instead of total labelling.  

As in previous tools (i.e., ISA, ConvISA and FASA129,153–155,166,167) the 

de novo synthesis parameters (S, E, Δ) are time-dependent. Therefore, at 

any given time, such parameters correspond to the fraction of a 

particular FA that has been de novo synthesized up-to-the moment of 

the sampling, and it corresponds to the actual portion of FA that comes 

from de novo synthesis only if the steady state has been reached. 

Accordingly, the import term (I=1-S or I=1-En) accounts for both import 

and pre-existing FA at any given time and to the actual fraction that is 

acquired from the exogenous pool when the steady state has been 

reached. The conditions of metabolic and isotopic steady states are only 

achieved, or can be closely approximated, if the cells are cultured during 

a long-enough time to ensure that the pre-existing FA pools can be 

diluted out while ensuring a nutrient supply that maintains relatively 

stable concentrations129,168. Finally, the FAMetA´s workflow includes all 

the functionalities needed, for data processing, group-based 

comparisons and graphical outputs, which facilitates the interpretation 

of results (Figure 35).  
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Figure 35. FAMetA overview. FAMetA is an R package and a web-based platform for the 
estimation of FA metabolism based on mass isotopologue data, generated after 
incubation with suitable 13C-tracers and based on LC-MS or GC-MS analysis of fatty acid 
extracts. The main steps within FAMetA workflow include data processing, estimation of 
metabolism parameters for each sample and fatty acid based on the obtained mass 
isotopologue distributions and finally the combination of those individual results to 
provide a global view of fatty acid metabolism network for each condition of interest and 
the comparison between them. The most relevant biologically relevant outputs that can 
be obtained, depending on the experimental design include the fractional contribution 
of each tested carbon source, the detailed description of the metabolic origin of each 
detected fatty acid and the elucidation of alterations in fatty acid metabolism between 
conditions of interest. 

 

Figure 36. Detailed workflow for data pre- processing. Data pre-processing can be 
performed with a combination of our developed in-house R package LipidMS and FAMetA 
(Option A), or using any other suitable pre-processing tool (Option B). For data pre-
processing with LipidMS, raw data files must firstly be converted into mzXML. LipidMS 
uses raw data files in the mzXML format and a csv metadata file as input to cover peak-
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Figure 36. Detailed workflow for data pre- processing. Data pre-processing can be 
performed with a combination of our developed in-house R package LipidMS and FAMetA 
(Option A), or using any other suitable pre-processing tool (Option B). For data pre-
processing with LipidMS, raw data files must firstly be converted into mzXML. LipidMS 
uses raw data files in the mzXML format and a csv metadata file as input to cover peak-
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2. Features and implementation 

2.1. FAMetA workflow 

The FAMetA workflow (Figures 35-37) starts by loading the raw 

MS data files in the mzXML format, which can be obtained with any MS 

file converter, sucha as msConvert from ProteoWizard169, and a csv file 

containing the required metadata (sample name, acquisition mode, 

sample group, or class, and any additional information like external 

measures for normalization) (Figure 36, steps 1-2). First, data 

processing can be performed in the R environment or through the web-

based application using our suggested workflow, which combines 

functions from FAMetA and our previously developed R-package 

LipidMS150,151 (Figure 36, steps 2-5). LipidMS is called for the first 

processing step, which runs peak-picking, alignment and grouping 

through the functions batchdataProcessing, alignmsbatch and 

groupmsbatch (Figure 36, step 2). Then FAMetA is called, and 

annotateFA and curateFAannotations functions are used to identify 

unique FA isomers. Automatic FA annotations can be exported to a csv 

file and modified by removing rows of unwanted FA, modifying the 

initial and end retention times, or adding new rows with missing 

compounds. Unique compound names with nomenclature “FA(16:1)n7”, 

where n7 (omega-7) indicates the last double-bond position, are 

required to differentiate FA isomers. For any unknown positions, letters 

x, y and z are could be used (i.e., FA(16:1)nx). Internal standards for later 

normalization can be also added in a new row at this point by indicating 

IS in the compound name column (Figure 36, step 3). Once all the FA of 

interest have been correctly identified, FA isotopes can be extracted 

using the searchFAisotopes function (Figure 36, step 4). Finally, data can 

be corrected and normalized using the dataCorrection function, which  

 

165 
 

  



 

164 
 

2. Features and implementation 

2.1. FAMetA workflow 

The FAMetA workflow (Figures 35-37) starts by loading the raw 

MS data files in the mzXML format, which can be obtained with any MS 

file converter, sucha as msConvert from ProteoWizard169, and a csv file 

containing the required metadata (sample name, acquisition mode, 

sample group, or class, and any additional information like external 

measures for normalization) (Figure 36, steps 1-2). First, data 

processing can be performed in the R environment or through the web-

based application using our suggested workflow, which combines 

functions from FAMetA and our previously developed R-package 

LipidMS150,151 (Figure 36, steps 2-5). LipidMS is called for the first 

processing step, which runs peak-picking, alignment and grouping 

through the functions batchdataProcessing, alignmsbatch and 

groupmsbatch (Figure 36, step 2). Then FAMetA is called, and 

annotateFA and curateFAannotations functions are used to identify 

unique FA isomers. Automatic FA annotations can be exported to a csv 

file and modified by removing rows of unwanted FA, modifying the 

initial and end retention times, or adding new rows with missing 

compounds. Unique compound names with nomenclature “FA(16:1)n7”, 

where n7 (omega-7) indicates the last double-bond position, are 

required to differentiate FA isomers. For any unknown positions, letters 

x, y and z are could be used (i.e., FA(16:1)nx). Internal standards for later 

normalization can be also added in a new row at this point by indicating 

IS in the compound name column (Figure 36, step 3). Once all the FA of 

interest have been correctly identified, FA isotopes can be extracted 

using the searchFAisotopes function (Figure 36, step 4). Finally, data can 

be corrected and normalized using the dataCorrection function, which  

 

165 
 

  

Chapter 2: FAMetA - Results and Discussion



 

166 
 

runs four different steps (all of which are optional): data correction 

for natural 13C abundance using the Accucor algorithm170; data 

normalization with internal standards; blank subtraction; and external 

normalization (Figure 36, step 5). Alternatively, the external data 

processed by other available software/tools can be loaded at this point 

of the workflow or before the data correction and normalization steps. 

Then, the actual FA metabolism analysis can be performed by 

sequentially running the synthesisAnalysis, elongationAnalysis and 

desaturationAnalysis functions (Figure 37, steps 1-3). The first two 

functions model isotopologue distributions by non-linear regression 

with many initial values171,172 to ensure that the best fits are found. By 

default, a maximum of 1,000 iterations for synthesis and 10,000 for 

elongation are performed for each set of initial values to fit the 

isotopologue distributions (maxiter parameter) or until the model has 

converged 100 times (maxconvergence parameter). If no results are 

obtained or parameters come close to the limits of the confidence 

intervals, these parameters can be increased to improve the results. 

The third function employs the previous results to estimate the 

desaturation values. Finally, the summarized results tables and 

heatmaps are obtained using the summarizeResults function to export 

and explore the results (Figure 37, step 4).  

Figure 36. Detailed workflow for data pre-processing. Data pre-processing can be 
performed with a combination of our developed in-house R package LipidMS and FAMetA 
(Option A), or using any other suitable pre-processing tool (Option B). For data pre-
processing with LipidMS, raw data files must firstly be converted into mzXML. LipidMS 
uses raw data files in the mzXML format and a csv metadata file as input to cover peak-
peaking, alignment, grouping and peak filling. Output is a msbatch object that can be 
directly used by FAMetA to perform other pre-processing steps, including FA annotation 
and isotope detection. Output is a fadata object that can be used to conduct the final pre-
processing step, which is natural abundance correction and normalisation. Italics depict 
the functions that can be executed in LipidMS or FAMetA. 

 

Figure 7. Detailed FAMetA workflow and output. Starting with the fadata object 
generated during data processing (Figure 36), FAMetA sequentially performs the analysis 
of DNS (synthesisAnalysis function), elongation (elongationAnalysis function) and 
desaturation (desaturationAnalysis function). The results for each step can be exported 
or a summary of all the calculated parameters and a group-based comparison can be 
obtained by executing the function summarizeResults.Figure 36. Detailed workflow for 
data pre- processing. Data pre-processing can be performed with a combination of our 
developed in-house R package LipidMS and FAMetA (Option A), or using any other 
suitable pre-processing tool (Option B). For data pre-processing with LipidMS, raw data 
files must firstly be converted into mzXML. LipidMS uses raw data files in the mzXML 
format and a csv metadata file as input to cover peak-peaking, alignment, grouping and 
peak filling. Output is a msbatch object that can be directly used by FAMetA to perform 
other pre-processing steps, including FA annotation and isotope detection. Output is a 
fadata object that can be used to conduct the final pre-processing step, which is natural 
abundance correction and normalisation. Italics depict the functions that can be executed 
in LipidMS or FAMetA. 
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2.2.  Implementation of the quasi-multinomial 

distribution 

MID of FA usually show an overdispersion which is not properly 

modelled by multinomial distributions. This overdispersion can be 

attributed to different factors such as cellular heterogeneity, time-

dependent variations that result from changes in nutrient availability or 

differences between the various intracellular FA pools (e.g., differences 

between lipid classes or between FA/lipids located in different 

organelles). All these factors contribute to a narrowing or widening of 

the expected distributions if FA synthesis would fit exactly to a 

multinomial distribution (Figure 38). To address this issue, we decided 

to implement quasi-multinomial modelling instead of the formerly used 

multinomial modelling126–128,144–147, which provides a Φ parameter that 

accounts for data overdispersion. As shown in Figure 38, where 

multinomial and quasi-multinomial distributions have been used to fit 

different experimental FA MID obtained from literature129,155,167, the later 

improves data fitting. The residuals obtained for quasi-multinomial 

distributions are smaller than those obtained for multinomial 

distributions, what has been confirmed by a log-likelihood ratio test and 

right-tailed chi-square distribution. Despite the better fit provided by 

quasi-multinomial adjustment, no significant differences in the 

calculated values for the DNL parameters have been observed. 

Figure 37. Detailed FAMetA workflow and output. Starting with the fadata object 
generated during data processing (Figure 36), FAMetA sequentially performs the analysis 
of DNS (synthesisAnalysis function), elongation (elongationAnalysis function) and 
desaturation (desaturationAnalysis function). The results for each step can be exported 
or a summary of all the calculated parameters and a group-based comparison can be 
obtained by executing the function summarizeResults. 

 

Figure 88. Fitting experimental mass-isotopologue FA data to multinomial and quasi-
multinomial distributions. A-B), FA(16:0) in the A549 cells upon incubation with A) U-13C-
glucose or B) U-13C-glutamine, data obtained from ref.167. C-D), FA(14:0) and FA(16:0) in the 
H1299 cells upon incubation with U-13C-glucose, data obtained from ref.129. E-F) FA(16:0) 
and FA(18:0) in the MCF7 cells upon incubation with U-13C-glucose, data obtained from 
ref.155. For each dataset, the experimental data, the fitting done using the FAMetA 
algorithm with multinomial or quasi-multinomial distributions, and the residuals are 
shown. The reported p-values correspond to the comparisons between multinomial and 
quasi-multinomial fitting using a log-likelihood ratio test and right-tailed chi-square 
distribution.Figure 9. Detailed FAMetA workflow and output. Starting with the fadata 
object generated during data processing (Figure 36), FAMetA sequentially performs the 
analysis of DNS (synthesisAnalysis function), elongation (elongationAnalysis function) 
and desaturation (desaturationAnalysis function). The results for each step can be 
exported or a summary of all the calculated parameters and a group-based comparison 
can be obtained by executing the function summarizeResults. 
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2.2.  Implementation of the quasi-multinomial 

distribution 

MID of FA usually show an overdispersion which is not properly 

modelled by multinomial distributions. This overdispersion can be 

attributed to different factors such as cellular heterogeneity, time-

dependent variations that result from changes in nutrient availability or 

differences between the various intracellular FA pools (e.g., differences 

between lipid classes or between FA/lipids located in different 

organelles). All these factors contribute to a narrowing or widening of 

the expected distributions if FA synthesis would fit exactly to a 

multinomial distribution (Figure 38). To address this issue, we decided 

to implement quasi-multinomial modelling instead of the formerly used 

multinomial modelling126–128,144–147, which provides a Φ parameter that 

accounts for data overdispersion. As shown in Figure 38, where 

multinomial and quasi-multinomial distributions have been used to fit 

different experimental FA MID obtained from literature129,155,167, the later 

improves data fitting. The residuals obtained for quasi-multinomial 

distributions are smaller than those obtained for multinomial 

distributions, what has been confirmed by a log-likelihood ratio test and 

right-tailed chi-square distribution. Despite the better fit provided by 

quasi-multinomial adjustment, no significant differences in the 

calculated values for the DNL parameters have been observed. 

Figure 37. Detailed FAMetA workflow and output. Starting with the fadata object 
generated during data processing (Figure 36), FAMetA sequentially performs the analysis 
of DNS (synthesisAnalysis function), elongation (elongationAnalysis function) and 
desaturation (desaturationAnalysis function). The results for each step can be exported 
or a summary of all the calculated parameters and a group-based comparison can be 
obtained by executing the function summarizeResults. 

 

Figure 88. Fitting experimental mass-isotopologue FA data to multinomial and quasi-
multinomial distributions. A-B), FA(16:0) in the A549 cells upon incubation with A) U-13C-
glucose or B) U-13C-glutamine, data obtained from ref.167. C-D), FA(14:0) and FA(16:0) in the 
H1299 cells upon incubation with U-13C-glucose, data obtained from ref.129. E-F) FA(16:0) 
and FA(18:0) in the MCF7 cells upon incubation with U-13C-glucose, data obtained from 
ref.155. For each dataset, the experimental data, the fitting done using the FAMetA 
algorithm with multinomial or quasi-multinomial distributions, and the residuals are 
shown. The reported p-values correspond to the comparisons between multinomial and 
quasi-multinomial fitting using a log-likelihood ratio test and right-tailed chi-square 
distribution.Figure 9. Detailed FAMetA workflow and output. Starting with the fadata 
object generated during data processing (Figure 36), FAMetA sequentially performs the 
analysis of DNS (synthesisAnalysis function), elongation (elongationAnalysis function) 
and desaturation (desaturationAnalysis function). The results for each step can be 
exported or a summary of all the calculated parameters and a group-based comparison 
can be obtained by executing the function summarizeResults. 
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2.3.  Estimation of DNL parameters 

We considered FA(16:0) as the final product of the DNL. 

Therefore, FAMetA can estimate the DNL parameters for FA up to 16C. 

For these species, I and S represent the fraction of the FA pool that is 

imported and synthesized, respectively, and sum 1: 

𝐼𝐼16:0 + 𝑆𝑆16:0 = 1 

(Equation 9) 

 

For the DNL analysis, FA isotopologue distributions (previously 

corrected for the natural abundance of the 13C isotopes) are modelled 

with the following sum of the weighted quasi-multinomial distributions 

adapted from ref.173: 

𝑃𝑃(𝑚𝑚 = 0) = 𝐼𝐼 +  𝑆𝑆 ∗ (1 + 𝑁𝑁 ∗ 𝛷𝛷) ∗   𝐷𝐷0
1 + 𝑁𝑁 ∗ 𝛷𝛷 ∗ (𝐷𝐷0 +  𝑁𝑁 ∗ 𝛷𝛷

1 + 𝑁𝑁 ∗ 𝛷𝛷 )
𝑁𝑁−1

 

(Equation 10) 

𝑃𝑃(𝑚𝑚) =  ∑ 𝑃𝑃(𝑋𝑋0 = 𝑥𝑥0,𝑗𝑗
𝑘𝑘
𝑗𝑗=1 , 𝑋𝑋1 = 𝑥𝑥1,𝑗𝑗, 𝑋𝑋2 = 𝑥𝑥2,𝑗𝑗) ; for  1 ≤ 𝑚𝑚 ≤ 𝑀𝑀 

(Equation 11) 

, where: 

𝑃𝑃(𝑋𝑋0 = 𝑥𝑥0,𝑗𝑗, 𝑋𝑋1 = 𝑥𝑥1,𝑗𝑗, 𝑋𝑋2 = 𝑥𝑥2,𝑗𝑗)
=  𝑆𝑆 ∗ 𝑁𝑁!

𝑥𝑥0,𝑗𝑗! 𝑥𝑥1,𝑗𝑗! 𝑥𝑥2,𝑗𝑗! ∗  (1 + 𝑁𝑁 ∗ 𝛷𝛷) ∗ 𝐷𝐷0
1 + 𝑁𝑁 ∗ 𝛷𝛷

∗ (
𝐷𝐷0 +  𝑥𝑥0,𝑗𝑗 ∗ 𝛷𝛷

1 + 𝑁𝑁 ∗ 𝛷𝛷 )
𝑥𝑥0,𝑗𝑗−1

∗  𝐷𝐷1
1 + 𝑁𝑁 ∗ 𝛷𝛷  ∗ (

𝐷𝐷1 +  𝑥𝑥1,𝑗𝑗 ∗ 𝛷𝛷
1 + 𝑁𝑁 ∗ 𝛷𝛷 )

𝑥𝑥1,𝑗𝑗−1

∗  𝐷𝐷2
1 + 𝑁𝑁 ∗ 𝛷𝛷  ∗ (

𝐷𝐷2 +  𝑥𝑥2,𝑗𝑗 ∗ 𝛷𝛷
1 + 𝑁𝑁 ∗ 𝛷𝛷 )

𝑥𝑥2,𝑗𝑗−1
 

(Equation 12) 

, given that: 
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𝑥𝑥𝑖𝑖,𝑗𝑗 = 0,1, … , 𝑁𝑁 

∑ 𝑥𝑥𝑖𝑖,𝑗𝑗 =
2

𝑖𝑖=1
𝑥𝑥0,𝑗𝑗 + 𝑥𝑥1,𝑗𝑗 + 𝑥𝑥2,𝑗𝑗 = 𝑁𝑁 

(Equation 13) 

∑ 𝑖𝑖 ∗ 𝑥𝑥𝑖𝑖,𝑗𝑗 =
2

𝑖𝑖=1
0 ∗ 𝑥𝑥0,𝑗𝑗 + 1 ∗ 𝑥𝑥1,𝑗𝑗 + 2 ∗ 𝑥𝑥2,𝑗𝑗 = 𝑚𝑚 

(Equation 14) 

0 ≤  𝛷𝛷 ≤  1 − max (𝐷𝐷0, 𝐷𝐷1, 𝐷𝐷2)
𝑁𝑁  

(Equation 15) 

 

M is the total number of carbons in the FA molecule and N 

equals M/2. This represents the number of acetyl-CoA molecules 

used for the synthesis of an FA of length M. m is the number of 13C 

atoms incorporated into the FA molecule. D0, D1 and D2 represent the 

fraction of acetyl-CoA with 0, 1 or 2 atoms of 13C, respectively, and 

sum 1. x0, x1 and x2 represent the number of acetyl-CoA units with 0, 

1 or 2 13C atoms that provide an M-carbon FA with an m label. For a 

given pair of N and m values, up to k combinations of the x0, x1 and 

x2 values fulfil Equations 13 and 14. Φ accounts for overdispersion 

and can be set at 0 to reduce the quasi-multinomial distributions to 

multinomial distributions. The in silico validation (described below) 

of the above-described equations demonstrates an overestimation of 

Φ and an underestimation of S and D2 for values of D2 ≥ 0.75 

(Additional Figure S29, Appendix 2). In these situations, the upper 

limit of Φ is set at 0.5*(1-max(D0, D1, D2)/N. Note that overdispersion 

parameter Φ modifies D0, D1 and D2 for each synthesis step, which 

allows distribution to widen. Based on this model, non-linear 

regression171 with many sets of plausible initial values (adapted from 

ref.172) is used to fit the observed isotopologue distributions of FA up 
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to 16C, and to estimate parameters D1, D2, Φ and S. When analyzing 

multiple samples per group, S and D2 values can be checked to ensure 

homogeneity within each group. If not, we can assume D2 should 

remain within a narrow range for a given condition and thus fix D2 

by the mean of the rest of the samples in the group for the outlier 

sample and repeat the analysis to improve the calculation of the S 

value. To improve the analysis results, distributions of FA up to 16C 

are firstly fitted, and the estimated parameters D1, D2 and Φ are then 

used to model longer FA. 

 

2.4. Estimation of elongation parameters 

The main product of the DNL of FA is FA(16:0)77. Therefore, the 

main route for elongation starts at 16C and then adds units of two 

carbons in each elongation step. Elongation from FA(14:0) is a minor 

route129 and is omitted for simplicity. For the FA ranging from 18 to 26 

carbons, the following equations are considered: 

𝐼𝐼18:0 + 𝐸𝐸1(𝐼𝐼16:0 +  𝑆𝑆16:0) = 𝐼𝐼18:0 + 𝐸𝐸1 = 1 

(Equation 16) 

𝐼𝐼20:0 + 𝐸𝐸2 ∗ (𝐼𝐼18:0 + 𝐸𝐸1 ∗ (𝐼𝐼16:0 +  𝑆𝑆16:0)) = 𝐼𝐼20:0 + 𝐸𝐸2 = 1 

(Equation 17) 

𝐼𝐼22:0 + 𝐸𝐸3 ∗ (𝐼𝐼20:0 + 𝐸𝐸2 ∗ (𝐼𝐼18:0 + 𝐸𝐸1 ∗ (𝐼𝐼16:0 +  𝑆𝑆16:0))) = 𝐼𝐼22:0 + 𝐸𝐸3 = 1 

(Equation 18) 
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𝐼𝐼24:0 + 𝐸𝐸4 ∗ (𝐼𝐼22:0 + 𝐸𝐸3 ∗ (𝐼𝐼20:0 + 𝐸𝐸2 ∗ (𝐼𝐼18:0 + 𝐸𝐸1 ∗ (𝐼𝐼16:0 + 𝑆𝑆16:0)))) = 𝐼𝐼24:0 + 𝐸𝐸4  
= 1 

(Equation 19) 

𝐼𝐼26:0 + 𝐸𝐸5 ∗ (𝐼𝐼24:0 + 𝐸𝐸4 ∗ (𝐼𝐼22:0 + 𝐸𝐸3 ∗ (𝐼𝐼20:0 + 𝐸𝐸2 ∗ (𝐼𝐼18:0 + 𝐸𝐸1 ∗ (𝐼𝐼16:0 +  𝑆𝑆16:0)))))
= 𝐼𝐼26:0 + 𝐸𝐸5  = 1 

(Equation 20) 

 

For the elongation analysis of endogenous FA, isotopologue 

distributions are modelled using Equations 10-12 for synthesis up to 

FA(16:0), followed by single and independent elongation steps (E1, E2 …, 

En). As each step is independent and involves the addition of a unique 

acetyl-CoA molecule, overdispersion cannot be considered and each step 

is modelled by using multinomial distributions. The probability of 

incorporating 0, 1 or 2 13C atoms into the FA to be elongated equals EiD0, 

EiD1, and EiD2, respectively. For FA longer than 16C, only synthesis and 

elongation terms are estimated (S, E1, E2 …, En), while the rest (D0, D1, D2 

and Φ) are inherited from the results obtained for the FA(16:0). In case 

no results are available for FA(16:0), FAMetA uses FA(14:0), mean of all 

FA of 16C (FA(16:X)) or mean of all FA of 14C (FA(14:X)) in this order of 

priority. For FA(18:0), FA isotopologue distributions (previously 

corrected for natural 13C isotopes abundance) are modelled with the 

following equations: 

𝑃𝑃18:0(𝑚𝑚 = 0) = 𝐼𝐼18:0 + 𝐸𝐸1 ∗ 𝐷𝐷0 ∗ 𝑃𝑃16:0(𝑚𝑚 = 0) 

(Equation 21) 

𝑃𝑃18:0(𝑚𝑚 = 1) =  𝐸𝐸1 ∗ 𝐷𝐷0 ∗ 𝑃𝑃16:0(𝑚𝑚 = 1) + 𝐸𝐸1 ∗ 𝐷𝐷1 ∗ 𝑃𝑃16:0(𝑚𝑚 = 0) 

(Equation 22) 
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to 16C, and to estimate parameters D1, D2, Φ and S. When analyzing 

multiple samples per group, S and D2 values can be checked to ensure 

homogeneity within each group. If not, we can assume D2 should 

remain within a narrow range for a given condition and thus fix D2 

by the mean of the rest of the samples in the group for the outlier 

sample and repeat the analysis to improve the calculation of the S 

value. To improve the analysis results, distributions of FA up to 16C 

are firstly fitted, and the estimated parameters D1, D2 and Φ are then 

used to model longer FA. 

 

2.4. Estimation of elongation parameters 

The main product of the DNL of FA is FA(16:0)77. Therefore, the 

main route for elongation starts at 16C and then adds units of two 

carbons in each elongation step. Elongation from FA(14:0) is a minor 

route129 and is omitted for simplicity. For the FA ranging from 18 to 26 

carbons, the following equations are considered: 

𝐼𝐼18:0 + 𝐸𝐸1(𝐼𝐼16:0 +  𝑆𝑆16:0) = 𝐼𝐼18:0 + 𝐸𝐸1 = 1 

(Equation 16) 

𝐼𝐼20:0 + 𝐸𝐸2 ∗ (𝐼𝐼18:0 + 𝐸𝐸1 ∗ (𝐼𝐼16:0 +  𝑆𝑆16:0)) = 𝐼𝐼20:0 + 𝐸𝐸2 = 1 

(Equation 17) 

𝐼𝐼22:0 + 𝐸𝐸3 ∗ (𝐼𝐼20:0 + 𝐸𝐸2 ∗ (𝐼𝐼18:0 + 𝐸𝐸1 ∗ (𝐼𝐼16:0 +  𝑆𝑆16:0))) = 𝐼𝐼22:0 + 𝐸𝐸3 = 1 

(Equation 18) 
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𝐼𝐼24:0 + 𝐸𝐸4 ∗ (𝐼𝐼22:0 + 𝐸𝐸3 ∗ (𝐼𝐼20:0 + 𝐸𝐸2 ∗ (𝐼𝐼18:0 + 𝐸𝐸1 ∗ (𝐼𝐼16:0 + 𝑆𝑆16:0)))) = 𝐼𝐼24:0 + 𝐸𝐸4  
= 1 

(Equation 19) 

𝐼𝐼26:0 + 𝐸𝐸5 ∗ (𝐼𝐼24:0 + 𝐸𝐸4 ∗ (𝐼𝐼22:0 + 𝐸𝐸3 ∗ (𝐼𝐼20:0 + 𝐸𝐸2 ∗ (𝐼𝐼18:0 + 𝐸𝐸1 ∗ (𝐼𝐼16:0 +  𝑆𝑆16:0)))))
= 𝐼𝐼26:0 + 𝐸𝐸5  = 1 

(Equation 20) 

 

For the elongation analysis of endogenous FA, isotopologue 

distributions are modelled using Equations 10-12 for synthesis up to 

FA(16:0), followed by single and independent elongation steps (E1, E2 …, 

En). As each step is independent and involves the addition of a unique 

acetyl-CoA molecule, overdispersion cannot be considered and each step 

is modelled by using multinomial distributions. The probability of 

incorporating 0, 1 or 2 13C atoms into the FA to be elongated equals EiD0, 

EiD1, and EiD2, respectively. For FA longer than 16C, only synthesis and 

elongation terms are estimated (S, E1, E2 …, En), while the rest (D0, D1, D2 

and Φ) are inherited from the results obtained for the FA(16:0). In case 

no results are available for FA(16:0), FAMetA uses FA(14:0), mean of all 

FA of 16C (FA(16:X)) or mean of all FA of 14C (FA(14:X)) in this order of 

priority. For FA(18:0), FA isotopologue distributions (previously 

corrected for natural 13C isotopes abundance) are modelled with the 

following equations: 

𝑃𝑃18:0(𝑚𝑚 = 0) = 𝐼𝐼18:0 + 𝐸𝐸1 ∗ 𝐷𝐷0 ∗ 𝑃𝑃16:0(𝑚𝑚 = 0) 

(Equation 21) 

𝑃𝑃18:0(𝑚𝑚 = 1) =  𝐸𝐸1 ∗ 𝐷𝐷0 ∗ 𝑃𝑃16:0(𝑚𝑚 = 1) + 𝐸𝐸1 ∗ 𝐷𝐷1 ∗ 𝑃𝑃16:0(𝑚𝑚 = 0) 

(Equation 22) 
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𝑃𝑃18:0(𝑚𝑚) =  𝐸𝐸1 ∗ 𝐷𝐷0 ∗ 𝑃𝑃16:0(𝑚𝑚 = 𝑚𝑚) + 𝐸𝐸1 ∗ 𝐷𝐷1 ∗ 𝑃𝑃16:0(𝑚𝑚 = 𝑚𝑚 − 1) + 𝐸𝐸1 ∗ 𝐷𝐷2

∗ 𝑃𝑃16:0(𝑚𝑚 = 𝑚𝑚 − 2) 

for  2 ≤ 𝑚𝑚 ≤ 𝑀𝑀; 𝑃𝑃16:0(𝑚𝑚 > 16) = 0 

(Equation 23) 

 

Analogous equations can be obtained for FA with M > 18 by adding 

elongation terms to previously existing distributions. The in silico 

validation of the above-described equations demonstrates that 

elongation terms can only be accurately determined when the 

contribution (D2) of the 13C-tracer is greater than 0.05. In addition, based 

on this validation data and to ensure that reliable results are obtained, 

by default, FAMetA only estimates elongation parameters for those 

samples whose D2 parameter has been estimated to be greater than 0.1. 

For n6 and n3 series (Figure 33), elongation is usually expected from 

FA(18:2)n6 and FA(18:3)n3. Thus, synthesis (S16:0) and the first elongation 

step (E1) are set at 0. If isotopologue M+2 is observed given the degradation 

of FA(18:2)n6 or FA(18:3)n3, followed by one elongation step, then E1 is 

estimated. However, the endogenously synthesized fraction remains at 0. 

Once again, non-linear regression171 with multiple initial values172 is used to 

fit the observed isotopologue distributions of the elongated FA.  

 

2.5. Estimation of desaturation 

After estimating the synthesis and elongation parameters, these 

results can be used for the indirect calculation of the FA fraction that 

comes from desaturation in the unsaturated FA. For a given unsaturated 

FA (e.g., FA(18:1)n9), we can conceptually consider a one-step 

elongation-desaturation reaction (in this example, directly from 
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FA(16:0) to FA(18:1)n9), or a two-step elongation followed by a 

desaturation process (in this example FA(16:0) is elongated to FA(18:0) 

and then desaturated to FA(18:1)n9) (Figure 34). By means of FAMetA, 

we can directly estimate both E1 and E1’ from the isotopologue 

distributions of FA(18:0) and FA(18:1)n9, respectively. From alternative 

paths, the relative import and endogenous synthesis pathways of 

FA(18:1)n9 can be written as: 

 𝐼𝐼18:1𝑛𝑛9
′ + 𝐸𝐸1

′ ∗ (𝑆𝑆16:0 + 𝐼𝐼16:0) = 1 

(Equation 24) 

 𝐼𝐼18:1𝑛𝑛9 +  𝛥𝛥 ∗ 𝐸𝐸1 ∗ (𝑆𝑆16:0 + 𝐼𝐼16:0) + 𝛥𝛥 ∗ 𝐼𝐼18:0 = 1 

(Equation 25) 

By combining both equations, we can define that: 

𝐼𝐼18:1𝑛𝑛9
′ =  𝐼𝐼18:0 ∗  𝛥𝛥 + 𝐼𝐼18:1𝑛𝑛9 

(Equation 26) 

and thus, calculate desaturation parameter Δ as: 

𝛥𝛥 =  𝐸𝐸1
′

𝐸𝐸1
 

(Equation 27) 

 

If both Ei’ and Ei are below the confidence interval, which for 

desaturation is set to 0.05 by default, parameter Δ is not calculated, 

and Ei’ remains as the endogenously synthesized fraction. If the 

stationary state is not reached, values > 1 can be obtained for the 

desaturation parameter that is, in this case, replaced with 1. 

This same approach can be used for all the known desaturation 

steps provided when the precursor and product FA isomers are 

correctly and uniquely identified, and the stationary state is reached. 
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If both Ei’ and Ei are below the confidence interval, which for 

desaturation is set to 0.05 by default, parameter Δ is not calculated, 

and Ei’ remains as the endogenously synthesized fraction. If the 

stationary state is not reached, values > 1 can be obtained for the 

desaturation parameter that is, in this case, replaced with 1. 

This same approach can be used for all the known desaturation 

steps provided when the precursor and product FA isomers are 

correctly and uniquely identified, and the stationary state is reached. 
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For the FA synthesized from desaturation activities, Δ is considered 

the fraction from endogenous synthesis. So the imported fraction is 

calculated as 1-Δ. With unknown isomers or missing precursors, S’ or 

E’ is returned for the DNS of FA until 16C or the elongation of longer 

FA, respectively. The range of reactions included in FAMetA are 

described in Figure 33129,174–176. Additional reactions (desaturations) can 

be included for unknown/additional FA by modifying desaturationdb 

in the FAMetA R package. 

 

2.6. Model assumptions 

In order to interpret the results correctly, the model assumptions 

made by FAMetA should be considered:  

1) The acetyl-CoA pool contributing to lipogenesis has a uniform 

labelling pattern. 

2) The lipogenic acetyl-CoA pool reaches isotopic steady state 

quickly compared with the total labelling time. 

3) For FA of 16C or longer, the final product of FASN (i.e., DNL) 

is FA(16:0). 

4) For the FA belonging to the n3 and n6 series, S parameter is 

set to 0. 

5) At any given time point I = import + pre-existing FA, and only 

when the pre-existing FA have been completely replaced (i.e., 

the actual steady state has been achieved) I = import. 

6) There is a single FA pool.  
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2.7. Data requirements for FA modelling 

Before performing the FA metabolism analysis, the user should 

check that the FA of interest have been labelled enough to obtain 

isotopologue distributions of good quality (avoid missing 

isotopologues) that guarantee that the calculated parameters fall within 

the ranges that allow their accurate estimation. When curating FA 

annotations, FA names must follow the nomenclature FA(C:d)ns, where 

C is the total number of carbon, d is the number of double bounds and 

ns refers to the omega series, which indicates the position of the last 

double bound starting from the end of the chain. Duplicated identities 

are not allowed and the series must belong either to known series (i.e. 

3, 5, 6, 7, 7a (i.e. second double bond introduced by FADS2 at 16C), 7b 

(i.e. second double bond introduced by FADS2 at 18C), 9, 10, 12, 13) or 

to unknown series where the letters x, y and z are used for 

nomenclature. 

 

2.8. Implementation 

FAMetA has been developed in an R programming 

environment177 and is available via CRAN (https://CRAN.R-

project.org/package=FAMetA). The source code and development 

version are also available at https://github.com/maialba3/FAMetA. 

In addition, a web-based implementation of FAMetA has been built 

using the Shiny R-package149, which is accessible at www.fameta.es. 

Example data files, scripts and tutorials for the R package and the 

web application can be found at http://www.fameta.es via the 

“Resources” tab. 
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2.8.1. R package 

FAMetA functions can be divided into three groups: i) functions 

aimed to data pre-processing, which are imported from LipidMS; ii) 

functions devoted to fatty acids annotation and manual curation; and 

iii) functions designed to perform the metabolic analysis. Two first 

groups of functions work with msbatch objects from LipidMS, while the 

last uses fadata lists containing, at least, samples metadata, FA 

identities, abundances for all expected isotopologues and internal 

standard intensities for normalization if available. After the data 

correction step, MID and pool size (i.e., total sum of isotolpologues 

intensities for each FA) are also added. MID are used for the subsequent 

estimation of DNL, elongation and desaturation analysis. 

 

2.8.2. Web-based tool 

In order to provide a user-friendly GUI interface that covers all 

the required steps for FA analysis, FAMetA has also been implemented 

as a web-based tool using Shiny149, which can be accessed through 

http://www.fameta.es. After accessing the tool, the following tabs will 

take users through the FAMetA workflow. In this case, each tab is 

devoted to run one step in the FAMetA workflow, so that users will run 

them sequentially and they will receive an email for each tab: 

- Data pre-processing. First step in FAMetA workflow consists 

of data pre-processing using the LipidMS R package. At this 

tab (Figure 39), mzXML files and a metadata csv file are 

required. Metadata file must have at least three columns: 

sample (mzXML file names), acquisitionmode (MS) and 

sampletype (QC, group1, group2, etc.). Once all files have 
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been uploaded, pre-processing parameters must be tuned. 

After this first step has been performed, users will receive 

an email containing the FA annotation results. 

- Manual curation. Automatic FA annotations can be modified 

by editing the csv file received by email: removing rows of 

unwanted FA, modifying the initial and end retention times, or 

adding new rows with missing compounds. The internal 

standards for later normalization can also be added at this 

point to a new row by indicating IS in the compound name 

column. Once FA annotations have been curated, 13C 

isotopologues for each FA will be searched and MID will be sent 

by email (Figure 40). 

- Metabolic analysis. At this tab (Figure 41), a csv file 

containing metadata and MID must be provided (csv file 

received after the previous step). Then, data correction is 

required which will run four different steps (all of them are 

optional): data correction for natural 13C abundance using 

the Accucor algorithm170, data normalization with internal 

standards, blank subtraction and external normalization. 

Finally, the actual FA metabolism analysis can be performed. 

Extra documentation, examples and links to the source code, 

which is available in github or CRAN, can be found at www.fameta.es by 

clicking on the “Resources” tab.  
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been uploaded, pre-processing parameters must be tuned. 

After this first step has been performed, users will receive 

an email containing the FA annotation results. 

- Manual curation. Automatic FA annotations can be modified 

by editing the csv file received by email: removing rows of 

unwanted FA, modifying the initial and end retention times, or 

adding new rows with missing compounds. The internal 

standards for later normalization can also be added at this 

point to a new row by indicating IS in the compound name 

column. Once FA annotations have been curated, 13C 

isotopologues for each FA will be searched and MID will be sent 

by email (Figure 40). 

- Metabolic analysis. At this tab (Figure 41), a csv file 

containing metadata and MID must be provided (csv file 

received after the previous step). Then, data correction is 

required which will run four different steps (all of them are 

optional): data correction for natural 13C abundance using 

the Accucor algorithm170, data normalization with internal 

standards, blank subtraction and external normalization. 

Finally, the actual FA metabolism analysis can be performed. 

Extra documentation, examples and links to the source code, 

which is available in github or CRAN, can be found at www.fameta.es by 

clicking on the “Resources” tab.  

Chapter 2: FAMetA - Results and Discussion
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Figure 39. Data pre-processing tab of the FAMetA web tool. Users can upload the mzXML 
files and tune the processing parameters employed by LipidMS to run the first step of 
FAMetA’s workflow. 

 

Figure 41. Metabolic analysis tab of the FAMetA web tool. Once FA MID have been 
correctly obtained, they are modelled to estimate the FA metabolic parameters.Figure 39. 
Data pre-processing tab of the FAMetA web tool. Users can upload the mzXML files and 
tune the processing parameters employed by LipidMS to run the first step of FAMetA’s 
workflow. 

Figure 40. Manual curation tab of the FAMetA web tool. Users can upload the revised 
FA annotations to obtain the subsequent mass isotopologue distributions.  

 

Figure 39. Data pre-processing tab of the FAMetA web tool. Users can upload the mzXML 
files and tune the processing parameters employed by LipidMS to run the first step of 
FAMetA’s workflow.Figure 40. Manual curation tab of the FAMetA web tool. Users can 
upload the revised FA annotations to obtain the subsequent mass isotopologue 
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Figure 41. Metabolic analysis tab of the FAMetA web tool. Once FA MID have been 
correctly obtained, they are modelled to estimate the FA metabolic parameters. 
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Figure 41. Metabolic analysis tab of the FAMetA web tool. Once FA MID have been 
correctly obtained, they are modelled to estimate the FA metabolic parameters. 

Chapter 2: FAMetA - Results and Discussion



 

182 
 

3. FAMetA performance evaluation 

3.1. In silico validation 

To validate the FAMetA algorithm and its implementation, in 

silico MID were generated. To simulate experimental distributions, 

multiple values covering the expected range for each parameter were 

used. For each theoretical isotopologue distribution, 10 realizations of 

Gaussian noise were simulated at four noise levels: 0%, 2%, 5%, or 10% 

relative standard deviation (RSD). The generated data was used to 

calculate the RSD and relative error of each modelled synthesis 

parameter for the following FA, which comprise an example of all the 

reactions included in FAMetA: FA(16:0) (Additional Figure S29, 

Appendix 2), FA (18:0) (Additional Figure S30, Appendix 2), FA(20:0) 

(Additional Figure S31, Appendix 2), FA(22:0) (Additional Figure S32, 

Appendix 2), FA(24:0) (Additional Figure S33, Appendix 2), FA(16:1)n7 

(Additional Figure S34A-B, Appendix 2), and FA(18:1)n9 (Additional 

Figure S34C-D, Appendix 2). FAMetA accurately determined the 

complete set of FA synthesis parameters (relative error < 15%, RSD < 

15%) whenever the fractional contribution of the tracer (D2) and the 

parameters to be calculated for a given FA (i.e., S, E1, E2, E3, and E4) felt 

within the 0.05 - 0.9 range. This ensures its applicability in an actual 

biological scenario. 

 

3.2.  Biological validation 

Once FAMetA algorithms were validated using in silico 
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SCD1i)159,160 and FADS2 (SC26196, FADS2i)158) to evaluate FAMetA in a 

controlled disturbance scenario. Then, we analyzed previously 

published data generated using in vivo experimental models 

(incorporation of U-13C-fructose into saponified circulating FA in 

wild-type and intestine-specific ketohexokinase (KHK-C) knockout 

mice after drinking normal water for 8 weeks, or 5% or 10% sucrose 

water)178 to validate FAMetA in a real in vivo scenario.   

 

3.2.1. FAMetA enables the analysis of FA metabolism in vitro 

For the mouse CD8+ T-cells, total lipids were extracted from 

cell pellets and saponified to release FA, which were subsequently 

analyzed by LC-MS. Twenty-seven known FA were detected in the 

samples, including a variety of saturated, monounsaturated and 

polyunsaturated FA within the range from 14 to 24 carbons. FAMetA 

accurately modelled the obtained MID for all of them and valuable 

biological information about nutrient preferences and metabolic 

origin of each particular FA was obtained. First, we evaluated the 

contribution of different 13C-tracers to the FA synthesis under 

standard culture conditions (i.e., RPMI media and normoxia). In this 

scenario, glucose is the preferred carbon source (D ≈ 0.7) in the active 

mouse CD8+ T-cells (Figure 42A), with a minor contribution of 

glutamine (D ≈ 0.08) (Figure 42B). If present in media, lactate and 
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glucose are metabolically exchangeable at the lactate dehydrogenase 

(LDH) level. Thus, lactate feeds the pyruvate pool and FA synthesis 

(Figure 42C). When supplemented in media, acetate feeds the acetyl-

CoA pool and contributes to FA synthesis (Figure 42D). These results 

are consistent with previously published data obtained by different 

approaches163,164,167. Although most of the identified FA are present in 

culture media, endogenous synthesis is the preferential route for 

saturated and monounsaturated FA, whereas polyunsaturated FA 

preferentially come from exogenous sources (Figure 42E). 

Then, FA metabolism was evaluated upon incubation with U-
13C-glucose and treatment with different known inhibitors. Treatment 

with FASNi and SCD1i slightly decreases cell proliferation, but 

FADS2i does not (Figure 43A). Changes in the relative pool size of the 

detected FA appear (Figure 43B); e.g., SCD1i lowers the intracellular  

Figure 42. Biological validation of FAMetA in active mouse CD8+ T-cells incubated with 
different U-13C-tracers. Estimation of the FA metabolism parameters in the active mouse 
CD8+ T-cells incubated for 72 h with various U-13C-tracers. A-D) Estimation of the sources 
and the DNL parameters for FA(16:0) upon incubation with A) U-13C-glucose, B) U-13C-
glutamine, C) U-13C-lactate or D) U-13C-acetate. E) Summary of the endogenously 
synthesized fraction for the 27 known FA detected in the active mouse CD8+ T-cells upon 
incubation with U-13C-glucose. 

 

Figure 43. Biological validation of FAMetA in active mouse CD8+T-cells incubated with 
U-13C-glucose and different inhibitors of the FA metabolism. A-G) Analysis of alterations 
in FA biosynthesis in the active mouse CD8+ T-cells incubated for 72 h with U-13C-glucose 
induced by FASN inhibitor GSK2194069, SCD inhibitor A93572 and FADS2 inhibitor 
SC26196. A) Mean proliferation of the active mouse CD8+ T cells during the 72-hour 
incubation period. B) Heatmap showing for each identified FA the mean value of the log2 
fold-of-change (vs. untreated) in the relative pool size. C) Heatmap showing the mean 
value of the log2 fold-of-change (vs. untreated) for each identified FA in the following 
parameters: endogenously synthesized fraction, calculated S, E1, E2, E3 and E4. For each FA, 
the parameter reported for the endogenous synthesis is indicated. D-G) Mass 
isotopologue distribution, the mean value of the log2 fold-of-change (vs. untreated) in the 
synthesis parameters and synthesis route for D) FA(18:1)n7, E) FA(18:1)n9, F) FA(20:1)n9 
and G) FA(20:3)n9. In all cases n=3. Individual points are shown for the mass isotopologue 
distributions, and the mean values are reported elsewhere. The shadowed cells in B and 
C indicate the activities (DNS, SCD or FADS2) involved in the synthesis of a particular FA. 
On the heatmaps, crosses indicate missing or NA values. In D-G, the horizontal transitions 
in the synthesis route description denote elongations (enzymes not indicated), and 
vertical transitions denote desaturations (enzymes indicated).Figure 42. Biological 
validation of FAMetA in active mouse CD8+ T-cells incubated with different U-13C-
tracers. Estimation of the FA metabolism parameters in the active mouse CD8+ T-cells 
incubated for 72 h with various U-13C-tracers. A-D) Estimation of the sources and the DNL 
parameters for FA(16:0) upon incubation with A) U-13C-glucose, B) U-13C-glutamine, C) U-
13C-lactate or D) U-13C-acetate. E) Summary of the endogenously synthesized fraction for 
the 27 known FA detected in the active mouse CD8+ T-cells upon incubation with U-13C-
glucose. 
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Figure 44. Biological validation of FAMetA in WT and KHK-C mice after drinking normal 

or 5% or 10% sucrose water, data obtained from ref.178. A-D) FAMetA was used to fit all 

the reported experimental MID for the WT 10% sucrose group. E) Heatmap showing the 
log2 fold of change (vs. WT 0% sucrose) for each reported FA in the following parameters: 
endogenously synthesised fraction, calculated S, E1 and E2. For each FA, the parameter 
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levels of the n5, n7, and n9 series FA, and increases the relative 

abundance of FADS2 products (e.g., sapienic acid, FA(16:1)n10), while 

FADS2i considerably diminishes sapienic acid abundance, which is 

consistent with previous reports on the complementary and 

compensatory roles of SCD1 and FADS2119 (Figure 43B). When 

analyzing endogenous synthesis, the changes reveal which enzymes 

are involved in the synthesis of each identified FA. FASNi decreases 

the endogenous synthesis of all the FA that come from FA(16:0), and 

SCD1i and FADS2i decreases the endogenous synthesis of all the FA 

that these enzymes are involved in (e.g. n9 series FA for SCD1i, n10 

series FA for FADS2i) (Figure 43C). When focusing on each calculated 

synthesis parameter, identifying the step in which each enzyme acts 

and mapping synthesis routes are straightforward. For example, for 

FA(18:1)n7 and FA(18:1)n9, SCDi differentially affects synthesis 

parameters. In FA(18:1)n9, where SCD acts at the 18-carbon level, the 

most prominent decrease is in calculated E1 (i.e., E1’= E1*Δ), in 

FA(18:1)n7, where SCD acts at the 16-carbon level, both calculated S 

(i.e., S’= S*Δ), and E1 decreases upon treatment with SCDi (Figure 43D-

E). The SCDi inhibition pattern observed in FA(18:1)n9 is mirrored in 

FA(20:1)n9 and FA(20:3)n9 (Figure 43C-G). In addition, FADS2i 

decreases the calculated E2 (i.e., E2’= E2*Δ) for FA(20:3)n9, which is 

indicative of FADS2 introducing a double bond at the 20-carbon level 

(Figure 43G). Thus, FAMetA allows the identification of both changes 

in general patterns and particular synthesis parameters induced by 

FA metabolism inhibitors. 
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3.2.2. FAMetA enables the analysis of the FA metabolism 

in vivo 

To test whether FAMetA could handle with in vivo data, we 

analyzed previously published data on the incorporation of U-13C-

fructose into saponified circulating FA in wild-type and intestine-

specific ketohexokinase (KHK-C) knockout mice after drinking 

normal water for 8 weeks, or 5% or 10% sucrose water178. In vivo 

generated data is characterized by low synthesis of FA, slight 

contribution of the 13C-tracer to the FA biosynthesis and a high 

proportion of odd-labelled isotopologues. Despite this, the estimated 

parameters fall within the high-confidence ranges established using 

the in silico validation. Overall, FAMetA has proven to properly fit in 

vivo data (Figure 44). 

The observed general trend suggests increased DNL, 

elongation and desaturation upon sucrose treatment, with a more 

pronounced effect on the KHK-C knockout mice (Figure 44A-E). 

Neither sucrose nor KHK-C ablation influences the fractional 

contribution of fructose to DNL (Figure 44F-G), but exposure to 

drinking fructose significantly alters DNL (S), elongation (E1 and E2) 

and desaturation (Figure 44H-K). The post hoc comparisons reveal 

significantly heightened FA(16:0) synthesis when drinking more 

fructose, but only in the KHK-C knockout group (Figure 44H), as well 

as augmented desaturation when drinking more fructose in both the 

wild-type and KHK-C knockout mice (Figure 44F). These results agree 

with and extend those reported by the authors of the study, which 

reported increased total 13C-labelled carbons in saponified circulating 

palmitate that accounts for the cumulative effect of DNL, the 

contribution of fructose to DNL and the palmitate concentration178. 
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3.3. Comparison between FAMetA and other 

available tools 

Once the capabilities of FAMetA were proven, we decided to 

compare the functionalities implemented in FAMetA with those from 

previously available approaches and tools (i.e., ISA, ConvISA155, 

Kamphorst et al.156 and FASA129). Table 10 shows the functions 

implemented by FAMetA and previous methods. Compared to 

previous tools, it allows the characterization of a broader FA 

biosynthesis network as it includes DNL, elongation and desaturation 

in a single tool. In addition, FAMetA offers the possibility of running 

all the required steps from data pre-processing to analysis of FA 

metabolism and graphical representation, and thanks to the web-

based application, this can be performed in a user-friendly 

environment. Moreover, regarding the FAMetA results and 

parameters, it improves the estimation of the elongation steps 

enabling an easier interpretation of the estimated parameters, and 

the implementation of quasi-multinomial fitting that incudes de 

parameter Φ, accounts for data overdispersion. 

Figure 44. Biological validation of FAMetA in WT and KHK-C mice after drinking normal 

or 5% or 10% sucrose water, data obtained from ref.178. A-D) FAMetA was used to fit all 

the reported experimental MID for the WT 10% sucrose group. E) Heatmap showing the 
log2 fold of change (vs. WT 0% sucrose) for each reported FA in the following parameters: 
endogenously synthesised fraction, calculated S, E1 and E2. For each FA, the parameter 
reported for the endogenous synthesis is indicated. The shadowed cells indicate the 
activities (DNS, elongation (ELOVL) or SCD1-mediated desaturation (SCD)) involved in the 
synthesis of a particular FA. F-K) The calculated FA synthesis parameters obtained with 
FAMetA. The tables summarise the result of the two-way ANOVA performed for each 
calculated parameter. Paired differences are calculated by a post hoc Tukey test. The p-
values obtained for the reported significant differences: S parameter for FA(16:0), KO 10% 

vs. KO 0%, p-value=0.014, KO 10% vs. KO 5%, p-value=0.03; Δ parameter for FA(18:1), WT 

10% vs. WT 0%, p-value=0.006, KO 10% vs .KO 0%, p-value=0.0012, KO 10% vs. KO 5%, p-
value=0.0004 (n=6,6,7,7,8,8).  

 

Figure 11. Analysis of the influence of the down-regulation of SCAP on the FA 
metabolism in the H1299 cells; data obtained from ref.129 . A) FAMetA was used to fit all 
the reported experimental mass-isotopologue distributions for the control condition 
(shCON). B) Heatmap showing the log2 fold of change (vs. shCON) for each reported FA in 
the following parameters: endogenously synthesized fraction, calculated S, E1, E2, E3 and 
E4. For each FA, the parameter reported for endogenous synthesis is indicated. The 
shadowed cells indicate the activities (DNS, elongation (ELOVL), or SCD1-mediated 
desaturation (SCD)) involved in the synthesis of a particular FA. n=4.Figure 44. Biological 
validation of FAMetA in WT and KHK-C mice after drinking normal or 5% or 10% sucrose 

water, data obtained from ref.178. A-D) FAMetA was used to fit all the reported 

experimental MID for the WT 10% sucrose group. E) Heatmap showing the log2 fold of 
change (vs. WT 0% sucrose) for each reported FA in the following parameters: 
endogenously synthesised fraction, calculated S, E1 and E2. For each FA, the parameter 
reported for the endogenous synthesis is indicated. The shadowed cells indicate the 
activities (DNS, elongation (ELOVL) or SCD1-mediated desaturation (SCD)) involved in the 
synthesis of a particular FA. F-K) The calculated FA synthesis parameters obtained with 
FAMetA. The tables summarise the result of the two-way ANOVA performed for each 
calculated parameter. Paired differences are calculated by a post hoc Tukey test. The p-
values obtained for the reported significant differences: S parameter for FA(16:0), KO 10% 

vs. KO 0%, p-value=0.014, KO 10% vs. KO 5%, p-value=0.03; Δ parameter for FA(18:1), WT 

10% vs. WT 0%, p-value=0.006, KO 10% vs .KO 0%, p-value=0.0012, KO 10% vs. KO 5%, p-
value=0.0004 (n=6,6,7,7,8,8).  
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Figure 44. Biological validation of FAMetA in WT and KHK-C mice after drinking normal 

or 5% or 10% sucrose water, data obtained from ref.178. A-D) FAMetA was used to fit all 

the reported experimental MID for the WT 10% sucrose group. E) Heatmap showing the 
log2 fold of change (vs. WT 0% sucrose) for each reported FA in the following parameters: 
endogenously synthesised fraction, calculated S, E1 and E2. For each FA, the parameter 
reported for the endogenous synthesis is indicated. The shadowed cells indicate the 
activities (DNS, elongation (ELOVL) or SCD1-mediated desaturation (SCD)) involved in the 
synthesis of a particular FA. F-K) The calculated FA synthesis parameters obtained with 
FAMetA. The tables summarise the result of the two-way ANOVA performed for each 
calculated parameter. Paired differences are calculated by a post hoc Tukey test. The p-
values obtained for the reported significant differences: S parameter for FA(16:0), KO 10% 

vs. KO 0%, p-value=0.014, KO 10% vs. KO 5%, p-value=0.03; Δ parameter for FA(18:1), WT 

10% vs. WT 0%, p-value=0.006, KO 10% vs .KO 0%, p-value=0.0012, KO 10% vs. KO 5%, p-
value=0.0004 (n=6,6,7,7,8,8).  
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Table 10. Comparison of features implemented within the main available tools for the 

analysis of FA metabolism. ✓ means that the feature is covered, ~ means that it is covered 
but with some limitations (detailed in Comments) and X, not covered. 

 

As FASA is the unique existing tool available to model FA 

elongation up to 26C, the performance of FAMetA to estimate elongation 

parameters was then compared with FASA. The comparison between 

FAMetA and FASA was performed using a dataset published by FASA 

developers, which contained information of twelve FA determined in the 

H1229 cells incubated with U-13C-glucose and/or U-13C-glutamine 

 ISA ConvISA155 Kamphorst156 FASA129 FAMetA 

De novo 
lipogenesis ✓ ✓  ✓ ✓  ✓ 

Contribution of 
labeled nutrient 

to lipogenic 
AcetylCoA pool 

✓ ✓ ✓ ✓   ✓ 

Elongation X ~ ✓ ✓ ✓ 

Desaturation X X ~ X ✓ 

Data pre-
processing 

X X X X ✓ 

Graphical output X X X X ✓ 

Implementation Matlab 
Matlab 
script 

Matlab 
script 

Matlab 
toolbox 

R-
package 

Web-
based 
app 

Comments 

The actual 
algorithm is not 

released as 
script or 

equivalent, but 
has to be 

implemented by 
users or used 

within a 
metabolic flux 

tool 

Elongation 
calculated 
only for 
FA(18:0) 

Steady state 
must be 

achieved as 
M+0 = import. 
Desaturation 
based on total 
labeling and 
exemplified 

only for 
FA(18:1)n9. 

Elongation 
described as 

de novo 
lipogenesis 
up to the 

total 
number of 

carbons 
plus 

multiple 
import-

elongation 
terms. 
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either with or without down-regulation of the SREBP cleavage 

activating protein (SCAP) labelled as shControl and shSCAP, 

respectively129. 

We firstly compared them in computing speed terms. The 

processing time with Intel Xeon E5-1620 CPU (3.5GHz) with 32GB RAM 

in Windows is ~170min for FASA (Matlab R2022a) and ~ 12min for the 

FAMetA R package (R v4.1.1, RStudio v1.4, FAMetA v0.1.3). The same 

analysis on the FAMetA webserver takes ~30min. The FAMetA 

algorithm calculates the fractional contribution of the carbon source 

(D0, D1 and D2) and overdispersion parameter (Φ) based on the 

distribution of FA(16:0). These values are then employed to fit the 

remaining FA. The same strategy was employed for FASA by firstly 

fitting FA(16:0) and then the remaining FA by setting the D0, D1 and D2 

values. 

Then, we compared them in terms of FA metabolic modelling. 

FAMetA and FASA present differences in the way they calculate the FA 

biosynthesis parameters. While FAMetA calculates import, DNL, 

elongation and desaturation, FASA does not calculate desaturation. In 

addition, FAMetA and FASA calculate elongation by different 

approaches that makes a difference in terms of interpretation of the 

results. FAMetA provides the direct estimation of each step in a 

specific FA synthesis pathway (Figure 34). For example, the FA(20:0) 

sources are described as I20:0 + E2 = I20:0 + E2 * (I18:0 + E1 * (I16:0 + S16:0)), where 

each parameter (S, E1, E2) directly represents a single synthesis route 

step, and E2 is the direct estimation of the fraction of FA(20:0) that 

results from the elongation of the total FA(18:0) pool. Conversely in 

FASA, FA(20:0) sources are described as S + IE2 + IE1 + I, where S 

(elongated from FA(16:0)) actually represents S16:0 * E1 * E2; IE2  

(elongated from the imported FA(16:0)), I16:0 * E1 * E2; IE1 (elongated from 
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step, and E2 is the direct estimation of the fraction of FA(20:0) that 
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FA(18:0)), I18:0 * E2, and I represents the fraction of the directly imported 

FA(20:0)129. Using FASA, the authors of the original study conclude that 

SCAP down-regulation decreases both DNL and elongation129 (Figure   

45). Although they do not report the detailed results of each synthesis 

parameter for every reported FA, we analyzed the dataset using FASA 

to find that several parameters change for each FA, and it is difficult 

to ascertain clear patterns to provide a more detailed conclusion than 

that proposed by the authors. Using FAMetA, we identify that SCAP 

down-regulation decreases the synthesis of monounsaturated n7 (i.e., 

FA(16:1)n7 and FA(18:1)n7) and n9 (i.e., FA(18:1)n9, FA(20:1)n9, and 

FA(22:1)n9) FA (Figure 45B). When focusing on particular synthesis 

parameters, the calculated S (i.e., S’= S*Δ) is the most altered parameter 

for the n7 series, which is consistent with SCD1 introducing the double 

bond at the 16-carbon level. The calculated E1 (i.e., E1’= E1*Δ) is the most 

altered parameter for the n9 series, and is consistent with SCD1 

introducing the double bond at the 18-carbon level (Figure 45B). Our 

refined analysis, which includes the calculation of desaturation and 

easy-to-interpret direct estimations of each elongation step, identifies 

that the main decrease occurs in the endogenous synthesis of the 

SCD1-derived n7 and n9 series of FA. This indicates diminished SCD1 

activity as the main metabolic change induced after SCAP silencing. 

Thus, we conclude that compared to FASA, FAMetA provides a 

more comprehensive characterization of the FA biosynthetic network, 

a better and more intuitive description of each synthesis parameter, 

and a more complete workflow that goes from data processing to 

group-based comparisons and graphical representation. It is also more 

efficient from a computing perspective. 
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Figure 45. Analysis of the influence of the down-regulation of SCAP on the FA 
metabolism in the H1299 cells; data obtained from ref.129 . A) FAMetA was used to fit all 
the reported experimental mass-isotopologue distributions for the control condition 
(shCON). B) Heatmap showing the log2 fold of change (vs. shCON) for each reported FA in 
the following parameters: endogenously synthesized fraction, calculated S, E1, E2, E3 and 
E4. For each FA, the parameter reported for endogenous synthesis is indicated. The 
shadowed cells indicate the activities (DNS, elongation (ELOVL), or SCD1-mediated 
desaturation (SCD)) involved in the synthesis of a particular FA. n=4. 

 

Figure 6. Analysis of the FA diversity in the human NSCLC cell line A549 incubated 
for 72 h with  U-13C-glucose induced by the use of different FA metabolism inhibitors 
(FASNi, SCDi and FADS2i). A-B) Chromatographic separation of the saponified FA from 
the A549 cells in culture. A) Combined chromatogram showing all the detected FA. B) 
Individual chromatograms for each detected FA. C) Heatmap showing the mean value of 
the log2 fold-of-change (vs. untreated) for each detected FA in the following parameters: 
endogenously synthesized fraction, calculated S, E1, E2, E3 and E4. For each FA, the 
parameter reported for the endogenous synthesis is indicated. The shadowed cells 
indicate the activities (DNS, SCD or FADS2) involved in the synthesis of a particular FA. 
Red denotes the FA whose synthesis route is unknown. On the heatmap, crosses indicate 
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4. FAMetA enables the identification of 

unknown FA in biological samples 

Finally, to test whether FAMetA was able to help in the 

identification of unknown FA, we decided to carry out the unbiased 

analysis of total FA in the non-small cell lung cancer (NSCLC) A549 cell 

line, which revealed high FA diversity (62 species), including several 

FA (33 species) that do not matched with the used FA standards (Figure 

46A-B). Here, we hypothesize that the information provided by the 

retention time of each FA combined with the FAMetA analysis of the 

MS-data generated using U-13C-glucose and well-characterized 

inhibitors (i.e., FASNi, SCDi, and FADS2i) would serve as a valuable 

strategy to identify unknown and unexpected FA by the reconstruction 

of their metabolic synthesis route. All the detected unknown FA 

incorporated 13C from U-13C-glucose, which confirms their endogenous 

metabolic origin. In all the cases the information provided by the 

inhibition profile and the retention time allowed us to propose 

identities for them all (Figure 46C, Figure 47 and Additional Figure 

S34, Appendix 2).  

For example, five FA(18:2) (18:2n6, nv, nx, ny, nz) are detected 

in the NSCLC cell line A549 (Figure 46B-C). Based on their retention 

time and expected n-series, v, x, y and z should be > 6 (Figure 46B). 

FA(18:2)nz is identified as FA(18:2)n10 because SCDi does not affect 

any synthesis parameter and FADS2 decreases the calculated E1 (i.e., 

E1’ = E1*Δ) (Figure 47). For FA(18:2)nv and FA(18:2)nx, SCD1i decreases 

the calculated S more than E1, but the opposite occurs for FA(18:2)ny. 

Thus FA(18:2)nv,nx and FA(18:2)ny are respectively identified as 

FA(18:2)n7 and FA(18:2)n9 (Figure 47A-C).  

 

195 
 

Based on the FADS2i inhibition profile, we conclude that FADS2 

introduces the second double bond at the 18-carbon level for 

FA(18:2)nv because FADS2i decreases the calculated E1 more than the 

calculated S, and at the 16-carbon level for FA(18:2)nx because FADS2i 

decreases the calculated S. Therefore, the four unknown FA(18:2) are 

identified as FA(18:2)n7(Δ6,11), FA(18:2)n7(Δ8,11), FA(18:2)n9(Δ6,9) 

and FA(18:2)n10(Δ5,8), respectively (Figure 47A-D). 

Figure 46. Analysis of the FA diversity in the human NSCLC cell line A549 incubated 
for 72 h with U-13C-glucose induced by the use of different FA metabolism inhibitors 
(FASNi, SCDi and FADS2i). A-B) Chromatographic separation of the saponified FA from 
the A549 cells in culture. A) Combined chromatogram showing all the detected FA. B) 
Individual chromatograms for each detected FA. C) Heatmap showing the mean value of 
the log2 fold-of-change (vs. untreated) for each detected FA in the following parameters: 
endogenously synthesized fraction, calculated S, E1, E2, E3 and E4. For each FA, the 
parameter reported for the endogenous synthesis is indicated. The shadowed cells 
indicate the activities (DNS, SCD or FADS2) involved in the synthesis of a particular FA. 
Red denotes the FA whose synthesis route is unknown. On the heatmap, crosses indicate 
missing or NA values. 

 

Figure 13. Elucidation of the synthesis route of unidentified FA species by combining 
FAMetA and FA metabolism inhibitors. A-D) The mass-isotopologue distribution, the 
mean value of the log2 fold-of-change (vs. untreated) in the synthesis parameters, and the 
proposed synthesis route for A) FA(18:2nv), B) FA(18:2nx), C) FA(18:2ny) and D) 
FA(18:2nz), whose identities do not match any standard employed for the method 
development. In all cases n=3. Individual points are shown for the mass isotopologue 
distributions. The mean values are reported elsewhere. In the synthesis route description, 
horizontal transitions denote elongations (enzymes not indicated) and vertical transitions 
depict desaturations (enzymes indicated).Figure 6. Analysis of the FA diversity in the 
human NSCLC cell line A549 incubated for 72 h with  U-13C-glucose induced by the use 
of different FA metabolism inhibitors (FASNi, SCDi and FADS2i). A-B) Chromatographic 
separation of the saponified FA from the A549 cells in culture. A) Combined 
chromatogram showing all the detected FA. B) Individual chromatograms for each 
detected FA. C) Heatmap showing the mean value of the log2 fold-of-change (vs. untreated) 
for each detected FA in the following parameters: endogenously synthesized fraction, 
calculated S, E1, E2, E3 and E4. For each FA, the parameter reported for the endogenous 
synthesis is indicated. The shadowed cells indicate the activities (DNS, SCD or FADS2) 
involved in the synthesis of a particular FA. Red denotes the FA whose synthesis route is 
unknown. On the heatmap, crosses indicate missing or NA values. 
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Based on this strategy, we built a decision tree that guides the 

identification of each double bond position based on the inhibition 

profile (Figure 48). Following this strategy, we identified a total of 33 

unknown FA (Additional Figure S35). Of them, 11 FA were confirmed 

with commercially available standards (Figure 49), and 9 of them did 

not match with any previously described FA. Therefore, FAMetA 

combined with our proposed strategy disclose a more comprehensive 

FA biosynthetic landscape of A4594 cells, including the description of 

11 novel FA that belong to already described n-series (Figure 50). 

Figure 47. Elucidation of the synthesis route of unidentified FA species by combining 
FAMetA and FA metabolism inhibitors. A-D) The mass-isotopologue distribution, the 
mean value of the log2 fold-of-change (vs. untreated) in the synthesis parameters, and the 
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Figure 48. The algorithm employed to identify unknown FA by the reconstruction of 
their biosynthesis route. The depicted algorithm is applied to identify the double bond 
positions for FA based on the inhibition profile obtained upon incubation with U-13C-
glucose, either with or without SCDi or FADS2i. The algorithm applies to FA whose origin 
can be tracked to FA(14:0)/FA(16:0). The previous assumptions must be met: 1) the FA 
incorporates labelling and intensity suffices to obtain values for all/most expected 
isotopomers; 2) FASNi decreases parameter S or distribution is consistent with the origin 
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33; thus the actual position of the double bonds has to be extrapolated for the FA of a 
different carbon length to that indicated in the algorithm. In red, FA for which we can 
anticipate the identification and synthesis route based on the described strategy, but were 
not detected or unambiguously assigned experimentally in the A549 cells because FADS1 
inhibitors were lacking. 
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unknown FA (Additional Figure S35). Of them, 11 FA were confirmed 
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Figure 48. The algorithm employed to identify unknown FA by the reconstruction of 
their biosynthesis route. The depicted algorithm is applied to identify the double bond 
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algorithm allows to identify the initial FA for the FA synthesis routes described in Figure 
33; thus the actual position of the double bonds has to be extrapolated for the FA of a 
different carbon length to that indicated in the algorithm. In red, FA for which we can 
anticipate the identification and synthesis route based on the described strategy, but were 
not detected or unambiguously assigned experimentally in the A549 cells because FADS1 
inhibitors were lacking. 

Chapter 2: FAMetA - Results and Discussion
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Figure 49. Confirmation of the identity of 11 unknown FA in the A549 cells with 
chemical standards. Chromatographic separation of A) FA 18:1, B) 18:2, C) 20:1, D) 22:3, 
E) 24:4, F) 24:5 and G) 24:6. In blue, the saponified FA from the A549 cells in culture. In 
red, chemical standards. Text in black, the FA that initially matched the chemical 
standards used to develop the method; in blue, a notation of the unknown FA detected in 
the A549 cells; in red, the chemical standards used to confirm the identity of the selected 
unknown FA
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Figure 50. FA biosynthesis routes in the NSCLC cell line A549. Summary of the FA 
metabolism network in the A549 cells for those FA that come from DNL. Black arrows 
denote elongations, blue arrows desaturations (the responsible enzyme is indicated) and 
a red arrow degradation. Red depicts the FA that have not been previously described. 
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Chapter 2: FAMetA - Results and Discussion
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5. Future improvements of FAMetA 

Future developments of mass isotopologue data analysis tools, 

including FAMetA, should address some unresolved issues like using 

labelled-FA as nutrients, distinguishing the uptake of exogenous FA and 

the lipolysis of stored lipids, estimating the synthesis rate of the FA that 

result from the degradation of a longer FA (e.g. FA(16:1)n9, where 

S’=S*E1*degradation), or the resolution of the FA metabolism properties 

of particular lipid classes of interest or organelles. Additionally, the 

FAMetA algorithm is exclusively designed to fit the data from 13C-based 

tracers for even-chain FA. Thus, future efforts should focus on 

implementing calculations based on 2H-tracers, such as 2H2O, which 

contributes to FA synthesis via direct H2O incorporation, and also via 

NADPH150,151, and to expand the reactions to cover odd-chain FA, in which 

not only the lipogenic Acetyl-CoA has to be estimated, but also the 

lipogenic Propionyl-CoA pool179. 
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Based on the work presented here, the following conclusions can 

be drawn for Chapter 1, focused on LipidMS: 

1) LipidMS was developed, an R-package aimed to lipid 

identification in untargeted LC-MS lipidomics. 

2) LipidMS covers the whole workflow required to process 

untargeted LC-MS raw data from peak-picking to lipid 

identification. 

3) Fragmentation rule-based identification implemented in 

LipidMS reduces false positive identifications and increases the 

level of structural elucidation compared to currently used tools 

(e.g., MS-DIAL). 

4) LipidMS allows the simultaneous processing of data acquired 

using full scan, DIA and DDA modes, although only DIA and 

DDA data are used for lipid annotation. 

5) The analysis of additivated vs non-additivated serum proves 

that LipidMS data processing workflow is valid for untargeted 

LC-MS analysis, as the results are comparable with those 

obtained using XCMS and MS-DIAL.  

6) LipidMS, in its R version, is highly customizable allowing the 

modification of FA chains or sphingoid bases used to build the 

databases and even, the fragmentation rules employed for lipid 

identification. 

7) Besides the R package, LipidMS can be used via web through 

www.lipidms.es so that no knowledge of R programming is 

required. 
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On the other hand, the following conclusions can be drawn for 

Chapter 2, focused on FAMetA: 

1) FAMetA was developed, an R-package aimed to the analysis of 

the fatty acids metabolism based on mass isotopologue data. 

2) FAMetA allows the analysis of the FA biosynthetic network, 

including the contribution of 13C-tracers to the synthesis of FA, 

de novo synthesis, elongation and desaturation for FA up to 26C 

by the combined used of 13C-tracers and LC-MS. 

3) The quasi-multinomial distribution employed by FAMetA that 

allows modelling the data overdispersion observed in the FA 

isotopologue distributions through the Φ parameter. 
4) FAMetA improves the assessment and interpretation of the 

elongation terms compared to FASA by individually estimating 

each elongation step instead of a sum of its multiple steps. 

5) FAMetA includes an indirect estimation of FA desaturation 

based on the synthesis parameters of the precursor and the 

product FA of each reaction for the whole FA network.  

6) The combined use of U-13C-glucose, well-known inhibitors of FA 

metabolism enzymes and data analysis with FAMetA allows the 

comprehensive characterization of the FA biosynthetic network, 

including the identification of 11 previously unknown FA. 

7) Besides the R package, FAMetA can be used via web through 

www.fameta.es so that no knowledge of R programming is 

required. 
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El desarrollo de la bioinformática y de las tecnologías analíticas 

han permitido la irrupción de las aproximaciones ómicas en la ciencia. 

Estas plataformas de perfilado molecular masivo tienen como objetivo 

la determinación del conjunto de biomoléculas (genes, proteínas, 

metabolitos, etc.) que forman parte de un sistema biológico. Entre ellas, 

la metabolómica pretende caracterizar el conjunto de metabolitos, 

moléculas de pequeño tamaño que actúan como precursores, 

intermediarios o productos finales del metabolismo. Los niveles de los 

metabolitos vienen determinados por todos aquellos procesos 

bioquímicos encargados de su producción, consumo y eliminación y, 

por tanto, son un reflejo directo del estado fisiológico del sistema 

biológico en estudio. La gran diversidad de propiedades físico-químicas 

de los metabolitos, que determinan en gran medida que técnicas 

analíticas deben utilizarse para su caracterización, han favorecido la 

aparición de subdisciplinas dentro de la metabolómica centradas en el 

análisis de un grupo concreto de metabolitos con características 

compartidas. Los lípidos son un subgrupo numeroso y heterogéneo de 

metabolitos que se caracterizan por su naturaleza hidrofóbica/anfifílica 

y que tienen una gran importancia biológica como intermediarios o 

productos de rutas de señalización, componentes estructurales de las 

membranas celulares y fuentes de energía. El análisis holístico de estos 

lípidos ha supuesto que la lipidómica se establezca como una 

subdisciplina de la metabolómica con entidad y características propias. 

El metabolismo de los lípidos juega un papel central en los sistemas 

biológicos y su estudio puede contribuir a la comprensión de los 

mecanismos que subyacen a diferentes condiciones patológicas. En los 

últimos años se han identificado alteraciones en los perfiles lipídicos 

generales y en especies lipídicas particulares en enfermedades de alta 

prevalencia como el cáncer, el hígado graso no alcohólico, la diabetes, 

las cardiopatías y las enfermedades neurológicas. Actualmente, se están 
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dirigiendo grandes esfuerzos para conocer no solo los mecanismos 

relacionados con los lípidos que subyacen a las enfermedades, sino 

también para encontrar nuevos biomarcadores que permitan predecir 

el diagnóstico, el pronóstico o la respuesta al tratamiento. Sin embargo, 

la mayoría de los biomarcadores lipídicos propuestos no están 

validados o no son útiles como biomarcadores clínicos debido a la falta 

de especificidad o sensibilidad de estas moléculas. Además, la 

interpretación biológica de las alteraciones del metabolismo de los 

lípidos es limitada porque aún se desconocen las funciones específicas 

de la mayoría de las especies de lípidos. En la mayoría de los casos, solo 

se utilizan los niveles globales de las clases de lípidos y los ácidos 

grasos libres totales para la interpretación de los resultados, pasando 

por alto la composición de las cadenas de ácidos grasos de los lípidos 

complejos. Por lo tanto, aún se requieren avances en métodos analíticos 

y herramientas bioinformáticas que mejoren el análisis del lipidoma 

para comprender completamente el metabolismo de los lípidos y sus 

implicaciones en cada enfermedad. 

Actualmente, la espectrometría de masas acoplada a cromatografía 

líquida (LC-MS) es la técnica analítica más empleada para el análisis del 

metaboloma y del lipidoma. En LC-MS, los metabolitos se separan en 

primer lugar por cromatografía líquida para, a continuación, ser ionizados 

y detectados por espectrometría de masas. El resultado final es un 

conjunto de datos crudos caracterizados por tres variables, tiempo de 

retención (RT), relación masa-carga (m/z) e intensidad, que deben ser 

procesados para extraer las señales asociadas a los diferentes metabolitos 

presentes en las muestras. En función del objetivo de un análisis 

metabolómico llevado a cabo por LC-MS, se distinguen dos tipos de 

aproximaciones: metabolómica dirigida o targeted, cuyo objetivo es la 

cuantificación de un pequeño conjunto metabolitos bien caracterizados, y 

metabolómica no dirigida o untargeted, cuyo objetivo consiste en 
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conseguir la mayor cobertura posible del metaboloma. Las aproximaciones 

targeted se realizan con espectrómetros de masas de baja resolución, como 

puede ser un triple cuadrupolo (TQ, por sus siglas en inglés) y para cada 

metabolito de interés se deben definir a priori las características a emplear 

en su detección, esto es su ion molecular (precursores o parent ions) y los 

fragmentos característicos que se generan tras la fragmentación de los 

mismos en la celda de colisión (fragmentos o daughter ions). Estos equipos 

suelen trabajar en modo multiple reaction monitoring (MRM) en el que 

múltiples metabolitos de interés se detectan en base a las características 

mencionadas. En las aproximaciones no dirigidas, al no disponer de un 

conjunto predefinido de metabolitos de interés, los datos deben ser 

procesados con el objetivo de extraer las señales de la mayor cantidad 

posible metabolitos que, a priori, son desconocidos. La identificación de 

los metabolitos se realiza tanto en base a la masa exacta del ion molecular 

detectado como en base a su estructura, dilucidada gracias a la 

fragmentación del ion molecular. Por tanto, el análisis untargeted se suele 

realizar con equipos de alta resolución que además posean la capacidad de 

fragmentar los iones generados. En la mayoría de los casos los equipos 

disponen de un cuadrupolo que permite filtrar los iones de interés de 

forma previa a su fragmentación en la celda de colisión y posterior análisis. 

En función de si existe o no un filtrado previo de los iones en el cuadrupolo 

antes de ser introducidos en la celda de colisión, podemos distinguir entre 

adquisición dependiente de datos (DDA), en la que se seleccionan un 

número determinado de iones que son seleccionados en el cuadrupolo y 

posteriormente fragmentados o adquisición independiente de datos (DIA), 

en la que todos los iones que coeluyen en un momento determinado son 

introducidos en la celda de colisión. En el caso de los datos adquiridos en 

DDA existe una conexión directa entre los fragmentos generados y el 

precursor, mientas que en el caso de DIA se deben utilizar técnicas de 

análisis de datos para poder establecer la conexión/correlación entre los 
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conseguir la mayor cobertura posible del metaboloma. Las aproximaciones 
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análisis de datos para poder establecer la conexión/correlación entre los 
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precursores y sus correspondientes fragmentos. Los equipos más 

habituales para el análisis metabolómico untargeted son el cuadrupolo-

tiempo de vuelo (QToF, por sus siglas en inglés) y el cuadrupolo-orbitrap. 

A pesar del gran interés que ha despertado la lipidómica en los 

últimos años, la gran heterogeneidad, el tamaño del lipidoma y la falta de 

estándares comerciales han dificultado la correcta identificación de los 

lípidos en análisis por LC-MS no dirigida, lo que sigue suponiendo el 

principal cuello de botella en el avance del estudio del lipidoma. Además, 

como ya se ha mencionado, la interpretación biológica de los resultados es 

limitada debido a que las funciones específicas de la mayoría de las 

especies de lípidos son aún desconocidas. Por este motivo, el objetivo 

general planteado en esta tesis fue el desarrollo de nuevos métodos y 

herramientas bioinformáticas que faciliten la caracterización del lipidoma 

y el estudio del metabolismo de lípidos, particularmente ácidos grasos. 

Para ello se propusieron dos objetivos principales: 

1) Desarrollo de una herramienta que mejore la anotación de lípidos 

en los análisis por LC-MS no dirigida. Esta herramienta debe cubrir 

todos los pasos necesarios para el procesamiento de los datos e 

implementar la anotación de lípidos basada en reglas de 

fragmentación para datos DDA y DIA. 

2) Desarrollo de un método que permita el estudio del conjunto de 

reacciones implicadas en la biosíntesis de ácidos grasos basado en 

el uso combinado de LC-MS y trazadores de 13C. 

Esta tesis se divide en dos capítulos en los que se explican con 

detalle cada una de las dos herramientas desarrolladas a lo largo de esta 

tesis, LipidMS (Capítulo 1), un paquete de R para el procesamiento de datos 

de LC-MS no dirigida y la anotación de lípidos, y FAMetA (Capítulo 2), una 

herramienta basada en distribuciones de isotopólogos para el análisis 
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exhaustivo del metabolismo de los ácidos grasos, ambas con el objetivo de 

mejorar el análisis del lipidoma basado en espectrometría de masas. 

Por un lado, LipidMS fue desarrollado con el objetivo específico de 

mejorar la identificación de lípidos en LC-MS mediante el uso de reglas de 

fragmentación. Como ya se ha mencionado, el tamaño, la complejidad y la 

heterogeneidad del lipidoma junto con la falta de estándares lipídicos 

disponibles, hacen de la anotación de lípidos uno de los pasos más 

limitantes y costosos del procesamiento de datos en los estudios 

lipidómicos por LC-MS. La identificación precisa de cualquier metabolito 

en LC-MS, requiere la comprobación del RT, m/z y espectro MS/MS con un 

estándar disponible comercialmente. En el caso de los lípidos, debido a la 

enorme variedad de especies lipídicas y al reducido número de estándares 

disponibles, esta estrategia no puede aplicarse en la mayoría de los casos. 

En este sentido, la definición de patrones de fragmentación para diferentes 

clases de lípidos ha permitido la construcción in silico de librerías de 

espectros MS/MS que se utilizan para la anotación de lípidos mediante el 

uso de algoritmos de spectral matching. Sin embargo, esta estrategia 

presenta múltiples limitaciones. En primer lugar, un único valor de m/z 

para un precursor no es suficiente para identificar el ion molecular debido 

a la gran cantidad de solapamientos entre especies isoméricas e isobáricas, 

por lo que una correcta anotación de isótopos y aductos es de suma 

importancia en lipidómica no dirigida. Además, aunque la información del 

MS/MS puede ayudar a distinguir algunos de estos solapamientos, no es 

suficiente en muchos casos en los que se obtienen fragmentos comunes 

entre diferentes clases de lípidos o entre diferentes especies de una misma 

clase. Por otra parte, si el espectro MS/MS contiene un número reducido de 

fragmentos con intensidades elevadas, los cálculos de similitud entre 

espectros pueden estar sesgados dando lugar a resultados iguales o muy 

similares para diferentes especies isobáricas e isoméricas. Esto es muy 

frecuente en los lípidos, donde los fragmentos específicos de clase, que 
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sólo informan sobre la subclase de un lípido (por ejemplo, los fragmentos 

de la cabeza polar), o los fragmentos correspondientes a las cadenas de 

ácidos grasos que sólo informan sobre la composición de las cadenas, pero 

no sobre la clase o subclase de la especie lipídica de interés, son comunes 

a un gran número de especies. Por otro lado, cuando los compuestos 

isobáricos o isoméricos coeluyen durante la separación cromatográfica, lo 

que también es común debido a la naturaleza estructural de los lípidos a 

modo de bloques, se obtienen espectros MS/MS complejos tanto para los 

datos adquiridos en DDA como en DIA, lo que dificulta las anotaciones de 

lípidos. Como alternativa, la identificación de lípidos basada en reglas de 

fragmentación y en la presencia o ausencia de los fragmentos esperados 

para cada clase de lípido se ha implementado en un número reducido de 

herramientas bioinformáticas. En el momento en que se empezó esta tesis 

doctoral, solo unas pocas herramientas como LDA68 o LipidMatch69, estaban 

basados en reglas de fragmentación, y la mayoría, únicamente trabajaban 

con datos adquiridos en DDA. Por otro lado, MS-DIAL133 permitía trabajar 

con datos adquiridos en DIA, pero la anotación de lípidos estaba basada 

en spectral matching. En versiones posteriores MS-DIAL incorporó la 

anotación basada en reglas de fragmentación a través de LipidMatch69,136. 

En este contexto, LipidMS fue diseñado inicialmente con el objetivo de 

anotar lípidos en muestras individuales utilizando datos adquiridos en DIA 

y anotaciones basadas en reglas de fragmentación, aunque más tarde fue 

ampliado a DDA, ya que es el modo de adquisición más comúnmente 

utilizado. Por otro lado, LipidMS dependía inicialmente del uso de 

herramientas externas de procesamiento para analizar secuencias de 

múltiples muestras. Para superar esta limitación, las nuevas versiones del 

paquete han incorporado las funcionalidades necesarias para cubrir todo 

el flujo de trabajo en el procesamiento de los datos: extracción de picos, 

alineación, agrupación e integración de picos. Una vez generada la matriz 

con todas las señales detectadas en el dataset, LipidMS inicia la 
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identificación de lípidos en aquellas muestras adquiridas en DIA o DDA 

utilizando la información tanto de MS1 como de MS2. Con respecto a otras 

herramientas disponibles, LipidMS incorpora dos estrategias que ayudan a 

maximizar el número de asignaciones correctas y a minimizar las 

incorrectas. Por un lado, el conjunto de reglas de fragmentación ha sido 

definido de tal forma que se prioriza el uso de fragmentos específicos de 

clase bien caracterizados en lugar de fragmentos más intensos, pero 

menos específicos, como son las cadenas de ácidos grasos (que pueden ser 

comunes a gran cantidad de clases de lípidos). Por otro lado, los lípidos 

suelen ionizar en forma de múltiples aductos (p.ej. [M+H]+, [M+Na]+ y 

[M+NH4]+, en el caso de ESI+). En muchas ocasiones los aductos de una 

especie lipídica concreta pueden ser confundidos con otra especie, por 

tanto, una correcta asignación de todos los aductos detectados para un 

lípido concreto de forma previa al análisis de los fragmentos generados 

contribuye a dar mayor robustez a las identificaciones generadas y a 

minimizar el número de anotaciones incorrectas. La última versión de 

LipidMS incluye las reglas de fragmentación predefinidas para 28 clases de 

lípidos y permite customizar tanto las reglas de fragmentación como los 

building blocks utilizados para generar las librerías necesarias para la 

identificación. En función de los fragmentos encontrados, cada especie 

identificada puede anotarse con diferentes niveles de elucidación 

estructural: a nivel de clase, cuando solo se han encontrado fragmentos 

característicos de la clase o subclase de lípido, lo que confirma el tipo de 

lípido y la composición total de carbonos y dobles enlaces pero no la 

composición de las cadenas; a nivel de composición de las cadenas de 

ácidos grasos, cuando además de los fragmentos de clase se han 

encontrado fragmentos específicos de estas cadenas; y a nivel de posición 

de las mismas, cuando las intensidades relativas de los fragmentos 

correspondientes a las cadenas permiten dilucidar la posición de cada uno 

de las ácidos grasos dentro de la estructura del lípido complejo. LipidMS 
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fue evaluado mediante el análisis de un suero humano comercial aditivado 

y no aditivado con un total de 68 estándares lipídicos y comparado con 

dos de los softwares más comúnmente empleados en el procesamiento de 

datos de metabolómica y lipidómica no dirigida: XCMS134 y MS-DIAL136. En 

primer lugar, la comparación con XCMS demuestra que los algoritmos de 

procesamiento implementados en la última versión de LipidMS funcionan 

correctamente ya que los resultados obtenidos con ambos softwares son 

similares. Por otro lado, la comparación con MS-DIAL demuestra que 

LipidMS reduce el número de identificaciones incorrectas y mejora el nivel 

de elucidación estructural de las especies identificadas pese a que MS-DIAL 

es capaz de anotar un número mucho mayor de especies, por lo que 

LipidMS y MS-DIAL podrían utilizarse de manera complementaria. También 

es importante subrayar que LipidMS soporta el procesamiento simultáneo 

de las siguientes combinaciones de modos de adquisición MS: todas las 

muestras adquiridas en DIA; todas las muestras adquiridas en DDA; 

combinación de muestras DIA y DDA; combinación de full scan y DIA; 

combinación de full scan y DDA; y combinación de full scan, DDA y DIA, lo 

que permite integrar con mayor facilidad y de manera automática los 

resultados de las anotaciones obtenidas en DIA y DDA con el resto de los 

datos. Futuras mejoras de LipidMS deberían incluir la ampliación de las 

clases de lípidos y de las cadenas de ácidos grasos y bases esfingoides 

utilizadas para ofrecer una mejor cobertura del lipidoma, la 

estandarización de LipidMS para hacerlo compatible con otros paquetes de 

R, o la posibilidad de analizar datos de lípidos marcados con trazadores 

isotópicos. 

Por otro lado, FAMetA surgió como respuesta al segundo objetivo 

de esta tesis, que consistía en desarrollar una herramienta que facilite el 

estudio del metabolismo de los ácidos grasos. El uso de trazadores de 13C 

y detección basada en MS es el método de referencia para el análisis del 

metabolismo de los ácidos grasos. Este método se basa en la incorporación 
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sucesiva de unidades de dos carbonos marcadas con el isótopo estable del 

carbono 13C, a través del acetil-CoA, hacia los ácidos grasos durante las 

reacciones de síntesis y elongación y el posterior análisis de las 

distribuciones de isotopólogos obtenidas. Gracias a la diferencia de masa 

entre las especies preexistentes o las sintetizadas a través de fuentes no 

marcadas con respecto a las generadas a partir de la fuente que contiene 
13C, se puede realizar un análisis del metabolismo basado en la distribución 

de isotopólogos (especies de una misma molécula que difieren únicamente 

en su masa como consecuencia de la incorporación de 13C en lugar del 12C, 

que es la especie mayoritaria de forma natural). A pesar de que se han 

desarrollado varios algoritmos y herramientas para extraer información 

sobre el metabolismo de los ácidos grasos mediante la modelización de 

estas distribuciones de isotopólogos, estas siguen proporcionando una 

información limitada y difícil de interpretar129,153–155,166,167. La mayoría de 

estos métodos únicamente proporcionan información sobre la lipogénesis 

de novo para los ácidos grasos de hasta 16 o 18 carbonos o no reflejan los 

pasos biológicos reales de los procesos de elongación. Además, la 

desaturación no se tiene en cuenta para la red completa de ácidos grasos. 

Con el fin de superar estas limitaciones, desarrollamos FAMetA, una 

herramienta que utiliza las distribuciones de isotopólogos de los ácidos 

grasos obtenidas por la incorporación de acetil-CoA marcado con 13C para 

estimar cada uno de los pasos de la mayoría de las reacciones biosintéticas 

implicadas en el metabolismo de los ácidos grasos: lipogénesis de novo (S), 

elongación (E), desaturación (Δ) e importación (I). Además, FAMetA permite 

estimar la contribución relativa del trazador empleado al pool de acetil-

CoA (D0, D1 y D2, haciendo referencia a si contiene 0, 1 o 2 átomos de 13C 

respectivamente). Para ácidos grasos de hasta 16 carbonos, la síntesis de 

novo se ha modelizado tradicionalmente utilizando distribuciones 

multinomiales que permiten la estimación de los parámetros I, S y D0, D1, 

D2. En FAMetA hemos reemplazado las distribuciones multinomiales por 
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sucesiva de unidades de dos carbonos marcadas con el isótopo estable del 
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estimar cada uno de los pasos de la mayoría de las reacciones biosintéticas 
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CoA (D0, D1 y D2, haciendo referencia a si contiene 0, 1 o 2 átomos de 13C 

respectivamente). Para ácidos grasos de hasta 16 carbonos, la síntesis de 

novo se ha modelizado tradicionalmente utilizando distribuciones 

multinomiales que permiten la estimación de los parámetros I, S y D0, D1, 

D2. En FAMetA hemos reemplazado las distribuciones multinomiales por 
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distribuciones quasi-multinomiales que son capaces de modelizar y 

cuantificar (mediante el parámetro Φ) la sobredispersión habitualmente 

observada de forma experimental en las distribuciones obtenidas. Para los 

ácidos grasos de más de 16 carbonos, además de los parámetros S e I, 

también se estiman hasta cinco términos de elongación (En, haciendo 

referencia n=1 al primer paso de elongación para ácidos grasos de 18 

carbonos y n=5 el último paso para ácidos grasos de 26 carbonos) que 

representan cada uno de los pasos de elongación individuales de un 

precursor con X átomos de carbonos, a un producto de longitud X+2. En 

comparación con herramientas anteriores, la forma en que FAMetA calcula 

las elongaciones, refleja mejor cómo se elongan los ácidos grasos dentro 

de las células, lo que permite una interpretación biológica directa de los 

parámetros de elongación estimados. Además, FAMetA incorpora la 

estimación indirecta de la desaturación para la red metabólica de los ácidos 

grasos mediante una estrategia que utiliza los parámetros de síntesis 

estimados para el precursor y el producto de la reacción de desaturación 

en lugar del marcaje total. Por último, el flujo de trabajo de FAMetA incluye 

todas las funcionalidades necesarias para el procesamiento de datos, las 

comparaciones por grupos y los resultados gráficos, lo que facilita la 

interpretación de los resultados. Para testar la validez de los algoritmos 

implementados en FAMetA, en primer lugar, se simuló un conjunto de 

distribuciones de isotopólogos a partir de valores conocidos de los 

diferentes parámetros calculados por FAMetA, y se comprobó que FAMetA 

es capaz de determinar con precisión el conjunto completo de parámetros 

de la síntesis de ácidos grasos (error relativo < 15%, RSD < 15% para todos 

los parámetros) siempre que la contribución relativa del trazador (D2) y los 

parámetros a calcular para un determinado ácido graso, es decir, S, E1, E2, 

E3 y E4, se encuentren dentro del intervalo 0.05-0.9, lo que garantiza su 

aplicabilidad en un escenario biológico real. A continuación, FAMetA fue 

evaluado en diferentes escenarios biológicos tanto in vivo como in vitro, 
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con y sin la presencia de inhibidores conocidos de reacciones específicas 

del metabolismo de los ácidos grasos, comprobando que FAMetA permite 

determinar los parámetros asociados a estas reacciones la red metabólica 

completa y, además, en un escenario de uso de inhibidores, FAMetA es 

capaz de detectar los cambios específicos inducidos en el metabolismo. 

Además, comparado con FASA129, la única herramienta que hasta el 

momento incluía el análisis de ácidos grasos elongados más allá de 18 

carbonos, FAMetA proporciona una caracterización más completa de la red 

biosintética de los ácidos grasos, una descripción mejor y más intuitiva de 

cada uno de los parámetros de síntesis y un flujo de trabajo más completo 

que va desde el procesamiento de datos hasta las comparaciones basadas 

en grupos y la representación gráfica. Por último, el uso de inhibidores 

específicos combinado con el análisis de FAMetA, nos ha permitido 

estudiar en profundidad la red metabólica de biosíntesis de ácidos grasos 

en células A549, identificando 33 ácidos grasos a priori desconocidos, 11 

de los cuales pudieron ser confirmados con estándares comerciales. 

Además, 12 de ellos no han sido previamente descritos en mamíferos, 

aunque pertenecen a series n/omega ya descritas. Fututas versiones de 

FAMetA deberían incorporar el análisis de otro tipo de trazadores a parte 

de los de 13C, permitir el uso de ácidos grasos marcados como trazadores, 

ampliar la red de reacciones para incluir los ácidos grasos de cadena impar 

y abordar la degradación. En resumen, en comparación con herramientas 

anteriores, FAMetA ofrece: i) la caracterización de una red biosintética de 

ácidos grasos más amplia ya que incluye en una única herramienta el 

análisis de síntesis de novo, elongación y desaturación; ii) la posibilidad de 

ejecutar los pasos necesarios desde el procesamiento de datos hasta el 

análisis del metabolismo de los ácidos grasos y la representación gráfica 

en una única herramienta; iii) un entorno de fácil manejo gracias a su 

implementación como un paquete de R y una versión web con interfaz 

gráfica; iv) mejor ajuste a los datos experimentales gracias a la 
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implementación de un ajuste quasi-multinomial que incluye el parámetro 

Φ para tener en cuenta la sobredispersión de los datos; v) mejor modelado 

de las reacciones de elongación, lo que permite una interpretación más 

sencilla de los parámetros estimados; y vi) parámetros y representaciones 

gráficas fáciles de interpretar que permiten obtener conclusiones 

biológicas significativas. 

Para ambas herramientas, tanto LipidMS como FAMetA, se han 

implementado versiones web utilizando el paquete Shiny con el objetivo 

de hacer su uso más accesible para la mayoría de usuarios ya que ofrece 

una interfaz gráfica intuitiva que no requiere conocimientos de R ni 

instalación previa. LipidMS se encuentra disponible en 

http://www.lipidms.es/ y FAMetA en https://www.fameta.es/. 

En base al trabajo desarrollado en esta tesis, las siguientes 

conclusiones pueden ser extraídas para el Capítulo 1, centrado en LipidMS: 

1) Se ha desarrollado LipidMS, un paquete de R dirigido a la 

identificación de lípidos en lipidómica no dirigida basada en LC-

MS. 

2) LipidMS cubre todo el flujo de trabajo necesario para procesar 

datos de LC-MS no dirigida, desde la extracción de picos hasta la 

identificación de lípidos. 

3) La identificación basada en reglas de fragmentación implementada 

en LipidMS reduce el número de falsos positivos en la 

identificación de lípidos y mejora el nivel de elucidación estructural 

en comparación con las herramientas utilizadas actualmente 

como, por ejemplo, MS-DIAL. 

4) LipidMS permite el procesamiento simultáneo de datos adquiridos 

en full scan, DIA y DDA, aunque para la anotación únicamente se 

utilizan aquellos adquiridos en DIA y DDA. 
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5) El análisis de suero aditivado frente a no aditivado demuestra que 

el procesamiento de datos implementado en LipidMS es válido para 

el análisis por LC-MS no dirigida, ya que los resultados son 

comparables a los obtenidos mediante XCMS y MS-DIAL. 

6) LipidMS, en su versión de paquete de R, es altamente 

personalizable permitiendo la modificación de las cadenas de 

ácidos grasos o de las bases esfingoides utilizadas para construir 

las bases de datos y las reglas de fragmentación empleadas para la 

identificación de lípidos. 

7) Además del paquete de R, LipidMS puede ser utilizado a través de 

su herramienta web (www.lipidms.es) sin necesidad de tener 

conocimientos de programación en R. 

Por otro lado, las siguientes conclusiones pueden ser extraídas del 

Capítulo 2, dedicado a FAMetA: 

1) Se ha desarrollado FAMetA, un paquete de R dirigido al análisis del 

metabolismo de ácidos grasos basado en distribuciones de 

isotopólogos. 

2) FAMetA permite analizar la red biosintética de los ácidos grasos 

incluyendo la contribución de los trazadores de 13C a la síntesis de 

ácidos grasos, síntesis de novo, elongación y desaturación para 

ácidos grasos de hasta 26C mediante el uso combinado de 

trazadores 13C y LC-MS. 

3) La distribución quasi-multinomial empleada en FAMetA, que 

incluye el parámetro Φ, permite modelizar la sobredispersión 

observada en las distribuciones de isotopólogos de los ácidos 

grasos. 

4) FAMetA mejora la estimación y la interpretación de los términos 

de elongación comparado con FASA, al estimar individualmente 

cada paso de elongación en lugar de una suma de múltiples pasos. 
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5) FAMetA incluye la estimación indirecta de la desaturación basada 

en los parámetros de síntesis del precursor y el producto de cada 

reacción para la red completa de ácidos grasos. 

6) El uso combinado de glucosa completamente marcada con 13C e 

inhibidores de enzimas del metabolismo de ácidos grasos junto 

con el análisis llevado a cabo por FAMetA permite la 

caracterización exhaustiva de la red biosintética de los ácidos 

grasos, incluyendo la identificación de 11 ácidos grasos a 

desconocidos previamente. 

7) Además del paquete de R, FAMetA puede utilizarse a través de su 

herramienta web (www.fameta.es) sin necesidad de tener 

conocimientos previos de programación en R. 
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