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Abstract

Due to their high specificity, monogenoids from fish provide an interesting model to study
historical associations of hosts and parasites. High agreement between host and parasite
phylogeny is often interpreted as evidence of cospeciation. However, cophylogenetic signal
may also arise from other, either adaptive or non-adaptive, processes. We applied the recently
developed Cophylospace Framework to better understand the evolutionary relationship
between monogenoids and marine catfish from the Atlantic coast of South America. The asso-
ciations between 12 marine catfish and 10 monogenoid species were assessed. Molecular data
of host and parasite species were used for phylogenetic reconstruction. We used anchor
morphology based on Procrustes coordinates to evaluate whether closely related hosts are
associated with morphologically similar parasites. To assess the association between parasite
phylogeny and host morphology, we produced a distance matrix based on morphological
characters of catfishes. Agreement between phylogenies and between phylogeny and morph-
ology was measured using Procrustes R2 computed with PACo. The parasite phylogeny
obtained in this study represents the first complete phylogenetic hypothesis of monogenoids
parasitizing ariids from South America. The Cophylospace analysis suggested that phylogen-
etic and morphological distance of monogenoids contributes similarly to explain the pattern
of host–parasite associations, whereas parasite phylogeny is more strongly associated with the
morphological traits of the hosts than with host phylogeny. This evidence suggests that cospe-
ciation is not a major force accounting for diversification in the monogenoids studied. Rather
host morphological traits seem to be a more important driver, which conforms with evidence
from other host‒monogenoid systems.

Introduction

Reconstruction of the association between 2 or more lineages over evolutionary time has been
a recurrent theme spanning different biological fields, from molecular evolution to coevolution
and biogeography (Page, 2003). Host–parasite coevolution in particular has been the subject of
numerous studies for decades. The common goal of such efforts has been estimating the joint
evolutionary history that gave rise to the extant patterns of association between hosts and para-
sites (Klassen, 1992; Desdevises, 2007; Lei and Olival, 2014). Since the advent of molecular
genetics and phylogenetic reconstruction, coevolutionary studies have advanced mainly
through the application of cophylogenetic analyses (Poulin, 2021).

In fact, a variety of analytical tools has been developed for cophylogenetic studies in the last
decades (Drinkwater and Charleston, 2016; Hutchinson et al., 2017; Balbuena et al., 2020).
These methods have been useful to reveal a range of cophylogenetic patterns, but identifying
the processes that give rise to them remains challenging (Althoff et al., 2014; Blasco-Costa
et al., 2021). It is important to note that cospeciation patterns do not necessarily provide
evidence for host–parasite coevolution, as they may indeed result from different processes,
such as vicariance, phylogenetic tracking, vertical transmission or coevolution [see Althoff
et al. (2014) for definitions of these processes]. Building on this idea, Blasco-Costa et al.
(2021) proposed a new ‘Cophylospace Framework’ aimed at obtaining better insight into
the mechanisms that drive coevolutionary processes.

This new Cophylospace Framework is defined in a 3-dimensional space based on 3 quan-
titative parameters: cophylogenetic signal, parasite interaction and host interaction.
Cophylogenetic signal measures the agreement between the host and parasite histories. This
is assessed by quantifying the degree of phylogenetic congruence between hosts and parasites.
The interaction parameters are meant to measure the relationship between phylogeny of one of
the symbiotic partners and morphological similarities between the other partner. These
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interactions are expected to reflect the degree of phylogenetic
tracking of one partner over the other. Thus, a given cophyloge-
netic scenario could be explained in terms of its position along the
3 axes, reflecting the relative contributions of different processes
(see Blasco-Costa et al., 2021, Fig. 1, p. 6). For example, significant
congruence between host and parasite phylogenies could be taken
as evidence for cospeciation being important in the system stud-
ied. However, cospeciation can result from 4 different mechan-
isms: coevolution, vicariance, phylogenetic tracking or vertical
transmission. For instance, if the relationship between parasite
phylogeny and host morphology was stronger than between the
phylogenies of hosts and parasites, this suggests that parasite spe-
ciation is mostly determined by adaptation to diversification of
host resources. Thus, phylogenetic tracking rather that strict
host–parasite cospeciation is likely the mechanism accounting
for the patterns observed. Nevertheless this framework remains
to be tested in different host–parasite systems.

In aquatic environments, parasitic platyhelminths from the
Class Monogenoidea and their fish hosts have attracted much
attention in historical reconstruction studies. This is mainly due
to their generally high host specificity which promotes studies
aimed at establishing relationships between the ecological charac-
teristics of the hosts and the diversity of their parasites (Rohde,
1979; Sasal et al., 1998; Poulin, 2002; Míguez-Lozano et al.,
2017). However, although high host specificity can result from
cospeciation (Noble et al., 1989; Kearn, 1994), it can also arise
from other adaptive and non-adaptive processes (Boeger and
Kritsky, 1997; Braga et al., 2014). In recent years, different studies
of monogenoids and their fish hosts have suggested that host
switching and duplication are the most recurrent evolutionary
events in parasite diversification (Desdevises et al., 2002;
Šimková et al., 2004, 2006, 2013; Domingues and Boeger, 2005;
Huyse and Volckaert, 2005; Mendlová et al., 2012; Hahn et al.,
2015; Vanhove et al., 2015; Míguez–Lozano et al., 2017; Graça
et al., 2018; Rahmouni et al., 2022; Seidlová et al., 2022), whereas
cospeciation is relatively rare (Desdevises et al., 2002; Mendlová
et al., 2012; Míguez–Lozano et al., 2017; Graça et al., 2018;
Rahmouni et al., 2022, Seidlová et al., 2022).

The monogenoid genera Chauhanellus Bychowsky &
Nagibina, 1969, with 30 species, Hamatopeduncularia Yamaguti,
1953, with 32 and the monotypic Susanlimocotyle Soares et al.,
2021 are related genera within the Dactylogyridae with all species
recorded on the gills (or nostrils in the case of Susanlimocotyle) of

marine catfish (Ariidae, Siluriformes) worldwide (Lim et al., 2001;
Domingues et al., 2016; Illa et al., 2019; Soares et al., 2021; Soo
and Tan, 2021). The distribution and colonization of these species
may have been influenced by the evolutionary history of the
Ariidae. In fact, vicariance associated with the fragmentation of
Gondwana seems the most plausible hypothesis to explain the
current distribution of these monogenoids across the different
zoogeographic regions (i.e. Neotropical, Nearctic, Palearctic,
Ethiopian and Oriental) (Lim et al., 2001; Betancur-R, 2009;
Kritsky et al., 2009; Soares et al., 2021).

Todate, only 6 species ofChauhanellus, 2 ofHamatopeduncularia
and Susanlimocotyle narina Soares et al., 2021 have been recorded in
South America (Domingues and Fehlauer, 2006; Domingues et al.,
2016; Soares et al., 2021). However, our ongoing studies indicate
that the actual number of species in the region is probably much
higher.

Most studies to date have suggested that the recent diversifica-
tion of ariids on the Atlantic coast of South America is mostly
associated with adaptive processes linked to their occupation of
different environments (Marceniuk, 2005; Marceniuk et al.
2012a, 2017, 2019a, 2022; Da Silva et al., 2016). Thus, this dacty-
logyrids–marine catfish association is extremely attractive for
biogeographic and coevolutionary studies, since it is reasonable
to expect that these monogenoids will accommodate evolutionary
events associated with their hosts (Soares et al., 2021). Herein, we
apply the Cophylospace Framework to this host–parasite system.
Our aim is to reconstruct molecular phylogenies for the hosts
(Ariidae) and their monogenoid parasites to assess which evolu-
tionary process has likely accounted for the diversification of
the dactylogyrid species on their ariid hosts. Based on evidence
from previous studies, we hypothesize that monogenoid diversifi-
cation is mostly likely driven by phylogenetic tracking of host
resources rather than by strict host–parasite cospeciation.

Materials and methods

Study area, host and parasite collection

Fish were collected by local fishermen with trammel net and
hooks from 4 localities along the Brazilian coast (Table 1,
Fig. 1). Eleven species belonging to the family Ariidae were
collected: Amphiarius rugispinis (Valenciennes, 1840), Aspistor
luniscutis (Valenciennes, 1840), Aspistor quadriscutis

Table 1. Monogenoid species included in the present study

Parasite Host Sitea Localityb

Chauhanellus boegeri OP681529c Genidens barbus G Cananéia (25°02′09.2′′S;47°54′57.8′′W), SP, BR

Chauhanellus neotropicalis OP681530c Aspistor luniscutis G Cananéia (25°02′09.2′′S;47°54′57.8′′W), SP, BR

Chauhanellus hypenocleithrum OP681533c Sciades proops G Ajuruteua (0°49′31′′N;46°36′29′′W), Bragança, PA, BR

Chauhanellus susamlimae OP681527c Sciades passany G Caratateua (1°59′41.91′′S; 46°43′21.385′′W), Bragança, PA, BR

Chauhanellus hamatopeduncularoideum
OP681531c

Amphiarius
rugispinis

G Ajuruteua (0°49′31′′N;46°36′29′′W), Bragança, PA, BR

Chauhanellus velum OP681528c Sciades herzbergii G Ajuruteua (0°49′31′′N;46°36′29′′W), Bragança, PA, BR

Chauhanellus sp. OP681534c Genidens barbus G Lagoa dos Patos (32°08′05.7′′S; 52°06′11.2′′W), Rio grande RS,
BR

Susanlimocotyle narina OP681525c Sciades herbergii N Ajuruteua (0°49′31′′N;46°36′29′′W), Bragança, PA, BR

Hamatopeduncularia bagre OP681526c Bagre bagre G Ajuruteua (0°49′31′′N;46°36′29′′W), Bragança, PA, BR

Hamatopeduncularia cangatae OP681532c Aspistor luniscutis G Cananéia (25°02′09.2′′S;47°54′57.8′′W), SP, BR

Host species, infestation site, locality (geographical coordinates) and GenBank accession numbers are provided.
aG, gills; N, nasal cavities
bSP, São Paulo; PA, Pará; RS, Rio Grande do Sul; BR, Brazil
cGenBank accession numbers of the DNA sequences of genes 18S rDNA, ITS1, 5.8S rDNA and ITS2.
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(Valenciennes, 1840), Bagre bagre (Linnaeus, 1766), Genidens
barbus (Lacepède, 1803), Genidens genidens (Cuvier, 1829),
Notarius grandicassis (Valenciennes, 1840), Sciades couma
(Valenciennes, 1840), Sciades herzbergii (Bloch, 1794), Sciades
passany (Valenciennes, 1840), Sciades proops (Valenciennes,
1840) (Table 1). The host species were chosen according to previ-
ous records of Chauhanellus spp., Hamatopeduncularia spp. and
S. narina Soares et al., 2021, in the study area (Domingues and
Fehlauer, 2006; Domingues et al., 2016; Soares et al., 2021). The

data on the species Bagre marinus (Mitchell, 1815) used in the
analyses were based on the literature (Mendoza-Franco et al.,
2018). Host scientific names follow Marceniuk et al. (2012b).

Gills and nasal cavities of fishes were examined for monoge-
noids following Soares et al. (2019) for morphological study,
and Soares et al. (2021) for molecular characterization. Each gill
arch and nasal cavity were examined individually.

Each monogenoid specimen subjected to molecular analysis
was divided using fine needles under a dissecting microscope.

Fig. 1. Sampling sites of fish in the Atlantic coast of Brazil.
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The anterior half of the body (without the male copulatory organ)
was placed in a 1.5 mL microtube with 96% ethanol for genomic
DNA extraction. The posterior part containing the haptoral com-
plex and the male copulatory organ was flattened under coverslip
pressure and mounted in Hoyer’s solution for species identification.
These fragments served also as vouchers [hologenophores sensu
Pleijel et al. (2008)]. Identification to species was carried out accord-
ing to Domingues and Fehlauer (2006), Domingues et al. (2016) and
Soares et al. (2021).Hologenophores are deposited at the collectionof
Platyhelminthes of theAdão JoséCardosoMuseumofZoologyof the
State University of Campinas (ZUEC PLA), São Paulo state, and the
Invertebrate Collection of the Museu Paraense Emílio Goeldi
(MPEG), Belém, Pará state, Brazil, respectively under No (ZUEC
PLA 184–187 ; MPEG 276–278). The specimen, herein referred to
as Chauhanellus sp., possibly represents a new species to science
that will be described in due course.

DNA extraction, PCR and sequencing, alignment and
phylogenetic analyses

For parasites, total genomic DNA was extracted using Qiagen
Dneasy® Blood and Tissue Kits (animal tissue protocol), according
to the manufacturer’s protocol, with a final volume of 30 μL. The
DNAconcentrationwasverifiedusingaNanoDrop2000 spectropho-
tometer (Thermo Fisher Scientific, Massachusetts, USA) at 260 nm.

Partial 18S rDNA, ITS1, 5.8S rDNA and ITS2 regions were
amplified using a 2-round polymerase chain reaction (PCR). In
the first round, DNA was amplified with the primer pair 1200F
(Littlewood and Olson, 2001) and D2 (Wu et al., 2006). In the
second round, for the semi-nested PCRs, the primer

combinations were 1200F and 28SR1 (Wu et al., 2006), which
amplified a fragment of ∼1131 bp.

PCRs were performed in a Matercycler® nexus (Eppendorf,
Hamburg, Germany) with a final volume of 25:12.5 μL of
DreamTaq Green PCR Master Mix (2×) (Thermo Scientific,
Wilmington, USA), following the manufacturer’s recommenda-
tions, 0.5 mM of each primer and 3 μL of the extracted DNA.
The PCR profile was set as follows: an initial denaturation at
95°C was performed for 3 min, followed by 34 cycles of 94°C
for 30 s, 56°C for 30 s, 72°C for 90 s and a final elongation at
72°C for 4 min. The semi-nested PCRs were conducted with 1
μL of the PCR product, diluted 1:1 in ultrapure water, applying
the same cycling conditions. Amplicons were electrophoresed
on 2% agarose gel in a TAE buffer (Tris 40 mM, acetic acid 20
mM, ethylenediaminetetraacetic acid 1 mM) stained with
SYBRsafe® (Invitrogen, Thermo Fisher Scientific) alongside a 1
kb Plus DNA Ladder (Invitrogen, Thermo Fisher Scientific) at
100 V for 30 min. PCR products were purified using a
QIAquick PCR Purification Kit (Qiagen, USA) and sequencing
was carried out with the BigDye® Terminator v3.1 Cycle
Sequencing Kit (Applied Biosystems™, California, USA) in a
3500 DNA sequencing analyser (Applied Biosystems) at Helixxa
Company (Paulínia, São Paulo State, Brazil) or at the Human
Genome Research Center (HGRC) of the University of São
Paulo (São Paulo State, Brazil), using the primers pair 1200F
and 28SR1 for amplification.

For the phylogenetic reconstruction of the hosts, Cytb and
RAG2 partial sequences were retrieved from GenBank (Table 2).

Phylogenetic analyses were carried out with concatenated
sequences of genes Cytb and RAG2 for the hosts and 18S
rDNA, ITS1, 5.8S rDNA and ITS2 for the parasites. All sequences

Table 2. GenBank accession numbers of the DNA sequences of genes Cytb and RAG2 partial of fish hosts and associated species of Chauhanellus,
Hamatopeduncularia and Susanlimocotyle detected in the present effort on each fish species

Hosts Cytb RAG2 Parasite species

Amphiarius rugispinis AY688668 DQ990506 Chauhanellus hamatopeduncularoideuma

Chauhanellus neotropicalis

Aspistor luniscutis FJ626172 JN672841 Hamatopeduncularia cangataea

Chauhanellus neotropicalisa

Aspistor quadriscutis AY688670 DQ990508 Hamatopeduncularia cangataea

Chauhanellus neotropicalis

Bagre bagre AY688673 DQ990523 Hamatopeduncularia bagrea

Bagre marinus DQ119472 DQ990524 Hamatopeduncularia bagreb

Genidens barbus FJ626167 FJ626006 Chauhanellus sp.a

Chauhanellus boegeria

Genidens genidens FJ013164 FJ013211 Chauhanellus sp.
Chauhanellus boegeri

Notarius grandicassis AY688671 DQ990509 Chauhanellus neotropicalis
Hamatopeduncularia cangatae

Sciades couma DQ990495 JN672850 Chauhanellus boegeri
Chauhanellus hamatopeduncularoideum
Chauhanellus velum

Sciades herzbergii DQ990496 DQ990520 Chauhanellus boegeri
Chauhanellus susamlimae
Chauhanellus veluma

Susanlimocotyle narinaa

Sciades passany DQ990493 JN672853 Chauhanellus neotropicalis
Chauhanellus susamlimaea

Chauhanellus velum

Sciades proops DQ990491 DQ990518 Chauhanellus hypenocleithruma

aSpecimen subjected to molecular analysis, where sequences (partial 18S rDNA, ITS1, 5.8S rDNA and ITS2) were to be used for the phylogenetic and Cophylospace analysis.
bMendoza-Franco et al. (2018).
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were aligned using MUSCLE implemented in Geneious 7.1.3
(Kearse et al., 2012). The evolutionary model was selected with
JModelTest 2.1.1 (Darriba et al., 2012) based on the Akaike infor-
mation criterion. Host data were treated as subpartitions of
codons, and optimal evolutionary models were selected independ-
ently for each position within the codon (Cytb = 1st, 2nd, 3rd =
GTR + G + I; RAG2 = 1st, 2nd = GTR + I, 3rd = GTR + G). As
for the parasites, the optimal evolutionary model was selected
for each marker (18S rDNA = GTR + G; ITS1, 5.8S rDNA
and ITS2 = GTR + G + I). Phylogenetic reconstruction of hosts
and parasites was performed using Bayesian inference. The
reconstructions followed the partitions recommended by
PartitionFinder (Lanfear et al., 2012) implemented with
MrBayes v.3.2.6 (Ronquist et al., 2012). Posterior probabilities
were estimated from 106 and 5 × 105 generations for the hosts
and the parasites, respectively, with 2 independent runs of 4 sim-
ultaneous Markov Chain Monte Carlo (MCMC) algorithms, suf-
ficient to keep the average standard deviation below 0.001. Tracer
v1.7 (Rambaut et al., 2018) was used to verify convergence and
confirm the effective sample size (ESS) (i.e. ESS values > 200).
The MCMC with 1000th tree was saved, diagnostic for every
1000th generation with burn-in periods set to the first 25 000 gen-
erations. Trees were visualized on Figtree 1.3.1 (Rambaut, 2008)
and figures were prepared using CorelDRAW© 2014.

GenBank sequences of Ageneiosus atronasus Eigenmann &
Eigenmann, 1888 (Auchenipteridae), Cetopsorhamdia sp.
(Heptapteridae), Ictalurus punctatus (Rafinesque, 1818)
(Ictaluridae), Galeichthys ater Castelnau, 1861, Galeichthys feliceps
Valenciennes, 1840, Galeichthys peruvianus Lutken, 1874
(Ariidae) (all fishes), Gyrodactylus bueni Bueno–Silva & Boeger,
2014 and Gyrodactylus corydori Bueno–Silva & Boeger, 2009
(Gyrodactylidae) (all parasites) were used as an outgroup in the
reconstruction of the fish and parasite phylogenies, respectively.
All sequences of the parasite species obtained for the 18S
rDNA, ITS1, 5.8S rDNA and ITS2 genes have been deposited in
GenBank (Table 1).

Morphological data from parasite and host, matrix of
host–parasite associations and coevolutionary analyses

Cophylospace (Blasco-Costa et al., 2021) is based on the compari-
son of morphological and phylogenetic data from hosts and para-
sites to measure the strength of 3 quantitative parameters: the
parasite interaction, the host interaction and the cophylogenetic
signal. Parasite interaction evaluates whether phylogenetically
close hosts are associated with more morphologically similar
parasites than expected by chance. Conversely, host interaction
evaluates whether phylogenetically close parasites are associated
with more morphologically similar hosts than expected by chance,
then morphological data of both hosts and parasites are required.

Forparasites,weused informationon the shape of dorsal and ven-
tral anchors of the haptor. We chose these attachment structures
because their morphology is likely driven by a combination of both
adaptive forces and phylogenetic constraints (Mandeng et al., 2015;
Rodríguez-González et al., 2016, 2017). In addition, they are not sub-
jected to large variation due to contraction or flattening on fixation
(Lim and Gibson, 2009; Rodríguez-González et al., 2017).

We used geometric morphometrics techniques through
acquisition and landmark superimposition to characterize the
shape of dorsal and ventral anchors (Klingenberg, 2010;
Rodríguez-González et al., 2017). For acquisition of landmarks,
we used the drawings of ventral and dorsal anchors of the original
descriptions (Domingues and Fehlauer, 2006; Domingues et al.,
2016; Soares et al., 2021). For Chauhanellus sp., we prepared
new illustrations according to the procedures described by
Domingues et al. (2016).

One dorsal and 1 ventral anchor of each monogenoid species
were processed independently. In each anchor, 5 landmarks
were placed (Llopis-Belenguer et al., 2015; Rodríguez-González
et al., 2015) (Fig. 2). In addition, in order to capture anchor
morphology more accurately, we employed semi-landmarks
(Mitteroecker and Gunz, 2009; Llopis-Belenguer et al., 2015).
This was appropriate in our case because of the curved inner
and outer roots, and the blade and point lack of easily detectable
homologous points. Five groups of 6–29 semi-landmarks were
placed equidistantly between landmark pairs as shown in Fig. 2.
The morphology of each anchor was defined by the Cartesian
coordinates (x, y) of the 83 anatomical points (i.e. landmarks
and semi-landmarks). These geometric coordinates were pro-
cessed with the TPS series (Rohlf, 2022). Generalized Procrustes
analysis in MorphoJ was employed toobtainmatrices of shape coor-
dinates of the dorsal and ventral anchors (datasets 1 and 2 respect-
ively; see data availability statement below) (Klingenberg, 2011).

To test the host interaction, we produced a distance matrix
based on the number of synapomorphies from a phylogenetic
tree of Ariidae species built from morphological characters (e.g.
mesethmoid posterior branches moderately long, delimiting
between one-quarter and half of the length of the anterior cranial
fontanel; lachrymal tubules differentiated from frontal bones
throughout their entire extension) sensu Marceniuk et al.
(2012b, p. 609) (dataset 3, Supplementary Table S1). The infor-
mation on gill and nostril shape should have been preferably
used as it represents the microhabitat from each parasite, but
unfortunately these data are not available. Therefore, we assumed
that the overall morphological similarities and differences
between each host species correlate to some extent with the prop-
erties of the parasites’ microhabitats.

The relationship between host and parasite phylogenies
(cophylogenetic signal), and between phylogenies and morph-
ology (parasite and host interactions) was assessed with
Procrustean Approach to Cophylogeny (PACo) (Balbuena et al.,
2013). To this end, a binary matrix describing the associations
between host and parasite species [0, no association with parasite;
1, association with parasite (dataset 4)] was built based on the dis-
tribution of parasites in the hosts (Table 2) (Balbuena et al., 2013).

Cophylogenetic signal and interactions between phylogeny and
morphology of parasites and hosts (parasite and host interaction)
were measured using Procrustes R2 = 1–m2

xy (Legendre and
Legendre, 2012), where m2

xy is the residual sum of squares pro-
duced by PACo run in symmetric mode (i.e. no a priori depend-
ence of the phylogeny onto another is assumed). Both analyses
were performed with package paco (Hutchinson et al., 2017) in
R (R Core Team, 2022). The significance of the associations (at
the 0.05 level) between hosts and parasites was established
based on 10 000 permutations.

To evaluate the reliability of our results, we also applied
Cophylospace using 1000 randomly chosen pairs of the posterior-
probability trees used to build the consensus trees of parasites and
hosts (excluding the burn-in set). To evaluate phylogenetic con-
gruence between hosts and parasites, PACo was run with each
of the 1000 pairs of trees, whereas for morphology–phylogeny
comparisons, PACo was applied to 1000 either host or monoge-
noid trees and the corresponding morphology matrix. Each ana-
lysis yielded 1000 Procrustes R2, and the 95% confidence intervals
(CI) were computed empirically.

To independently assess the importance of cospeciation in the
association between the monogenoids and their ariid hosts, we
applied Jane v4 (Conow et al., 2010). We used as input, host
and parasite phylogenies and the matrix of host–parasite associa-
tions (dataset 5). Jane allows different costs to be set for each of
the 5 coevolutionary events: cospeciation, duplication, loss, failure
to diverge and duplication followed by host switching. Following
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Deng et al. (2013) and Míguez-Lozano et al. (2017), 20 event cost
schemes were applied (Table 3), under 1000 generations and a
population size of 200 as parameters of Jane’s genetic algorithm.
Since our intention was to establish whether cospeciation events
are important in the system studied, the cost of cospeciation
was not to be larger than that of duplication, host-switch or
loss (Charleston and Libeskind-Hadas, 2014), and thus it was
set to 0 in all analyses. The statistical significance (at the 0.05
level) of global cost tests was assessed using 1000 randomizations
under Random Tip Mapping.

Results

The host–parasite system examined is composed of 10 monoge-
noid species on 12 South American species of marine catfish
(Ariidae) (Table 2, Fig. 1). The aligned host sequence lengths
were 720 pb for partial Cytb and 1095 pb for partial RAG2 and
those of the parasites were 1547 pb for partial 18S rDNA, ITS1,
5.8S rDNA and ITS2.

In general, posterior probabilities indicated strong nodal sup-
port in both the host and parasite phylogenies (Fig. 3A).
Exceptions in the fish phylogeny were nodes between Genidens
and Sciades (0.57) and between S. herzbergii and S. proops
(0.70). For the parasites, only the node between the clade of
Hamatopeduncularia spp. [H. bagre from B. marinus (Mitchill,
1815) and B. bagre, H. cangatae from A. quadriscutis, A. luniscutis
and N. grandicassis] and Chauhanellus spp. parasitizing all other
ariids showed relatively low support (0.44) (Fig. 3A).

The analysis revealed a low, but statistically significant, cophy-
logenetic signal (R2 = 0.20, P = 0.018) (Fig. 3A). The tests

examining the interaction of ariids phylogeny with the shape of
ventral and dorsal anchors of monogenoids (parasite interaction)
yielded Procrustes R2 = 0.24 and R2 = 0.18, respectively (Fig. 3B
and C, respectively). This host phylogeny–parasite morphology
interaction was significant for the ventral anchors (P = 0.004),
but not for the dorsal ones (P = 0.055). The concordance between
monogenoid phylogeny and ariid shape (host interaction) was
higher (R2 = 0.30) and highly significant (P = 0.001) (Fig. 3D).
Figure 4 shows the boxplots and 95% CI of the R2 estimated
with the sets of post-probability trees, suggesting that the pattern
of highest R2 associated with the host morphology–parasite phyl-
ogeny interaction is not critically affected by phylogenetic
uncertainty.

With all 20-cost schemes, every scenario led to a significant
global cost (P < 0.05). Table 3 displays the number of coevolution-
ary events under the different cost models. Loss and failure to
diverge were the most common coevolutionary events in the
ariid–monogenoid system studied, whereas cospeciation was the
least recurrent event (1–2) under all cost schemes.

Discussion

The parasite phylogeny obtained in this study was constructed
based on unpublished molecular data (partial 18S rDNA, ITS1,
5.8S rDNA and ITS2) and represents the first complete phylogenetic
hypothesis ofmonogenoids parasitizing ariids fromSouthAmerica.
Our analyses showed that S. narina,Hamatopeduncularia spp. and
Chauhanellus spp. form a monophyletic group. This suggests that
these parasites colonized the hosts only once in their evolutionary
history, followed by diversification (Fig. 3A) (Soares et al., 2021).

Fig. 2. Ventral and dorsal anchors of Chauhanellus boegeri Domingues and Fehlauher, 2006. Distribution of landmarks (1–5, filled points) and semi-landmarks
(6–83, open points) considered in the present study in ventral and dorsal anchors. Landmarks were defined as follows: 1, top of inner root; 2, inflexion between
outer root and inner root; 3, top of outer root; 4, outer shaft base; 5, tip of point. Five groups of 6–29 semi-landmarks were placed equidistantly between landmark
pairs as shown.
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However, despite the clades formed by Hamadopeduncularia spp.
and Chauhanellus spp. being well supported, the relationships
between the 2 genera had low support (Fig. 3A).

As for the phylogenetic reconstruction of the hosts, the overall
relationships at genus and species level agree with Marceniuk et al.
(2012b) (morphological data) and Marceniuk et al. (2019b) (mor-
phological and molecular data). The low support of the node sep-
arating Genidens and Sciades also conforms with Marceniuk et al.
(2012b, 2019b). Therefore, despite the low support of some of the
clades, the phylogenies obtained were considered reliable enough
for Cophylospace assessment (Blasco-Costa et al., 2021).

The Cophylospace analyses showed that cophylogenetic signal
was statistically significant in the ariid‒monogenoid system. A
significant cophylogenetic signal has been often interpreted as
offering support for cospeciation (Desdevises et al., 2002;
Šimková et al., 2004, 2006, 2013; Huyse and Volckaert, 2005;
Mendlová et al., 2012; Hahn et al., 2015; Vanhove et al., 2015;
Míguez-Lozano et al., 2017; Graça et al., 2018). However, previous
studies suggest that cospeciation isnot an importantdriver in the evo-
lution of monogenoids (Desdevises et al., 2002; Šimková et al., 2004,
2013; Blasco-Costa et al., 2012; Míguez-Lozano et al., 2017). This
seems to apply to our system. In all scenarios suggested by Jane, our
analyses identified only 1–2 cases of cospeciation out of 22–75 evolu-
tionary events indicated by different cost schemes (Table 3,
Supplementary Fig. S1), which is in line with the results of the
Cophylospace analysis. Whereas phylogenetic and morphological
distance ofmonogenoids contributed similarly to explain the pattern
of host–parasite associations, parasite phylogeny was more strongly
associated with the morphological traits of the hosts than with the
host phylogeny, as the respective CIs do not overlap (Fig. 4).

In fact, the position of ariid‒monogenoid systems in the
Cophylospace (Supplementary Fig. S2) suggests some degree of
asymmetry in which host morphological traits may have influ-
enced diversification of their monogenoids, supporting that the
speciation in our system is driven to a larger extent by phylogen-
etic tracking of host resources rather than by cospeciation. Thus,
host morphological traits driven by adaptive processes linked to
their occupation of different environments in South America in
parallel seem to be the main force that has driven the speciation
in these parasites. This agrees with a coadaptive codiversification
scenario sensu Clayton et al. (2015). Our results also conform
with those reported by Blasco–costa et al. (2021) for monogenoids
(Ligophorus spp.) on grey mullets (Mugilidae) in the
Mediterranean and the Black Sea.

It is known that the host can drive genetic and morphological
differentiation of monogenoids (Desdevises et al., 2002) and it has
been often hypothesized that haptor morphology reflects adapta-
tions for attachment to the host (Šimková et al., 2002; Mandeng
et al., 2015; Rodríguez-González et al., 2016, 2017). Indeed, the
second largest characteristic interaction force in our system is
linked to the shape of the ventral anchors (Fig. 4), followed by
the cophylogenetic signal, reinforcing our hypothesis of speciation
by adaptation.

Monogenoids are known to be highly specific to their hosts
(Poulin, 1992; Braga et al., 2014). However, this specificity does
not necessarily have to result from cospeciation of host and
parasite lineages. Other processes, such as duplication and
host-switching (Boeger and Kritsky, 1997; Braga et al., 2014) or
failure to diverge and losses, can result in host specificity
(Vanhove et al., 2015; Míguez-Lozano et al., 2017). More

Table 3. Results of cophylogenetic analyses with Jane for monogenoids and their ariid hosts

Model
Event
costs

Total
cost Cospeciation Duplication

Duplication and host
switch Loss

Failure to
diverge

Jane default 01211 45 2 5 2 22 14

TreeMap default 01111 43 2 5 2 22 14

TreeFitter default 00211 39 2 6 1 23 14

Host switch-adjusted
TreeFitter

00111 38 1–2 5–6 2 22 14

DHS > or = Da 00010 22 1 5–6 2–3 22 14

DHS > or = D 00011 36 1 5–6 2–3 22 14

DHS > or = D 00012 50 1 5–6 2–3 22 14

DHS > or = D 00020 44 1 5–6 2–3 22 14

DHS > or = D 00021 58 1 5–6 2–3 22 14

DHS > or = D 00022 72 1 5–6 2–3 22 14

DHS > or = D 00110 24 1–2 5–6 2 22 14

DHS > or = D 00112 52 1–2 5–6 2 22 14

DHS > or = D 00120 46 1–2 5–6 2 22 14

DHS > or = D 00121 60 1–2 5–6 2 22 14

DHS > or = D 00122 74 1–2 5–6 2 22 14

DHS > or = D 01110 29 2 5 2 22 14

DHS > or = D 01112 57 2 5 2 22 14

DHS > or = D 01120 51 2 5 2 22 14

DHS > or = D 01121 79 2 5 2 22 14

DHS > or = D 01122 65 2 5 2 22 14

Twenty evolutionary models with different cost schemes for each evolutionary event were tested. The total costs and frequencies of individual evolutionary events are shown for each model.
The statistical significance of global cost tests (P < 0.05) was established based on 1000 random reconstructions. All models were significant.
aMíguez-Lozano et al. (2017), DHS > or = D = cost of duplication followed by host-switch to be higher, or equal to cost of duplication.
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generally, it has been proposed that parasites do not specialize in
particular host species, but in resources that can or cannot be, on
an evolutionary scale, shared among a range of host species
(Nyman, 2010). It has also been suggested that parasites, in

addition to specialists and generalists, can be false specialists or
false generalists (Brooks and McLennan, 2002). False specialists
are generalists restricted to a single or few resources due to eco-
logical or temporary factors (opportunity), whereas false

Fig. 3. Tanglegram reflecting the application of the
Cophylospace Framework. (A) Associations between
12 species of ariids from Atlantic coast of South
America (left) and 10 species of monogenoids
(right) – support values of posterior probabilities
are given above the branches. (B) Interaction of
host phylogeny with monogenoid shape (1) – asso-
ciation between the phylogeny of 12 ariid species
and the shape of the ventral anchors of 10 species
of monogenoids. (C) Interaction of host phylogeny
with monogenoid shape (2) – association between
the phylogeny of 12 ariid species and the shape of
the dorsal anchors of 10 species of monogenoids.
(D) Interaction of monogenoids phylogeny with
ariid shape – association between morphological
characters of 12 ariid species and the phylogeny
of 10 species of monogenoids. Species names are
the same as in Table 2.
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generalists are specialized in a resource that is phylogenetically
widespread (phylogenetically closely host species with similar
ecological requirements) (Brooks and McLennan, 2002). The lat-
ter seems to be the case in the present study and in other host‒
monogenoid systems (Desdevises et al., 2002; Mendlová et al.,
2012; Braga et al., 2014; Wendt et al., 2022). Further studies
should examine to which extent the false generalist paradigm
applies to monogenoids and other ectoparasites.

Although we acknowledge that information on the shape of
the gills and nostrils of each host is needed to better assess the
relationships between the occupation of each microhabitat by
each monogenoid species, the Cophylospace Framework supplies
a quantitative tool that not only supports that cospeciation is not
a major driver of coevolutionary relations between monogenoids
and ariids, but also allows quantifying the strength of different dri-
vers of host–parasite coevolution (cophylogenetic signal, host inter-
action and parasite interaction). However, we suggest that future
research based on the Cophylospace Framework would greatly
benefit from more detailed morphological studies of the hosts.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0031182022001615.
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