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Prof. Inés de Vega Rodrigo





El tiempo se lo lleva lo numérico

Inés de Vega





Abstract

The first part of the thesis is dedicated to the field of open quantum systems.

An open quantum system is a quantum system subject to the action of an

environment with which it interacts. Firstly, we introduce the basic concepts

of this theory, such as irreversible temporal evolution, Markovianity, and

master equations. In the first study conducted in this field, we investigate

how a non-equilibrium environment, composed of two systems at different

temperatures, affects the dynamics of a two-level system. We derive a master

equation to describe the evolution of the two-level system, and through

certain approximations, we obtain analytical results for the decay rates

appearing in it. These expressions allow us to anticipate that the system’s

dynamics will be governed by two timescales: a short one in which the

system will prethermalize to a non-asymptotic thermal state, and a long one

during which the system will evolve towards the true thermal state. In this

work, we also examine the effect of these composite environments on the

direction of heat flows when they are connected through a two-level system.

In the second chapter, we present the types of noise affecting two-

level systems that make up quantum computers, known as qubits. Firstly,

we briefly review the possible noise channels affecting qubits and present

two very simple models that use master equations to describe the qubits’

dynamics. It is theorized that the main source of noise in solid-state qubits
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is due to the presence of two-level systems (TLS) around the qubits with

which they interact. We first present a semiclassical noise model, considering

the qubit as a quantum system, but the two-level systems inducing noise are

treated as classical fluctuators. We study noise mitigation techniques on this

model and compare their effectiveness. Next, we introduce a purely quantum

model, considering the two-level systems around the qubit as quantum

systems. These two-level systems are also interacting with a medium at a

finite temperature, inducing decoherence on them. We explore the energy

structure of the qubit-TLS system, and under the secular approximation,

we study the main transitions and draw a physical picture of the process.

The second part of the thesis focuses on the field of quantum walkers

(QW). We introduce the basic scheme and its classical analogue. Next, we

show how the continuous limit of the QW leads to the Dirac equation and

how inhomogeneous coins can give rise to more interesting dynamics in

the continuum limit, such as spinors in electromagnetic fields or curved

spacetimes. In the first study conducted in this field, we consider a time-

inhomogeneous coin, which means a stochastic coin that can perform different

operations with different probabilities at each time step. We find that in

the continuum limit, these QWs simulate dissipative dynamics described

by a Lindblad equation. We conduct a numerical study of the dynamics

of a spinor described by this equation and identify two regimes: an initial

regime of ballistic propagation and a second regime of diffusion. Finally, we

also extend the study to coins with temporal noise that smoothly depends

on the position.

The next work in this part employs a 2-dimensional QW, which in

the continuum limit, simulates the Dirac equation in curved spacetimes

to simulate the Randal-Sundrum model. This model proposes an extra

dimension to explain the mass hierarchy problem. The extra dimension

is finite and has 4-dimensional branes at each end. One of the branes is
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postulated to contain the matter of the Standard Model, while gravity

occupies the entire space. The QW that simulates this model accurately

reproduces the phenomenology of the model, as the spinor representing

the QW tends towards the position of the brane of the Standard Model.

Additionally, we study the evolution of entanglement entropy between the

spin and position of the QW, as well as the composition of energy modes of

the walker.

The last work in this part studies a QW with a non-linear coin that

depends on the walker’s components. This map can be experimentally

implemented using the components of an electric field propagating in a

nonlinear optical medium of the Kerr type. One characteristic of these

media is the formation of solitons. Firstly, we study the continuous limit

of this QW and perform a stability analysis of stationary homogeneous

solutions, which allows us to systematically explore the QW numerically and

anticipate soliton formation. Under certain approximations, also supported

by the numerical studies, we obtain an analytical solution describing the

solitons. The numerical study corroborates this solution and also reveals

the existence of dark solitons. Finally, we explore the stability of solitons

in the presence of constant electric fields. We find that non-linearity helps

reduce the soliton dispersion caused by the electric field but does not stop

it.
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sigut tant bona. Gracies a Silvia, Rafa, Andreu, Dani, Sergi, Pau, Renan i

Carlos per compartir aquests dinars i cafès tant a la cafeteria de Campus
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Part I

Quantum Noise

Open Quantum Systems and their use in qubit noise models
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Chapter 1

The theory of Open

Quantum Systems

1.1 Introduction

Quantum Mechanics (QM) is the most fundamental theory of nature that we

currently know. Since its conception in the 1920s it has proven a successful

theory at different complexity levels, from correctly describing the energy

levels of the hydrogen atom to predicting the existence of the elementary

particles that constitute the building blocks of matter. Even thought the

theory has proven successful, whenever there is an increasingly high level of

complexity, approximate or perturbative methods need to be employed.

Quantum systems are hardly ever completely isolated, we refer to

them as open systems, and they should be considered in interaction with

a surrounding environment, which will most likely affect the dynamics of

the open system. The number of degrees of freedom of the environment are

generally much higher that those of the open system. One could resort to

5



6 CHAPTER 1. THE THEORY OF OPEN QUANTUM SYSTEMS

exact methods to solve the evolution of the whole isolated system, composed

by the open system and its environment. In practice this task rapidly

becomes unfeasible.

The theory of open quantum systems (OQS) has developed the tools to

describe the open system without the need to give an exact description of the

environmental degrees of freedom. The use of the theory of open quantum

systems has been successful in the field of quantum optics, where for instance

a lossy cavity can modify the rates at which transitions occur and modify

the steady state of the system. The theory of OQSs has experienced a rise

in popularity due to its applicability in quantum technological scenarios,

where the phenomena of decoherence and dissipation are well captured by

the formalism, and it constitutes a test bed for the study of mitigation and

control techniques. The following sections are devoted to evolution dynamics

of OQSs. Specifically in Section 1.2 we explore the general features of the

evolution that the OQS undergoes and introduce the concept of Markovianity

and non-Markovianity in Sections 1.3 and 1.4, respectively. In Section 1.5

we derived a weak coupling master equation and in the following sections

we briefly study its asymptotic and thermodynamic properties. Finally, in

Section 1.8, we comment on how this theory is the basis for the work done

in [P.1]. In Chapter 2 of this part we delve deeper into the field of quantum

computing, and explore how the theory of OQS can be employed to explore

dissipative dynamics and to model noise sources.

1.2 Time evolution in open quantum systems

Let us consider the general situation where the open system S is coupled

to an environment E. The total Hilbert space is the tensor product of

the Hilbert space of each subsystem H = HS ⊗ HE . The whole system

is described by the free Hamiltonians of each subsystem, HS for the open
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system and HE for the environment, plus the interaction Hamiltonian HI

between both. The evolution of both system and environment is given by

the total Hamiltonian H = HS +HE +HI so that the state of the whole

system at time t is

|ψ(t)⟩ = e−iH(t−t0) |ψ(t0)⟩ , (1.1)

where |ψ(t0)⟩ is the initial state of the composite system and we define

U(t, t0) = exp[−iH(t − t0)], the unitary evolution operator. This unitary

evolution is given by the Schrödinger equation1

i
d

dt
|ψ(t)⟩ = H |ψ(t)⟩ . (1.2)

Finally, the open system is completely described by the partial trace with

respect to the environment of the final state

ρS(t) = TrE {ρSE(t)} = TrE

{
U(t, t0)ρSE(t0)U

†(t, t0)
}
, (1.3)

where ρSE(t0) = |ψ(t0)⟩ ⟨ψ(t0)|. In practice this procedure, described by

the top right path of Fig. 1.1, is not feasible and we need to resort to a

representation of the evolution reduced to S. The mathematical object

ϕ(t,t0) that describes the evolution of the initial state of the open system

S up to time t is called a dynamical map and it encodes the effect of the

environment onto the open system, a procedure which is described by the

bottom left path of the diagram in Fig. 1.1.

We have not specified the initial relation between system and environ-

ment. In general they could be in an entangled initial state but in most

problems they can be prepared in a separable/uncorrelated state

ρSE(0) = ρS(0)⊗ ρE(0) . (1.4)

1In natural units where ℏ = 1.
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ρSE(t0) ρ(t) = U(t, t0)ρSE(t0)U
†(t, t0)

ρS(t0) ρS(t) = ϕ(t,t0)[ρS(t0)]

TrE

unitary evolution

dynamical map

TrE

Figure 1.1: A diagram showing the action of the dynamical map ϕ(t). It is
possible to either evolve the whole system, and trace out the environment
to obtain the dynamics of the OQS, or alternatively the evolution of the
OQS can be described by the dynamical map.

This assumption is correct in most quantum technological scenarios where

the control systems interact much more strongly with the open system than

the environment, so that in practice the correlations with the environment

are washed out. We can write the spectral decomposition of the environment

initial state as

ρE(0) =
∑

i

λi |λi⟩ ⟨λi| , (1.5)

where |λi⟩ are the eigenvectors of ρE(0), which in general do not correspond

with the eigenvectors of the environment Hamiltonian HE . This is only the

case when the initial state of the environment is in equilibrium state, i.e.,

[HE , ρE(0)] = 0. If we plug this decomposition into Eq. (1.3)

ρS(t) = TrE

{
U(t, t0)ρS(t0)⊗

∑

i

λi |λi⟩ ⟨λi|U(t, t0)
†

}

=
∑

i,j

λi ⟨λj |U(t, t0) |λi⟩ ρS(t0) ⟨λi|U(t, t0)
† |λj⟩ ,

(1.6)

after defining the Kraus operators Ki,j(t, t0) =
√
λi ⟨λj |U(t, t0) |λi⟩, which
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act on HS , the dynamical map can be written as

ρS(t) = E(t,t0)[ρS(t0)] =
∑

i,j

Ki,j(t, t0)ρS(t0)K
†
i,j(t, t0) , (1.7)

where we denoted the dynamical map as E(t,t0) to differentiate a map that

evolves states of the form of Eq. (1.4) from a general dynamical map ϕ(t,t0)
acting on general entangled states. The Kraus operators fulfill the property

∑

i,j

K†
i,j(t, t0)Ki,j(t, t0) = IS , (1.8)

that comes from the normalization condition of the quantum state. This

representation of the evolution is also referred to as the operator sum

representation of the dynamical map, and the indices on the operators can

be grouped into a single one

ρS(t) =
∑

µ={i,j}

Kµ(t, 0)ρS(0)K
†
µ(t, 0) . (1.9)

Relation (1.7) indicates that when the evolution of the reduced density

matrix can be described by the means of Kraus operators, it can also be

described by a map E(t,t0) acting on its initial state, which is often called a

universal dynamical map (UDM).

If we did not impose condition (1.4) the initial state would be not be

separable and the Kraus operators could depend on the initial state of the

system, in which case the dynamical map would not be universal; in this

case the same map cannot be applied to arbitrary states. Let us consider

the general initial state

ρSE(t0) = ρS(t0)⊗ ρE(t0) + ρcor(t0) , (1.10)

where ρcor(t0), which is not a quantum state, contains all correlations

between system and environment, and TrS/E {ρcor(t0)} = 0. If we compute
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the evolution of this state as in Eq. (1.3) we arrive at following expression

for the dynamical map

ρS(t) = ϕ(t,t0)[ρS(t0)] = E(t,t0)[ρS(t0)] + TrE

{
U(t, t0)ρcor(t0)U(t, t0)

†
}
,

(1.11)

where the first term is the dynamical map given by Kraus operators (1.7).

Since the Kraus operators depend on the initial state of the environment

(and on the unitary evolution operator), the dynamical map ϕ(t,t0) will

depend on the initial state of the system ρS(t0) because of the term ρcor.

See reference [1] for further details on the effect of the initial correlations.

The key properties of a map that can be expressed in Kraus form are

that

• It preservers the trace

Tr {ρS(t)} =Tr

{∑

µ

Kµ(t, t0)ρS(t0)K
†
µ(t, t0)

}
=

Tr

{∑

µ

K†
µ(t, t0)Kµ(t, t0)ρS(0)

}
= Tr {ρS(t0)} .

(1.12)

• It is linear

∑

µ

Kµ(aρ1 + bρ2)K
†
µ = a

∑

µ

Kµρ1K
†
µ + b

∑

µ

Kµρ2K
†
µ .

• It preserves positivity of operators. An operator is positive semidefinite

if its eigenvalues are ≥ 0. To show this property we can consider the

spectral decomposition of a positive operator O =
∑

i oi |ei⟩ ⟨ei| (with
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oi ≥ 0) and see that, for any |ϕ⟩ ∈ HS , the expectation value of the

evolved operator O

⟨ϕ|
∑

µ

KµOK
†
µ|ϕ⟩ =

∑

µ,k

ok ⟨ϕ|Kµ|ek⟩ ⟨ek|K†
µ|ϕ⟩ ≥ 0

is positive. While all Kraus maps preserve positivity not all positive

maps have a Kraus representation [1, 2]. When a map obeys the pre-

vious properties and has a representation in terms of Kraus operators

it is said to be completely positive. A completely positive (CP) map

preserves positivity of operators on arbitrarily large Hilbert spaces

HS ⊗Hextra.

There is an equivalent way of determining if a dynamical map is UDM

demonstrated by Kosakowski in [3, 4], which indicated that a dynamical map

is a UDM if and only if it preserves the trace Tr
{
ϕ(t,t0)ρ(t0)

}
= Tr {ρ(t0)}

and it is a contraction. A dynamical map is a contraction if

||ϕ(t,t0)ρ||
||ρ|| ≤ 1 , ∀ρ ∈ HS ,∀t , (1.13)

where ||ρ|| = Tr
{√

ρ†ρ
}

is the trace norm. The trace norm is a witness

of the purity of the quantum state, therefore a contraction will cause the

reduction of the purity of the quantum state, in other words, UDMs create

mixed states. If a map would increase the purity of the quantum state it

would be required that the trace norm of the quantum state increases and

to do so the positivity of the dynamical map is lost. This observation will

be critical to understand the concept of Markovianity, which is dealt with

in Section 1.3.
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Reversibility of the dynamical map

In general, when the open system evolution is given by a dynamical map

its dynamics becomes irreversible, the exception being a dynamical map

representing unitary dynamics. This phenomenon is tightly related to the en-

tanglement generation between system and environment along the evolution.

When two systems entangle, the information is no longer contained in the

individual systems, but encoded in the global state of the composite system.

Taking the partial trace of the environment is equivalent to averaging over

the environmental degrees of freedom, then the reduced density matrix gives

a classical probabilistic mixture of compatible quantum states of the system,

since the actual quantum state is only correctly described globally. If the

entanglement between system and environment is maximal, the reduced

density matrix of the system becomes the maximally mixed state, and no

information about the system or environment can be extracted by just

measuring the system. This situation is most easily understood following

the top right path of Fig. 1.1: the unitary dynamics entangles the system

with the environment, and when the partial trace is taken over one of them

the remaining state only preserves part of the information. An inverse map

of this evolution ϕ−1
(t,t0)

, such that ϕ−1
(t,t0)

[ϕ(t,t0)[ρ]] = ϕ(t,t0)[ϕ
−1
(t,t0)

[ρ]] = ρ,

may exist but in general it will not be a UDM.

A reversible dynamical map in only possible when the evolution of the

open system is unitary, that is, U(t,t0)[ρ(t0)] = US(t, t0)ρ(t0)U
†
S(t, t0), such

that, US(t, t0)U
†
S(t, t0) = U †

S(t, t0)US(t, t0) = IS . We will denote by U(t,t0)

the dynamical map of unitary evolutions. In this case the inverse dynamical

map is simply U−1
(t,t0)

[ρS(t0)] =
(
U(t,t0)[ρS(t0)]

)†
, which still remains an

UDM. During reversible evolutions a single Kraus operator that describes

the map U(t,t0) can be found, and it is the unitary evolution operator

K0(t, t0) = US(t, t0).
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Dynamical map semigroup

A dynamical map is said to form a (continuous one-parameter) semigroup

if it only depends on the time differences of the evolution ϕ(t2,t1) = ϕτ , with

τ = t2 − t1 > 0, and fulfills the following properties

ϕt ◦ ϕs = ϕt+s , (1.14)

ϕ0 = IS , (1.15)

where the composition acting on arbitrary density matrices is defined as

(ϕt ◦ ϕs)[ρ] = ϕt[ϕs[ρ]]. In a semigroup the inverse of an element might not

exist, which, as stated before, is specially true for irreversible dynamical

maps. A dynamical map semigroup is differentiable, and its derivative is

given by
dϕt
dt

= L[ϕt] , (1.16)

where L[·] is a superoperator that acts on ϕt. This differential equation

together with condition (1.15) has a unique solution which is

ϕt[·] = eLt[·] , (1.17)

where L[·] is called the generator of the semigroup and, to form a semigroup,

must be constant in time. From this solution it is straightforward to see

that condition (1.14) is fulfilled

ϕt ◦ ϕs = eLt ◦ eLs = eL(t+s) = ϕt+s . (1.18)

The explicit form of the generator L depends on the particular physical

problem, and its derivation can be obtained though different approximate

methods. In Section 1.5 we will obtain an explicit form of the generator

through a perturbative expansion in the weak coupling between system and

environment. For the simple case of a closed system the generator is simply

L[O] = −i[H,O] , (1.19)
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where we defined its action on an arbitrary operator O. And for this

particular case the solution (1.17) becomes

ϕ(t−t0)[ρ(t0)] = U(t− t0)ρ(t0)U
†(t− t0) , (1.20)

where U(t− t0) = e−iH(t−t0).

If the generator L(t) is allowed to be time dependent, the solution to

the new differential equation

dϕt
dt

= L(t)[ϕt] , (1.21)

is formally expressed as the time ordered exponential

ϕ(t,t0) = T e
∫ t
t0

L(t′)dt′
, (1.22)

where now the dynamical map not only depends on the final time, but also

on the initial time, and the semigroup property (1.14) is no longer fulfilled.

Despite the fact that time dependent generators do not lead to dynamical

maps that satisfy the semigroup properties, they can still be expressed in

the operator sum representation.

1.3 Markovianity

To first review the concept of quantum Markovian evolution, it is useful to

review the concept of classical Markovianity. A classical stochastic process,

where a random variable X(t) takes different values xi at each time ti, is

said to be a Markov process if the probability of finding xn at time tn is

only conditioned on the previous values xn−1 at time tn−1 and not on any xi

obtained at time ti with i < n− 1. This is expressed in terms of conditional

probabilities as

p({xn, tn}|{xn−1, tn−1}, ..., {x0, t0}) = p({xn, tn}|{xn−1, tn−1}) . (1.23)
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This process is sometimes referred to as a memoryless process, where the

next random value is independent of the past history of values of X(t). The

concept was presented in discrete time variables for illustrative purposes

but can be straightforwardly extended to continuous time variables.

The parallelism with the quantum setting is drawn by translating

the role played by probabilities to density operators ρ(t), and the role

of conditional probabilities to universal dynamical maps ϕ(t2,t1). With

this reasoning one could say that an open quantum system undergoes a

Markovian evolution if it is described by UDMs (equivalent to a contractive

map) and they obey the composition law

ϕ(t2,t0) = ϕ(t2,t1) ◦ ϕ(t1,t0) , (1.24)

where t1 is an intermediate time of the evolution, so that t2 > t1 > t0.

This relation is referred as the divisibility condition. To understand the

implications of this condition let us first look closely at the resulting state

after the evolution up to t1. In order to have an evolution described by an

operator sum representation, and hence a UDM, we required that the initial

state of the evolution was in a separable state (1.4). After evolving for time

t1 there is, in general, a generation of correlations or entanglement between

the system and environment. To compute the evolution between times

t1 → t2, an operator sum representation is not suitable since the state at

time t1 is not separable, and hence the evolution would not be represented

by a UDM. Which may look surprising since the evolution from t0 → t2

is also a UDM. The problem lies at the evolution between intermediate

steps. Under some conditions where the effect of the system is negligible on

the environment, a Born approximation can be taken under which system

and environment are assumed to be in a product state, and the divisibility

condition is able to be recovered.
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Another way to look at this problem is from the point of view of

irreversibility. We could write the evolution from t1 → t2 as ϕ(t2,t1) =

ϕ−1
(t1,t0)

◦ ϕ(t0,t2) if the inverse of ϕ(t1,t0) existed, but as seen before, except

under unitary dynamics, the map is irreversible and even if the inverse of

the map existed, it would not be a UDM.

The physical significance of the failure to obey the divisibility property

(1.24) is still debated nowadays, but a common interpretation is as follows.

When system and environment interact there is a flow of information from

system to environment, also represented by the increase of entanglement

between both systems or, equivalently, a reduction of coherence of the open

system. Usually, when the environment is not a big system, there can

be revivals of coherence: the open system is restoring part of its initial

information in which case the dynamical map becomes non-contractive.

In this situation, the process is said to have memory where, after some

time, information about the initial state of the system arises again. In the

Markovian case, where the evolution is said to be memoryless, the system

is monotonously losing information about its initial state.

This interpretation is tightly related to an alternative definition of

Markovianity that involves the behaviour of the trace distance [5], where an

evolution is Markovian if the trace distance (distinguishability) between any

two states decreases monotonously. This interpretation relates the degree of

non-Markovianity to the ability of any two arbitrary states to have memory

of the initial state and thus recover part of the initial distinguishability.

While this alternative interpretation is closely related to the contractive

property of the dynamical map, it is not concerned about the divisibility

property (1.24), a fact that is of special importance to draw the parallelism

between quantum and classical Markov processes.

The property of the environment that leads to memoryless dynamics is
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its capacity to destroy correlations. In general, large environments dissipate

correlations fast, as they have short correlation times. The correlations

that built up as a result of the interaction between system and environment

decay faster than the time required for the system to display coherent

dynamics, and in this situation the system is unable to retain its memory

about the initial state, or even the previous states if the decay of correlations

is extreme, in which case we might find a dynamical map that fulfills both

conditions of Markovianity.

The divisibility condition stated in Eq. (1.24) is generalized for time

dependent generators L(t), but if we restrict to the case of a constant

generator and hence dynamical maps obeying the semigroup property (1.14)

the condition is automatically fulfilled. A semigroup dynamical map only

depends on the time differences of the interval τ1 = t1 − t0 and τ2 = t2 − t1

and the semigroup property ensures

ϕ(τ1+τ2) = ϕτ2 ◦ ϕτ1 . (1.25)

One could require the semigroup property to define a Markov process,

but that would lead to a more strict definition. It was shown by Gorini,

Kossakowski and Sudarshan [6] and independently by Lindblad [7] that any

dynamical map semigroup could be generated by a constant generator of

the form

Lρ(t) = −i[H, ρ(t)] +
∑

k

γk

(
Lkρ(t)L

†
k −

1

2
{L†

kLk, ρ(t)}
)
, (1.26)

where H is a Hermitian operator, γk are positive constants, and Lk are

the so called Lindblad operators. The operator H = HS +
∑

k ∆kL
†
kLk

represents the modified free Hamiltonian of the system due to the action of

the environment, the Lk are related to the induced decay channels, which

describe the dissipative part of the dynamics, and γk are the correspond-

ing decay rates. A simple way of obtaining this generator, presented in
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[8], is done by considering the infinitesimal version of the operator sum

representation

ρ(t+ dt) =
∑

µ

Kµρ(t)K
†
µ , (1.27)

where we may, in general, consider that there is one operator of order dt

K0 = IS + dt(−iH +M) , (1.28)

where H and M are Hermitian, and other operators Kν with ν > 0 of order√
dt as

Kν =
√
dtLν . (1.29)

The completeness relation must hold

I =
∑

µ

KµK
†
µ = I+ dt

(
2M +

∑

ν>0

L†
νLν

)
+O(dt2) , (1.30)

so that

M = −1

2

∑

ν>0

L†
νLν . (1.31)

Substituting these operators into the infinitesimal operator sum evolution

in Eq. (1.27) we find that

ρ(t+dt) = ρ(t)+dt

(
−i[H, ρ(t)] +

∑

ν>0

(
Lνρ(t)L

†
ν −

1

2
L†
νLνρ(t)−

1

2
ρ(t)L†

νLν

))
,

(1.32)

where employing the infinitesimal definition of the derivative we obtain

dρ(t)

dt
=
ρ(t+ dt)− ρ(t)

dt
= Lρ(t) , (1.33)

where this generator is the same as the one in Eq. (1.26) with the decay

rates absorbed into the operators Lν .
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This results would later be extended, see [2, 9] for a detailed derivation,

to account for time dependent generators with a similar form

L(t)ρ(t) = −i[H(t), ρ(t)]+
∑

k

γk(t)

(
Lk(t)ρ(t)L

†
k(t)−

1

2
{L†

k(t)Lk(t), ρ(t)}
)
,

(1.34)

where now the Hermitian operator H(t) is time-dependent, as well as the

Lindblad operators Lk(t) and rates γk(t), with the only restriction of all the

rates being non-negative at all times, such that the dynamical map describes

a contractive evolution and obeys the more general Markov condition (1.24).

1.4 Non-Markovianity

Failure of dynamical maps to be a contraction 2 and/or to obey the divisi-

bility condition (1.24) deem them non-Markovian.

There have been many proposed witnesses or measures to quantify the

degree of non-Markovianity, see [10] for a complete review of non-Markovian

definitions and measures. Here we give the definitions of the ones employed

in the works that make up this thesis.

1. Bloch Volume Measure This measure proposed in [11] is directly

related to the contractive property of Markovian evolutions. It is

a nice geometrical characterization of non-Markovianity based on

the fact that the volume of accessible states through a Markovian

evolution monotonously decreases. During the time intervals where

this volumes increases a non-Markovianity is present, and the rate of

volume increase is used as a quantifier of it. In the particular case

of two dimensional systems, this characterization of the volume of

2Equivalent to being UDM or have an operator sum representation.
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accessible states matches the volume of the region of accessible states

represented by their Bloch vector. This characterization was employed

in [P.1] to visualize the reduction of the volume of all possible states

to a transient stationary state, and at the same time to find out that

the master equation that we derived was Markovian.

2. BLP Measure This measure presented in [12] is very popular due

to its easy computation and its close connection with memory effects

on the open system. Non-Markovianity is quantified by the rate at

which two arbitrary states ρ1 and ρ2 become more distinguishable.

Distinguishability is measured with the help of the trace distance

D(ρ1(t), ρ2(t)) =
1

2
Tr

{√
(ρ1(t)− ρ2(t))†(ρ1(t)− ρ2(t))

}
. (1.35)

If during any point of the evolution it increases, it is a sign of recovery of

memory and hence non-Markovianity. If we define the rate of change of

trace distance as σ(ρ1, ρ2, t) = ∂tD(ρ1(t), ρ2(t)) the proposed measure

is

N = max
ρ1,ρ2

∫

σ>0
dtσ(ρ1, ρ2, t) , (1.36)

where the maximization is performed over all pairs of states ρ1, ρ2.

3. Negative decay rates in canonical form master equations This

characterization of non-Markovianity proposed in [13] takes advantage

of the fact that time-nonlocal master equations that can in general be

expressed as

dρS(t)

dt
= −i[H(t), ρS(t)] +

∫ t

0
dτK(t, τ)ρ(τ) , (1.37)

where K(t, s) is the memory kernel, are of non-Markovianity nature,

unless the kernel is proportional to δ(t − τ) in which case becomes
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time-local. All time-local master equations with a generator (which is

in general time dependent)

dρS(t)

dt
= L(t)ρ(t) , (1.38)

can be brought into a canonical form

L(t)ρ(t) = −i[H(t), ρ(t)]+
∑

k

γk(t)

(
Lk(t)ρ(t)L

†
k(t)−

1

2
{L†

k(t)Lk(t), ρ(t)}
)
,

(1.39)

where the operators Lk(t) obey the properties

Tr {Lk(t)} = 0 , Tr
{
L†
i (t)Lj(t)

}
= δij . (1.40)

There does no exist a unique way of writing a time-local master equa-

tion in the form of Eq. (1.39), there are (infinitely) many changes

of basis of the Lindblad operators that preserve the Lindblad form.

What makes this choice canonical is the requirement of conditions

(1.40) that render the representation unique. As stated in the pre-

vious section an equation with this generator leads to divisible and

completely positive evolution, as long as the decay rates are positive,

so that it is suggested that the negativity of the decay rates in the

canonical form is the suitable witness for non-Markovianity. The

following quantitative measure is then defined

N = −
∫

γk<0
dt

∑

γi(t)<0

γi(t) , (1.41)

where the integration is carried in the time intervals in which any

of the decay rates is negative, and the sum only takes into account

negative decay rates. This measure was employed in [P.1] where the

derived master equation was brought into the canonical form. It was

again corroborated that the map was Markovian since all the obtained

decay rates were positive at all times.
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1.5 Weak coupling Master Equation

In previous sections we have seen some examples of evolution equations that

describe the evolution of the open system, for instance,

dρ(t)

dt
= Lρ(t) , (1.42)

where the generator was given by the Lindbladian (1.26). But, so far, we

only focused on the properties they should have in order to induce a Markov

process and have not payed any attention to physical situations and when

to extract a closed equation for the density matrix from them. In this

section we present the general physical situation under which a ME can be

obtained and under which approximations, see references [14, 2] for similar

derivations.

The general Hamiltonian describing the system plus environment is

given by

H = HS +HI +HE , (1.43)

where HS is the open system Hamiltonian, HE the environment one, and

HI is the interaction Hamiltonian between system and environment. The

general form that the interaction Hamiltonian can have is

HI =
∑

µ

Sµ ⊗Bµ , (1.44)

where Sµ are operators acting on the system and Bµ on the environment,

and they are Hermitian. As the name of this Section suggests, the first

assumption made to derive this ME is that the interaction between system

and environment is small, so that a perturbative approach can be followed

for the derivation. As stated before, the initial condition of the whole system

is considered in a separable state

ρ(0) = ρS(0)⊗ ρE , (1.45)
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where the reduced density matrix of the system in the initial time is ρS(0).

We did not include a time dependence on the reduced density matrix of the

environment since we further assume that is starts in a stationary state, such

that, [HE , ρE ] = 0, and that it is much larger than the open system so that

the perturbations that the system induces on the environment are negligible.

The complete evolution is unitary and is given by the von Neumann equation

dρ(t)

dt
= −i[H, ρ(t)] . (1.46)

To produce a perturbative approach in the interaction Hamiltonian, it is

convenient to reformulate the problem in the interaction picture

ρ̃(t) = ei(HS+HE)tρ(t)e−i(HS+HE)t , (1.47)

so that the von Neumann equation becomes

dρ̃(t)

dt
= −i[H̃I(t), ρ(t)] , (1.48)

where

H̃I(t) =e
i(HS+HE)tHIe

−i(HS+HE)t =
∑

µ

eiHStSµe
−iHSt ⊗ eiHEtBµe

−iHEt ≡
∑

µ

Sµ(t)⊗Bµ(t) ,
(1.49)

is the interaction Hamiltonian in the interaction picture. The formal solution

to this equation is

ρ̃(t) = ρ(0)− i

∫ t

0
dt′[H̃I(t

′), ρ̃(t′)] , (1.50)

and in order to develop a perturbative method we plug this solution in the

interaction picture von Neumann equation to obtain

dρ̃(t)

dt
= −i[H̃I(t), ρ(0)]−

∫ t

0
dt′[H̃I(t), [H̃I(t

′), ρ̃(t′)]] . (1.51)
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To obtain an equation for the system’s density matrix we have to take the

partial trace with respect to the environment of the previous equation

dρ̃S(t)

dt
=− iTrE

{[∑

µ

Sµ(t)⊗Bµ(t), ρ̃S(0)⊗ ρ̃E

]}

−
∫ t

0
dt′TrE

{
[H̃I(t), [H̃I(t

′), ρ̃(t′)]]
}
,

(1.52)

where ρ̃S(t) = TrE {ρ̃(t)} and, in the first term, we employed the assumption

(1.45). This term can be reduced to

−i
∑

µ

[Sµ(t), ρ̃S(0)]TrE {Bµ(t)ρ̃E} . (1.53)

Since we assumed that the environment is in equilibrium [ρE , HE ] = 0,

the quantity ⟨Bµ⟩eq = TrE {Bµ(t)ρ̃E} = TrE {Bµ(0)ρE} is time inde-

pendent. Through a redefinition of the interaction Hamiltonian H ′
I =

HI −
∑

µ ⟨Bµ⟩eq Sµ this term can be eliminated by also redefining the sys-

tem Hamiltonian H ′
S = HS +

∑ ⟨Bµ⟩eq Sµ. For the sake of simplicity, we

drop the prime notation in the following. The equation now reads

dρ̃S(t)

dt
= −

∫ t

0
dt′TrE

{
[H̃I(t), [H̃I(t

′), ρ̃(t′)]]
}
. (1.54)

Up to this point, the equation remains exact, but it is a hard equation to

solve since we still have the evolved total density matrix in the commutator

and it is non-local in time, which implies that it is a non-Markovian evolution

equation. By introducing further assumption it is possible to arrive to a

time-local ME. The first approximation we are going to consider is the Born

approximation, which assumes that, since the interaction between system

and environment is so weak, and in general the environment is a system

much bigger than the open system, it will almost be unperturbed by the
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open system. This assumption implies that the evolved state of the whole

system remains in a product state

ρ̃(t) ≈ ρ̃S(t)⊗ ρE . (1.55)

There is some criticism [1] in the argumentation of this approximation.

From the physical point of view, it can be questioned whether the state

remains factorized but the parts of the system are still interacting. For

that reason, it is argued that the above should be considered an ansatz to

achieve a closed equation for the open system’s density matrix, instead of a

physical requirement for this equation to work. There are other approaches

for deriving the same weak coupling ME that do not rely on this assumption,

see [2, 1] for these alternative approaches.

Introducing this ansatz, the now approximate equation reads

dρ̃S(t)

dt
= −

∫ t

0
dt′TrE

{
[H̃I(t), [H̃I(t

′), ρ̃S(t
′)⊗ ρE ]]

}
, (1.56)

which, after expressing the interaction Hamiltonian as in Eq. (1.49), can be

expanded as

dρ̃S(t)

dt
= −

∑

µ,ν

∫ t

0
dt′
(
TrE

{
Bµ(t)Bν(t

′)ρE
}
[Sµ(t), Sν(t

′)ρ̃S(t
′)] + h.c.

)
,

(1.57)

where now we have been able to group the environment operators in-

side the trace. This defines the correlation function of the environment

Cµ,ν(t, t
′) = TrE {Bµ(t)Bν(t

′)ρE}, and in this way we have obtained an

equation using open system operators alone. The description of the en-

vironment has been reduced to a correlation function which encapsu-

lates the correlations of the environment. Since the environment state

is stationary, the correlation functions only depend on the time difference

Cµ,ν(t, t
′) = TrE {Bµ(t− t′)BνρE} = Cµ,ν(t− t′) where the cyclic property
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of the trace and the commutation of ρE with the system evolution operator

have been used. It is convenient to perform the change of variable τ = t− t′,
so that

dρ̃S(t)

dt
= −

∑

µ,ν

∫ t

0
dτ (Cµ,ν(τ)[Sµ(t), Sν(t− τ)ρ̃S(t− τ)] + h.c.) , (1.58)

and to transform it into a time-local master equation in which the Markov

approximation is introduced. Let us quantify the interaction strength by

the parameter g which is small. The approximation states that, since the

difference of ρ̃S at time t and at time t− τ is of second order g2

ρ̃S(t− τ) = ρS(t) +O(g2) , (1.59)

and since the change in ρS(t− τ) goes with terms of order O(g2) inside the

integral we can safely neglect the higher orders and substitute ρ̃S(t− τ) ≈
ρ̃S(t) in the equation

dρ̃S(t)

dt
= −

∑

µ,ν

∫ t

0
dτ (Cµ,ν(τ)[Sµ(t), Sν(t− τ)ρ̃S(t)] + h.c.) , (1.60)

which becomes time-local. Even if, the above approximation is called

Markovian, the dynamics is not necessarily Markovian. Recall the third

measure of non-Markovianity that we introduced; since the equation is time

local, it can be brought into a canonical master equation, but we do not

have any guarantee that the decay rates stay positive along the evolution.

Another further assumption that is in line with this approximation is to

extend the limit of integration to infinity

dρ̃S(t)

dt
= −

∑

µ,ν

∫ ∞

0
dτ (Cµ,ν(τ)[Sµ(t), Sν(t− τ)ρ̃S(t)] + h.c.) , (1.61)

and obtain the equation that is known as Redfield equation. These later

approximation is correct as long as the relaxing dynamics of the system are
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slower than τE , the time taken for the environment to wash out correlations.

The time scale of the relaxation is given by the coupling strength between

subsystems τR ∼ O(g−2), so that, the validity of these approximations is

set by

τE ≪ τR . (1.62)

We can undo the change of image by differentiating Eq. (1.47)

dρ̃S(t)

dt
= eiHSt

dρS(t)

dt
e−iHSt + ieiHSt[HS , ρS(t)]e

−iHSt , (1.63)

so that by isolating the derivative in the Schrödinger picture we can obtain

the Redfield equation in this picture

dρS(t)

dt
= −i[HS , ρS(t)]−

∑

µ,ν

∫ ∞

0
dτ (Cµ,ν(τ)[Sµ, Sν(−τ)ρS(t)] + h.c.) .

(1.64)

If we define the time-independent operator

Λµ =
∑

ν

∫ ∞

0
dτCµ,ν(τ)Sν(−τ) , (1.65)

we can write the r.h.s. of equation in the form of a time-homogeneous

generator

dρS(t)

dt
= −i[HS , ρS(t)]−

∑

µ

[Sµ,ΛµρS(t)− ρS(t)Λ
†
µ] ≡ LρS(t) . (1.66)

While a constant generator satisfies the semigroup property (1.14), it is not

ensured to produce a dynamical map contraction. In order to achieve a map

that is purely Markovian, one more approximation has to be considered,

the so called secular approximation.

To consider the secular approximation we have to rewrite Eq. (1.61)

as the Bloch-Redfield equation [14, 2]. To do so we rewrite the system
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operators Sµ in terms of the operators

Sµ =
∑

ω

Sµ(ω) , (1.67)

where ω are the energy differences in the system spectrum, and

Sµ(ω) =
∑

ϵ′−ϵ=ω

|ϵ⟩ ⟨ϵ|Sµ |ϵ′⟩ ⟨ϵ′| , (1.68)

with the set of {|ϵ⟩} the eigenbasis of HS , and ϵ their respective eigenvalues.

The evolution of the system operators in the interaction picture now reads

Sµ(t) =
∑

ω

e−iωtSµ(ω) =
∑

ω

eiωtS†
µ(ω) , (1.69)

where in the last equation we employed the Hermitian property of Sµ(t).

We also note that

Sµ(ω) = S†
µ(−ω) , (1.70)

which implies that

[HS , S
†
µ(ω)Sν(ω)] = 0 . (1.71)

In this new representation of the system operators we can rewrite Eq. (1.61)

as

dρ̃S(t)

dt
=
∑

ω,ω′

∑

µ,ν

ei(ω
′−ω)tΓµν(ω)(Sν(ω)ρ̃S(t)S

†
µ(ω

′)−S†
µ(ω

′)Sν(ω)ρ̃S(t))+h.c. ,

(1.72)

which is the Bloch-Redfield equation, and where we defined

Γµν(ω) =

∫ ∞

0
dτeiωτCµν(τ) . (1.73)

The secular approximation consists on discarding the oscillating terms in

the systems operators, i.e., the terms where ω−ω′ ≠ 0. This approximation
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works well as long as the time scales defined by τS = min|ω−ω′| |ω − ω′|−1

are short in comparison to the relaxation time scale τR, i.e.,

τS ≪ τR . (1.74)

After this approximation the equation becomes

dρ̃S(t)

dt
=
∑

ω

∑

µ,ν

Γµν(ω)(Sν(ω)ρ̃S(t)S
†
µ(ω)− S†

µ(ω)Sν(ω)ρ̃S(t)) + h.c. ,

(1.75)

which after expressing

Γµν =
1

2
γµν(ω) + iσµν(ω) , (1.76)

in its real and imaginary parts, we arrive at a Markovian equation

dρS(t)

dt
=− i[HS +HLS , ρS(t)]

+
∑

ω

∑

µ,ν

γµν(ω)
(
Sν(ω)ρS(t)S

†
µ(ω)−

1

2
{S†

µ(ω)Sν(ω), ρS(t)}
)
,

(1.77)

in the Schrödinger picture, where we defined the Lamb Shift

HLS =
∑

ω

∑

µ,ν

σµν(ω)S
†
µ(ω)Sν(ω) . (1.78)

Finally this master equation rates γµν form a matrix whose elements are

γµν(ω) =

∫ ∞

−∞
dτeiωτCµν(τ) , (1.79)

which according to Bochner’s theorem [2] is a positive matrix. This matrix

can be diagonalized to bring the equation back to a ME in the form of

Eq. (1.26).

which is a positive quantity, and ensures that this resulting equation

produces a Markov process.
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1.6 Stationary states

The interaction of the open system with the environment leads to an asymp-

totic stationary state of the system if there exist any ρss = limt→∞ ρS(t)

such that

Lρss = 0 . (1.80)

If the process is a contraction, it is ensured that at least one of these states

exists [1].

We now show that the steady state of the Markovian ME (1.77) of

an environment in a thermal state is the thermal state of the system. The

thermal state of a system is given by the canonical equilibrium distribution

ρth(β) =
e−βH

Tr {e−βH} , (1.81)

where β = 1/T is the inverse temperature. If the environment is in a thermal

state at inverse temperature β, the correlation functions obey the following

relation

Cµν(t) = Tr
{
Bµ(t)Bνρ

th
E

}
= Tr

{
Bµe

−iHEtBνe
−βHEeiHEt

}
/Z , (1.82)

where Z = Tr
{
e−βHE

}
and we employed the cyclic property of the trace.

We can insert the identity IE = e−βHEeβHE before the operator Bν to obtain

Cµν(t) = Tr
{
Bµe

−βHE/ZeβHEe−iHEtBνe
−βHEeiHEt

}
. (1.83)

We can now group the exponentials around Bν to write

Cµν(t) = Tr
{
Bν(−t− iβ)Bµρ

th
E

}
= Cνµ(−t− iβ) , (1.84)

which is the Kubo-Martin-Schwinger condition. This property can be

translated to the decay rates of Eq. (1.77) as

γµν(−ω) = e−βωγνµ(ω) . (1.85)
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Let us assume that the steady state of the system is a thermal state at the

temperature of the environment

ρthS (β) =
e−βHS

TrS {e−βHS} . (1.86)

This is a stationary state of the ME (1.77) if the generator of this state

obeys LρthS (β) = 0, i.e.,

− i[HS +HLS , ρ
th
S ] +

∑

ω>0

∑

µ,ν

γµν(ω)
(
Sν(ω)ρ

th
S S

†
µ(ω)−

1

2
{S†

µ(ω)Sν(ω), ρ
th
S }
)

+
∑

ω>0

∑

µ,ν

γµν(−ω)
(
Sν(−ω)ρthS S†

µ(−ω)−
1

2
{S†

µ(−ω)Sν(−ω), ρthS }
)
= 0 ,

(1.87)

where we split the sum in ω into two sums with positive and negative ω,

and we assumed that there is not any degenerate eigenstate of the system

Hamiltonian. If the system was degenerate, the asymptotic state could not

be unique and/or stationary3. Since the thermal state commutes with HS

and we recall Eq. (1.71), which implies [HS , HLS ] = 0, the first commutator

of the generators of the thermal state is null.

Making use of the properties in Eqs. (1.70,1.85) we can rewrite

LρthS (β) =
∑

ω>0

∑

µ,ν

γµν(ω)
(
Sν(ω)ρ

th
S S

†
µ(ω)−

1

2
{S†

µ(ω)Sν(ω), ρ
th
S }

+e−βω
[
S†
µ(ω)ρ

th
S Sν(ω)−

1

2
{Sν(ω)S†

µ(ω), ρ
th
S }
])

.

(1.88)

Finally by employing the following property of the thermal state and system

operators

ρthS Sµ(ω) = eβωSµ(ω)ρ
th
S , (1.89)

3If the system was degenerate, the dynamics could be reduced to a degenerate subspace
and the system could be able to evolve in that subspace.
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the first term of the first line can be made to cancel the last terms of the

second line, and using the same properties, the remaining terms can also

be made to cancel out showing that the thermal state of the system is an

stationary state of the ME. The process though which environment and

system reach thermal equilibrium is usually referred as thermalization. It is

an important process that has to be studied and controlled as far as possible

in quantum technological applications as it is one of the main processes

through which the systems loses coherence. We will take a closer look to

this phenomenon in the context of qubits in the next chapter and study the

characteristic time scales involved.

1.7 Heat fluxes in open systems

The scenario presented in the previous section represents a stationary

equilibrium state, i.e., the system has reached a thermodynamic equilibrium

with the surrounding environment. The theory of open quantum systems is

not limited to the presence of a unique environment, it can also describe the

dynamics of a system connected to multiple environments, which may be at

different temperatures. In those situations the open quantum system can

still reach a steady state, but it will not be in equilibrium, since the gradient

in temperatures will cause the appearance of currents through the system.

In this situation we say that the open system has reached a non-equilibrium

steady state. It might be also the case that the system is also subject to an

external driving force, encapsulated by an explicit time dependence of the

system’s Hamiltonian HS(t). The energy variation of the system

dES

dt
=

d

dt
⟨HS(t)⟩ = Tr

{
∂HS(t)

∂t
ρS(t)

}
+Tr

{
HS(t)

dρS(t)

dt

}
, (1.90)

comes from the power of the driving forces (first term) and heat currents

of surrounding environments (second term). We can define the current
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produced by each environment as

Ji(ρS(t)) ≡ Tr
{
HS(t)D

(i)(ρS(t))
}

= Tr

{
HS(t)

∑

µ

γ(i)µ

(
L(i)
µ ρS(t)L

(i)†
µ − 1

2
{L(i)†

µ L(i)
µ , ρS(t)}

)
}

,

(1.91)

where the superindex (i) makes reference to the decay rates and operators

of the different environments, and we defined the dissipator D(i) of each

environment. In the steady state the heat flux through the system becomes

constant so that dES
dt = 0, and the heat fluxes and driving power have to

balance. For simplicity, let us analyze the case without driving

dES

dt

∣∣∣∣∣
ρssS

= 0 =
∑

i

Tr
{
HSD

(i)(ρssS )
}
=
∑

i

Ji(ρ
ss
S ) , (1.92)

where the steady state is given by the condition LρssS = 0 =
∑

iD
(i)(ρssS ),

which implies that all currents in the steady state have to be compensated.

This energy balance condition in the steady state is reminiscent of the first

law of thermodynamic. The theory of quantum thermodynamics is much

more extense, read for instance [15] for a basic review and emergence of the

laws of thermodynamics or [16] for a review on quantum heat engines.

1.8 Prethermalization (Publication [P.1])

In [P.1] we employ the theory of open quantum systems to tackle the

effect that a non-equilibrium environment has on the dynamics of a two

level system. The environment is composed of two subsystems that are at

different temperatures, i.e., the environment is not in equilibrium, but only

one of the subsystems is in direct interaction with the open system. The
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novelty of this work comes from the treatment of the composite environment,

and determining the correct approximations, that go in the same spirit as

the Markov approximation, used to obtain the evolution operators of the

environment and their corresponding correlation functions. We derived a

master equation which was brought into canonical form as in Eq. (1.39),

which allowed us to determine if the evolution was Markovian or not by

just looking at the derived canonical decay rates. We were also inspired

by the Quantum Volume measure of non-Markovianity to perform a study

over all possible states in a geometric or visual way which was enlightening.

The main result of the work is that this type of environments induce quasi-

stationary states that live for some time of the evolution, but which do

not correspond to the true steady state of the dynamical map. This effect

is an instance of prethermalization, a phenomenon present in weakly non-

integrable systems, where at short times the dynamics is dominated by one

part of the Hamiltonian, but at long time the weak break of integrability,

caused by a weak term of the Hamiltonian, drives the system out to the true

thermal state of the whole Hamiltonian. We present a rigorous definition

for the appearance of prethermalization, and do a systematic study of the

properties of the environment, namely its temperatures and couplings, that

enhance the existence of this intermediate quasi-stationary state. Finally, we

also explore the effect that this phenomenon may have on a system that is

coupled to multiple of these environments. The presence of this intermediate

quasi-stationary state can cause the switch of heat flow direction through

the system multiple times during the evolution.



Chapter 2

Noise in Quantum

Computing

2.1 Introduction

The statement that the quantum information of a system is lost when it

gets entangled with its environment is a witness of the deep distinction

between classical and quantum information. Expressed in another way, the

information of a composite quantum system is not the sum of its parts.

This profound characteristic of quantum mechanics was first brought to

light by John Bell [17] in 1964, whose work lead to the understanding

that quantum information is encoded in non-local correlations between

the different parts of a physical system. Another key difference between

quantum and classical information is that the acquisition of information in

a quantum system suffers from two problems: i) the measurement process

in quantum mechanics is a probabilistic procedure; ii) it also causes the

disturbance of system that is being measured.

35
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Some time after these discoveries, it was pointed out in 1982 indepen-

dently by Feynman [18] and Benioff [19], and by the unnoticed work of Yuri

Manin [20], that quantum systems could perform computations. The most

remarkable motivation was the complexity of simulating quantum systems

classically. There is no fundamental restriction for classical machines to

simulate quantum systems; in the end, it amounts to computing a rotation

matrix and applying it to a vector in a Hilbert space, but the problem

becomes exponentially harder for larger systems. This limitation motivated

the use of quantum systems to simulate analogous quantum systems. A

quantum simulator would be nothing other than a quantum system that

can be very precisely manipulated to simulate other quantum systems.

The peculiar features of quantum information, which sets it apart

from its classical counterpart, were indicative that quantum systems could

have a profound impact not only on the simulation of quantum systems

but on the foundations of computing. This became crystal clear with the

appearance of Shor’s factoring algorithm [21] in 1994, which showed that

a quantum computer could factor a large number more efficiently than

currently know algorithms, and Grover’s algorithm [22], which is a quantum

search algorithm with a quadratic increase in efficiency compared to best

possible classical algorithms.

The quintessential paradigm of quantum information processing is

performed over collections of two level systems [23] which, in analogy to

the classical bit, are called qubits. The qubit is the most basic carrier of

quantum information. A computation usually follows three steps: (i) qubit

initialization to a known state, (ii) qubit manipulation, which consists on

applying operations on single qubits or operations that involve (entangle)

multiple qubits, and (iii) measurement. Since the outcomes of the measure-

ment are probabilistic, it might be necessary to repeat the previous steps

several times.
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The most common framework to describe qubit manipulations is the

quantum circuit model. In this model, qubits are represented as wires,

and manipulations over them are represented by gates acting over these

wires. These gates have a corresponding physical implementation that is

performed on the physical qubit, but this abstraction allows one to remove

all the physical details and focus on the quantum information processing

or quantum algorithms alone. Since calibrating each possible operation

on a qubit is an arduous experimental task, it is convenient to be able to

represent all operations in terms of a small subset that can be controlled

with high precision. If combinations of these gates allow one to perform any

possible quantum operation, then it is said to be a universal set of gates.

It can be shown [24, 25] that a set of single qubit gates and an entangling

two qubit gate are universal. For instance, one of these sets is composed of

the three single qubit rotations around the three orthogonal axes and the

CNOT gate, which, conditioned on a control qubit state, flips the target

qubit state.

The first proposal to physically implement qubits, which was able to

perform a universal set of gates, was in 1994 when Peter Zoller and Ignacio

Cirac proposed in their seminal paper [26] a system of cold trapped ions.

After this initial proposal, there have been many quantum systems proposed

that can be more controllable or have better scalability. One of the most

popular and promising implementations is the so called superconducting

qubits, which are realized with a circuit loop that, when cooled down to

cryogenic temperatures, displays superconducting properties. The current in

the circuits is made of Cooper pairs that can display the quantum properties

of superposition and entanglement. Operations on these systems can be

performed with the use of microwave pulses.

While the quantum systems designed to carry and process quantum

information can be constructed, they are not free from interaction with



38 CHAPTER 2. NOISE IN QUANTUM COMPUTING

external parties. Entanglement is at the same time the bane and the boon

of quantum computing. Entanglement between the different components of

a quantum computer has to be maintained and protected, but entanglement

with undesired external systems that do not take part in the computation has

to be avoided. In this chapter, we are concerned with the latter and employ

the theory of open quantum systems, introduced in the previous chapter, to

study the effects of thermalization and pure dephasing of qubits. In Section

2.2 we introduce the types of errors that affect qubits and briefly comment

on techniques to reduce them. In Sections 2.3 and 2.4 we introduce two

simple models of thermalization and pure dephasing and employ Markovian

master equations to describe the dynamics. Finally, in Sections 2.5 and 2.6

we introduce non-Markovian pure dephasing noise models, a semiclassical

and a full quantum model, respectively.

2.2 Quantum Errors and Noise

The two most common errors that qubits suffer are bit flip and phase flip

errors. If we define the basis of the qubit levels as {|0⟩ , |1⟩}, in analogy to

the two classical states 0 or 1, the bit flip error is represented by a certain

probability p that the following occurs

|0⟩ −→ |1⟩ ,
|1⟩ −→ |0⟩ .

(2.1)

A general qubit state α |0⟩+β |1⟩ under this type of noise would change with

probability p to the state α |1⟩ + β |0⟩. The operator sum representation

of this process has Kraus operators K0 =
√
1− pI and K1 =

√
pσx, where

σx represents the Pauli matrix x. This type of error produces, in general,

a change in energy of the qubit, which causes energy dissipation of the

qubit into the environment. In Section 2.3 we study this type of error as a

consequence of thermalization in more detail.
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The other type of error that a qubit might suffer is the phase flip error,

which is represented by the following process

|0⟩ −→ |0⟩ ,
|1⟩ −→ − |1⟩ .

(2.2)

A general qubit state α |0⟩ + β |1⟩ under this type of noise would change

with probability p to the state α |0⟩ − β |1⟩, where the relative phase of

qubit states changes. This process has Kraus operators K0 =
√
1− pI

and K1 =
√
pσz, where σz represents the z Pauli matrix. This type of

noise, which is exclusively quantum mechanical, implies a loss of quantum

information without any loss of energy. This noise process causes the loss

of coherence (or quantum superposition) of the quantum system, but does

not change the statistics of measuring in the eigenbasis of the qubit. If we

represent the state of the qubit by its density matrix, this noise process

produces

ρ =

(
|α|2 αβ∗

α∗β |β|2

)
noise−−−→ K0ρK

†
0+K1ρK

†
1 =

(
|α|2 (1− 2p)αβ∗

(1− 2p)α∗β |β|2

)
,

(2.3)

where we can see that the populations are not affected but the coherence

(off-diagonal elements) has decreased (in modulus). If the qubit is subject to

successive applications of this noise process, the off-diagonal elements will

tend to 0 (unless p = 1 or p = 0, which represent unitary processes). This

type of noise is also called pure dephasing. While this process only reduces

coherence, the bit flip errors, apart from producing energy dissipation, also

produce a reduction in coherence, which is a feature that we will explore in

the following section.

This type of errors might occur when applying imperfect gates as well

as when the qubits are idle, i.e., waiting for the following gate to be applied.
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The accumulation of these errors can render the computation useless, as

the information is being lost to the environment. There are two main

ways to tackle this problem. On the one hand, if the noise process that

produces the errors is well-know and characterized, mitigation techniques

can be applied that try to undo the harmful effect of noise. Mitigation

techniques try to compensate the effect of noise, for instance, by applying

additional operations on the qubits without affecting the computation. We

expand more on these techniques in the following subsection. On the other

hand, the method that works for general errors is called quantum error

correction (QEC) [27]. In a faulty classical computer, one could copy the

information many times and perform the operation on all the copies, to

then keep the result that happened with the highest frequency. In the

quantum realm, due to the no-cloning theorem [28, 29], information cannot

be copied and repeated, but it can be spread along multiple qubits to create

a highly entangled state that contains the original information. Then, after

performing the computation, part of the information will be lost, but since

it was spread between multiple parties, as long as some of them remained

unaffected, the correct answer can be reconstructed. The first code that was

able to correct the two type of errors previously introduced, and hence to

correct general one qubit errors, was introduced by Peter Shor [30] in 1995,

and involved encoding the state of one qubit into nine qubits. This code

requires full connectivity between all qubits, which is a feature that most

quantum computing implementations do not possess, and just to carry out

the encoding becomes a very demanding task. More modern error correcting

codes have been developed, such as surface codes [31, 32, 33, 34] that are

designed for qubits that are laid out in a two dimensional grid, which is a

common feature of current solid state implementations.

The basic difference is that QEC involves the detection and correction

of errors that occur during computation, while error mitigation schemes
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allow errors to occur and try to compensate for the negative effects of these

uncorrected errors in various ways. If an implementation of a quantum

computer can surpass the thresholds stabilised by QEC codes, errors could

in principle be completely eliminated. While error mitigation tries to reduce

the impact of errors it cannot completely eliminate them. In the next

subsection we introduce two basic mitigation techniques, whose efficiency is

later studied in the presence of random telegraph noise, a type of coherent

noise that can explain the decoherence dynamics of qubits.

Mitigation techniques

One such technique is dynamical decoupling [35, 36], which originated in

the field of nuclear magnetic resonance (NMR) and consists of applying

pulses at repeated time intervals that flip the state of the qubit. The

purpose of this technique is to partially cancel the noise induced in one

interval by the noise induced in the following one by flipping the state.

The effect of the pulses is to refocus the state dispersion caused by the

environment. In a pictorial description, before the pulse, the states drifts

”in one direction” due to the noise, and by flipping their state, they drift ”in

the opposite direction,” thus recovering part of the lost information. The

technique works when the noise induced by the environment possesses time

correlations, and if the time intervals of the pulses are smaller than the

correlation time of the environment. There are more sophisticated versions

of this technique [37, 38] which, instead of performing pulses at equally

spaced time intervals, they are performed at specific time intervals that lead

to improved fidelity. In reference [39], it was studied how these techniques

improve the fidelity of the qubits, and it was observed that this effect

was related to the suppression of the low-energy part of the environment

spectrum. This technique is especially useful when the qubits are idle, i.e.,

no operation is being performed on them, and they are only subject to the
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action of the environment.

During an algorithm the qubit is subject to gates that rotate the qubit

state and modify the degree in which the qubit is affected by the noise. A

strategy to mitigate the noise consists on making the single qubit rotations of

the algorithm as random as possible in order to obtain an average effect of the

noise. One such technique is the so-called Pauli twirling [40, 41, 42], which

consists of applying random Pauli operators (I, σx, σy, σz) in between

the algorithm gates and then averaging over all possible realizations of

these operations. This technique does not change the logical circuit, but

randomizes the single qubit rotations.

2.3 Dissipative noise model: thermalization

A very simple model to describe the bit flip type of error is to have a

qubit that interacts with an environment at an inverse temperature βE

that induces transitions between its eigenstates. Such a situation can be

described with a Hamiltonian of the form

H =
ω0

2
σz + σ+ ⊗B + σ− ⊗B† +HE , (2.4)

where the first term is the qubit free Hamiltonian, whose levels have an

energy difference of ω0, HE is the free Hamiltonian of the environment,

and the remaining two terms constitute the interaction Hamiltonian, where

the coupling is absorbed in the system operator B. The raising and lower

operators σ± = σx ± iσy of the system induce excitation or decay of the

qubit states

σ+ |0⟩ = |1⟩ ,
σ− |1⟩ = |0⟩ .

(2.5)
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This system can be described using the Redfield master equation (1.66),

and we leave the derivation to Appendix A.1. The master equation becomes

d

dt
ρS(t) = −i[H ′

S , ρS(t)] + γn(ω0, βE)
[
σ+ρS(t)σ− − 1

2
{σ−σ+, ρS(t)}

]

+ γ(n(ω0, βE) + 1)
[
σ−ρS(t)σ+ − 1

2
{σ+σ−, ρS(t)}

]
,

(2.6)

where H ′
S is the renormalized system Hamiltonian (see Appendix A.1),

γ is related to the strength of the coupling with the environment, and

n(ω, β) = [eβω − 1]−1 is the average thermal number at temperature β.

If we define the density matrix components as ρij(t) = ⟨i|ρS(t)|j⟩ with

{i, j} = {0, 1}, we can write the following differential equation for them,

ρ̇10(t) = iω′
0ρ10(t)−

γ

2
[2n(ω0, βE) + 1]ρ10(t) , (2.7)

ρ̇11(t) = γn(ω0, βE)[1− ρ11(t)]− γ[n(ω0, βE) + 1]ρ11(t) , (2.8)

where we employed trace preservation of the density matrix ρ11(t)+ρ00(t) =

1.

Zero temperature

Let us first explore what occurs to a qubit coupled to an environment at 0

temperature, i.e., n(ω0, β → ∞) → 0. The second term of Eq. (2.6) becomes

null, and we have a Lindbladian ME with Lindblad operators L = σ−,

meaning that the qubit will only be subject to spontaneous decay at a rate

γ. The system of Eqs. (2.7, 2.8) then has the solution
(
ρ00(t) ρ01(t)

ρ10(t) ρ11(t)

)
=

(
(1− e−γt) + e−γtρ00(0) eiω

′
0t−γt/2ρ01(t)

e−iω′
0t−γt/2ρ10(0) e−γtρ11(0)

)
. (2.9)

We can define the timescale T1 at which the populations decay ρ11(t) =

e−t/T1ρ11(0) and the timescale T2 corresponding to the coherence decay
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|ρ01(t)| = e−t/T2 |ρ01(0)|, following a nomenclature extracted from NMR. In

this scenario we observe that T2 = 2γ−1 = 2T1: the populations decay twice

as fast as the coherence, and at long times only the state |0⟩ is populated.

Finite temperature

When the temperature of the environment is finite, the decay times become

shorter, becoming T1 = [γ(2n(ω0, βE)+1)γ]−1 = T2/2, and, while coherences

have the same exponential decay, the populations change their stationary

solution

ρ11(t) = e−t/T1ρ11(0) +
n(ω0, βE)

2n(ω0, βE) + 1
(1− e−t/T1) . (2.10)

In other words, at long times, the state of the qubit becomes the thermal

state at the temperature of the environment

lim
t→∞

ρS(t) =
e−βEHS

Tr {e−βEHS} . (2.11)

Qubit initialization and [P.1]

In practical situations, the temperature of the surroundings of the qubits

employed in quantum computers has an associated thermal energy of at

least one order of magnitude less than the qubit energy1. This implies that

βω0 ∼ 10 and effectively n(ω0, βE) ∼ 0 meaning that, in the long time limit,

all the qubits in a quantum computer tend towards the state |0⟩ in very good

approximation. This fact can be employed for the initialization of solid-state

qubits, the system is left to relax towards the ground state. Usually, not all

components of a quantum computer are at those low cryogenic temperatures,

but present a descending gradient of temperature as they are closer to the

1Typical values for a superconducting qubit energy are around 5GHz and temperatures
of 20mK
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physical qubits. In [P.1], it was pointed out that when a qubit is in direct

contact with an environment at a certain temperature, thermalization of

the qubit to that temperature is only a quasi-stationary state. If the system

is left untouched for a sufficiently long time, it may thermalize to a state

with a different temperature. This phenomenon can have implications

for the initialization of the qubit. If the initialization time is sufficiently

long, the qubit may reach an unexpected initial state, which can decrease

the fidelity of the initialization procedure. Hopefully, the thermal mass

of the qubit surroundings is high enough, and continuously pumped, so

that thermalization to a higher temperature is unlikely. More sophisticated

initialization protocols exist, for instance qubits initialization with tunable

environments [43], initialization by repetitive projective measurements [44],

or external coherent drive [45] to cool down the qubit, whose initialization

fidelity is not affected by thermal population limits.

2.4 Markovian pure dephasing

In the previous section, we noted that dissipative dynamics lead to both

changes in energy and a decrease in coherence of the qubit. However, it is

also possible to experience decoherence without energy dissipation. This

phenomenon is known as phase damping or pure dephasing noise. By

following the procedure outlined in the previous section, we can construct a

Hamiltonian that induces this effect on the qubit as,

H =
ω0

2
σz + σz ⊗B +HE , (2.12)

where now qubit operators only act through σz. The Markovian ME

describing this scenario, derived in Appendix A.2, is

d

dt
ρS(t) = −i[HS , ρS(t)] +

Γ

2

(
σzρS(t)σz − ρS(t)

)
, (2.13)
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where Γ encodes the action of the environment and represents the rate at

which the qubit loses coherence. The solution of this master equation is

(
ρ00(t) ρ01(t)

ρ10(t) ρ11(t)

)
=

(
ρ00(0) eiω

′
0t−Γtρ01(t)

e−iω′
0t−Γtρ10(0) ρ11(0)

)
, (2.14)

where the timescale of decoherence is now T2 = Γ−1. The timescale of pure

dephasing is referred to as Tϕ, but in this case it coincides with T2. If in

the master equation of the previous section we included a pure dephasing

term then the decoherence time would have two contributions

|ρ01(t)| = e−t/T2 |ρ01(0)| = e−t/(2T1)e−t/Tϕ |ρ01(0)| , (2.15)

where the total decoherence time T2 is given by the relation

1

T2
=

1

Tϕ
+

1

2T1
. (2.16)

In general, the decoherence time obeys 2T1 ≥ T2 (if there is presence of

dissipative dynamics), but usually, because of the presence of pure dephasing,

the decoherence time is shorter that the relaxation time, i.e., T2 < T1.

While a Markovian ME is a good description of the dissipative dynamics,

which mostly come from thermalizing processes, pure dephasing is not always

well described by Markovian dynamics. It has been observed [46, 47, 48,

49, 50, 51, 52, 53] that qubit dephasing presents coherence revivals and

has 1/f spectral distribution causing the appearance of slow oscillating

contributions, indications of non-Markovianity in the evolution of qubit

decoherences. A more realistic approach has to be considered to model pure

dephasing noise. In the following sections, we explore coherent noise models

that can reproduce the observed effects, and we also explore mitigation

techniques on them. First, we present a semiclassical model where the noise

is induced by classical fluctuators by introducing the Random Telegraph
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Noise (RTN). In the last section, we introduce a full quantum model, that is

physically motivated, and employ the techniques of open quantum systems

to study the decoherence effects.

2.5 Non-Markovian pure dephasing: semiclassical

model

It has been widely observed that the source of noise in solid-state imple-

mentations of quantum computing [54, 55, 56] is caused by the presence of

two-level defects within amorphous materials at low temperatures [57, 58].

Surprisingly, this effect appears to be universal across different materials

and compositions, and it is particularly prominent in amorphous materials

at temperatures below the Kelvin scale. When these two-level defects, or

two-level systems (TLS), are strongly coupled to their surrounding environ-

ment, their dynamics are described by incoherent fluctuations between their

two states, giving rise to what is referred to as fluctuators. A semiclassical

model can be introduced to describe the pure dephasing noise induced by

these fluctuators. Notably, this noise model is non-Markovian, rendering

the previous section’s model too simplistic to capture its complexity.

The state of the fluctuators can be described by a classical random

variable bik(t) ∈ {+1,−1}, where k indicates individual fluctuators and the

superindex i indicates one particular realization of the random process.

These fluctuator independently fluctuate between their two possible states

at the rate γk. The probability that a fluctuator switches n times after some

time t follows a Poisson distribution

pn(t) =
(γkt)

n

n!
e−γkt , (2.17)

so that the average number of switches of fluctuator k during an interval of

length τ is γkτ . The autocorrelation function of a single fluctuator follows
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an exponential decay,

C(t− t′) = ⟨bik(t)bik(t′)⟩i = e−2γk|t−t′| , (2.18)

which indicates that the spectrum (Fourier transform of the autocorrelation

function) is Lorentzian

SRTN(γk, ω) =

∫ ∞

−∞
dτC(τ)eiτω =

4γk
4γ2k + ω2

. (2.19)

Each of the fluctuators is coupled to the qubit with a coupling strength

vk. The stochastic variable

χi(t) =

NRTN∑

i=1

vkb
i
k(t) , (2.20)

captures the effect of the fluctuators on the qubit, where NRTN is the

number of fluctuators. The influence of the fluctuators is incorporated into

the qubit’s Hamiltonian through a interaction of the type

H i(t) =
ω0 + χi(t)

2
σz , (2.21)

where ω0 is the energy splitting of the two levels of the qubit.

The evolution of the qubit under one of the realizations of the Hamil-

tonian (2.21) is unitary, but we have to consider the averaged evolution

after many of these realizations, which, in general, represents a non-unitary

evolution. If ρi(t) represents the evolution of realization i, to obtain the av-

eraged evolution we have to consider the expectation value over realizations

ρ(t) = ⟨ρi(t)⟩i. In a experiment, the expectation value is obtained as

⟨ρi(t)⟩i =
1

Ntraj

Ntraj∑

i=1

ρi(t) , (2.22)
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where Ntraj is the number of realizations of the stochastic process. Ideally,

this number should be big to achieve convergence to the expected value.

The averaged evolution of a qubit under this model becomes

ρ(t) =

(
ρ00(0) ρ01(0)e

−iω0tW (t)

ρ10(0)e
iω0tW (t) ρ11(0)

)
, (2.23)

where W (t) = ⟨ei
∫ t
0 χi(t′)dt′⟩i is the decoherence function.

In the following, we study this decoherence function in different scenar-

ios. The decoherence function can be defined for a general pure dephased

qubit as

W (t) =
|ρ01(t)|
|ρ01(0)|

. (2.24)

Single fluctuator

Computing the decoherence function W (t) requires knowing the probability

distribution of the accumulated phase

ϕi(t) =

∫ t

0
χi(t′)dt′ , (2.25)

which for a single fluctuator, with coupling strength vk and switching rate

γk, was analytically obtained in [59, 60]. The decoherence function induced

by a single fluctuator k can be obtained as

Wk(t) =
〈
ei

∫ t
0 χi(t′)dt′

〉
i
=




e−γkt

(
cos δkt+

γk
δk

sin δkt
)
, γk < vk ,

e−γkt
(
cosh δkt+

γk
δk

sinh δkt
)
, γk ≥ vk ,

(2.26)

where δk =
√
|γ2k − v2k|. Depending on the relation between the coupling

strength and the rate, the decoherence function can monotonously decay

(vk < γk) or can present revivals (vk > γk), indicating the presence of
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Figure 2.1: (Left) Evolution of the decoherence function for one evolution
of each kind, i.e., one with weak coupling and one with strong coupling.
(Right) Contour plot in the γ − v plane of the non-Markovianity, where the
white region indicates a null non-Markovianity.

non-Markovianity. The decoherence time is approximately given by Tϕ =

(γk −
√
γ2k − v2k)/2 for the weak coupling regime and Tϕ = γk/2 for the

strong coupling regime. In Fig. 2.1 we present the decoherence function

of the two regimes, as well as the degree of non-Markovianity given by

the BLP measure in terms of these parameters. On the one hand, we can

see that when vk < γk the measure on non-Markovianity vanishes and the

decoherence function presents a monotonous decay. On the other hand,

when vk < γk, the decoherence presents revivals and the non-Markovianity

measure indicates presence of memory effects, a phenomenon that cannot be

obtained with a Markovian ME as the one employed in the previous section.

Ensemble of fluctuators

In general, the qubit is coupled to an ensemble of fluctuators, but what

is the probability distribution of its switching rates and couplings? It
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has been experimentally observed that superconducting qubits exhibit 1/f

flux noise [61, 62] with a weak dependence on the particular experimental

implementation. In order to recover a 1/f spectrum in the model described

in the previous section the following is required,

S(ω) =

∫ γmax

γmin

SRTN(γ, ω)p(γ)dγ ∝ 1

ω
, (2.27)

where p(γ) is the probability distribution of the fluctuators frequencies. This

requirement is fulfilled if the fluctuators switching rates are also distributed

according to a p(γ) ∝ 1/γ distribution. The cutoff frequencies for the

switching rates, γmin and γmax, can be set by experimental timescales. Very

small switching rates are almost stationary during the whole experiment

γmin ≈ 1/texp, with texp the duration of the experiment, while very fast

switching rates average out quickly, γmax ≈ 1/∆t with ∆t the sampling

timescale. The decoherence function of an ensemble of independent fluctua-

tors is simply the product of the decoherence functions of each fluctuator

W1/f (t) = ⟨ei
∑NRTN

k=1 vik
∫ t
0 dt′pik(t

′)⟩i =
NRTN∏

k=1

⟨eivik
∫ t
0 dt′pik(t

′)⟩i =
NRTN∏

k=1

Wk(t) .

(2.28)

Mitigation of RTN noise

To reduce the decoherence induced by RTN noise, induced by only one

fluctuator throughout the rest of the section, mitigation techniques can be

applied on the qubit. Let us consider the simple spin echo technique which

consists on applying a σx pulse on the qubit in the intermediate time of the

evolution, and another σx at the end. For an evolution of length 2∆t, the

application of a σx pulse at the intermediate time ∆t and at the final time

2∆t has the following effect on the unitary evolution of a single trajectory
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of the noise process

U i(0, t) = σxe
iσz

2

∫ 2∆t
∆t dt′χi(t′)σxe

iσz
2

∫∆t
0 dt′χi(t′) = ei

σz
2 (

∫∆t
0 dt′χi(t′)−

∫ 2∆t
∆t dt′χi(t′)) .

(2.29)

We use the convention to express times in terms of ∆t, the time between

pulse applications. This evolution changes the coherence of the qubit as

ρi01(2∆t) = ei(
∫∆t
0 dt′χi(t′)−

∫ 2∆t
∆t dt′χi(t′))ρ01(0) , (2.30)

so that the averaged decoherence function can be written as

W (2∆t) =

〈
exp

(
i

∫ 2∆t

0
β(t′)χi(t′)dt′

)〉

i

, (2.31)

with

β
(
t′
)
=

{
1 for 0 < t′ ≤ ∆t ,

−1 for ∆t < t′ < 2∆t .
(2.32)

The function β(t) is referred to as the filter function of the mitigation

technique, it takes values ±1 and switches sign at definite time instants that

depend on the mitigation technique. Below we present the filter function

of the different mitigation techniques that we apply on RTN noise and the

resulting decoherence function. The average performed in Eq. (2.31) can be

computed using the method developed in [63]. The decoherence function

between time instants at which a pulse is applied, where the filter function

is constant, obeys the differential equation [63]

d2

dt2
W (t) +

[
2γ − d lnβ(t)

dt

]
d

dt
W (t) + v2W (t) = 0 , (2.33)

with initial conditions W (0) = 1 and W ′(0) = 0. The derivative of lnβ(t)

introduces discontinuities in the derivative of W (t) at times when β(t)

changes sign, which implies that W ′(t+s ) = −W ′(t−s ), where t
+
s (t−s ) is the

switch time from the right (left). In what follows, we present a derivation of
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the decoherence function for spin echo sequence (2.29), periodic dynamical

decoupling and for Pauli twirl, which all have a different filter function.

i) Free induced decay: The free induced decay (FID) is the evolution

of the qubit subject to the environment, but no manipulation of the

noise is present. The filter function is a constant function of time

β(t) = 1, and the solution of the differential equation (2.33) is the

same as obtained with other methods in Eq. (2.26), which we rewrite

here

WFID(t) = e−γt
(
cos(δt) +

γ

δ
sin(δt)

)
, (2.34)

with δ =
√
v2 − γ2, and we dropped the index of the fluctuators since

we are only considering one.

ii) Spin echo: The spin echo sequence exemplified in Eq. (2.29) is the

simplest mitigation technique. The differential equation (2.33) is solved

for the time interval 1: 0 < t < ∆t with initial condition W1(0) = 1

and W ′
1(0) = 0 and the time interval 2: ∆t < t < 2∆t with initial

(boundary) conditions W2(∆t) = W1(∆t) and W ′
2(∆t) = −W ′

1(∆t),

because of the discontinuity of β(t). The subindex in Wn(t) indicates

at which time interval the function is calculated. The decoherence

function at the end of the evolution is

WSE(2∆t) = e−γ2∆t

(
1 +

γ

δ
sin(δ2∆t) +

γ2

δ2
(1− cos(δ2∆t))

)
,

(2.35)

This decoherence function has higher value than the FID decoherence

function (2.34) evaluated at time 2∆t.

iii) Dynamical decoupling: The periodic dynamical decoupling filter

function β(t) switches between +1 and −1 at regular time intervals ∆t.

With the continuity of W (t) and the discontinuity of its derivative, we
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can construct Wn(t) for the time interval t ∈ [(n− 1)∆t, n∆t), which

depends on the previous steps. The dependence is captured in the

following set of equations

W ′′
n+1(t) + 2γW ′

n+1(t) + v2Wn+1(t) = 0 , (2.36)

W ′
n+1(n∆t) = −W ′

n(n∆t) , (2.37)

Wn+1(n∆t) =Wn(n∆t) , (2.38)

with initial conditions W0(0) = 1 and W ′
0(0) = 0. These equations

can be reduced to the following recurrence relations

W0(0) = 1 , (2.39)

W ′
0(0) = 0 , (2.40)

Wn+1((n+ 1)∆t) = e−γ∆t
{(

cos(δ∆t) +
γ

δ
sin(δ∆t)

)
Wn(n∆t)

(2.41)

− sin(δ∆t)
W ′

n(n∆t)

δ

}
,

W ′
n+1((n+ 1)∆t) = −e−γ∆t

{(
cos(δ∆t)− γ

δ
sin(δ∆t)

)
W ′

n(n∆t)

+ sin(δ∆t)
v2

δ
Wn(n∆t)

}
. (2.42)

This recurrence relation can be written as a matrix system W⃗n+1 =

MW⃗n where W⃗n = (Wn(n∆t),W
′
n(n∆t))

T . The general term can

be obtained by recursive application of the matrix M to the initial

condition W⃗0 = (1, 0)T , i.e. M⃗n =MnM⃗0. The general term is

WDD(n∆t) = e−nγ∆t

[
λn+ + λn−

2
+

cos(δ∆t)√
1 + α2

λn+ − λn−
2

]
(2.43)

where λ± = α ±
√
1 + α2 with α = γ

δ sin(δ∆t). This result was

obtained in [64, 65] employing a transfer matrix method.
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iv) Pauli twirling: The effect of applying Pauli gates instead of just

σx differs in that the set (I, σz) does not change the sign of β(t) while

the set (σx, σy) has the effect of flipping the sign of β(t). After each

time step, we have a 50% chance of flipping the sign of the filter

function. Since the action of the decoherence function is lineal, we

have to average over all the possible decoherence functions. After the

first step the decoherence function is simply given by

W1(∆t) = e−γ∆t
(
cos(δ∆t) +

γ

δ
sin(δ∆t)

)
. (2.44)

In the next step, we have to consider the average over the two possi-

bilities, β(t) keeps a constant sign or β(t) flips sign

Wtwirl(2∆t) =
1

2
W1(2∆t) +

1

2
W2(2∆t)

=
e−γ2∆t

2

(
cos(δ2∆t) + 2

γ

δ
sin(δ∆t) + 1 +

γ2

δ2
(1− cos(δ2∆t))

)

= e−γ2∆t
(
cos(δ∆t) +

γ

δ
sin(δ∆t)

)2
.

(2.45)

In the third step, we have to consider 4 possibilities which starts to

become a cumbersome computation

Wtwirl(3∆t) =
1

4
(W1(3∆t) +W2(3∆t) +W3(3∆t) +W2p(3∆t)) ,

(2.46)

where Wi(t) are the same functions obtained from the dynamical

decoupling case, but W2p(t) is the function obtained from solving the

differential equation (2.33) in the interval [2∆t, 3∆t] with boundary

conditionsW2p(2∆t) =W1(2∆t) andW
′
2p(2∆t) = −W ′

1(2∆t). Luckily

enough, this expression simplifies to

Wtwirl(3∆t) = e−γ3∆t
(
cos(δ∆t) +

γ

δ
sin(δ∆t)

)3
. (2.47)
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Figure 2.2: (Left) Evolution of the decoherence function induced by a weakly
coupled fluctuator v = 0.8γ for different mitigation techniques. The red
lines correspond to a free evolution, where the qubit is only subject to RTN
noise, the blue line corresponds to a qubit that is subject to Pauli twirling
and the yellow line is a qubit subject to dynamical decoupling. (Right)
Same comparison for a strongly coupled fluctuator with v = 2γ. The time
step at which each pulse is applied is ∆t = 1/(4γ). The crosses represent
numerical simulations of the decoherence functions with 104 realizations,
while the continuous lines represent the derived analytical formulas.

To compute the following step this systematic procedure can be applied,

and with the use of the inductive method, it can be shown that for a

general number of steps

Wtwirl(n∆t) = e−γn∆t
(
cos(δ∆t) +

γ

δ
sin(δ∆t)

)n
, (2.48)

which is an original result, and was verified by a numerical simulation

of multiple realizations of the noise process and random selection of

twirl pulses.

In Fig. 2.2 we show the effectiveness of each mitigation technique on

RTN noise of a single fluctuator and compare the analytical results with

numerical simulations. It can be observed that dynamical decoupling is the



2.5. NON-MARKOVIAN PURE DEPHASING: SEMICLASSICAL
MODEL 57

most effective at reducing the overall decay of the decoherence function, while

the Pauli twirl is still better than doing nothing. As mentioned before, the

Pauli twirl is better suited for mitigating noise during quantum algorithms,

while dynamical decoupling can only be applied on idle qubits. Since the

fluctuators are independent, the decoherence function for an ensemble of

them can be obtained in the same fashion as before.

Unbalanced fluctuators

So far, we only considered fluctuators that have balanced transition rates

between their two states, i.e., the rate of transition from the −1 → 1 state

γ+ is the same as the transition rate from the 1 → −1 state γ−. This

assumption is valid if the energy difference of the fluctuator levels Ef is

small compared to the thermal energy, i.e., Ef ≪ kBT . If that is not the

case, the rates are related [66, 67] by γ−/γ+ = e−Ef/kBT , so that, for low

temperature, the transition 1 → −1 is dominant (spontaneous emission).

The decoherence function for the unbalanced case is

W (t) = e−γut

∣∣∣∣cosh(δut) +
γu
δu

sinh(δut)

∣∣∣∣ , (2.49)

where γu = γ++γ−
2 is the average decay rate and δu =

√
γ2u − v2 + iv∆γ with

∆γ = γ+ − γ− = 2γu tanh(Ef/2kBT ). The effect of dynamical decoupling

on this unbalanced RTN noise was analytically obtained in [65]. While this

model gives reasonable predictions at temperatures near the energy of the

fluctuator and above, it starts to fail at lower temperatures where quantum

effects become relevant. Below this point, the TLS cannot be described as a

classical state that incoherently flips between two states, and one needs to

consider a model of a coherent TLS. In the next section, we propose a model

that takes into account a coherent TLS coupled to an external environment

that slowly reduces its coherence.
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We can see that, at very low temperatures, this semiclassical model

fails to fully describe the decoherence of the qubit. For instance, considering

a common case [68] where Ef ≈ 10kBT the rate difference approximately

becomes 2γu and δu = γu + iv, so that the decoherence function reads

W (t) =
e−γut

√
2(γ2u + v2)

(
v2 cos(2vt) + (2γ2u + v2) cosh(2γut)

+ 2γu(v sin(2vt) + γu sinh(2γut)
)1/2

,

(2.50)

which in the long time limit reaches a constant value

lim
t→∞

W (t) =

√
γ2u +

(
v
2

)2

γ2u + v2
, (2.51)

contrary to what is expected. In a true quantum model, as a result of the

interaction between qubit and TLS, there should be a transfer of coherence

to the TLS that is destroyed by the environment. This semiclassical model

is too simple and cannot capture the quantum nature of the qubit-TLS

interaction. In the following section we introduce a full quantum model that

describes this interaction.

2.6 Non-Markovian pure dephasing: quantum

model

There have been some proposals [69, 70, 71, 72] of microscopic quantum

models to describe the noise induced by coherent TLS, see [68] for a review

of their physical motivation. In general, the TLS are modelled by an

asymmetric double well potential, with ϵ the energy difference of the minima

and ∆ the tunneling rate. In this section, we construct a quantum model

where the qubit is coupled to a coherent TLS, that is in turn coupled to
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Figure 2.3: Schematic picture of the model. The qubit (Q) is coupled to
the fluctuator (F), which in turn is coupled to its own bath of harmonic
oscillators aλ.

an external reservoir at a finite temperature. The total Hamiltonian reads

H = HS +HE +HI , where the system qubit-TLS Hamiltonian has three

terms HS = HQ +HTLS +HQT ,

HQ =
1

2
ωqτz , HTLS =

ϵ

2
σz +

∆

2
σx , HQT =

v

2
τzσz , (2.52)

where τi are Pauli matrices acting on the qubit’s Hilbert space and σi

on the TLS’s space. The TLS Hamiltonian is an effective description of

the double well described before. The qubit-TLS interaction HQT induces

pure dephasing on the qubit. The energy difference of the TLS levels is

EF =
√
∆2 + ϵ2.

The environment is a bosonic reservoir that couples directly to the

TLS, but not to the qubit. The environment and interaction Hamiltonians

are

HB =
∑

k

ωkb
†
kbk , HI = σ+

∑

k

gkbk + σ−
∑

k

g∗kb
†
k . (2.53)

In Fig. 2.3 we sketch a schematic picture of this composite environment.
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Simplified evolution

Since the interaction Hamiltonian is the same as in the simple model of

Section 2.3, one might be tempted to construct the same master equation as

Eq. (2.6) with the system HamiltonianHS = HQ+HTLS+HQT . That would

not be correct, since the TLS does not only interact with the environment: it

also interacts with the qubit, which modifies the evolution of the interaction

operators σ±. If we consider this simplified evolution model, the ME that

describes the evolution of the qubit-TLS system is

d

dt
ρQT (t) =− i[HQ +HTLS +HQT , ρQT (t)]

+ Γn(Ef , βE)
(
σ+ρS(t)σ− − 1

2
{σ−σ+, ρQT (t)}

)

+ Γ(n(Ef , βE) + 1)
(
σ−ρQT (t)σ+ − 1

2
{σ+σ−, ρQT (t)}

)
,

(2.54)

where ρQT (t) is the density matrix of the qubit-TLS state. This is a model

that resembles the semiclassical model presented in Section 2.5, where the

fluctuator is only affected by the environment and not by the qubit state.

To obtain the reduced density matrix of the qubit, we need to take the

partial trace with respect to the TLS, i.e., ρQ(t) = TrTLS {ρQT (t)}. The

correspondence is incredibly similar with the RTN fluctuator model, with the

parameter correspondence γ+ = Γn(Ef , βE), γ− = Γ
(
n(Ef , βE) + 1

)
, and

being v the interaction strength between qubit and TLS in HQT . Note that

the relation γ−/γ+ = e−Ef/kBT holds for this parameter correspondence. In

Fig. 2.4, we present a comparison of the RTN decoherence function and the

decoherence function given by this master equation for different temperatures.

It can be observed that, for high temperatures, both models give the same

evolution of the decoherence function, but when the temperatures get lower

the solutions start to deviate from each other. We restricted ourselves to
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Figure 2.4: Comparison between the evolution of the decoherence function
in the unbalanced fluctuator model and the simplified quantum model. In
the panel on the left the temperature is much higher than the fluctuator
energy and the two models produce the same decoherence function. In the
right panel, the thermal energy is of the same order as the fluctuator energy,
and a discrepancy between models starts to become apparent.

the case with a null tunneling rate of the TLS (∆ = 0) to closely relate to

the semiclassical model, which does not include any mechanism to describe

the tunneling between TLS levels.

Correct evolution

To consider the correct dynamics of the quantum model, we first rewrite

the interaction Hamiltonian in terms of Hermitian operators

HI = σx ⊗
1

2

∑

k

gk(ak + a†k) + σy ⊗
i

2

∑

k

gk(ak − a†k) , (2.55)

so that we can directly employ the Redfield equation (1.66). The evolution

of the TLS operators is given by

σx(t) = ei(HQ+HTLS+HQT )tσxe
−i(HQ+HTLS+HQT )t , (2.56)
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which depends non-trivially on all the constituents of the qubit-TLS Hamil-

tonian. Similarly, we can obtain the evolution of σy. If the evolution of these

operators was given solely by HTLS the resulting ME would be the same as

Eq. (2.54), which is equivalent to a weak coupling limit of the qubit-TLS

interaction2. We can write the evolution of these operators through the

spectral decomposition of HS as in Eq. (1.69)

σx(t) = e−iD+tΠ2σxΠ1 + eiD+tΠ1σxΠ2 + e−iD−tΠ4σxΠ3 + eiD−tΠ3σxΠ4

+

4∑

i=1

ΠiσxΠi ,

σy(t) = e−iD+tΠ2σyΠ1 + eiD+tΠ1σyΠ2 + e−iD−tΠ4σyΠ3 + eiD−tΠ3σyΠ4 ,

(2.57)

where D± =
√
∆2 + (v ± ϵ)2 are the energy transitions between eigenstates

of the qubit-TLS Hamiltonian HS , and Πi = |Ei⟩ ⟨Ei| the projection opera-

tors onto these eigenstates |Ei⟩, which are

|E1⟩ =
1√

2D2
+ + 2D+(ϵ+ v)

(
(v + ϵ) +D+,∆, 0, 0

)T ≡ |↑↗⟩ , (2.58)

|E2⟩ =
1√

2D2
+ − 2D+(ϵ+ v)

(
(v + ϵ)−D+,∆, 0, 0

)T ≡ |↑↘⟩ , (2.59)

|E3⟩ =
1√

2D2
− + 2D−(ϵ− v)

(
0, 0, (ϵ− v) +D−,∆

)T ≡ |↓↗⟩ , (2.60)

|E4⟩ =
1√

2D2
− − 2D−(ϵ− v)

(
0, 0, (ϵ− v)−D−,∆

)T ≡ |↓↘⟩ , (2.61)

(2.62)

2If v = 0, HQ commutes with HTLS and with σx so that it does not contribute to the
evolution of the interaction operators with the environment.
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expressed in the spin z component of qubit and TLS, with respective

eigenvalues

E1 =
1

2
(ω0 +D+) , E2 =

1

2
(ω0 −D+) ,

E3 =
1

2
(−ω0 +D−) , E4 =

1

2
(−ω0 −D−) . (2.63)

The correlation functions are given by

Cxx(t) =
1

4

∫
dωJ(ω)n(ω, βE)e

−iωt + J(ω)
(
n(ω, βE) + 1

)
eiωt , (2.64)

Cxy(t) =
i

4

∫
dωJ(ω)n(ω, βE)e

−iωt − J(ω)
(
n(ω, βE) + 1

)
eiωt . (2.65)

The remaining two are related the these ones as Cyy(t) = Cxx(t) and

Cyx(t) = −Cxy(t). We have considered a continuum limit of the modes of

the reservoir so that

J(ω) =
∑

k

|gk|2δ(ω − ωk) = gωe−ω/ωc , (2.66)

which is an ohmnic spectral function [73, 2], where g is proportional to the

coupling strength with the environment, and ωc is a frequency cutoff for the

modes. Since no easy expression can be obtained for the evolution operators,

we implement numerically the operators into the Redfield equation to obtain

the evolution of the qubit-TLS system.

We can obtain a more amenable master equation in Lindblad form

considering the secular approximation, that is, removing the fast oscillating

terms of the qubit-TLS system in the Bloch-Redfield ME (1.72). This

approximation is only valid if the timescale of the removed terms is much

faster than the relaxation time. In this system, the slowest system term

defines the timescale

τS =
1

|D+ −D−|
=

1√
∆2 + (v + ϵ)2 −

√
∆2 + (v − ϵ)2

, (2.67)
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which becomes large if v goes to 0, but in this situation3 we could resort to

the master equation of the previous subsection. This approximation also

fails if ∆2 ≫ (ϵ ± v)2. The relaxation timescale is given by the coupling

strength with the environment τR = g−1, and the approximation is valid in

the regime τS ≪ τR.

The ME after the secular approximation becomes

d

dt
ρQT (t) =− i[HQ +HTLS +HQT +HLS , ρQT (t)]

+
4∑

i=1

γi
(
LiρQT (t)L

†
i −

1

2
{L†

iLi, ρQT (t)}
)
,

(2.68)

where the operators and corresponding rates are

γ1 = J(D+)(n(D+, βE) + 1) , L1 = Π2σ−Π1 , (2.69)

γ2 = J(D+)n(D+, βE) , L2 = Π1σ+Π2 , (2.70)

γ3 = J(D−)(n(D−, βE) + 1) , L3 = Π4σ−Π3 , (2.71)

γ4 = J(D−)n(D−, βE) , L4 = Π3σ+Π4 . (2.72)

(2.73)

and we do not explicitly write the Lamb shift Hamiltonian for the sake

of space. If we take a close look at the rates and operators 1 and 3, they

resemble the γ− and σ− operator in Eq. (2.54), but in this case, since the

interaction of the TLS with the qubit is taken into account, the rates and

operators take into account the correct level transitions of the qubit-TLS

system. The same occurs for the rates 2 and 4.

This interpretation is more easily understood in the case of vanishing

detuning ∆ = 0 of the TLS, in which case the transition energies simplify

3The case v → 0 represent a mathematical singularity because the transition frequen-
cies of HS become degenerate and a different approach has to be followed. Fortunately,
in this case, it is much simpler and is described in the previous subsection.
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0

ω0

-ω0

|↑↗⟩ 1
2(ω0 +D+)

|↑↘⟩ 1
2(ω0 −D+)

|↓↗⟩ 1
2(−ω0 +D−)

|↓↘⟩ 1
2(−ω0 −D−)

σ−(D+) σ+(D+)

σ−(D−) σ+(D−)

D+

D−

Figure 2.5: Sketch of the energy levels of the qubit-TLS system. The black
horizontal lines represent the energy levels of the system. The blue and
red lines represent the only allowed transitions with σ+(D+) = Π1σ+Π2,
σ−(D+) = Π2σ−Π1, σ+(D−) = Π3σ−Π4 and σ−(D−) = Π4σ−Π3 the opera-
tors that drive them. The double arrowed thick lines indicate the energy
difference of the levels with allowed transitions.

to D± = |ϵ± v|. In Fig. 2.5 we represent the energy levels of the qubit-TLS

system, the transition energies, and corresponding operators. Depending on

the state of the qubit the transitions of the TLS states happen with different

energies. If the qubit is in the up state, the transitions between the TLS

states occur with energy D+ and the rates depend on it, while if the qubit is

in the down state, they occur with energy D− and the corresponding rates.

In the simplified model of the last subsection, where the qubit interaction is

not taken into account, the transitions between the TLS states occur with

the same rate, only dependent on Ef .
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If the fluctuator has detuning ∆ ̸= 0 the model becomes richer. The

energy structure is similar to the one sketched in Fig. 2.5; the transition

rates depend on the original values of D± but the transition operators are

tilted, i.e., the eigenbasis of the qubit and the TLS are no longer parallel.

Conclusions and outlook

The quantum model presented in this section constitutes a good candidate

to represent the noise processes that induce noise on solid-state qubit

implementations of quantum computing, where the source of noise comes

from two-level systems present in amorphous solids [68]. We showed that

this model has rich dynamics, and that the RTN noise model only represents

a very simplified case of the proposed noise model, and that it fails at low

temperatures. The aim of the construction of this quantum model is to also

assess the efficiency of mitigation techniques on the more realistic quantum

model.

To consider a periodic dynamical decoupling sequence acting on this

system, the qubit-TLS Hamiltonian would be modified as

HS → HS +HDD(t) ≡ HS +
π

2

∑

n

δ(t− n∆t)τx , (2.74)

where we considered ideal pulses, equally spaced by ∆t, so that at times n∆t

the qubit state is flipped. This modification of the qubit-TLS Hamiltonian

will cause a modification of the evolved interaction operators with the

environment, whose free evolution is given by the unitary operator

U(t, 0) = e−iHQT (t−⌊ t
∆t

⌋∆t) (σxe−iHQT∆t
)⌊ t

∆t
⌋
, (2.75)

where ⌊·⌋ is the floor function. This stepwise evolution operator makes

considering the Markovian approximation done in Eq. (1.61) not doable,

since the system operator S(t − τ) for τ > t is not well-defined with this
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evolution operator. In this case, we have to resort to the ME (1.60), which

has a time dependent generator, and, given the complexity, we have to

employ numerical methods, which is a work in progress.





Part II

Quantum Walks

and their use in the simulation of physical theories
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Chapter 3

Discrete Time Quantum

Walks

3.1 Introduction

A random walk is a random process that describes the displacement of

a walker following a succession of random steps on a graph. The most

common random walk model is that of a walker on a regular lattice, where

the jump probability of the walker to the adjacent locations is given by some

probability distribution, but there are other possible scenarios. Random

walks can be used, for instance, to model the random motion of molecules in

liquids or gases (Brownian motion) and has applications in many scientific

fields, such as biology, chemistry or computer science, to name a few. The

expected position of the walker is described by a probability distribution,

that is determined by the random jump probability and the specific graph.

The basic example of a random walk is a walker on the integer number line

Z, which, after each step, jumps one position in the positive or negative

direction conditioned to the outcome of a balanced coin toss.

71
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An analogous quantum random walk (QW) was proposed in 1993

by Aharonov et al. [74], in which the walker is a quantum particle that

cannot be localized due to quantum uncertainties. The state of the walker

is described instead by a spinor wave function, and the jump probabilities

are conditioned to an internal degree of freedom, which plays the role of a

quantum coin. Due to the quantum character of the walker, its probability

distribution is different from that of the classical one. Quantum walks

can also be defined in continuous time. Childs et al. gave in [75] the

general definition, which is based on a Hamiltonian formulation in which the

internal degree of freedom of the walker is not needed. While continuous-

time quantum walks have many important applications and properties, the

works in this chapter are focused on discrete time quantum walks.

It was already pointed out in [74] that the dispersion of the quantum

walker is quadratically faster than that of the classical walker. This fact

allowed the discovery of more efficient search algorithms than their classical

counterparts. For instance, Grover’s algorithm [22] can be viewed as a

quantum walk search algorithm [76]. Similar search algorithms based on

quantum walks, such as the element distinctness problem [77], have also

been shown to be more efficient than the classical counterparts. Finally,

QWs also proved to be more efficient in probability distribution sampling

problems [78, 79]. It has also been shown that QWs can be used as a

universal computational model [80, 81].

There have been numerous experimental proposals to implement quan-

tum walks. The first proposed platform for implementing the discrete time

QW was using ion traps [82], where the discrete lattice was encoded in the

vibrational modes of the ions, and the coin state was encoded in the internal

electronic state of the ions. Many more platforms have been proposed such

as QED cavities [83], or optical lattices [84], to name a few. See [85] for a

comprehensive review of physical implementations.
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In this chapter we introduce the basic definition of a classical random

walk and a quantum walk, and describe their differences and their corre-

spondence in Section 3.2. In Section 3.3 we review the properties of the QW

in momentum space and its spectrum. Finally, in Section 3.4 we present

the continuous limit of the discrete time quantum walk, and review the

application of QW to the simulation of physical theories. The rest of the

sections are devoted to summarizing the remaining publications.

3.2 The Random Walk on the line: Classical and

Quantum

The classical random walk (CRW) on the integer number line describes a

walker with definite position at each step of the evolution. The walker is

displaced along the discrete positions of the line, and is only allowed to

jump to adjacent locations, i.e., at each time step it only has two possible

positions to move. The jump direction is determined by a balanced coin

toss, but it can be generalized to different probabilities for each direction.

In Fig. 3.1 we represent the location of 50 random walkers after 10 steps,

where all walkers started in the location j = 0. Notice that no walker is

present in odd position numbers; if we performed an odd number of steps,

the walkers would be only located on odd positions. The probability of

finding the walker at position j at the time step n is given by a binomial

distribution

Pn,j =
1

2n

(
n

j+n
2

)
, (3.1)

where j ∈ Z is the position in the integer line and n the time step of the

evolution. This probability is null for j + n odd, such that at even (odd)

steps the walkers are only located in even (odd) positions. In Fig. 3.1 we

plot the probability distribution multiplied by the number of walkers with
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Figure 3.1: Number of walkers in each position of the integer number line
after 10 steps. All walkers started in the position j = 0. The orange line
represents the expected number of walkers at each position.

the zeros of the function removed for illustrative purposes. After many

steps, the binomial distribution approaches a Gaussian distribution. The

standard deviation of this binomial distribution is given by σCRW(n) =√∑
j j

2Pn,j − (
∑

j jPn,j)2 =
√
n, which is the typical standard deviation

of diffusive processes.

The walker in the quantum random walk [86, 87, 88] on the line is

represented by a two component spinor that contains two amplitudes, which,

while in the initial condition might be localized in the central position,

represents in general a superposition of the walker at different locations.

The state of the walker, in addition to the spatial degree of freedom, is given

by a two-dimensional internal degree of freedom, which is called the quantum

coin. The Hilbert space of the spatial degree of freedom, Hx, is of infinite

dimension and is generated by the basis {|j⟩ ; j ∈ Z}. The Hilbert space
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of the quantum coin, HC , is a 2-dimensional space generated by the basis

{|↑⟩ , |↓⟩}. The total Hilbert space is their tensor product H = HC ⊗Hx.

The state of the walker in the defined basis at time n ∈ Z can be written as

|ψn⟩ =
∑

j

(
ψ↑
n,j |↑⟩+ ψ↓

n,j |↓⟩
)
⊗ |j⟩ , (3.2)

where ψs
n,j , with s = {↑, ↓}, are the spinor components at step n and position

j. We can project the state of the walker onto the spatial basis and represent

the state of the walker as a spinor,

|ψn,j⟩ = ⟨j|ψn⟩ =
(
ψ↑
n,j

ψ↓
n,j

)
, (3.3)

where we defined the canonical representation of the coin components as

|↑⟩ = (1, 0)T and |↓⟩ = (0, 1)T .

The one-step evolution of the quantum walker is composed of two

operations: a quantum coin toss that mixes the walker coin components,

followed by a conditional displacement operator that displaces the position

of the walker depending on the internal degree of freedom. We can write

this one-step operation as

|ψn+1⟩ = Ŵ |ψn⟩ = Ŝ
(
Ĉ ⊗ Ix

)
|ψn⟩ , (3.4)

where Ĉ is a general unitary operation acting on the internal state of the

walker and Ŝ is the conditional shift operator defined as

Ŝ = |↑⟩ ⟨↑| ⊗
∑

j

|j + 1⟩ ⟨j|+ |↓⟩ ⟨↓| ⊗
∑

j

|j − 1⟩ ⟨j| . (3.5)

The conditional shift operator transforms states of the form |↑⟩ |j⟩ to states

|↑⟩ |j + 1⟩ and states |↓⟩ |j⟩ to states |↓⟩ |j − 1⟩, i.e., displaces states with

the up (down) state to the right (left). The evolution from a given initial
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condition |ψ0⟩ up to step n = 1, 2, ... is simply |ψn⟩ = Ŵn |ψ0⟩. The walker

does not have a definite position, only upon measurement of the position,

the state of the walker collapses and its position becomes definite. The

associated probability distribution of the walker at time n is given in terms

of its state components as

Pn,j =
∑

s=↑↓
| ⟨s, j|ψn⟩ |2 = |ψ↑

n,j |2 + |ψ↓
n,j |2 . (3.6)

If the probability of the quantum walker to move to the left and right are

equal from an initially localized state, i.e., P1,j+1 = P1,j−1, we say that

the quantum coin is balanced. When the quantum walker position for a

balanced coin is measured after each step, it reduces to the CRW. This

procedure gives the quantum walker the same probability distribution as in

the classical case. To illustrate this, let us consider the following balanced

quantum coin operator

Ĉ = eiσxπ/4 =
1√
2

(
1 i

i 1

)
, (3.7)

and a walker with initial coin state

|ψ0⟩ = |↑⟩ |0⟩ . (3.8)

After the first step the state of the walker becomes

|ψ1⟩ = Ŝ(Ĉ ⊗ Ix) |ψ0⟩ = Ŝ
|↑⟩+ i |↓⟩√

2
|0⟩ = 1√

2
(|↑⟩ |1⟩+ i |↓⟩ |−1⟩) (3.9)

which, upon measurement, has a 50% chance of having moved one step to

the left or to the right, and the walker state will either collapse to the state

|↑⟩ |1⟩ or the state |↓⟩ |−1⟩, which after successive iterations of this process

(unitary evolution and measurement) represents the same classical random

walk.
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Figure 3.2: Probability distribution of the QW for different initial conditions
(3.8) after n = 10 steps.

The power of the quantum walk lies in leaving it freely evolve (without

intermediate measurements) through the unitary evolution (3.4). In Fig. 3.2

we represent the probability distribution (3.6) for different initially localized

coin states of the form |ψ0⟩ = |s⟩ |0⟩, including the initial state (3.8), after

10 steps. We can see that, even though the QW is initially localized in the

center, the final probability distribution depends on the initial state of the

coin. In the left panel of Fig. 3.3 we show a contour plot of the probability

density (3.6) of the initial coin state that produced the symmetric probability

distribution of Fig. 3.2.

If we compare these probability distributions with the one for the CRW

shown in Fig. 3.1 we can see that the highest probability of the QW is

further away from the center than in the classical case. We can see in the left

panel of Fig. 3.3 that the maximums of the probability density propagate
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Figure 3.3: (Left) Probability distribution of the QW with initial coin state
|ψ0⟩ = (|↑⟩+ |↓⟩)/

√
2 as a function of time. (Right) Standard deviation of

the CRW and the QW as a function of time.

with constant velocity away from the center. The dispersion of the quantum

walker is faster than that of the CRW and can be demonstrated [88] to be

quadratically faster with time, i.e., σQW(n) =
√∑

j j
2Pn,j − (

∑
j jPn,j)2 ∝

n, which is the typical standard deviation of ballistic processes. The classical

walker had a diffusive dispersion σCRW(t) ∝ √
n. In Fig. 3.3 we compare the

standard deviation for the CRW and the QW with initial condition (3.8).

Quantum walks can also be extended to higher dimensions. A Hilbert

space for an additional spatial coordinate can be similarly defined Hy with

basis {|l⟩}l∈Z so that the total Hilbert space H = HC ⊗Hx ⊗Hy is spanned

by {|s⟩ |j, l⟩}. The walker has components in both dimension ψs
n,j,l. The

one-step evolution can be can be defined in different ways, for instance, the

split-step QW [89] is given by

|ψn+1⟩ = Ŝy(Ĉy ⊗ Ix ⊗ Iy)Ŝx(Ĉx ⊗ Ix ⊗ Iy) |ψn⟩ , (3.10)

where Ŝy =
∑

j,l |j, l + 1⟩ ⟨j, l| ⊗ |↑⟩ ⟨↑| +∑j,l |j, l − 1⟩ ⟨j, l| ⊗ |↓⟩ ⟨↓| is the

conditional shift operator along the new dimension. There are two different
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coin operators that act before applying the shift in each direction. B

3.3 QW in momentum space

To obtain the evolution of the QW one could simply compute the n-th

power of the evolution operator Ŵ , task that requires diagonalizing the Ŵ

operator if one wants to obtain a closed analytical form. The coin operator

Ĉ, which only acts on the coin space, is straightforward to diagonalize.

The shift operator (3.5) is already diagonal in the coin basis, but it is not

diagonal in the spatial basis, since we have terms of the form |j ± 1⟩ ⟨j|.
To aid in this task, we consider the Fourier transform of the spatial basis.

Since the spatial degree of freedom is discrete, the possible momenta are

degenerate, so that its transformation is restricted to the first Brillouin zone

and defined as

|k⟩ =
∑

j∈Z
|j⟩ eikj , (3.11)

where k ∈ [−π, π) is called the quasi-momentum. The inverse transformation

is defined as

|j⟩ = 1

2π

∫ π

−π
dk |k⟩ e−ikj , (3.12)

and the mathematical relations

∑

j

ei(k−k′)j = 2πδ(k − k′) ,
1

2π

∫ π

−π
dkeik(j−j′) = δjj′ , (3.13)

guarantee the orthonormality condition of basis elements. The state of the

walker can be expressed in both basis as

|ψn⟩ =
∑

s=↑,↓

∑

j

ψs
n,j |s⟩ |j⟩ =

∑

s=↑,↓

1

2π

∫ π

−π
dkψ̃s

n(k) |s⟩ |k⟩ , (3.14)
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so that the spinor components in both bases are related as

ψ̃s
n(k) =

∑

j∈Z
e−ikjψs

n,j , (3.15)

or with the inverse relation as

ψs
n,j =

1

2π

∫ π

−π
dkψ̃s

n(k)e
ikj . (3.16)

We can define the quasi-momentum operator

K̂ =
1

2π

∫ π

−π
dkk |k⟩ ⟨k| , (3.17)

whose action on the quasi-momentum basis is K̂ |k⟩ = k |k⟩. We define the

translation operator

T̂ = e−iK̂ =
1

2π

∫ π

−π
dke−ik |k⟩ ⟨k|

=
1

2π

∫ π

−π
dke−ik

∑

j,j′
|j′⟩ |j⟩ eik(j′−j) =

∑

j

|j + 1⟩ |j⟩ ,
(3.18)

where in the last step we made use of the relation (3.13). The operator T

translates spatial basis elements one position to the right T̂ |j⟩ = |j + 1⟩,
and its adjoint T̂ † = eiK̂ , displaces them to the left T̂ † |j⟩ = |j − 1⟩. The

operator K̂ is the generator of translations in the discrete lattice. The

condition shift operator can be rewritten as

Ŝ = e−iσzK̂ , (3.19)

which is diagonal in the quasi-momentum basis.

The evolution of the walker up to step n can be easily computed in the

momentum basis (in which Ŝ is already diagonal) through the diagonalization
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of Ŵ . To obtain the solution in the position basis, the inverse Fourier

transform of the spinor components has to be performed. See [88, 86] for

examples where the analytical solution of the walker components at an

arbitrary step are obtained.

3.4 The continuum limit of the discrete time

Quantum Walk

One can associate a physical space to the space spanned by the discrete

lattice of the QW. A lattice spacing ϵx can be introduced to connect both

spaces as |x⟩ = |ϵxj⟩ where |x⟩ is the basis of a position Hilbert space that

is discretized, by a spacing ϵx. A similar procedure can be done for the

temporal coordinate t = ϵtn with a spacing ϵt. The shift operator produces

a conditional shift in the discretized physical space by an amount ϵx, such

that, e−iK̂ |x⟩ = |x+ ϵx⟩. We can relate the quasi-momentum with the

physical momentum, in the limit of small ϵx, as K̂ = ϵxp̂.

Let us consider a coin operator of the form C(θ) = eiθσx . We can now

write the time step in physical units as

|ψt+ϵt⟩ = e−iσzϵxp̂eiθσx |ψt⟩ . (3.20)

If we let the angle of rotation to have a small variation with respect to

a fixed angle θ = θ0 + ϵmθ, we can write a series expansion in the small

parameters of this time step as

|ψt⟩+ ϵt∂t |ψt⟩ = (1− iϵxσz p̂)(1 + iϵmθσx)e
iθ0σx |ψt⟩ , (3.21)

where we employed the infinitesimal definition of the time derivative

∂t |ψt⟩ ≈
|ψt+ϵt⟩ − |ψt⟩

ϵt
, (3.22)
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and the series expansion of the exponential up to first order in the small

parameters ϵx and ϵm. To obtain a consistent continuum limit of this

equation, it is required that ϵx = ϵt = ϵm = ϵ. We assume that the walker

components coincide with continuous functions of position x = ϵj and time

t = ϵn, that is, ψs
n,j → Ψs(t, x), which are the components of a state in

continuous space-time

|Ψ(t)⟩ =
∫
dxΨ↑(t, x) |x⟩ |↑⟩+

∫
dxΨ↓(t, x) |x⟩ |↓⟩ . (3.23)

Taking Eq. (3.21) up to zeroth order in ϵ yields

|Ψ(t)⟩ = eiθ0σx |Ψ(t)⟩ , (3.24)

which, in order to be satisfied, requires θ0 = 0. Up to first order in ϵ, O(ϵ),

equation (3.21) satisfies

∂t |Ψ(t)⟩ = −iσz p̂ |Ψ(t)⟩+ iθσx |Ψ(t)⟩ . (3.25)

We can project this equation to the position basis and, recalling that

⟨x|p̂|Ψ(t)⟩ = −i∂x ⟨x|Ψ(t)⟩ = −i∂xΨ(t, x), it can be rewritten as

(iγµ∂µ −m)Ψ(t, x) = 0 , (3.26)

with µ = t, x, where γt = σx, γ
x = −iσy and m = −θ. Equation (3.26)

is the Dirac equation of continuous space-time. This means that, if the

quantum walk parameters are taken such that ϵ is small, one can recover the

probability distribution of a relativistic fermionic particle in one dimension.

In Fig. 3.4 we plot a comparison obtained from the continuous Dirac

equation (3.26) and the quantum walk defined in Eq. (3.20) with the pa-

rameter correspondence θ = −ϵm, and the scaled coordinates t = ϵn and

x = ϵj. The initial condition used in the Dirac equation was

Ψ↑(x, 0) =

(
2

π

)1/4

e−x2
, Ψ↓(x, 0) = 0 , (3.27)
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Figure 3.4: Comparison of the solution obtained from the Dirac equation
and a discrete QW for different values of the parameter ϵ. The initial
conditions are defined in Eqs. (3.28,3.29), and we have chosen a mass m = 1.

which corresponds to an initial condition of the walker

ψ↑
0,j = Ne−(ϵj)2 , ψ↓

0,j = 0 , (3.28)

where N is a normalization factor that has to be chosen such that the

normalization in the x = ϵj coordinate is the same for both initial conditions,

i.e.,

ϵ
∑

j

(
|ψ↑

0,j |2 + |ψ↓
0,j |2

)
= 1 . (3.29)

It can be seen that, as the parameter ϵ decreases, the quantum walk

probability distribution approaches that of the spinor obtained from the

continuous Dirac equation.
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While we considered a coin operator of the form C(θ) = eiθσx , other

choices can lead to the same continuum limit with a different representation

of the gamma matrices γµ.

Quantum Walk Hamiltonian

One can formally define a Hermitian operator Ĥ that generates the unitary

time step of the QW as

Ŵ = e−iĤ . (3.30)

Let us consider that in a small time step this operator is also small, i.e.,

Ĥ = ϵH, so that the infinitesimal time step is

|ψt+ϵ⟩ = e−iϵH |ψt⟩ , (3.31)

which can be expanded up to first order, following the same procedure as

before, as

|Ψ(t)⟩+ ϵ∂t |Ψ(t)⟩ = (I− iϵH) |Ψ(t)⟩ . (3.32)

At first order in ϵ the state obeys a Hamiltonian equation

i∂t |Ψ(t)⟩ = H |Ψ(t)⟩ , (3.33)

where, for the previous continuum limit, H coincides with the Dirac Hamil-

tonian

H = −γtγxp̂+m , (3.34)

where we recall that m = −θ. This definition will be useful when considering

the continuum limit in [P.3].

3.5 Inhomogeneous coin operator

Up until now, we assumed that the coin operator is independent of the step

and position of the walker. More general coin operators with both spatial
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and temporal dependence can be considered, and whose continuum limits

lead to a diverse phenomenology. Let us consider, as a simple example, a

modification of the coin considered in the previous section

C(θ, αj) = eiθσxeiαj , (3.35)

where we allow the parameter αj to have a dependence on the position of

the walker. We can perform a similar parametrization of αj = ϵαj as before,

where ϵ is the same small parameter as before. The new QW one step is

approximated as

|ψt⟩+ ϵt∂t |ψt⟩ = (1− iϵxσz p̂)(1 + iϵmθσx)(1 + iϵαj) |ψt⟩ , (3.36)

which, when projected into the spatial basis, leads to the continuum limit

(iγµDµ −m)Ψ(t, x) = 0 , (3.37)

where Dµ = ∂µ − iAµ is the covariant derivative. The function Aµ is the

electromagnetic potential with components At = α(x) of the associated

continuous function of αj , and Ax = 0. This electromagnetic potential is

associated with an electric field E = ∂xα(x). If one considers a global phase

with a linear dependence in the position, αj = ϵϕj, the quantum walk with

coin operator (3.35) can be used to simulate a Dirac equation with constant

electric field E = ϕ. An equivalent quantum walk has been studied in [90]

where long time properties were explored. In [91] the same walker was

observed to undergo Bloch oscillations under weak electric fields. Similarly,

the coin can be modified to obtain a continuum limit of the Dirac equation

with magnetic fields, for instance, it was shown in [92] the existence of

Landau level of the discrete QW in the presence of a constant magnetic

field. See [93, 94] for the obtention of the continuum limit of general gauge

theories of 2D QWs and numerical demonstrations of the electromagnetic

phenomena of Bloch oscillations and E⃗ × B⃗ drift. A modification of the
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coin operator was also studied in [95, 96] to obtain, in the continuum limit,

a Dirac equation in curved space-times, where a Schwarzschild space-time

was simulated by a quantum walk. In [97] the method was extended to

two-dimensional quantum walks, which allowed the study of a fermion under

the metric induced by gravitational waves. A continuum limit that matched

the Dirac equation in curved space-time was also obtained in [98] where the

QW was instead constructed in a triangular and in a hexagonal lattice.

3.6 QW simulation of warped geometry in high

energy theories (Publication [P.2])

The existence of a continuum limit of different quantum walks that match

Dirac like equations allowed the simulation of a plethora of physical systems.

Apart from the simulation of fermions in curved space-times and electro-

magnetic fields, described in the previous section, quantum walks can be

constructed to simulate neutrino oscillations [99], charged fluid dynamics

[100], topological phenomena [101] or relativistic diffusion [P.3], to name

a few examples. In [P.2] we investigate the properties of a quantum walk

that, in the continuum limit, simulates the Randall-Sundrum (RS) model

of extra dimensions [102]. The RS model was introduced to explain the

hierarchy problem of high energy physics (HEP) theories, by the addition

of an extra warped dimension, which had a 4-dimensional brane in each

end. Gravity is present along the whole space-time, but the matter fields

of the Standard Model of particles become confined in one of the branes,

the matter brane. We define a 2-dimensional QW with one warped spatial

dimension and an ordinary spatial dimension. We derive the Dirac equation

that arises in this reduced curved space-time and establish the boundary

conditions that the fermionic fields have to obey. The symmetry conditions

on this lower dimension space-time restricted the study to massless fermions,
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Figure 3.5: Spatial lattice of the 2D QW of the RS model. The lattice is
infinite along the x direction, but is finite in the y direction, of length L.

which may acquire an effective mass when restricted to the matter brane.

We also study the spectrum of the solutions of the continuum model, where

one can already see that the eigenfunctions of the Dirac equation present

confinement towards the matter brane.

We constructed a quantum walk that, in the continuum limit, recovers

the derived Dirac equation following the method introduced in [97]. The

grid created for the quantum walk is represented in Fig. 3.5. The ordinary

spatial dimension is infinite, and a sufficiently large lattice is taken in that

direction so that the walker does not reach the lattice ends. The warped

dimension is finite, and appropriate boundary conditions are set at the

extremes, where the walker is reflected with a phase flip. This is the same

boundary condition that the Dirac fermions have to obey in the continuum

model. The construction of the QW was consistent with this condition at

all times.

Firstly, we observed that the QW model reproduces the phenomenology

expected from the RS model, that is, a walker initially localized in the center

of the warped dimension will become localized in the extreme of the warped
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dimension where matter fields are confined. The confining property of the

model is controlled by the warp coefficient, and we confirmed that, when

this parameter is increased, the localization of the walker towards the matter

brane is stronger. Since we were restricted to massless fermions, most part

of the probability density of the walker propagates at the speed of light,

and the direction of propagation is chirality dependent, that is, the upper

(lower) components propagates to the right (left) in the ordinary dimension.

These fronts are located at position x = t and we defined the probability

distribution along the y direction as the freely propagating distribution

(FPD). We performed a decomposition of the walker components in terms of

the eigenfunctions obtained from the continuum Dirac equation and studied

the mode composition of the FPDs. We observed that, while initially the

FPD can be composed of high energy modes, in the long time limit the FPD

is mostly composed by the lowest energy mode. This effect is indicative of

some type of dissipation during the propagation to the regions inside the

light cone. Finally, we investigated the entanglement entropy between the

coin and the spatial degree of freedom. The QW step generates entanglement

between these degrees of freedom and becomes smaller for higher values of

the wrap coefficient. We attributed this effect to the lower dispersion of the

walker probability distribution with increasing warp coefficient.

While QWs have proven successful at reproducing some effects of HEP

theories, they lack the power to simulate multiple particle interactions.

However, the formalism can to be modified to include particle interactions.

There have been some efforts [103, 104] to describe two and three particle

states, but more work has to be done to have a simulation framework for

HEP. We also mention that quantum walks are not free of defects present

in lattice theories, such as the fermion doubling problem. Quantum cellular

automata [18, 105, 106] is a lattice theory similar to QWs, where in each

location the quantum system can be of any finite dimension. The evolution
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is also discrete in time and have been shown to simulate simple quantum

field theory models, for instance, the Schwinger model [107].

3.7 Relativistic diffusion as the continuum limit

of a stochastic QW (Publication [P.3])

In the previous section, we studied a QW that had a spatial inhomogeneous

coin. In [P.3] we study a coin that is inhomogeneous in time, and where

the temporal dependence is stochastic, this type of evolution can be viewed

as a type of temporal noise on the coin operator. We studied two ways to

generate a temporal stochastic coin, but here we briefly explain the one

that closely connects with the first part of the thesis. We can define a noise

process on a walker in the operator sum representation as

ρn+1 = (1− p1 − p2)ŴρnŴ
† + p1σzρnσz + p2σxρnσx , (3.38)

where ρn is the density matrix at time step n, p1 is the probability that

the walker suffers a phase flip error, p2 is the probability to suffer a bit

flip error, and with probability 1− p1 − p2 it undergoes the usual unitary

evolution of the QW. We can define pi = ϵγi, where ϵ is the same as the

infinitesimal time step, and follow in a similar fashion as in Section 1.3 to

obtain a continuous ME

∂tρ = −i[H, ρ] + γ1(σzρσz − ρ) + γ2(σxρσx − ρ) , (3.39)

where H is the infinitesimal generator of the unitary dynamics of the QW

Ŵ = e−iϵH , and coincides with the Hamiltonian obtained in the continuum

limit from the unitary evolution of the QW, which is in general the Dirac

Hamiltonian. The other way to construct a stochastic QW that leads to the

same continuum limit, consists on applying a unitary composed of a general

SU(2) coin operator and the conditional shift operator (3.5). The coin
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operator can be parametrized with 4 constant parameters that are randomly

sampled from independent probability distributions. The correspondence

between this implementation and the previous one is obtained if the standard

deviations of these parameters coincide with the rates γi.

This continuous equation represents a model of quantum relativistic

diffusion. We represent the density matrix of the spinor in the Pauli basis,

and the dynamical equation becomes a system of four partial differential

equations that are numerically solved using an operator splitting method.

This method allowed us to study the phenomenology of the continuous

model, which can be summarized into two regimes: A ballistic propagation

regime, in which the initial wave-packet propagates at a constant velocity,

and after some time, which depends on the strength of the noise, transitions

into a diffusive regime. This latter regime is characterized by a constant

expected value of the position and by an increase of the standard deviation

proportional to
√
t, characteristic of diffusive processes. Finally, a model

that also adds spatial noise on top of the temporal noise is studied, and

similar Lindbladian dynamics are obtained in the continuum limit.

3.8 Non-linear coin operator and solitons

(Publication [P.4])

Another variant of the coin operator that introduces non-linearities on

the phases of the coin components was introduced in [108]. The phases

were dependent on the probability density of the walker at each position.

The model was inspired by the non-linear optical Galton board, where

the non-linearities were caused by a non-linear Kerr medium. The main

result of the work was the formation of soliton-like structures, that is, the

walker probability distribution was extended and stable. In the language of



3.8. NON-LINEAR COIN OPERATOR AND SOLITONS
(PUBLICATION [P.4]) 91

optical systems, the non-linear effects of the medium counteract the natural

dispersion of the light.

In [P.4] we consider a similar model, together with an experimental

proposal, where the non-linearities are introduced in the angle of the coin

operator, that is, the angle of rotation at each position of the walker depends

on the probability density at that position. The continuum limit of this

quantum walk gives a non-linear Dirac equation where there is a non-linear

term similar to the one appearing in the Nambu-Jona-Lasinio model [109].

We do an in-depth study of the continuum limit equation. First, we explore

the stability of homogeneous stationary solutions and identify the regimes in

which soliton-like solutions can appear. Secondly we find, under reasonable

assumptions, a stationary solution of the continuous model that has the

usual characteristics of a soliton.

The insight obtained from the continuum equation is checked in the

discrete model numerically. We find the existence of soliton-like structures

with the same solution as the continuum equation. We also investigate

initial conditions that propagate at a constant speed and observe a typical

characteristic of solitons, which is that during a collision the solitary wave-

packets are not disturbed. The stability analysis of the continuum equation

indicated that other type of stationary solutions should exist, the dark

solitons, which were observed in the discrete model. A dark soliton is

generated in the domain wall between two stable solutions, where the

probability of finding the walker vanishes in the transition. This valley of

probability density is found to be stationary.

We have also studied the stability of solitons when they are subject

to an additional phase that simulates an external electric field. For electric

field intensities that are irrational the solitons remained localized but their

smooth characterized structure is lost. For rational fractions of 2π electric
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field intensities we characterized two regimes: For strong electric fields, an

initial soliton becomes slowly disrupted and the walker disperses and an

increase of the non-linearity parameter slows down the dispersion produced

by the strong electric field. For weak electric fields, oscillations of the soliton

central position are present. Finally, we also explored a 2D version of these

model, where no evidence of soliton formation was found.



Appendices

A.1 Derivation ME dissipative noise model

To obtain a master equation for the evolution of the qubit described in

Eq. (2.4) we can employ the Redfield ME [73] for interaction Hamiltonians

of the form HI = L⊗B† + L† ⊗B as

dρS(t)

dt
= −i[HS , ρS(t)] +

(∫ t

0
dτα+(τ)[L†(−τ)ρS(t), L]+

∫ t

0
dτα−(τ)[L(−τ)ρS(t), L†] + h.c.

)
,

(A.1)

where L(t) = eiHStLe−iHSt which in our case HS = ω0σz/2 and L(t) =

eiω0tσ+. The correlation functions are α+(τ) = TrE
{
B†(τ)BρE

}
and

α−(τ) = TrE
{
B(τ)B†ρE

}
, which for a general bosonic or fermionic reservoir

[2, 73] become

α+(τ) =

∫
dωJ(ω)n(ω, β)eiωτ , (A.2)

α−(τ) =

∫
dωJ(ω)

(
n(ω, β) + 1

)
e−iωτ , (A.3)

(A.4)
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where J(ω) is the spectral density of the reservoir, and n(ω, β) = [eβω∓1]−1

is the average number of quanta of the bosonic (fermionic) reservoir modes

at an inverse temperature β. We can define γ = J(ω0) and the rates

γ+ =

∫ ∞

0
dτα+(τ)e−iω0τ = γn(ω0, β) + i∆+ , (A.5)

γ− =

∫ ∞

0
dτα−(τ)eiω0τ = γ

(
n(ω0, β) + 1

)
+ i∆− , (A.6)

where we made use of the property

∫ ∞

0
eiωtdt = πδ(ω) + iP

(
1

ω

)
. (A.7)

We can rewrite the ME as

dρS(t)

dt
= −i[HS , ρS(t)]+γ+(σ+ρS(t)σ− − σ−σ+ρS(t))

+γ∗+(σ+ρS(t)σ− − ρS(t)σ−σ+)

+γ−(σ−ρS(t)σ+ − σ+σ−ρS(t))

+γ∗−(σ+ρS(t)σ+ − ρS(t)σ+σ−)

(A.8)

this equation can be brought into the canonical Lindblad form in Eq. (2.6)

without the need of a secular approximation. This is true since the inter-

action operators σ+ and σ− connect the eigenstates of HS , i.e., in their

spectral decomposition they only have one component of frequency ω0. This

fact implies that the Bloch-Redfield equation of this system does not have

oscillatory terms (which are the ones discarded in the secular approximation).

The system Hamiltonian gets modified as

H ′
S = HS +∆+σ−σ+ +∆−σ+σ− , (A.9)

where the operators σ−σ+ and σ+σ− are equivalent to σz and only produce

a change in the frequency of the system and the ground state energy.
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A.2 Derivation ME pure dephasing noise model

The Hamiltonian model described in Eq. (2.12) can be solved employing

the Redfield Eq. (1.64). This case is very simple since the interaction

operators commuted with the Hamiltonian of the systems so that σz(t) =

eiHStσze
−iHSt = σz. The Redfield equation can simply be operated to obtain

dρS(t)

dt
= −i[HS , ρS(t)]+Γ(σzρS(t)σz − ρS(t)) , (A.10)

where we defined

∫ t

0
dτC(τ) =

∫ τ

0
TrE {B(t)BρE} = Γ/2 + i∆ . (A.11)

The real part of this quantity give the decay rate and the imaginary part

gets cancelled by the hermitian conjugate part of the Redfield equation.





Resum en valencià

Prefaci

Em vaig sorprendre per primera vegada amb la mecànica quàntica quan

vaig entendre1 el teorema de Bell i el paper que té l’entrellaçament en la

teoria. Des d’aquell moment, vaig quedar fascinat per la teoria i per totes

les preguntes fonamentals que queden obertes, no sols des del punt de vista

cient́ıfic, sinó també filosòfic.

Aquesta fascinació per la mecànica quàntica em va incitar a buscar un

projecte de tesi de màster relacionat amb aquest camp. Aix́ı vaig trobar

els meus tutors de tesi i vaig dur a terme el meu primer treball cient́ıfic

en el camp dels sistemes quàntics oberts. Durant el peŕıode predoctoral,

gràcies a la col·laboració amb un investigador postdoctoral, vaig adintrar-me

en el camp dels caminants quàntics. Aquests dos camps han composat

els principals continguts de la meva tesi, que s’ha dividit en dues parts

dedicades a cadascun d’aquests temes.

Per altra banda, durant l’etapa predoctoral, he tingut l’oportunitat de

donar classes en el grau de f́ısica. He estat professor de les assignatures de

1“If quantum mechanics hasn’t profoundly shocked you, you haven’t understood it
yet.” Niels Bohr.
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f́ısica quàntica, fet que m’ha permès revisitar els conceptes més bàsics de la

mecànica quàntica i plantejar-me noves qüestions que durant el grau no havia

considerat. Finalment, també he tingut l’oportunitat d’estudiar per compte

propi qüestions més filosòfiques, com ara les interpretacions de la mecànica

quàntica, la història del debat Einstein-Bohr sobre la completitud de la

teoria i els models ontològics sobre la realitat de l’estat quàntic. Aquestes

exploracions han donat lloc a discussions molt interessants.

Part I: Sistemes quàntics oberts

Introducció

La Mecànica Quàntica (MQ) és la teoria més fonamental de la naturalesa

que coneixem actualment. Des de la seua concepció en la dècada de 1920,

ha demostrat ser una teoria d’èxit a diferents nivells de complexitat, des

de descriure correctament els nivells d’energia de l’àtom d’hidrogen fins a

predir l’existència de les part́ıcules elementals que constitueixen els blocs

constructors de la matèria. Tot i que la teoria ha demostrat ser exitosa,

quan hi ha un nivell de complexitat cada vegada més alt, cal emprar mètodes

aproximats o perturbatius.

Els sistemes quàntics gairebé mai estan completament äıllats, ens

referim a ells com a sistemes oberts, i s’han de considerar en interacció amb

un entorn circumdant, que probablement afectarà la dinàmica del sistema

obert. El nombre de graus de llibertat de l’entorn és generalment molt

més alt que els del sistema obert. Podŕıem recórrer a mètodes exactes per

resoldre l’evolució de tot el sistema äıllat, format pel sistema obert i el seu

entorn. En la pràctica, aquesta tasca ràpidament esdevé inviable.

La teoria dels sistemes quàntics oberts (SQO) ha desenvolupat les eines

per descriure el sistema obert sense la necessitat de donar una descripció
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exacta dels graus de llibertat ambientals. L’ús de la teoria dels sistemes

quàntics oberts ha tingut èxit en el camp de l’òptica quàntica, on, per

exemple, una cavitat amb pèrdues pot modificar les taxes de les transicions i

modificar l’estat estacionari del sistema. La teoria dels SQO ha experimentat

un augment de popularitat gràcies a la seua aplicabilitat en escenaris

tecnològics quàntics, on els fenòmens de decoherència i dissipació estan ben

capturats pel formalisme, i constitueix un banc de proves per a l’estudi de

tècniques de mitigació i control.

Evolució i equacions mestres

Considerem la situació general en què el sistema obert S està acoblat a un

entorn E. L’espai de Hilbert total és el producte tensorial de l’espai de

Hilbert de cada subsistema H = HS⊗HE . El sistema complet es descriu pels

hamiltonians lliures de cada subsistema, HS per al sistema obert i HE per a

l’entorn, més el hamiltonià d’interacció HI entre ambdós. L’evolució tant del

sistema com de l’entorn ve donada pel hamiltonià total H = HS +HE +HI ,

de manera que l’estat de tot el sistema en el temps t és

|ψ(t)⟩ = e−iH(t−t0) |ψ(t0)⟩ , (R.1)

on |ψ(t0)⟩ és l’estat inicial del sistema compost i definim U(t, t0) = exp[−iH(t−
t0)], l’operador d’evolució unitària. Aquesta evolució unitària ve donada per

l’equació de Schrödinger2

i
d

dt
|ψ(t)⟩ = H |ψ(t)⟩ . (R.2)

Finalment, el sistema obert es descriu completament traient la tràcia parcial

respecte a l’entorn de l’estat final

ρS(t) = TrE {ρSE(t)} = TrE

{
U(t, t0)ρSE(t0)U

†(t, t0)
}
, (R.3)

2En unitats naturals on ℏ = 1.
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ρSE(t0) ρ(t) = U(t, t0)ρSE(t0)U
†(t, t0)

ρS(t0) ρS(t) = ϕ(t,t0)[ρS(t0)]

TrE

unitary evolution

dynamical map

TrE

Figure R.1: Diagrama que mostra l’acció del mapa dinàmic ϕ(t). És possible
evolucionar tot el sistema i traçar l’entorn per obtenir la dinàmica del SQO,
o alternativament, l’evolució del SQO pot ser descrita pel mapa dinàmic.

on ρSE(t0) = |ψ(t0)⟩ ⟨ψ(t0)|.

En la pràctica, aquest procediment, descrit pel camı́ superior dret de

la Fig. R.1, no és factible i cal recórrer a una representació de l’evolució

redüıda a S. L’objecte matemàtic ϕ(t,t0) que descriu l’evolució de l’estat

inicial del sistema obert S fins al temps t s’anomena mapa dinàmic i codifica

l’efecte de l’entorn sobre el sistema obert, un procediment que es descriu

pel camı́ inferior esquerra del diagrama de la Fig. R.1.

En general, quan l’evolució del sistema obert està donada per un

mapa dinàmic, la seua dinàmica esdevé irreversible, amb l’excepció del

mapa dinàmic que representa una dinàmica unitària. Aquest fenomen està

estretament relacionat amb la generació d’entrellaçament entre el sistema i

l’entorn al llarg de l’evolució. Quan dos sistemes s’entrellacen, la informació

ja no està continguda en els sistemes individuals, sinó codificada en l’estat

global del sistema compost. L’obtenció de la traça parcial de l’entorn

equival a realitzar una mitjana sobre els graus de llibertat de l’entorn.

Aleshores, la matriu de densitat redüıda dona una mescla probabiĺıstica

clàssica d’estats quàntics compatibles del sistema, ja que l’estat quàntic

real només es descriu correctament globalment. Si l’entrellaçament entre el
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sistema i l’entorn és màxim, la matriu de densitat redüıda del sistema esdevé

l’estat màximament mesclat, i no es pot extreure informació sobre el sistema

o l’entorn simplement mesurant el sistema. Aquesta situació es compren

més fàcilment seguint el camı́ superior dret de la Fig. R.1: la dinàmica

unitària entrellaça el sistema amb l’entorn, i quan s’aplica la traça parcial

sobre un d’ells, l’estat resultant només conserva part de la informació. És

possible que existeixi un mapa invers d’aquesta evolució ϕ−1(t, t0), tal que

ϕ−1(t, t0)[ϕ(t,t0)[ρ]] = ϕ(t,t0)[ϕ
−1
(t,t0)

[ρ]] = ρ, però en general no serà un mapa

dinàmics que preserve les propietats del estats quàntics.

El mapa dinàmic pot ser matemàticament representat de diferents

formes. Una d’elles és mitjançant operadors de Kraus

ρS(t) =
∑

µ

Kµ(t, 0)ρS(0)K
†
µ(t, 0) , (R.4)

on cada operador Kµ representa un canal de decäıment del sistema obert.

Aquesta representació, junt amb la seua condició de normalització, preserva

la traça (probabilitats) del estat quàntic, és lineal i preserva la positivitat

dels operadors. Aquestes son propietat necessàries per a que els mapes

dinàmics evolucionen estats quàntics a altres estats quàntics, i no resulten

en matrius densitats que no representen estats quàntics. Una altra forma

de representar el mapa dinàmic és mitjançant una equació diferencial per a

la matriu redüıda del sistema. Si la dinàmica del sistema es Markoviana, es

a dir, es pot representar com una cadena de Markov de mapes dinàmics,

l’equació diferencial que descriu l’evolució es pot escriure com

d

dt
ρ(t) = −i[H, ρ(t)] +

∑

k

γk

(
Lkρ(t)L

†
k −

1

2
{L†

kLk, ρ(t)}
)
, (R.5)

on γk son constants positives, H es un operador hermı́tic i Lk són els

anomenats operadors de Lindblad.
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Si la interacció entre sistema i ambient es feble es pot derivar un equació

diferencial pertorbativa en la intensitat de l’acoblament. Per a obtindre una

equació diferencial tancada per a la matriu redüıda del sistema cal considerar

l’aproximació de Born, que consisteix en assumir que, com la interacció

entre sistema i ambient es tant feble, el sistema i ambient estan en un estat

separable durant l’evolució. Una segona aproximació usualment considerada

és l’aproximació Markoviana, que assumeix que la relaxació del ambient

és molt més ràpida que la dinàmica de relaxació del sistema. L’equació

diferencial que descriu la dinàmica del sistema baix aquestes suposicions és

dρS(t)

dt
= −i[HS , ρS(t)]−

∑

µ

[Sµ,ΛµρS(t)− ρS(t)Λ
†
µ] , (R.6)

on Sµ són els operadors d’interacció del sistema i

Λµ =
∑

ν

∫ ∞

0
dτCµ,ν(τ)Sν(−τ) , (R.7)

on Cµ,ν(τ) són les funcions de correlació del ambient. Aquesta equació

diferencial és clau per a l’estudi de l’evolució dels sistemes quàntics oberts

considerats en la publicació [P.1] i en el Caṕıtol 2 de la tesi.

Ambients fora de l’equilibri i pretermalizació (Publicació

[P.1])

En la publicació [P.1] estudiem un ambient que es troba fora de l’equilibri.

L’ambient està compost per dos sistemes bosònics que es troben a diferents

temperatures, però sols un d’ells està en contacte directe amb el sistema

obert, que el considerem com un sistema de dos nivells. El Hamiltonià total

ve donat per

H = HS +HE +Hint , (R.8)



RESUM EN VALENCIÀ 103

on HS i HE són els Hamiltonians lliures del sistema i de l’entorn, respecti-

vament, i Hint és el Hamiltonià d’interacció entre el sistema i l’entorn. Com

hav́ıem dit, modelitzem el sistema com un sistema de dos nivells amb el

Hamiltonià lliure:

HS =
1

2
ω0σz , (R.9)

on ω0 és l’energia del salt d’energia entre els dos nivells. Modelitzem l’entorn

al qual està acoblat el sistema com un conjunt d’oscil·ladors harmònics

oberts, on cada mode en el primer reservori (RI) està acoblat a un reservori

independent d’oscil·ladors que nomenem RII. El Hamiltonià que descriu

aquest entorn és:

HE = HRI +HRII +Hint,2 , (R.10)

on

HRI =
∑

λ

ωλa
†
λaλ and HRII =

∑

λ,k

ωλ,kb
†
λ,kbλ,k , (R.11)

són els Hamiltonians lliures de RI i RII, respectivament. Els operadors

d’aquests Hamiltonians compleixen les relacions de commutació canòniques.

La interacció entre RI i RII es descriu amb el Hamiltonià:

Hint,2 =
∑

λ

(
a†λ ⊗

∑

k

g̃λ,kbλ,k + aλ ⊗
∑

k

g̃∗λ,kb
†
λ,k

)
, (R.12)

on g̃λ,k representa la força d’acoblement entre l’oscil·lador λ en RI i l’oscil·lador
k en RII. El sistema es troba en una configuració d’estrella, és a dir, el

SQO està acoblat a tots els operadors bosònics λ de RI, i a la seua vegada,

cadascun d’aquests està acoblat a un reservori d’oscil·ladors harmònics

que forma part de RII, com es mostra a la Fig. R.2. Només RI s’acobla

directament al SQO, amb el Hamiltonià d’interacció:

Hint = σ− ⊗
∑

λ

g∗λa
†
λ + σ+ ⊗

∑

λ

gλaλ , (R.13)
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S

a1

a2

aλ

b11

b12

b1k

b21

b22

b2k

bλ1

bλ2

bλk

Figure R.2: Imatge esquemàtica del model. El SQO està acoblat en una
configuració d’estrela a un conjunt d’oscil·ladors harmònics aλ, que estan
acoblats als seus propis banys individuals d’oscil·ladors harmònics bλ,k.

que només considera interaccions que conserven el nombre de part́ıcules.

Considerem com a estat inicial un producte tensorial:

ρ(0) = ρS(0)⊗ ρE(0) = ρS(0)⊗ ρthI (βI)⊗ ρthII (βII) . (R.14)

L’estat inicial del sistema pot ser arbitrari, mentre que els estats inicials dels

reservoris s’assumeix que són tèrmics, possiblement a diferents temperatures:

ρthi (βi) =
e−βiHRi

Zi(βi)
, (R.15)

on Z(βi) = Tr{e−βiHRi} és la funció de partició i βi = 1/Ti és la temperatura

inversa de cada reservori, i = {I, II}.

Amb l’ús d’aproximacions d’acoblament dèbil i Markovianes, hem

derivat una equació mestra per descriure l’evolució de la matriu de densitat
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redüıda del sistema, traçant l’evolució de l’entorn. Malgrat aquestes aprox-

imacions, hem pogut observar una dinàmica rica del sistema obert, amb

l’existència d’un estat transitori, anomenat estat pretèrmic, abans de la

termalització final, la qual es troba determinada únicament pel reservori més

gran. Hem investigat sota quines condicions es presenta la pretermalització

i hem conclòs que aquest estat té una vida més llarga quan RI, acobladat

directament al SQO, té major temperatura i RII està més fred, aix́ı com

quan l’acoblement entre els reservoris és el més petit possible. Hem presentat

una manera de caracteritzar la pretermalització que és independent de la

condició inicial del SQO, mitjançant l’evolució del volum d’estats accessibles.

També hem demostrat que hi ha dinàmiques no trivials i competició

de diferents escales de temps quan considerem dos entorns fora de l’equilibri

acoblats a través sistema. És ben conegut que, en la situació estàndard on

els entorns estan en equilibri, s’estableix i preval un flux de calor amb una

direcció determinada (des del reservori més càlid cap al més fred) en temps

llargs. Curiosament, quan considerem entorns fora de l’equilibri, observem

que els temps indüıts pels diferents entorns poden fer que el flux de calor

canvïı de direcció, fins i tot més d’una vegada.

La dinàmica del SQO i els seus corrents no evolucionen segons una única

escala de temps, sinó que presenten una dinàmica més rica que pot ser evident

en experiments i processos d’informació quàntica, particularment en temps

llargs. La presència d’un estat pretèrmic transitori pot ser aprofitada en

aplicacions tecnològiques quàntiques, per exemple, considerant els protocols

d’inicialització d’un qubit acoblat a un ambient. El reservori RII pot ser

potencialment controlat segons el nostre esquema, per optimitzar encara

més el protocol. En altres paraules, el nostre treball descriu la possibilitat

de manipular i controlar un sistema obert mitjançant la modificació i el

control extern del ambient al qual està acoblat directament.
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Aquest esquema pot adaptar-se per incloure més reserves externes a

diferents temperatures. Es poden trobar entorns de diverses capes, per

exemple, en ordinadors quàntics superconductors, on els qubits es veuen

afectats no només per capes circumdants refredades criogènicament, sinó

també per capes exteriors amb temperatures cada vegada més altes. Consid-

erar aquesta estructura de reservoris ens permetria trobar estats transitoris

i estacionaris addicionals del qubit, que potencialment es podrien aprofitar i

controlar. Un tema interessant per a investigacions futures seria considerar

la dinàmica més enllà de l’aproximació de dèbil acoblament i la inclusió

d’efectes no Markovians.

Computació quàntica

La afirmació que la informació quàntica d’un sistema es perd quan aquest

s’entrellaça amb el seu entorn és un tret distintiu entre la informació clàssica

i quàntica. Dit d’una altra manera, la informació d’un sistema quàntic

compost no és la suma de les seves parts. Aquesta caracteŕıstica profunda

de la mecànica quàntica va ser posada de manifest per primer cop per John

Bell en 1964, el treball de qui va portar a la comprensió que la informació

quàntica està codificada en correlacions no locals entre les diferents parts

d’un sistema f́ısic.

Una altra diferència clau entre la informació quàntica i clàssica és que

l’adquisició d’informació en un sistema quàntic pateix de dos problemes: i)

el procés de mesura en la mecànica quàntica és un procediment probabiĺıstic;

ii) també provoca la pertorbació del sistema que s’està mesurant, deguda al

col·lapse de la funció d’ona durant el procés de mesura.

Algú temps després d’aquests descobriments, es va assenyalar en 1982

de manera independent per Feynman i Benioff, i per l’obra inadvertida

de Yuri Manin, que els sistemes quàntics podrien realitzar càlculs. La
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motivació més remarcable va ser la complexitat de simular sistemes quàntics

clàssicament. No hi ha restricció fonamental perquè les màquines clàssiques

simulen sistemes quàntics; al cap i a la fi, consisteix a calcular una matriu

de rotació i aplicar-la a un vector en un espai de Hilbert, però el problema

es torna exponencialment més complicat per a sistemes més grans. Aquesta

limitació va motivar l’ús de sistemes quàntics per simular sistemes quàntics

analògics. Un simulador quàntic no seria res més que un sistema quàntic que

pot ser manipulat molt precisament per simular altres sistemes quàntics.

Les caracteŕıstiques peculiars de la informació quàntica, que la dis-

tingeixen de la seva contrapartida clàssica, van indicar que els sistemes

quàntics podrien tenir un impacte profund no només en la simulació de

sistemes quàntics sinó en els fonaments de la computació. Això es va fer

evident amb l’aparició de l’algorisme de factorització de Shor el 1994, que

va mostrar que un ordinador quàntic podia factoritzar un nombre gran més

eficientment que els algorismes coneguts fins aleshores, i l’algorisme de cerca

de Grover, que és un algorisme de cerca quàntica amb un augment quadràtic

d’eficiència en comparació amb els millors algorismes clàssics possibles.

El paradigma més emprat per al processament de la informació quàntica

es realitza amb col·leccions de sistemes de dos nivells anomenats qubits,

en analogia amb el bit clàssic. El qubit és el portador més bàsic de la

informació quàntica. Una computació segueix generalment tres passos:

(i) inicialització del qubit a un estat conegut, (ii) manipulació del qubit,

que consisteix en aplicar operacions a qubits individuals o operacions que

involucren (entrellacen) diversos qubits, i (iii) mesura. Com que els resultats

de la mesura són probabiĺıstics, pot ser necessari repetir els passos anteriors

diverses vegades.

El marc més comú per descriure les manipulacions dels qubits és el

model de circuits quàntics. En aquest model, els qubits es representen com
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fils, i les manipulacions sobre ells es representen amb portes que actuen sobre

aquests fils. Aquestes portes tenen una implementació f́ısica corresponent que

es realitza sobre el qubit f́ısic, però aquesta abstracció permet eliminar tots

els detalls f́ısics i centrar-se únicament en el processament de la informació

quàntica o en els algorismes quàntics. Si les combinacions d’aquestes portes

permeten realitzar qualsevol operació quàntica possible, es diu que és un

conjunt universal de portes. Es pot demostrar que un conjunt de portes de

qubit individuals i una porta de dos qubits que entrellaça són universals.

Per exemple, un d’aquests conjunts està compost per les tres rotacions del

qubit l voltant de tres eixos ortogonals i la porta CNOT, que, condicionada

a l’estat d’un qubit de control, inverteix l’estat del qubit objectiu.

La primera proposta per implementar f́ısicament els qubits, que va

poder realitzar un conjunt universal de portes, es va fer el 1994 quan Peter

Zoller i Ignacio Cirac van proposar en el seu treball seminal un sistema d’ions

refredats. Després d’aquesta proposta inicial, s’han proposat molts sistemes

quàntics que poden ser més controlables o tenir millor escalabilitat. Una

de les implementacions més populars i prometedores és la dels anomenats

qubits superconductors, que es realitzen amb un circuit tancat que, quan es

refreda a temperatures criogèniques, mostra propietats superconductores.

La corrent en els circuits es fa de parelles de Cooper que poden mostrar les

propietats quàntiques de superposició i entrellaçament. Les operacions en

aquests sistemes es poden realitzar amb l’ús d’impulsos de microones.

Tot i que els sistemes quàntics dissenyats per portar i processar infor-

mació quàntica es poden construir, no estan lliures de la interacció amb

altres sistemes externs. L’entrellaçament entre els diferents components

d’un ordinador quàntic ha de ser mantingut i protegit, però l’entrellaçament

amb sistemes externs indesitjats, que no participen en la computació, s’ha

d’evitar. A continuació, ens preocupem per aquest últim aspecte i fem ús

de la teoria dels sistemes quàntics oberts, introdüıda al caṕıtol anterior, per
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estudiar els efectes de la termalització i decoherència dels qubits.

Soroll sobre qubits

Els dos principals processos que pateix un qubit en interacció amb l’ambient

son la dissipació i la decoherència. La dissipació produeix intercanvis en-

ergètics entre qubit i ambient, procés que canvia les probabilitats de mesurar

el qubit en la base computacional. La dissipació sempre va acompanyada

d’una pèrdua de coherència, és a dir, es perd la superposició quàntica entre

els estats del qubit. El principal efecte que produeix la dissipació és el procés

de termalització, l’ambient es troba en un estat tèrmic a una temperatura

finita i desplaça el qubit cap a un estat tèrmic a la mateixa temperatura

per tal d’assolir l’equilibri. Per altra banda, un qubit pot estar subjecte

únicament a decoherència, sense patir pèrdues energètiques, en aquest cas

el procés s’anomena de desfasament pur. Un qubit pot sofrir decoherència

degut tant a dissipació com a desfasament pur alhora.

No hi ha evidencies de que la dissipació siga un procés no-Markovià,

la dinàmica d’un qubit amb dissipació pot ser descrita amb una equació

mestra com la Eq. (R.5). En canvi, el desfasament pur s’ha observat amb

caracteŕıstiques no-Markovianes. És àmpliament reconegut que la font

de soroll en les implementacions d’estat sòlids de la computació quàntica

[54, 55, 56] es deu a la presència de defectes de dos nivells en materials

amorfs a temperatures baixes [57, 58]. Sorprenentment, aquest efecte sembla

ser universal en diferents materials i composicions, i es fa particularment

evident en materials amorfs a temperatures per sota de l’escala Kelvin.

Model semiclàssic. Quan aquests defectes de dos nivells, o sistemes de

dos nivells (SDN), estan fortament acoblats al seu entorn, la seva dinàmica

es descriu per mitjà de fluctuacions incoherents entre els seus dos estats,
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donant lloc al que es coneix com fluctuadors. Un model semiclàssic pot

ser introdüıt per descriure el soroll de desfasament pur indüıt per aquests

fluctuadors. L’estat dels fluctuadors pot ser descrit per una variable aleatòria

clàssica bik(t) ∈ {+1,−1}, on k indica fluctuadors individuals i el supeŕındex

i indica una realització particular del procés aleatori. Aquests fluctuadors

fluctuen independentment entre els seus dos possibles estats a una taxa γk.

La probabilitat que un fluctuador canvïı n vegades després d’un temps t

segueix una distribució de Poisson

pn(t) =
(γkt)

n

n!
e−γkt , (R.16)

de manera que el nombre mitjà de canvis del fluctuador k durant un interval

de longitud τ és γkτ . La funció d’autocorrelació d’un únic fluctuador segueix

una decäıment exponencial,

C(t− t′) = ⟨bik(t)bik(t′)⟩i = e−2γk|t−t′| , (R.17)

la qual cosa indica que l’espectre (transformada de Fourier de la funció

d’autocorrelació) és lorentzià

SRTN(γk, ω) =

∫ ∞

−∞
dτC(τ)eiτω =

4γk
4γ2k + ω2

. (R.18)

Cada un dels fluctuadors està acoblat al qubit amb una intensitat d’acoblament

vk. La variable estocàstica

χi(t) =

NRTN∑

i=1

vkb
i
k(t) , (R.19)

captura l’efecte dels fluctuadors sobre el qubit, on NRTN és el nombre de

fluctuadors. La influència dels fluctuadors s’incorpora al hamiltonià del

qubit a través d’una interacció del tipus

H i(t) =
ω0 + χi(t)

2
σz , (R.20)
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on ω0 és la separació d’energia entre els dos nivells del qubit. Cal destacar

que aquest model de soroll pot presentar dinàmica no-Markoviana. El el text

principal he estudiat diferents hem dedüıt la formula de la decoherència dels

qubit sota aquest model de soroll sotmès a diferents tècniques de mitigació

que intenten reduir l’efecte negatiu del soroll.

Model quàntic. S’han proposat diferents models quàntics microscòpics

per descriure el soroll indüıt per SDN coherents [69, 70, 71, 72], consulteu

[68] per una revisió de la seva motivació f́ısica. En general, els SDN es

modelen mitjançant un potencial de doble pou asimètric, amb ϵ com la

diferència d’energia dels mı́nims i ∆ descriu l’intensitat del efecte túnel

entre els dos mı́nims. Constrüım un model quàntic on el qubit està acoblat

a un SDN coherent, que al seu torn està acoblat a un reservori extern a

una temperatura finita. El hamiltonià total és H = HS +HE +HI , on el

hamiltonià del sistema qubit-SDN té tres termes HS = HQ +HTLS +HQT ,

HQ =
1

2
ωqτz , HTLS =

ϵ

2
σz +

∆

2
σx , HQT =

v

2
τzσz , (R.21)

on τi són les matrius de Pauli que actuen a l’espai de Hilbert del qubit i

σi a l’espai del TLS. El hamiltonià del TLS és una descripció efectiva del

doble pou descrit anteriorment. La interacció qubit-TLS HQT indueix un

enfosquiment pur al qubit. La diferència d’energia dels nivells del TLS és

EF =
√
∆2 + ϵ2.

L’entorn és un reservori bosònic que s’acopla directament al TLS, però

no al qubit. Els hamiltonians de l’entorn i de la interacció són

HB =
∑

k

ωkb
†
kbk , HI = σ+

∑

k

gkbk + σ−
∑

k

g∗kb
†
k . (R.22)

A la Fig. R.3 es presenta un esbós d’aquest entorn compost. La dinàmica

d’aquest model pot ser descrita mitjançant l’equació de Redfield (R.6) on
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Q F

a1

a2

aλ

Figure R.3: Schematic picture of the model. The qubit (Q) is coupled to
the fluctuator (F), which in turn is coupled to its own bath of harmonic
oscillators aλ.

el Hamiltonià del sistema obert ve donat per HS i sols es traça el ambient

d’oscil·ladors bosònics. Per tal d’obtindre la funció de decoherència del qubit

cal traçar el SDN. En el text principal duem a terme una aproximació secular

per tal de tindre una visió f́ısica general dels nivells energètics del sistema i

les energies d’interacció. També hem comprovat que el model semiclàssic

reprodueix la dinàmica d’aquest model en el ĺımit d’altes temperatures, on

les suposicions fetes per al model semiclàssic són correctes. L’objectiu final

de l’estudi d’aquest model és comprovar l’efectivitat de les tècniques de

mitigació sobre un model purament quàntic.

Part II: Caminants quàntics

Introducció

Un passeig aleatori és un procés aleatori que descriu el desplaçament d’un

caminant seguint una successió de passos aleatoris en un graf. El model

de passeig aleatori més comú és el d’un caminant en una xarxa regular, on

la probabilitat de salt del caminant a les ubicacions adjacents es dóna per
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alguna distribució de probabilitat, però hi ha altres escenaris possibles. Els

passejos aleatoris es poden utilitzar, per exemple, per modelar el moviment

aleatori de molècules en ĺıquids o gasos (moviment brownià) i té aplicacions

en molts camps cient́ıfics, com la biologia, la qúımica o la informàtica, per

nomenar-ne alguns. El valor esperat de la posició del caminant es descriu

mitjançant una distribució de probabilitat, que està determinada per la

probabilitat del salt aleatori i el graf espećıfic. L’exemple bàsic d’un passeig

aleatori és un caminant a la recta numèrica Z, que, després de cada pas,

salta una posició en la direcció positiva o negativa condicionada al resultat

d’un llançament de moneda equilibrat.

Es va proposar un passeig aleatori quàntic anàleg (QW) el 1993 per

Aharonov et al. [74], en el qual el caminant és una part́ıcula quàntica que no

es pot localitzar a causa de les incerteses quàntiques. En canvi, l’estat del

caminant es descriu mitjançant una funció d’ona d’espinor, i les probabilitats

de salt estan condicionades a un grau de llibertat intern, que juga el paper

d’una moneda quàntica. A causa del caràcter quàntic del caminant, la seva

distribució de probabilitat és diferent de la del cas clàssic. Els passejos

quàntics també es poden definir en temps continu. Childs et al. van donar

en [75] la definició general, que es basa en una formulació hamiltoniana en la

qual no és necessària la moneda interna del caminant. Tot i que els passejos

quàntics en temps continu tenen moltes aplicacions i propietats importants,

els treballs d’aquesta tesi es centren en els passejos quàntics a temps discret.

Ja es va assenyalar en [74] que la dispersió del caminant quàntic és

quadràticament més ràpida que la del caminant clàssic. Aquest fet va

permetre descobrir algoritmes de cerca més eficients que els seus equivalents

clàssics. Per exemple, l’algoritme de Grover [22] es pot veure com un

algoritme de cerca de passeig quàntic [76]. També s’ha demostrat que

algoritmes de cerca similars basats en passejos quàntics, com el problema

de la distinció d’elements [77], són més eficients que els equivalents clàssics.
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Finalment, els passejos quàntics també es van demostrar més eficients en

problemes d’obtenció de mostres de distribució de probabilitat [78, 79].

També s’ha demostrat que els passejos quàntics es poden utilitzar com a

model de computació universal [80, 81].

Existeixen nombroses propostes experimentals per implementar passe-

jos quàntics. La primera plataforma proposada per implementar el passeig

quàntic en temps discret utilitzava trampes d’ions [82], on la malla discreta

es codificava en els modes vibracionals dels ions, i l’estat de la moneda es

codificava en l’estat electrònic intern dels ions. S’han proposat moltes altres

plataformes, com ara les cavitats de QED [83] o les ret́ıcules òptiques [84],

per citar-ne algunes. Consulteu [85] per obtenir una revisió exhaustiva de

les implementacions f́ısiques.

El caminant en el passeig quàntic aleatori [86, 87, 88] a la recta es

representa mitjançant un espinor, que, tot i que en la condició inicial pot

estar localitzat en la posició central, representa en general una superposició

del caminant en diferents localitzacions. L’estat del caminant, a més del

grau de llibertat espacial, es dóna per un grau de llibertat intern de dues

dimensions, que s’anomena moneda quàntica. L’espai de Hilbert del grau

de llibertat espacial, Hx, és d’infinita dimensió i està generat per la base

{|j⟩ ; j ∈ Z}. L’espai de Hilbert de la moneda quàntica, HC , és un espai de

2 dimensions generat per la base {|↑⟩ , |↓⟩}. L’espai de Hilbert total és el

seu producte tensorial H = HC ⊗Hx. L’estat del caminant en aquesta base

a temps n ∈ Z es pot escriure com

|ψn⟩ =
∑

j

(
ψ↑
n,j |↑⟩+ ψ↓

n,j |↓⟩
)
⊗ |j⟩ , (R.23)

on ψs
n,j , amb s = {↑, ↓}, són les components del spinor al pas n i la posició

j. Podem projectar l’estat del caminant sobre la base espacial i representar
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l’estat del caminant com un espinor,

|ψn,j⟩ = ⟨j|ψn⟩ =
(
ψ↑
n,j

ψ↓
n,j

)
, (R.24)

on hem definit la representació canònica de les components de la moneda

com |↑⟩ = (1, 0)T i |↓⟩ = (0, 1)T .

L’evolució d’un pas del caminant quàntic es compon de dues operacions:

un llançament de moneda quàntica que barreja les components de la moneda

del caminant, seguit d’un operador de desplaçament condicional que desplaça

la posició del caminant segons el grau de llibertat intern. Podem escriure

aquesta operació d’un pas com

|ψn+1⟩ = Ŵ |ψn⟩ = Ŝ
(
Ĉ ⊗ Ix

)
|ψn⟩ , (R.25)

on Ĉ és una operació unitària general que actua sobre l’estat intern del

caminant i Ŝ és l’operador de desplaçament condicional definit com

Ŝ = |↑⟩ ⟨↑| ⊗
∑

j

|j + 1⟩ ⟨j|+ |↓⟩ ⟨↓| ⊗
∑

j

|j − 1⟩ ⟨j| . (R.26)

L’operador de desplaçament condicional transforma els estats de la forma

|↑⟩ |j⟩ en estats |↑⟩ |j + 1⟩ i els estats |↓⟩ |j⟩ en estats |↓⟩ |j − 1⟩, és a dir,

desplaça els estats amb l’estat cap amunt (cap avall) cap a la dreta (esquerra).

L’evolució des d’una condició inicial donada |ψ0⟩ fins al pas n = 1, 2, ... és

simplement |ψn⟩ = Ŵn |ψ0⟩. El caminant no té una posició definitiva, només

en mesurar la posició, l’estat del caminant es col·lapsa i la seva posició es

torna definitiva. La distribució de probabilitat associada del caminant al

temps n es dóna en termes de les seves components d’estat com

Pn,j =
∑

s=↑↓
| ⟨s, j|ψn⟩ |2 = |ψ↑

n,j |2 + |ψ↓
n,j |2 . (R.27)
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Es pot associar un espai f́ısic a l’espai generat per la xarxa discreta

del QW. Es pot introduir un espaiat de la xarxa discreta, ϵx, per connectar

ambdós espais com |x⟩ = |ϵxj⟩ on |x⟩ és la base d’un espai de Hilbert de

posició que està discretitzat per un espaiat ϵx. Un procediment similar es pot

fer per a la coordenada temporal t = ϵtn amb un espaiat ϵt. L’operador de

desplaçament produeix un desplaçament condicional a l’espai f́ısic discretitzat

per una quantitat ϵx, de manera que e−iK̂ |x⟩ = |x+ ϵx⟩, on K̂ és l’operador

quasi-moment, el generador de translacions de la xarxa discreta. Podem

relacionar el quasi-moment amb el moment f́ısic, en el ĺımit de ϵx xicotet,

com K̂ = ϵxp̂. Finalment, si considerem l’operador moneda com una rotació

d’angle θ = ϵmθ̂, es pot demostrat que l’equació d’evolució del QW es

pot escriure com una equació diferencial per a un espinor, i que aquesta

correspon a l’equació de Dirac

(iγµ∂µ −m)Ψ(t, x) = 0 , (R.28)

on γµ són les matrius de Dirac. Si l’angle del operador moneda es deixa

dependre de la posició de QW en la xarxa i del pas de temps de l’evolució es

poden obtindre ĺımits al continu més interessant. Per exemple, si al pas de

temps del QW s’afegeix una fase global que depen linealment de la posició,

el ĺımit al continu d’aquest QW correspon a l’equació de Dirac amb un

camp elèctric constant. Diferents eleccions de moneda poden donar lloc a

qualsevol configuració de camp electromagnètic [93, 94], o a equacions de

Dirac en espaitemps corbats. L’estudi del ĺımit al continu també pot ser

emprat per entendre la dinàmica del model discret, pot donar informació

sobre les solucions estacionaries [P.4].



RESUM EN VALENCIÀ 117

Simulació de geometria plegada en teories d’altes energies

mitjançant QW (Publicació [P.2])

L’existència d’un ĺımit continu de diferents QWs que coincideixen amb

equacions similars a les de Dirac ha permès la simulació d’una gran varietat

de sistemes f́ısics mitjançant QWs. A més de la simulació de fermions en

espais-temps corbats i camps electromagnètics els QWs poden ser constrüıts

per simular oscil·lacions de neutrins [99], dinàmica de fluids carregats [100],

fenòmens topològics [101] o difusió relativista [P.3], per nomenar-ne alguns

exemples. En [P.2] investiguem les propietats d’un QW que, en el ĺımit

cont́ınu, simula el model de dimensions extra de Randall-Sundrum (RS)

[102]. El model RS es va introduir per explicar el problema de jerarquia de

les teories d’altes energies (HEP), mitjançant l’addició d’una dimensió extra

corbada, que tenia una brana de 4 dimensions en cada extrem. La gravetat

està present en tot l’espai-temps, però els camps de matèria del Model

Estàndard de part́ıcules es troben confinats en una de les branes, la brana

de matèria. Definim un QW de 2 dimensions amb una dimensió espacial

corbada i una dimensió espacial ordinària. Derivem l’equació de Dirac

que sorgeix en aquest espai-temps corbat redüıt i establim les condicions

de contorn que els camps fermiònics han de satisfer. Les condicions de

simetria en aquest espai-temps de dimensions més baixes restringeixen

l’estudi a fermions sense massa, que poden adquirir una massa efectiva quan

es restringeixen a la brana de matèria. També estudiem l’espectre de les

solucions del model continu, on ja es pot observar que les autofuncions de

l’equació de Dirac presenten confinament cap a la brana de matèria.

Hem constrüıt una QW que, en el ĺımit cont́ınu, recupera l’equació de

Dirac derivada seguint el mètode introdüıt a [97]. La xarxa creada per al

QW es representa a la Fig. R.4. La dimensió espacial ordinària és infinita,

i es pren una xarxa prou gran en aquesta direcció perquè el caminant no
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Figure R.4: Xarxa espacial del QW del model RS. La xarxa és infinita en la
direcció x, però és finita en la direcció y, amb una longitud de L.

arribe als extrems de la xarxa. La dimensió corbada és finita, i es defineixen

condicions de contorn adequades als extrems, on el caminant és reflectit

amb una inversió de fase. Aquesta és la mateixa condició de contorn que els

fermions de Dirac han de satisfer en el model continu. La construcció del

QW és coherent amb aquesta condició en tot moment.

En primer lloc vam observar que el QW reprodueix la fenomenologia

esperada pel model RS, és a dir, un caminant inicialment localitzat en el

centre de la dimensió corbada es localitzarà a l’extrem de la dimensió corbada

on els camps de matèria estan confinats. La propietat de confinament del

model està controlada pel coeficient de curvatura, i vam confirmar que, quan

aquest paràmetre augmenta, la localització del caminant cap a la brana

de matèria és més intensa. Com aquest model està restringit a fermions

sense massa, la major part de la densitat de probabilitat del caminant es

propaga a la velocitat de la llum, i la direcció de propagació depèn de la

quiralitat, és a dir, les components superiors (inferiors) es propaguen cap a

la dreta (esquerra) en la dimensió ordinària. Aquests fronts de probabilitat,

que es desplacen a la velocitat de la llum, estan situats a la posició x = t, i
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definim aquesta distribució de probabilitat al llarg de la direcció y com la

distribució de propagació lliure (DPL). Vam realitzar una descomposició

de les components del caminant en termes de les autofuncions obtingudes

de l’equació de Dirac cont́ınua i vam estudiar la composició de modes de

les DPL. Vam observar que, tot i que inicialment les DPL poden estar

compostes per modes d’alta energia, a la llarga, les DPL estan principalment

compostes pel mode d’energia més baixa. Aquest efecte indica alguna mena

de dissipació, durant la propagació, cap a les regions interiors del con del

llum.

Finalment, vam investigar l’entropia d’entrellat entre la moneda i el

grau de llibertat espacial. El pas del QW genera entrellaçament entre

aquests graus de llibertat i es redueix per a valors més alts del coeficient de

curvatura. Vam atribuir aquest efecte a la menor dispersió de la distribució

de probabilitat del caminant amb l’augment del coeficient de curvatura.

Tot i que els QW han demostrat ser exitosos en reproduir alguns efectes

de les teories de f́ısica d’altes energies, manquen la capacitat de simular

interaccions entre múltiples part́ıcules. No obstant això, el formalisme es pot

modificar per incloure interaccions entre part́ıcules. S’han realitzat alguns

esforços [103, 104] per descriure estats de dues i tres part́ıcules, però cal fer

més treball per tenir un marc de simulació per a HEP. També cal esmentar

que les caminades quàntiques no estan lliures de defectes presents en les

teories de discretes, com pot ser el problema del doblament de fermions. Els

autòmats cel·lulars quàntics [18, 105, 106] són una teoria de xarxa discreta

similar als QW, on en cada ubicació el sistema quàntic pot tenir qualsevol

dimensió finita. L’evolució també és discreta en el temps i s’ha demostrat

que poden simular models senzills de teoria quàntica de camps, per exemple,

el model de Schwinger [107].
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Simulació de difusió relativista mitjançant un QW estocàstic

(Publicació [P.3])

A la publicació anterior, hem estudiar un (QW) que tenia una moneda

espacial inhomogènia. En [P.3] estudiem una moneda que és inhomogènia en

el temps, i on la dependència temporal és estocàstica; aquest tipus d’evolució

es pot veure com un tipus de soroll temporal a l’operador de la moneda.

Hem estudiat dues maneres de generar una moneda temporal estocàstica,

però aćı expliquem breument la que es connecta més estretament amb la

primera part de la tesi. Podem definir un procés de soroll en un caminant

en la representació de suma d’operadors com

ρn+1 = (1− p1 − p2)ŴρnŴ
† + p1σzρnσz + p2σxρnσx , (R.29)

on ρn és la matriu de densitat en el pas de temps n, p1 és la probabilitat que

el caminant pateixi un error de gir de fase, p2 és la probabilitat de patir un

error de intercanvi de bit, i amb probabilitat 1−p1−p2 es sotmet a l’evolució

usual unitària del QW. Podem definir pi = ϵγi, on ϵ és el mateix que el pas

de temps infinitesimal, i seguir de manera similar a la derivació infinitesimal

de l’equació de Lindblad a partir de la representació dels operadors de Kraus,

per obtenir una equació mestra cont́ınua

∂tρ = −i[H, ρ] + γ1(σzρσz − ρ) + γ2(σxρσx − ρ) , (R.30)

onH és el generador infinitesimal de la dinàmica unitària del QW Ŵ = e−iϵH ,

i coincideix amb el hamiltonià obtingut en el ĺımit continu de l’evolució

unitària del QW, que és en general el hamiltonià de Dirac. L’altra manera de

construir un QW estocàstic, que condueix al mateix ĺımit continu, consisteix

en aplicar una unitària composta per un operador de moneda SU(2) general

i l’operador de desplaçament condicional (3.5). L’operador de moneda es pot

parametritzar amb 4 paràmetres constants que es mostregen aleatòriament

de distribucions de probabilitat independents. La correspondència entre
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aquesta implementació i la anterior s’obté si les desviacions estàndard

d’aquests paràmetres coincideixen amb les taxes γi.

Aquesta equació cont́ınua representa un model de difusió quàntica

relativista. Representem la matriu de densitat del espinor en la base de

Pauli, i l’equació dinàmica esdevé un sistema de quatre equacions amb

derivades parcials que es resolen numèricament mitjançant un mètode de

descomposició d’operadors. Aquest mètode ens va permetre estudiar la

fenomenologia del model continu, que es pot resumir en dos règims: un

règim de propagació baĺıstica, en què el paquet d’ona inicial es propaga a

una velocitat constant, i després d’un temps, que depèn de la intensitat

del soroll, fa la transició a un règim difusiu. Aquest darrer règim es

caracteritza per un valor esperat constant de la posició i per un augment

de la desviació estàndard proporcional a
√
t, caracteŕıstica dels processos

difusius. Finalment, es va estudiar un model que afegeix soroll espacial a

sobre del soroll temporal, i es van obtenir dinàmiques Lindbladianes similars

en el ĺımit continu.

Formació de solitons en un QW no-lineal (Publicació [P.4])

Una altra variant de l’operador de moneda que introdueix no linealitats en

les fases de les components del caminant va ser introdüıda a [108]. Les fases

depenien de la densitat de probabilitat del caminant en cada posició. El

model està pel tauler de Galton òptic no lineal, on les no linealitats són

causades per un medi no lineal de Kerr. El resultat principal del treball va

ser la formació d’estructures similars a solitons, és a dir, la distribució de

probabilitat del caminant es extensa i estable. En el llenguatge dels sistemes

òptics, els efectes no lineals del medi contraresten la dispersió natural de la

llum.

En [P.4] considerem un model similar, juntament amb una proposta
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experimental, on les no linealitats s’introdueixen en l’angle de l’operador de

moneda, és a dir, l’angle de rotació en cada posició del caminant depèn de

les components del caminant en aquesta posició:

C(θt,x) = e−iθt,xσy =

(
cos θt,x − sin θt,x

sin θt,x cos θt,x

)
, (R.31)

on l’angle de rotació ve donat per

θt,x = θ0 + α|ut,x||dt,x| sin δt,x , (R.32)

on em expressat expĺıcitament les components del caminant en funció del

seu mòdul i fase ut,x = |ut,x|eiφ
u
t,x , dt,x = |dt,x|eiφ

d
t,x i δt,x = φu

t,x − φd
t,x és la

diferència de fases. Les components del caminant evolucionen expĺıcitament

a cada pas com

ut+1,x = cos(θt,x−1)ut,x−1 − sin(θt,x−1)dt,x−1 ,

dt+1,x = sin(θt,x+1)ut,x+1 + cos(θt,x+1)dt,x+1 .
(R.33)

El ĺımit cont́ınu d’aquest QW proporciona una equació de Dirac no

lineal on hi ha un terme no lineal similar al que apareix en el model de

Nambu-Jona-Lasinio [109]. Fem un estudi detallat de l’equació diferencial

cont́ınua. En primer lloc, explorem la estabilitat de solucions estacionàries

homogènies i identifiquem els règims en què poden aparèixer solucions

similars a solitons. En segon lloc, trobem, sota suposicions raonables, una

solució estacionària del model continu que té les caracteŕıstiques usuals d’un

solitó.

Els resultats obtinguts de l’equació cont́ınua es verifica en el model

discret numèricament. Trobem l’existència d’estructures similars a solitons

amb la mateixa solució que l’equació cont́ınua. També investiguem condi-

cions inicials que es propaguen a una velocitat constant i observem una



caracteŕıstica t́ıpica dels solitons, que és que durant una col·lisió els paquets

d’ones no es pertorben. L’anàlisi d’estabilitat de l’equació cont́ınua indica

que haurien de existir altres tipus de solucions estacionàries, els solitons

foscos, els quals observem en el model discret. Un solitó fosc es genera a la

paret de domini entre dues solucions estables, on la probabilitat de trobar el

caminant desapareix en la transició. Aquesta vall de densitat de probabilitat

és estacionària.

També hem estudiat l’estabilitat dels solitons quan estan sotmesos a

una fase addicional que simula un camp elèctric extern. Per a intensitats

de camp elèctric irracionals, els solitons continuen localitzats però la seua

estructura caracteŕıstica suau es perd. Per a fraccions racionals de 2π

d’intensitats de camp elèctric, hem caracteritzat dos règims: per a camps

elèctrics forts, un solitó inicial es desfà lentament i el caminant es dispersa,

i un augment del paràmetre de no linealitat redueix la dispersió prodüıda

pel camp elèctric fort. Per a camps elèctrics febles, hi ha oscil·lacions de
la posició central del solitó. Finalment, també hem explorat una versió

bidimensional d’aquest model, on no hem trobat cap evidència de formació

de solitons.
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Abstract
The usual paradigm of open quantum systems falls short when the environment is actually
coupled to additional fields or components that drive it out of equilibrium. Here we explore the
simplest such scenario, by considering a two level system coupled to a first thermal reservoir that
in turn couples to a second thermal bath at a different temperature. We derive a master equation
description for the system and show that, in this situation, the dynamics can be especially rich. In
particular, we observe prethermalization, a transitory phenomenon in which the system initially
approaches thermal equilibrium with respect to the first reservoir, but after a longer time
converges to the thermal state dictated by the temperature of the second environment. Using
analytical arguments and numerical simulations, we analyze the occurrence of this phenomenon,
and how it depends on temperatures and coupling strengths. The phenomenology gets even richer
if the system is placed between two such non-equilibrium environments. In this case, the energy
current through the system may exhibit transient features and even switch direction, before the
system eventually reaches a non-equilibrium steady state.

1. Introduction

The standard theory of open quantum systems (OQS) typically considers that the system is coupled to a
single reservoir in equilibrium to analyse properties such as decoherence, dissipation and non-Markovianity
[1–4]. A richer situation emerges in the frame of quantum thermodynamics and thermal machines, in
which the system is coupled to two or more reservoirs, each of them equilibrated at a different temperature
and/or chemical potential [5–8]. Once the coupling is activated, the open system evolves towards a
non-equilibrium steady state that may contain persistent heat, particle or spin currents. An even more
involved scenario occurs when the system is coupled to one or more reservoirs that are each of them out of
equilibrium and therefore evolve in time. As a consequence, the action of the environment into the system
dynamics is no longer encoded in a correlation function that is time-translational invariant, such that
α(t, τ) = α(t − τ ), but rather on a correlation function that depends on both the current time of evolution
t and the past times τ .

The motivation to analyze complex environments beyond the standard OQS paradigm of single and
multiple equilibrium reservoirs is strong. From an application perspective, out of equilibrium environments
that present a temperature gradient can be encountered in electron transfer processes in quantum chemistry
and biology [9], in cellular media [10] and even in the thermosynthesis processes that use the solar energy
to create chemical compounds [11], to name just a few examples. These types of environments may indeed
be driven by an external source, corresponding to other molecular or biological structures or even to the
electromagnetic field. Non-equilibrium environments are also present in quantum technological devices,
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where the quantum system of interest may be directly coupled to an environment that is itself coupled to a
second reservoir, thermalized at a different temperature. Such temperature gradient of the different
components and subsystems surrounding the quantum system of interest is particularly present in quantum
computers [12, 13]. Superconducting qubits, for instance, are cooled down to cryostatic temperatures, while
their surrounding components, including amplifiers and processing units, as well as the cables and
waveguides that connect them to each other and to the qubit, are at higher temperatures the further they
are from the circuit.

Describing these situations is of fundamental and timely interest, but it also represents a significant
challenge, as the effects of indirect reservoirs on the OQS dynamics cannot be captured with a simple
Markovian approximation. To this aim, one possibility is to compute the full dynamics, including the
system and the environments, and then trace out the environmental degrees of freedom to obtain the OQS
reduced dynamics. However, the dimension of the full Hilbert space grows exponentially fast with the
number of degrees of freedom, and further, the relevant states may be largely entangled as well, which
makes inefficient a direct use of state of the art numerical methods like Monte Carlo [14–16] and matrix
product states [17–21].

While several approaches can be found in the literature to describe the full dynamics of the system
coupled to a single bath [22–25], much fewer works can be found that treat the presence of a second
environment driving the first one out of equilibrium. In this context, reference [26] considers an effective
(surrogate) Hamiltonian to describe the system and its direct coupling to a primary environment
(represented by a finite number of modes), while a second and larger environment is introduced and
coupled to the first. This second environment is treated stochastically. Here we propose an alternative
approach, which extends the standard tools of the OQS theory, namely the weak coupling approximation
and the master equation approach, to consistently tackle the problem in at least a limit of interest.

To be specific, we consider a two-level quantum system coupled to a first reservoir (RI) that is in turn
coupled to a second reservoir (RII). Initially, each reservoir is in a thermal state at a different temperature,
respectively TI and TII. We additionally consider that RII induces a Markovian evolution on the modes of RI
so that they thermalize efficiently. Therefore, even if RI is initially in thermal equilibrium, the coupling to a
second reservoir at a different temperature will drive it away from it, and enforce its evolution towards a
new equilibrium state with respect to RII. Thus, the dissipation of the open system will display very rich
features reflecting the interplay between two different timescales: thermalization of the system at a
temperature TI, and the thermalization to its final equilibrium state with TII. If the conditions of the
environment are suitable, and these two timescales are temporally separated, prethermalization [27] of the
OQS is observed, which is a stage in which the system remains thermalized at TI.

The plan of the paper is the following: We present the details of our model in section 2, while in
section 3 we discuss the master equation that is used to describe the reduced dynamics of the open system.
This master equation depends on a set of correlation functions that encode the effects of both reservoirs in
the open system, and which are discussed in section 4. Sections 5 and 6 describe the effects of
prethermalization when considering a single and two out of equilibrium reservoirs, respectively. Finally, we
draw some conclusions in section 7.

2. Model with two interacting environments

As is standard in the theory of OQS [3, 28, 29] we consider that the total evolution of system plus the
environment is unitary and described by the Hamiltonian,

H = HS + HE + Hint, (1)

where HS and HE are the free Hamiltonians of the system and environment, respectively, and Hint is the
interaction Hamiltonian between system and environment. We model the system as a two level system with
the free Hamiltonian

HS =
1

2
ω0σz , (2)

where ω0 is the energy6 gap between levels. We model the environment to which the system is coupled as an
set of open harmonic oscillators that is a first reservoir (RI) of harmonic oscillators where each mode in RI
is coupled to a independent reservoir, included in the second reservoir (RII). The Hamiltonian describing
this environment is

HE = HRI + HRII + Hint,2, (3)

6 Throughout this article we consider natural units in which the reduced Plank constant and the Boltzmann constant � = kB = 1.
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Figure 1. Schematic picture of the model. The OQS is coupled in a star configuration to a set of harmonic oscillators aλ, which
are coupled to their own individual baths of harmonic oscillators bλ,k.

where
HRI =

∑

λ

ωλa†
λaλ and HRII =

∑

λ,k

ωλ,kb†
λ,kbλ,k, (4)

are the free Hamiltonians of RI and RII, respectively, with operators that obey the commutation relations

[aλ, a†
λ′ ] = δλ,λ′ , and [bλk, b†

λ′k′] = δλ,λ′δk,k′ , (5)

and whose interaction

Hint,2 =
∑

λ

(
a†

λ ⊗
∑

k

g̃λ,kbλ,k + aλ ⊗
∑

k

g̃∗
λ,kb†

λ,k

)
, (6)

conserves the boson number. The coupling strength between the λ-th oscillator in RI and the kth oscillator
in RII is g̃λ,k. The system is in a star configuration, i.e. the OQS is coupled to all the λ bosonic operators of
RI, and in turn each of these is coupled to a reservoir of harmonic oscillators that is a part of RII, as
depicted in figure 1. Only the first reservoir couples directly to the OQS, with the interaction Hamiltonian

Hint = σ− ⊗
∑

λ

g∗
λa†

λ + σ+ ⊗
∑

λ

gλaλ , (7)

which only considers interactions that conserve the particle number. We take as initial state a tensor
product,

ρ(0) = ρS(0) ⊗ ρE(0) = ρS(0) ⊗ ρth
I (βI) ⊗ ρth

II (βII). (8)

The initial state of the system can be arbitrary, while the initial states of the reservoirs are assumed to be
thermal, possibly at different temperatures,

ρth
i (βi) =

e−βiHRi

Zi(βi)
, (9)

where Z(βi) = Tr{e−βiHRi} is the partition function and βi = 1/Ti is the inverse temperature of each
reservoir, i = {I, II}.

Each reservoir may have a different spectral function depending on their microscopic properties and the
problem considered. In our analysis, we consider the Caldeira–Leggett phenomenological model of spectral
functions [30], which reads

Ji(ω) = giω
1−si
ci ωsi e−ω/ωci , (10)

3
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where gi is the strength of the coupling, si is a factor that takes different values depending on the particular
environment that needs to be modelled, and ωci determines a smooth frequency cut off for the modes of the
reservoir.

3. Study of the system evolution

To obtain a closed equation for the dynamics of the open quantum system, we consider that it is weakly
coupled to its environment, which makes it evolve slowly. Thus we can derive a second order weak coupling
master equation (ME) for the reduced density matrix of the open quantum system. The derivation of the
ME is standard and can be found in numerous works [28, 31],

d

dt
ρS(t) = −i [HS, ρS(t)]+

(∫ t

0
dτα+(t, τ)

[
Vτ−tσ+ρS(t), σ−

]
+

∫ t

0
dτα−(t, τ)

[
Vτ−tσ−ρS(t), σ+

]
+h.c.

)
,

(11)
where VtO = eiHStOe−iHSt is the free evolution of the operator O = {σ+, σ−}, and the correlation
functions are defined by

α+(t, τ) = Tr{B(t)†B(τ)ρE(0)} , α−(t, τ) = Tr{B(t)B†(τ)ρE(0)}, (12)

with B(t) = eiHEtBe−iHEt the free evolution of the environment operator B =
∑

λ gλaλ. Notice that this
equation is second order in the interaction operator B, and that no first order term is present, since it is
proportional to TrE{Hint(t)ρE(0)}, which is null for the initial state defined in equations (8) and (9). This
equation is a time-local ME, since its evolution can be recast in the form

ρ̇S(t) = Λt[ρS(t)], (13)

where Λt is a linear map, such that Λt[ρ(t)] is Hermitian and traceless for any ρ. To fully describe the OQS
through the differential equation (11), the correlation functions (12) have to be computed for the initial
states ρE(0) defined in equations (8) and (9). The following section is devoted to this derivation, but first we
rewrite the ME in equation (11) under its canonical form.

3.1. Canonical form of the ME
Any time-local ME equation of the form (13) can be recast into a canonical ME [32], of the form

d

dt
ρS(t) = −i[H(t), ρS(t)] +

d2−1∑

k=1

γk(t)

(
Lk(t)ρS(t)L†

k(t) − 1

2
{L†

k(t)Lk(t), ρS(t)}
)

, (14)

where γk(t) are the canonical decay rates corresponding to the canonical decoherence channels Lk(t), with
k = 1, . . . , d2 − 1, and d the dimension of the Hilbert space of the OQS. H(t) is, in general, not identical to
the free Hamiltonian of the system, since the interaction with the environment modifies it. The most
common effect is a shift of the natural frequency of the OQS, the so-called Lamb shift. The equation is
often written in a more compact form as

d

dt
ρS(t) = −i[H(t), ρS(t)] + D(t, ρS(t)). (15)

where the first term represents the unitary evolution of the OQS. The second term in (15) encompasses the
dissipative part of the evolution.

Recasting the time-local ME in this form allows us to easily evaluate whether, despite being an
approximated equation, it still preserves complete positivity of the evolution. In detail, if the decay rates
γk(t) are non-negative we can ensure that this is the case and that the dynamical map of the OQS is
Markovian [32]. The canonical decay rates, and the Lamb shift for our model, are discussed in the next
section and in appendix A.

4. Out-of-equilibrium correlation functions and decay rates

Obtaining the correlation functions (12) requires to compute the time evolution of aλ(t) in the operator
B(t) =

∑
λ gλaλ(t). We can simplify this calculation by assuming a large separation of timescales between

the second and the first reservoir. Specifically, we consider that the modes of the first reservoir, aλ(t) slowly
evolve towards an equilibrium state with respect to the second reservoir, and that this evolution is well

4
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described with the Markov approximation. This is discussed in appendix B, while the computation of the
correlation functions is treated in appendix C. Thus, the correlation functions are given by

α+(t, t′) =
1

π

∫
dωJI(ω)nI(ω)eiωt′e− JII(ω)

2 (2t−t′) +
1

π2

∫∫
dωdω′JI(ω)nII(ω

′)K(ω, ω′)C(ω, ω′, t, t′),

α−(t, t′) =
1

π

∫
dωJI(ω)(nI(ω) + 1)e−iωt′e− JII(ω)

2 (2t−t′) +
1

π2

∫∫
dωdω′JI(ω)(nII(ω

′) + 1)K(ω, ω′)

× C∗(ω, ω′, t, t′),

(16)

where Ji(ω), with i = {I, II}, are the spectral functions of each reservoir, which have the general form (10),
and ni(ω) = [exp(βiω) − 1]−1 is the average thermal number of quanta in mode ω at inverse temperature
βi. We have defined the function

K(ω, ω′) =
JII(ω′)

(
JII(ω)

2

)2
+ (ω − ω′)2

, (17)

which is proportional to a Lorentzian kernel of width JII(ω)/2, and the function

C(ω, ω′, t, t′) =

[
e−iω′t − e

(
−iω− JII(ω)

2

)
t
] [

eiω′(t−t′) − e
(

iω− JII(ω)
2

)
(t−t′)

]
. (18)

Notice that, even though we can consider that the open system is weakly coupled to RI, and thus its master
equation is obtained within a second order perturbation theory, a Markov approximation cannot be taken
in a straightforward way. The reason is that the correlation functions (16) are no longer dependent on the
time difference t − τ , but on both times t and τ such that one can not simply extend the integration limits
in equation (11) by assuming that the integral kernel decays much faster than the system evolution
time-scale, as it is done in the Markov approximation.

We observe that the second term of the correlation functions contains the resonant term K(ω, ω′) (see
equation (17)) with a width proportional to the coupling strength between environments, and centered at
ω = ω′. Approximating this term by a delta function is consistent with the weak coupling approximation
already considered between RI and RII. Using this approach, we obtain an analytical approximation for the
canonical decay rates γ±(t), which correspond to the decoherence channels L± = σ± (see appendix A), and
which can be split into two contributions, γ±(t) = γST

± (t) + γLT
± (t), where the terms are labelled in reference

to their short time (ST) or long time (LT) dominance. The ST terms are

γST
+ (t) = JI(ω0)nI(ω0)e−JII(ω0)t

γST
− (t) = JI(ω0)(nI(ω0) + 1)e−JII(ω0)t ,

(19)

and the LT terms read
γLT
+ (t) = JI(ω0)nII(ω0)(1 − e−JII(ω0)t),

γLT
− (t) = JI(ω0)(nII(ω0) + 1)(1 − e−JII(ω0)t).

(20)

The validity of approximating equation (17) by a delta function is discussed in D. These decay rates present
a very suggestive form: at short times, the LT terms of each decay rate is negligible, while at later times it
dominates (see appendix D for a visual reference). The strength of the decay rates is governed by the
spectral function of the first environment, while the second environment spectral function is responsible for
the timescales at which each term dominates.

With this approximate expression for the decay rates it is possible to prove analytically that indeed the
OQS evolves, at long times, to a thermal state at the inverse temperature of the second reservoir βII (see
appendix E). Furthermore, since they are non-negative at all times, we can ensure that the ME preserves
complete positivity.

5. Prethermalization

The decay rates obtained in the previous section already suggest that the evolution of the OQS may exhibit
two different timescales. However, as it will soon become apparent, how well defined these two scales are
will be strongly determined not only by the value of gII, but also by other factors, such as the temperature of
each reservoir. Depending on these factors, there may be a transitory state in which the OQS remains close
to a thermal state corresponding to the initial temperature of RI, but after some longer time it finally relaxes
to a thermal state with the temperature of RII.

5
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This transient effect is an instance of prethermalization, a phenomenon in which the system, after a short
time, seems to relax to a state different from the true thermal equilibrium, which is eventually reached after
a much longer timescale [27, 33–35]. The most studied scenario of prethermalization concerns weakly
non-integrable systems, in which an eigenstate of an integrable model is evolved under a quenched
Hamiltonian that weakly breaks integrability. The short time dynamics is still determined by almost
conserved quantities, and the system arrives to a prethermalized state, but at long times the breaking of the
integrability dominates and the system finally thermalizes [36]. The phenomenon has also been studied in
the context of OQS in [37, 38] and observed experimentally in ultra-cold bosonic atoms [39–41].

In our setup, a small coupling to the second reservoir (gII �= 0) can play a similar role to the integrability
breaking, as it perturbs the thermal equilibrium of the enviroment RI (which would otherwise remain
stable). In this way, the initial temperature of RI may determine the short time evolution and the arrival to a
prethermal state, while the final equilibrium is determined by RII. We will thus consider that
prethermalization has occurred when the system reaches a state, independent of its initial conditions, close
to the thermal equilibrium at βI, and this state is mantained for a finite time, before the evolution definitely
drives the system to the equilibrium with RII.

In order to verify the occurrence of the effect, we analyse the evolution of all possible initial states. We
conveniently express the density matrix in terms of the polarization vector, ρ(t) = (I +�p(t) · �σ)/2 and
integrate the time evolution equations (see appendix A). The formal solution for the polarization vector is

�p(t) = r(t)R(t)�p(0) + �d(t), (21)

where

R(t) =

⎛
⎝

cos(Ω̃(t)) − sin(Ω̃(t)) 0
sin(Ω̃(t)) cos(Ω̃(t)) 0

0 0 1

⎞
⎠ , (22)

is a rotation matrix, that performs a rotation about the z axis with angular frequency Ω̃(t) =
∫ t

0 dt′Ω(t′),
where Ω(t) is the shifted frequency of the OQS due to the action of the environment (see appendix A),

r(t) = e−Γ̃(t) is a scaling factor that affects equally all components, with Γ̃(t) =
∫ t

0 dt′(γ+(t′) + γ−(t′)),

where γ+(t) and γ−(t) are the canonical decay rates, and �d(t) = (0, 0, c(t)) is a displacement vector in the z
direction, with

c(t) = e−Γ̃(t)

∫ t

0
dt′eΓ̃(t′)(γ+(t′) − γ−(t′)). (23)

From this result, it is apparent that the effect of the dynamical map on any state is to rotate the
polarization vector around the z axis, rescale it by r(t) and add a displacement c(t) along the vertical
direction. These transformations are independent of the initial state, hence the space of accessible states,
initially described by the volume limited by the Bloch sphere, is isotropically contracted and shifted, and
can be characterized by its time dependent radius and center.

We would like to emphasize that the Lamb shift does not play any role in the evolution of the diagonal
elements of the reduced density matrix, which ultimately means that it does not affect either the long time
thermalization or the prethermalization dynamics. It is encoded in the angular frequency of equation (22)
and thus it has the effect of rotating the ball of accessible states with an angular velocity different from ω0,
but does not affect the rescaling and displacement of the whole space.

This representation allows us to understand how fast the memory of the initial state is lost, and in which
state the OQS is. For the approximate decay rates equations (19) and (20) we obtain the following
expression for the radius of the ball of accessible states

r(t) = e−(2nII(ω0)+1)JI(ω0)t exp

(
2(nII(ω0) − nI(ω0))

JI(ω0)

JII(ω0)
(1 − e−JII(ω0)t)

)
, (24)

which in the limit JII(ω0)t → 0 becomes

r(t) = e−(2nI(ω0)+1)JI(ω0)t , (25)

that is the expression that we would obtain if only RI was considered. This means that the rate at which the
volume of the accessible states reduces is mainly governed by RI. A smaller coupling between OQS and RI
would cause a slower reduction of the accessible states space. The center of the ball of accessible states is
given by the evolved polarization vector of the maximally mixed state, namely the origin of the Bloch
sphere, and is thus at�c(t) = (0, 0, c(t)) with

c(t) = −JI(ω0)

∫ t

0
dt′e−(2nII(ω0)+1)JI(ω0)(t−t′) exp

(
2(nI(ω0) − nII(ω0))JI(ω0)

e−JII(ω0)t − e−JII(ω0)t′

JII(ω0)

)
. (26)
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This expression has no analytic solution, but can be solved in the short time limit (ST), JII(ω0)t � 1. If
the exponentials inside the second factor are Taylor expanded in terms of JII(ω0)t and JII(ω0)t ′ � JII(ω0)t up
to first order, the resulting integral is solvable and yields

cST(t) =
e−JI(2nI(ω0)+1)t − 1

2nI(ω0) + 1
. (27)

Within this regime, we distinguish two limiting cases

• When JI(ω0)(2nI(ω0) + 1)t � 1, equation (27) approximately reduces to

cST(t) ≈ −JI(2nI(ω0) + 1)

2nI(ω0) + 1
t, (28)

which at time t = 0 corresponds to the center of the Bloch sphere.

• When JI(ω0)(2nI(ω0) + 1)t 	 1, the exponential in equation (27) vanishes, and this expression
becomes

cST =
−1

2nI(ω0) + 1
, (29)

such that (0, 0, cST) corresponds to the thermal state ρth
S (βI). This expression holds when

JI(ω0)(2nI(ω0) + 1) 	 JII(ω0), (30)

in which case the ball of accessible states is centred around the point corresponding to the thermal
state of the OQS at βI as long as JII(ω0)t � 1. Moreover, in this limit the radius of the ball of
accessible states equations (24) and (25) is close to 0, meaning that the state of the OQS is
independent of the initial condition and close to the state ρth

S (βI), which shows that the system
thermalizes to βI.

Equation (30), shows that the condition for the OQS to prethermalize to βI, depends on the relationship
of this temperature and the coupling strengths, but is independent of βII. In the next section we analyse
how βII affects the prethermalization.

The long time (LT) limit (JII(ω0)t → ∞) of equation (26), studied analytically in appendix F, yields

cLT =
−1

2nII(ω0) + 1
, (31)

where the point (0, 0, cLT) corresponds to the thermal state ρth
S (βII) as the asymptotic state. This asymptotic

state was also checked analytically using the approximate decay rates in appendix E.
To illustrate the above discussion, we display in figures 2 and 3 the evolution of the system in two

different scenarios. In both cases, the time dependence of the ρ++(t) = 〈+|ρS(t)|+〉 component7 of the
state of the system is shown for several initial pure states, which allows us to visualize the evolution of the
ball of accessible states. In the first case, for βI = 1, βII = 0.1 and gII = 10−5 we observe prethermalization
(figure 2), but when the coupling is increased to gII = 10−2 (figure 3), the phenomenon does not appear.

Following our previous considerations, we identify two relevant timescales that govern the OQS
evolution in the prethermalization regime of figure 2. First, the time tI after which the OQS has evolved to
the thermal state at βI. At this time, the space of accessible states has already contracted to a point, so that
the state reached is independent of the initial condition. The second timescale tII determines the time
required for thermalization to the asymptotic state ρth

S (βII). If tI is sufficiently smaller than tII, as in figure 2,
the system first evolves to ρth

S (βI) (red dot), and stays close to it for a certain time tpr, which we call
prethermalization time. After this time, it smoothly evolves to ρth

S (βII) (green dot). As shown in figure 3,
when the conditions of the problem do not allow for prethermalization, we observe the thermalization of
any initial condition directly to the state ρth

S (βII), without any transitory approach to ρth
S (βI).

5.1. Prethermalization time
To give a more quantitative estimation of the time during which the OQS remains approximately
thermalized at the temperature βI, i.e. the prethermalization time tpr, we make use of the trace distance

T(ρ1, ρ2) =
1

2
Tr

{√
(ρ1 − ρ2)2

}
, (32)

between the evolved state of the OQS, with initial condition ρS(0) = ρth
S (βI), and the thermal state ρth

S (βI).
We define tpr as the time elapsed between the time at which the radius of the ball of accessible states has

7 Where |±〉 is the eigenbasis defined by HS in equation (2) with eigenvalues ±ω0/2.

7
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Figure 2. Evolution of the population of the |+〉 state for different initial pure states, and snapshots of the evolution of the ball
of accessible states. Initially, all initial conditions tend to the upper population of the thermal state with βI at time tI, from which
point the evolution is identical. This effect translates into the reduction of the ball of accessible states to a point around the
thermal state at βI, as shown in equation (29), represented by a red dot. The OQS stays close to this thermal state for some time:
the prethermalization time tpr. Afterwards, the OQS starts the evolution towards the thermal state at βII. This corresponds to the
displacement of a point (marked as a cross) from the red dot to the green one (representing the thermal state at βII). The arrows
connect the points of the upper population with the snapshots of the evolution of the ball of accessible states. The environments
parameters are gI = 10−2, gII = 10−5, sI = sII = 1, ωcI = ωcII = 10, βI = 1 and βII = 0.1 and the system frequency is ω0 = 1.

Figure 3. Evolution of the population of the |+〉 state for different initial conditions of pure states, and snapshots (A, B, C) of
the evolution of the ball of accessible states. In this case, in opposition to figure 2, all initial condition directly tend to the thermal
state at βII, which is the asymptotic state of the system. The ball of accessible states contracts around the point representing the
thermal state at βII, and after becoming punctual it stays there. There is no prethermalization phenomenon in this case, where
the spectral functions parameters are as in figure 2 with the exception that gII = 10−2.

reduced below 10%, and the time at which the above trace becomes bigger than a fixed trace distance dpr.
This represents a threshold distance below which two states could not be distinguished. If the order in
which these events happen is the opposite, it means that no prethermalization is present.

We can visualize this by looking at the dynamics of the polarization vector corresponding to the density
matrix of the system, starting from ρth(βI). If that point has been significantly displaced before the ball of
accessible states has contracted, then no prethermalization is present: see figures 2 and 3 for a visual
reference of this criterion. If the trace distance between the thermal state of the system at βI and βII is
smaller than dpr, the prethermalization time is not defined, as these two states would not be distinguishable.

With this definition we studied how tpr varies as a function of the initial temperatures of both reservoirs,
as well as for different values of the coupling strength between them, i.e. gII. In figure 4 we show the
prethermalization time as a function of the trace distance for fixed βI varying βII. We observe the
prethermalization time to be longer, the closer the two states are. The same can be appreciated in figure 5,
which shows the calculation of tpr for different separations of the thermal states at βI and βII: When they are
closer (orange line) tpr is higher and when they are further apart (blue and green lines) tpr decreases.

We realized that the prethermalization scale for fixed temperatures of both reservoirs depends inversely
with gII, i.e., tpr ∼ g−1

II , for small values of gII. This can be clearly seen, for small coupling strenghts, in

8
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Figure 4. Prethermalization time, as a function of the trace distance between the thermal state of the system at fixed βI = 1.1
and varying βII. When the trace distance is smaller than dpr = 10−2 prethermalization is not defined. The coupling strength
between reservoirs is gII = 10−3 and the remaining parameters are the same as in figure 2.

Figure 5. Trace distance between the OQS and its thermal state at a fixed βI = 1.1 for different values of β i
II = {1.6, 1.4, 1.2}.

Dashed lines represent the trace distance between thermal states at βI and β i
II, i.e., T(ρth

S (βI), ρth
S (β i

II)), so that when the OQS
approaches the asymptotic state, solid lines tend to the dashed lines. Initially the OQS is in a thermal state at βI and departs from
it as it evolves. We observe that this departure happens faster for a larger separation between the thermal states of the
environments. The red line represents the distance dpr = 10−2 and the rest of the parameters are as in figure 4.

Figure 6. Prethermalization time, as a function of the coupling strength gII, for a fixed βI = 1.1 varying βII (the left panel) and
for fixed βII = 1.1 varying βI (right panel). The rest of the parameters are the same as in figure 2.

figure 6. In this figure we checked that condition (30) is fulfilled for all points. It was pointed out in [33]
that the thermalization time tII scales as g−1

II similarly as tpr, and we checked that this is true for our case8 as
well.

From figures 4 and 6 we also observe that the time the OQS stays in the prethermal state is shorter for a
higher temperature of RII (lower βII), while the duration of the prethermalized state increases with βII. A
similar qualitative behaviour is observed for varying βI (see right panel of figure 6), but the overall
prethermalization scale is smaller in case of a larger βI.

8 In [33] the thermalization timescales with g−2, where the weakly perturbed Hamiltonian is proportional to g. In our case the
perturbation is proportional to gλ,k and gII ∝ |gλ,k|2.

9
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Figure 7. Panel (c) represents the heat flux corresponding to the system coupled to two equilibrium environments, as depicted
in panel (a). Panel (d) represents the heat flux where each of the environments are out of equilibrium, as depicted in panel (b).
Both panels (c) and (d) show how different initial conditions evolve, after some time, to a flux J ss(qs)

(
βL

I , βR
I

)
. However, while in

the simple case (c) this flux remains constant, in (d) the system continues to evolve to a final flux given by βL
II and βR

II. The
parameters are ω0 = 1, gI = 10−2, gII = 10−3, sI = sII = 1, ωcI = ωcII = 10 for both environments, while the temperatures differ
as βL

I = 1, βR
I = 0.1, βL

II = 0.1 and βR
II = 1. We plotted a special initial condition in blue that starts in the steady state defined by

the temperatures of the first reservoirs. Panel (e) shows a more complex evolution of the fluxes in which there are two sign flips of
the heat flux. The parameters of this simulation are βR

I = 0.1, βL
I = 0.5, βR

II = 1, βL
II = 10, gR

II = 10−2 and gL
II = 10−5, while the

rest of parameters are the same as the other plots.

6. Composite non-equilibrium environments

In the scenario discussed in the previous sections, the OQS is expected to reach a steady state at thermal
equilibrium, consistent with the temperature of the largest reservoir RII. However, using the same ME
formalism it is also possible to construct more complex scenarios in which the steady state of the open
system is out of equilibrium, for instance when the system is coupled to two independent environments, as
depicted in the left column of figure 7. The additional environment gives rise to a new dissipative term in
the master equation (15) and a new term in the environment corrected Hamiltonian H(t). The
corresponding rates and Lamb shift corrections are computed identically as before. The heat flow between
environments produces a change in the energy of the system ES = Tr{HSρS(t)}, where HS is the system
Hamiltonian. The evolution of this quantity can be expressed by the canonical ME (15) as

dES

dt
= −iTr

{
HS[H̃(t), ρS(t)]

}
+

∑

ν=L,R

Tr
{

HSD(ν)(t, ρS(t))
}

, (33)

where the superindex (ν) = {L, R} refers to the left and right environments and H̃(t) = HS +∑
ν

1
2Δω(ν)(t)σz. Since H̃(t) and HS are both proportional to σz, the first term vanishes, and the second one

defines the heat fluxes
J (ν)(t) = Tr

{
HSD(ν)(t, ρS(t))

}
, (34)

from environment (ν) to the OQS. By convention, we consider the heat flux from the right reservoir to be
positive, and the one from the left to be negative. Thus, a positive total heat flux indicates a flow of energy
from right to left, and vice versa. In the following subsections we first analyze the heat fluxes when the left
and right reservoirs are each in a thermal equilibrium state, and then when each of them are out of
equilibrium.

6.1. Heat flux between environments in equilibrium
In the case of equilibrium environments of figure 7(a), which we depict as single reservoirs on each side of
the OQS, any initial state reaches a non equilibrium steady state that depends on the initial state of both
environments under our model assumptions. In figure 7(c) we plot the total heat flux J L(t) + J R(t)
calculated using equation (34) with γ(ν)

+ = J(ν)
I (ω0)n(ν)

I (ω0) and γ(ν)
− = J(ν)

I (ω0)(n(ν)
I (ω0) + 1) the decay rates

of the spin boson model with one reservoir. We observe that initially, the heat flux depends on the initial
condition, but after some time it always converges to the value in the steady state,

J ss(ν) = ω0

[
γ(ν)
+ − ρ

qs
++(βL

I , βR
I )

(
γ(ν)
+ + γ(ν)

−
)]

, (35)
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where ρqs
++(βL

I , βR
I ) is given in appendix G. When the OQS reaches the asymptotic state there is a constant

heat flux from the environment with the higher temperature. In figure 7(c), which corresponds to βR
I < βL

I ,
this is observed by a positive steady state flux.

6.2. Heat flux between environments that are out of equilibrium
We now consider the case where the OQS is coupled to two out of equilibrium reservoirs, as schematically
depicted in figure 7(b). Figure 7(d) shows that the heat flux, independently of the initial condition, is
dominated by the temperature gradient between βR

I and βL
I , while the gradient for β(R,L)

II becomes relevant
at longer times. The timescale in which each gradient is dominant is determined by g(ν)

II . Interestingly, we
observe that the interplay between these gradients may even produce a change of sign in the current. This is
because we have chosen βR

I < βL
I , but βR

II > βR
II, such that the quasi-stationary flux is positive (the right RI

is hotter than the left RI), while at long times is negative (since the right RII is colder than the left RII).
Moreover, one can tune these gradients and the couplings g(ν)

II to be such that there are two changes of
sign in the heat current. This is observed in figure 7(e), where βR

I < βL
I < βR

II < βL
II and gR

II > gL
II, which

leads to an initial and final positive flux (βR
i < βL

i ). But as gR
II > gL

II there is some time that the
quasi-stationary flux is determined by βL

I < βR
II, such that the flux during that time is negative.

The stationary and quasi-stationary states for the setup figure 7(b) can be explicitly derived, and are
shown in appendix G.

7. Conclusions

We have presented a model to describe an OQS which is coupled to a hierarchy of environments at different
temperatures, a situation that can be found in complex environments and interfaces that are present in both
natural and quantum technological scenarios. Although these situations are in principle very complex to
analyse, we have shown here that, under certain constraints, one can extract a well-behaved master equation
that allows such a description in relevant limits.

In detail, we have considered an open system directly coupled to a reservoir RI, at an inverse
temperature βI, that is driven out of equilibrium because of its coupling to a second reservoir RII at βII.
With the use of weak coupling and Markovian approximations, we have derived a master equation to
describe the evolution of the reduced density matrix of the system, by tracing out the evolution of the
environment. Even with these approximations, we were able to observe a rich dynamics of the open system,
with the existence of a transitory state, called prethermal state, before the final thermalization, which was
found to be determined by the larger reservoir solely. We investigated under which conditions
prethermalization is present, and concluded that this state is longer lived when the reservoir RI, directly
coupled to the OQS, is hotter and RII colder, as well as when the coupling between reservoirs is the smallest
possible. We presented a way to characterize prethermalization that is independent of the initial condition
of the OQS, through the evolution of the volume of accessible states.

We have also shown that non-trivial dynamics and competing timescales are also present when we
consider two out of equilibrium environments coupled to the system. It is well-known that, in the standard
situation where the environments are in equilibrium, a heat flux with a given direction (from the hot to the
cold reservoir) is established and prevails at long times. Interestingly, when considering out of equilibrium
environments we observe that the timescales induced by different environments may induce that the heat
flux switches direction, even more than once.

As shown, the OQS dynamics and its currents do not evolve according to a single timescale, but present
a richer dynamics that may be evident in experiments and quantum information processes, particularly at
long times. The presence of a prethermalization transitory may be harnessed in quantum technological
applications, for instance by considering the initialization protocols of a qubit based on coupling it to a
reservoir [42, 43]. The added reservoir can potentially be controlled by a second one, according to our
scheme, in order to optimize further the protocol. In other words, our work describes the possibility of
manipulating and controlling an open system by externally modifying and controlling the reservoir to
which it is directly coupled.

Our scheme can be adapted to include more external reservoirs at different temperatures. Multiple layer
environments can be found, for instance, in superconducting quantum computers, where qubits are
affected not only by surrounding layers cryogenically cooled, but also by outer layers at increasingly higher
temperatures. Considering this reservoir structure would allow us to find additional transitory and steady
states of the OQS, which can potentially be harnessed and controlled. An interesting subject for further
investigation would also be the consideration of the dynamics beyond the weak-coupling approximation,
and the inclusion of non-Markovian effects.
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Appendix A. Canonical master equation, decay rates and frequency shift

For the interaction Hamiltonian considered in equation (7), the canonical decay rates and decoherence
channels of the master equation (11) are

γ1(t) = P(t) + P∗(t) ≡ γ+(t), L1(t) = σ+ ≡ L+,

γ2(t) = M(t) + M∗(t) ≡ γ−(t), L2(t) = σ− ≡ L−,

γ3(t) = 0, L3(t) =
1√
2
σz , (A1)

where we defined

P(t) =

∫ t

0
dt′α+(t, t′)e−iω0t′ , (A2)

and

M(t) =

∫ t

0
dt′α−(t, t′)eiω0t′ . (A3)

The operator H(t) is a modification of the free Hamiltonian of the OQS

H(t) = HS +
1

2
Δω(t)σz, (A4)

which, in this case, represents a shift of the natural frequency of the system, given by

Δω(t) =
i

2
(P(t) − P∗(t)) − i

2
(M(t) − M∗(t)). (A5)

Therefore, this Hamiltonian can be rewritten as

H(t) =
1

2
Ω(t)σz, (A6)

where Ω(t) = ω0 + Δω(t), is the shifted frequency of the OQS due to the action of the environment. The
ME for the different matrix elements of the reduced density matrix reads

ρ̇++(t) =γ+(t) − ρ++(t)[γ+(t) + γ−(t)],

ρ̇+−(t) = {−iΩ(t) − [γ+(t) + γ−(t)]}ρ+−(t),
(A7)

where ρ++(t) = 〈+|ρS(t)|+〉 is the upper population and ρ+−(t) = 〈+|ρS(t)|−〉 is the coherence, in the |±〉
eigenbasis of HS. We made use of the trace preservation of the dynamical map.

Appendix B. Evolution of RI operators

The time evolution of the operator aλ(t) is given by the Heisenberg equation

d

dt
aλ(t) = i [HE, aλ(t)] = −iωλaλ(t) − i

∑

k

g̃λkbλk(t), (B1)

where bλ,k(t) is, in turn, given by its corresponding equation

d

dt
bλk(t) = i [HE, bλk(t)] = −iωλ,kbλk(t) − ig̃λkaλ(t). (B2)

Formal integration of the latter and substitution on the former yields

d

dt
ãλ(t) = −i

∑

k

g̃λkbλk(0) e−i(ωλ,k−ωλ)t −
∑

k

g̃2
λk

∫ t

0
dt′ e−i(ωλ,k−ωλ)(t−t′)ãλ(t′), (B3)
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where we also performed the change of variable ãλ(t) = eiωλtaλ(t) in order to separate the free evolution
part of this operator for a better implementation of the following approximation. The first term on the rhs
is the quantum noise originated by RII. The second term can be simplified under the Weisskopf–Wigner
approximation [44, 45], where the operator ãλ(t) is assumed to vary with a rate slower than ωλ. This allows
us to move the operator ãλ(t) outside the integral and, since the exponential inside the integral evolves
faster than ãλ(t), to extend the integration limit to infinity, i.e.

∫ t

0
dt′ei(ωλ−ωλ,k)(t−t′)ãλ(t′) ≈ ãλ(t)

∫ ∞

0
dτei(ωλ−ωλ,k)τ , (B4)

where the change of variable τ = t − t ′ has been performed. The above approximation is, in fact, a
Markovian approximation for the interaction with RII, since the operator ãλ(t) only depends on t, so that
we have neglected its past evolution. This integral can be solved via the Sokhotski–Plemelj theorem by
rewriting the second term in the rhs of equation (B3) as γλãλ(t), where we defined the damping constant

γλ = π
∑

k

|g̃λk|2δ(ωλ,k − ωλ) − i
∑

k

|g̃λk|2P
(

1

ωλ,k − ωλ

)
. (B5)

This approximation allows for an exact solution of equation (B3), which after undoing the change of
variable introduced above leads to

aλ(t) = aλ(0)e−(iωλ+γλ)t +

∫ t

0
dt′e−(iωλ+γλ)(t−t′)fλ(t′), (B6)

where we introduced
fλ(t) = −i

∑

k

g̃λkbλk(0)e−iωλ,kt . (B7)

Appendix C. Correlation function of the ME

Once the time dependence of the operator B(t) =
∑

λ gλaλ(t) is explicitly known, we can compute the
correlation functions (12). First notice that the first (second) term of equation (B6) is lineal in operators
acting on RI (RII), so that the traces, which are linear in these operators, will be null, and only the quadratic
ones will yield non vanishing terms. In this way α+(t, τ ) becomes

α+(t, τ) =
∑

λ,λ′
g∗
λgλ′ e(iωλ−γλ)te(−iωλ′−γλ′ )τ TI

λ,λ′ +
∑

λ,λ′
g∗
λgλ′

∫ t

0
dt′

∫ τ

0
dt′′TII

λ,λ′ (t′, t′)

× e(iωλ−γλ)(t−t′)e(−iωλ′−γλ′ )(τ−t′′),

(C1)

where the first trace is

(C2)

and similarly the second one gives

TII
λ,λ′ (t′, t′) = TrI,II{ f †

λ (t′)fλ′ (t′′)(ρI(0) ⊗ ρII(0))}

=
∑

k,k′
g̃∗

λkg̃λ′k′eiωλ,kt′e−iωλ′ ,k′ t′′ nII(ωλk)δλ,λ′δk,k′ ,
(C3)

where the commutation relations (5) have been used, and ni(ω) = [exp(βiω) − 1]−1 is the average thermal
number of quanta in the mode ω at an inverse temperature β i, for the i = {I, II} environment. After these
results, it remains to perform the sums in λ′ and k′, and the integrals of the second term to yield

α+(t, τ) =
∑

λ

|gλ|2nI(ωλ)eiωλ(t−τ)e−γλ(t+τ) +
∑

λ,k

|gλ|2|g̃λk|2nII(ωλk)Cλ,k(t, τ), (C4)

where we defined

Cλ,k(t, τ) =
eiωλ,kt − e(iωλ−γλ)t

−i(ωλ − ωλ,k) + γλ

e−iωλ,kτ − e(−iωλ−γλ)τ

i(ωλ − ωλ,k) + γλ
. (C5)
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Figure 8. Comparison between the exact and the approximation of each term of the canonical decay rates. The environments
parameters are ω0 = 1, gI = gII = 10−2, sI = sII = 1, ωcI = ωcII = 10, βI = 0.1 and βII = 0.2. The long term exact solution
presents some numerical noise.

By following similar steps one arrives, for α−(t, τ ), to

α−(t, τ) =
∑

λ

|gλ|2(nI(ωλ) + 1)e−iωλ(t−τ)e−γλ(t+τ) +
∑

λ,k

|gλ|2|g̃λk|2(nII(ωλk) + 1)C∗
λ,k(t, τ). (C6)

The spectral function is related to the couplings in equations (C4) and (C6) in the following way

JI(ω) = 2π
∑

λ

|gλ|2δ(ωλ − ω), (C7)

for RI and
Jλ

II(ω) = 2π
∑

k

|g̃λ,k|2δ(ωλ,k − ω), (C8)

for RII, where the λ index in Jλ
II(ω) corresponds to the reservoir to which mode aλ is coupled to. We will

assume that all the reservoirs that surround any aλ are identical, so that we drop the λ dependence on the
spectral function of RII. These definitions allow us to reformulate the problem in integral form.

Since in the master equation (11) the system operators evolve with τ − t, it is suitable to introduce the
change of variable t′ = t − τ . With these considerations one obtains the correlation functions in
equation (16) in integral form. We also comment that we have neglected the imaginary part of (B5) such
that γλ = JII(ωλ)/2. It is well-known that the contribution of the imaginary part of equation (B5) can be
re-casted as a Lamb shift Hamiltonian of the form HLS

RI =
∑

λ γ
imag
λ a†

λaλ, where γ
imag
λ = �{γλ}. This

Hamiltonian is diagonal with HRI, and therefore only contributes as a shift to the energies ωλ that is not
relevant for our analysis.

Appendix D. Validity of approximate decay rates

The validity of the approximation of the Lorentzian kernel K(ω, ω′) in equation (17) by a delta function in
order to obtain an analytical expression for the canonical decay rates, depends on the parameters of the
spectral functions (10) for both environments. We have numerically checked the accuracy of the
approximation for a broad range of parameters that is relevant for our study. This is illustrated in figure 8,
where we compare both terms of γ+(t) with the exact result (numerical integration of equation (A2)). The
ST term does not reproduce the oscillations of the exact solution, while the LT term perfectly matches the
exact result.

We also considered a more accurate approximation, which consists in taking JII(ω) independent of ω,
instead of approximating K(ω, ω0) by a delta function. This allowed to resolve the oscillatory nature of γST

± ,
which is of frequency ω0, but the result is not as intuitive as the decay rates (19) and (20).

14
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Appendix E. Equilibrium asymptotic state

With the help of the approximation (19) and (20) we are able to compute the asymptotic state, and prove
that the OQS thermalizes to a thermal state with the temperature of RII. Consider the differential equation
for the upper population in equation (A7), and the asymptotic limit

ρss = lim
t→∞

ρS(t), (E1)

where the density matrix becomes independent of time, then

ρss
++ = lim

t→∞
γ+(t)

γ+(t) + γ−(t)
=

e−βIIω0/2

eβIIω0/2 + e−βIIω0/2
. (E2)

The coherence matrix element obeys an oscillatory decay equation, encoding the decoherence of the OQS.
Trace preservation and hermiticity of the density matrix can be used to obtain the remaining matrix
elements, so as to check that, indeed

ρss =
e−HSβII

Z(βII)
, (E3)

i.e., the OQS asymptotic state is a thermal state at temperature βII.

Appendix F. Asymtotic limit of the center of the ball of accessible states

To consider the limit JII(ω0)t → ∞ of equation (26), we first introduce the following change of variables

x = Ae−JII(ω0)t′ , (F1)

with

A = 2(nI(ω0) − nII(ω0))
JI(ω0)

JII(ω0)
, (F2)

B = (2nII(ω0) + 1)
JI(ω0)

JII(ω0)
, (F3)

and
ε = e−JII(ω0)t . (F4)

Then equation (26) becomes

c(ε) =
JI(ω0)

JII(ω0)
(Aε)BeAε

∫ Aε

A
x−B−1e−x dx (F5)

which can be rewritten as a difference of two incomplete gamma functions

c(ε) =
JI(ω0)

JII(ω0)
(Aε)BeAε [Γ(−B, A) − Γ(−B, Aε)] , (F6)

where we made use of the definition

Γ(a, z) =

∫ ∞

z
ta−1e−t dt. (F7)

The first term of equation (F6) is null in the limit ε → 0 (JII(ω0)t → ∞), while the second one becomes
equation (31) after taking the limit

lim
ε→0

Γ(−B, Aε)

(Aε)−B
=

1

B
. (F8)

Appendix G. Non-equilibrium asymptotic state

The addition of a new environment is encoded, in the ME for the upper population, as

ρ̇++(t) =
∑

ν={L,R}

(
γ(ν)
+ (t) − ρ++(t)[γ(ν)

+ (t) + γ(ν)
− (t)]

)
, (G1)

which in the steady state limit allows us to obtain

ρss
++ = lim

t→∞
γL
+(t) + γR

+(t)

γL
+(t) + γR

−(t) + γR
+(t) + γR

−(t)
. (G2)

15
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By taking the limit, one obtains the following matrix element of the non-equilibrium steady state

ρss
++ =

JL
I (ω0)nL

II(ω0) + JR
I (ω0)nR

II(ω0)

JL
I (ω0)(2nL

II(ω0) + 1) + JR
I (ω0)(2nR

II(ω0) + 1)
, (G3)

while the coherence matrix element in the steady state is null. The rest of the matrix elements can be
obtained from the trace preserving property of the evolution. Even though this steady state does not directly
represent a thermal state, one can obtain an effective temperature for the OQS, since it is a diagonal state in
the basis of HS. The effective temperature of the OQS in the steady state is defined as

βeff =
1

ω0
ln

(
1 − ρss

++

ρss
++

)
, (G4)

which is a function of both temperatures βII of the environments. A very similar expression is obtained for
the quasi-stationary states ρ

qs
++(βL

i , βR
j )

JL
I (ω0)nL

i (ω0) + JR
I (ω0)nR

j (ω0)

JL
I (ω0)(2nL

i (ω0) + 1) + JR
I (ω0)(2nR

j (ω0) + 1)
, (G5)

where the indices i, j refer to whether the corresponding environment is in the prethermal state (i = I) or in
the asymptotic state (i = II). This allows us to obtain the quasi-stationary state of the OQS when both
environments are prethermalizing (i = j = I), or the state when one has thermalized while the other
remains in the prethemalization stage (i = I, j = II, or interchanged). When i = j = II it corresponds to the
asymptotic state of equation (G3).
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A quantum walk simulation 
of extra dimensions with warped 
geometry
Andreu Anglés‑Castillo* & Armando Pérez

We investigate the properties of a quantum walk which can simulate the behavior of a spin 1/2 particle 
in a model with an ordinary spatial dimension, and one extra dimension with warped geometry 
between two branes. Such a setup constitutes a 1+ 1 dimensional version of the Randall–Sundrum 
model, which plays an important role in high energy physics. In the continuum spacetime limit, the 
quantum walk reproduces the Dirac equation corresponding to the model, which allows to anticipate 
some of the properties that can be reproduced by the quantum walk. In particular, we observe that 
the probability distribution becomes, at large time steps, concentrated near the “low energy” brane, 
and can be approximated as the lowest eigenstate of the continuum Hamiltonian that is compatible 
with the symmetries of the model. In this way, we obtain a localization effect whose strength is 
controlled by a warp coefficient. In other words, here localization arises from the geometry of the 
model, at variance with the usual effect that is originated from random irregularities, as in Anderson 
localization. In summary, we establish an interesting correspondence between a high energy physics 
model and localization in quantum walks.

Quantum walks (QWs) constitute an interesting possibility for simulating physical phenomena from many 
fields. The discrete time version describes the motion of a spin 1/2 particle on a lattice. For instance, by simply 
incorporating suitable position-dependent phases on the unitary operator that implements the time evolution, 
one can mimic the effects of an external electromagnetic  field1–8. In the continuum limit (when both the time step 
and the lattice spacing tend to zero), the Dirac equation in presence of such fields is recovered. In an analogous 
way, the motion of a Dirac particle in presence of a gravitational field can be simulated by an appropriate choice 
of the operator that drives the evolution, either on a rectangular or other types of  lattices3,9,10. Other scenarios 
include vacuum or matter neutrino  oscillations11–13, and one can even establish some connections to lattice field 
 theories14.

There is also a different connection of QWs with quantum field theories, namely the possibility to explore 
some models which include extra dimensions, which are only manifested at very high energies. The possibility of 
extra dimensions of space was first suggested by Theodor Kaluza and Oscar  Klein15,16 seeking an unified theory 
of electromagnetic and gravitational fields into a higher dimensional field, with one of the dimensions compac-
tified. Experimental data from particle colliders restrict the compactification radius to such small scales that it 
becomes virtually impossible to explore these extra dimensions. Different ideas have been proposed to overcome 
this difficulty, for example the domain wall model introduced by Rubakov and  Shaposhnikov17, in which the 
particle couples to an external scalar field. The motion of a spin 1/2 particle moving inside such a geometry was 
analyzed in Ref.18. In addition to recovering the corresponding Dirac equation in the continuum limit, the QW 
shows, at finite spacetime spacing, localization of the particle within the brane due to the coupling to the field.

Spatial localization is an important phenomenon in physics, which appears within the context of diffusion 
processes in lattices. It can arise from random noise on the lattice sites, giving rise to Anderson  localization19 
and causing a metal-insulator transition, but it can also be the consequence of the action of an external periodic 
potential (see e.g. Refs.20–22). Similarly, one obtains localization for the 1-dimensional QW when spatial disorder 
is  included23–25, non-linear  effects26, or by the use of a spatially periodic  coin27. The results in Ref.18 show, however, 
that localization can also appear as a consequence of the interaction with a smooth external potential, instead of 
a random, or even periodic, perturbation.

In this paper, we investigate localization effects that arise within a different context, which is also inspired 
on high energy physics, and was originally proposed to address the hierarchy problem (the observed difference 
between the Higgs mass, and the Planck scale, in many orders of magnitude), and is commonly referred to as 
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the Randall–Sundrum  model28. This model assumes an extra dimension which extends between two branes 
(with a topology that will be discussed later). Here we consider a simplified version with one ordinary spatial 
dimension and one extra dimension, and define a QW that reproduces the dynamics of a spin 1/2 particle in the 
continuum spacetime limit.

Unlike the Rubakov and Shaposhnikov model, there is no coupling to an external scalar field. Instead, this 
model presents a warped geometry along the extra dimension. As we will show, this curvature is at the root of 
a localization effect of the QW towards the second (low energy) brane. The stationary states of the model in 
the continuum limit become concentrated close to the low energy brane for high values of the warp coefficient, 
which quantifies the strength of the localization. The localization of the QW can be analyzed by quantifying its 
overlap with these stationary states. This allows us to tailor the dynamics of the QW, showing a different behavior 
as the value of the warp coefficient is changed. In this way, we arrive at a QW model with a rich phenomenology, 
where some properties are inherited from the continuum field theoretic model. There is, in this sense, a mutual 
multidisciplinary benefit: one can design a QW which simulates an important high energy physics model. In 
exchange, the knowledge of the continuum properties is useful to understand, and to control, the dynamics of 
the QW in different regimes.

This paper is organized as follows. We first define the Randall–Sundrum model in 1+ 1 spatial dimensions, 
along with its main properties. We pay special attention to the stationary states of the Hamiltonian, which play a 
crucial role in understanding the dynamics of the proposed QW. Next, we define a QW which allows to recover 
the dynamics of the Randall–Sundrum model for a spin 1/2 particle, and we study its phenomenology. Namely, 
we show that the distribution probability, as well as the expected value of the position along the extra dimen-
sion, approaches the lower brane at large time, and that this approaching proceeds more slowly for larger values 
of the warp coefficient, which turns out to be the main parameter in controlling the dynamics. We also analyze 
the entanglement entropy between spatial and internal degrees of freedom, exhibiting a complex behavior as a 
function of that parameter, which can be attributed to the different sharpness of the probability distribution. We 
finally conclude by collecting and discussing our main results.

The model
Orbifold S1/Z

2
 and background geometry. As described in the “Introduction”, we consider the Ran-

dall–Sundrum model (RSM)28 with a single extra dimension y, together with a 2-dimensional ordinary space-
time, whose coordinates are denoted by xµ = {t, x} . The total spacetime possesses D = 3 dimensions. The extra 
dimension y is compactified on a circle of radius R, and subject to a Z2 symmetry. These features are captured 
by the equivalences

which define the orbifold S1/Z2 describing this extra dimension. Along the y dimension, the orbifold is a finite 
segment with two fixed points at y = 0 and y = πR ≡ L . The RSM assumes that there is a (D − 1)-brane of ordi-
nary dimensions at each fixed point, see Fig. 1 for a sketch of the space configuration and the orbifold symmetries.

The matter fields are supposed to reside on the brane at y = L , which is referred to as the “visible brane”, while 
the brane at y = 0 is the “hidden brane”. Both branes contribute to the bulk background geometry through their 
tensions, or vacuum energies, Tvis and Thid  respectively28,29. The total background action is

where the first term is the usual Einstein–Hilbert action of the total space, with � the bulk cosmological constant, 
α a constant and |g| the absolute value of the metric determinant, while

(1)S1 : y ∼ y + 2πR ,

(2)Z2 : y ∼ −y,

(3)S =
∫ L

−L
dy

∫
dxµ

√
|g|

(
2αR −�

)
+ Svis + Shid,

Figure 1.  Schematic representation of the extra dimension in the Randall–Sundrum model.
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are the action contributions of the branes tensions, with the induced metrics gvis(xµ) = g(xµ, y = L) and 
ghid(x

µ) = g(xµ, y = 0) . To address the hierarchy problem, the following metric was proposed

where e−2A(y) is a warp factor, a rapidly changing function along the additional dimension, and ηµν is the 
Minkowski metric with signature (+,−) . The metric in Eq. (6) obeys Einstein’s equations that are obtained from 
the action (3): We refer the reader to the Supplementary Information for the standard computation particular-
ized to this lower-dimensional spacetime. We also show that, as a consequence of these equations, the function 
in the exponent is given by

where k is the so called warp coefficient.

Fermions in the Randall–Sundrum model. We now focus on the study of spin 1/2 fermions, whose 
evolution equation is the Dirac equation in curved spacetime

The γ a are the Dirac gamma matrices in a local rest frame, and the covariant derivative is

where ωab
µ  is the spin connection. The vierbeins eµa  allow to express the Dirac matrices in a rest frame, that is, 

they perform a change of basis to a non-coordinate system in which the metric becomes the Minkowski metric

Equation (8) defines the vector current

whose conservation ∂µjµ = 0 imposes the normalization condition

In the case of 2 spatial dimensions, the Dirac equation (8) can be reduced, after some algebra, to

where the γa matrices become Pauli matrices. A simple choice of the vierbein obeying relation (10) is

which yields the following expression for the Dirac equation

This expression can be rewritten in Hamiltonian form as

with

where the change of variable χ = e−A(y)/2� was performed, and we defined

The symbol {·, ·} represents the anticommutator of two operators. There is some freedom in the choice of the 
gamma matrices. For convenience, we choose

(4)Svis = −
∫

dxµ
√

|gvis|Tvis,

(5)Shid = −
∫

dxµ
√

|ghid|Thid,

(6)ds2 = e−2A(y)ηµνdx
µdxν − dy2,

(7)A(y) = k|y|,

(8)(iγ aeµa Dµ −m)� = 0.

(9)Dµ = ∂µ − i

4
ωab
µ σab, with σab =

i

2
[γa, γb],

(10)gµνe
µ
a e

ν
b = ηab.

(11)jµ =
√

|g|eµa �γa� ,

(12)
∫

dxµ
√

|g|e00�†� = 1.

(13)iγ a

[

eµa ∂µ� + 1

2
√

|g|
∂µ(e

µ
a

√

|g|)�
]

−m� = 0,

(14)e0 = (eA(y), 0, 0), e1 = (0, eA(y), 0), e2 = (0, 0, 1),

(15)i∂t� = −iγ 0γ 1∂x� − iγ 0γ 2∂y(e
−A(y)�)+ γ0e

−A(y)m� .

(16)i∂tχ = Hχ ,

(17)H = − i

2
{Bx , ∂x} −

i

2
{By , ∂y} + γ0e

−A(y)m,

(18)Bx = γ 0γ 1 , By = e−A(y)γ 0γ 2.
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Boundary conditions for fermionic fields. The periodic condition (1) simply implies that the fermionic 
fields need also to be periodic

but the Z2 needs a deeper consideration, since it has to leave the fermionic action invariant. We can write the 
fermionic action as

which is extremized by the Dirac equation (15). Under Z2 , the fermionic action becomes

The general boundary condition for a fermionic field under Z2 is given by χ(xµ,−y) = Tχ [Z2]χ(xµ, y)
30,31, where Tχ [Z2] is the matrix representation for the action of Z2 . We rename it to Tχ [Z2] = M to alleviate 
the notation. We then need to find an operator M that keeps the action invariant. The action (22) is therefore 
transformed as

and establishes the following restrictions for M to keep the action (21) invariant,

where the first 2 conditions come from the kinetic terms of the action, and the last one arises from the mass term. 
There does not exist a solution for M that solves all conditions simultaneously, although M = ησz is a solution 
for the first 2, with η = ±1 (since M2 = I ). This means that a constant mass term is forbidden. In the following 
we restrict ourselves to the case where the “bulk mass” m vanishes. The action of the fermionic field is therefore

and the fermionic field has to obey the boundary condition

with η = ±1.

Stationary solutions. In this model, the Dirac field satisfies a complicated equation, Eq. (15), which is dif-
ficult to address even numerically. In order to obtain some insight, we first look for stationary solutions, which 
are defined as the eigenstates of the Hamiltonian. For m = 0 , and with our choice of the gamma matrices, the 
Hamiltonian takes the form

where pk = −i∂k is the momentum operator along the k direction ( k = x, y ). The stationary states φn(x, y) cor-
responding to energy En satisfy

It is convenient to introduce a Fourier transform on the ordinary dimension x:

since the field is free to move along this direction. We found the energies

where

(19)γ 0 = σx , γ 1 = iσy , γ 2 = iσz .

(20)χ(xµ, y + 2L) = χ(xµ, y),

(21)SF =
∫

dxµ
∫ L

−L
dyχ(xµ, y)

(

iγ µ∂µ + iγ 2∂ye
−A(y) − e−A(y)m

)

χ(xµ, y).

(22)SF =
∫

dxµ
∫ L

−L
dyχ(xµ,−y)

(

iγ µ∂µ − iγ 2∂ye
−A(−y) − e−A(−y)m

)

χ(xµ,−y).

(23)SF =
∫

dxµ
∫ L

−L
dyχ(xµ, y)γ 0M†γ 0

(

iγ µ∂µ − iγ 2∂ye
−A(y) − e−A(y)m

)

Mχ(xµ, y),

(24)γ 0M†γ 0γ µM = γ µ,

(25)γ 0M†γ 0γ 2M = −γ 2,

(26)γ 0M†γ 0M = I,

(27)SF =
∫

dxµ
∫ L

−L
dyχ(xµ, y)

(

iγ µ∂µ + iγ 2∂ye
−A(y)

)

χ(xµ, y),

(28)χ(xµ,−y) = ησzχ(x
µ, y),

(29)H = −σz p̂x +
σy

2

(

e−A(y)p̂y + p̂ye
−A(y)

)

,

(30)Hφn(x, y) = Enφn(x, y).

(31)φ̃n(q, y) =
∫

dxe−iqxφn(x, y),

(32)En = ±
√

q2 + (kαn)
2,
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The eigenfunctions associated with this spectrum that satisfy the boundary condition (28), for the particular 
case with η = 1 , are

where the components of the spinor field are φ̃n = (φ̃
↑
n , φ̃

↓
n )

T . The particular case n = 0 only has an upper 
component, which is given by

and is undefined for energy and momentum with different sign. The procedure to obtain the eigenfunctions 
is detailed in the Supplementary Information, as well as the solution for η = −1 . The probability distribution 
associated to these wavefunctions is concentrated around y = L for high values of the warp coefficient k. We 
illustrate this behavior in Fig. 2, where we have plotted the probability density for the first modes with positive 
energy, and momentum q = 10 , for a value of the warp coefficient kL = 3 and kL = 7 , respectively.

A quantum walk for the Randall–Sundrum model
Once we have discussed the main properties of the RSM in the continuum spacetime, we focus on the main goal 
of our work, which consists in constructing a QW that is able to simulate the dynamics of a spin 1/2 particle 
subject to the geometric effects and symmetries of the model. To incorporate the metric, we adapt the scheme 
introduced in Ref.9, which allows to reproduce (in the continuum limit) a Dirac equation of the form Eq. (16).

The QW is defined on a 2-dimensional discrete grid with x and y axis, with discrete positions labeled by 
r and s, respectively. The grid points are equally spaced by ε , so that the spatial coordinates can be related to 
the grid points by x = εr and y = εs . The Hilbert space that corresponds to these spatial degrees of freedom, 
Hspatial is spanned by the basis {|x = εr, y = εs�}/r, s ∈ Z . Time steps are labeled by j ∈ N , and are also equally 
spaced by ε . The coin (or internal) space is a 2 dimensional Hilbert space Hcoin , so that the total Hilbert space 
is Htot = Hspatial ⊗Hcoin . At a given time step, the state of the walker will be represented by a two component 
spinor |χj� ∈ Htot . The one step evolution of the QW is given by

where we made use of the general operator introduced in Ref.9. The structure of U consists on alternating dis-
placement operators along each direction, together with unitary operators which are functions of some angle 
that is allowed to be spacetime dependent. Since the displacement operator and the position-dependent unitaries 
do not commute in general, a term containing the spatial derivative of those unitaries appears in the continuum 
limit, which is needed for a construction that takes the form of Eq. (17). The angles appearing in this general 
expression have to be chosen to reproduce the appropriate operators Bx and By given by Eq. (18) that correspond 

(33)αn = nπ

ekL − 1
, n = 0, 1, . . .

(34)φ̃↑
n (q, y) =

√

2k

ekL − 1

En + q
√

(En + q)2 + (kαn)2
e
k|y|
2 cos

[

αn

(

ek|y| − 1
)]

,

(35)φ̃↓
n (q, y) =

√

2k

ekL − 1

kαn
√

(En + q)2 + (kαn)2
e
k|y|
2 sin

[

αn

(

ek|y| − 1
)]

sign(y),

(36)φ̃
↑
0 (q, y) =

√

k

ekL − 1
e
k|y|
2 sign(En + q),

(37)|χj+1� = U |χj�,

Figure 2.  Plots of the probability distribution for the first four stationary states, with positive energy and a value 
of q = 10 , for kL = 3 on the left and for kL = 7 on the right.
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to the metric (or vierbein) of the model. Some of these angles are trivial in our case, so that one arrives to a 
simplified expression, given by (details are given in the Supplementary Information):

where Sk(ε) = exp(−iσzpkε) are spin-dependent shift operators in the direction ±k (with k = x, y),

with c(y) = e−A(y) , s(y) =
√

1− e−2A(y) , and

where f (y) =
√

1+c(y)
2 + i

√

1−c(y)
2  . At each position (r, s) we introduce

which represents the amplitude (given a component of the spin) for the particle to be localized at the position 
labeled by (r, s) and time step j. In this way, the time step defined by (37) can be recast as a recursive formula for 
χj,r,s , which is provided in the Supplementary Information. In order to implement this QW to simulate fermions 
in the RSM, appropriate conditions have to be set to comply with the boundary conditions (20) and (28). It can 
be explicitly shown, from the recursive formula for χj,r,s , that this QW dynamics respects (28), in the sense that, 
if the walker obeys the condition

at time j, it is also obeyed at time j + 1 . For the simulations, we discretize the y coordinate along the segment 
[−L, L] with a spacing ε , and impose an initial condition which satisfies Eq. (42). We use the same lattice spacing 
in the x direction, together with an strategy that adapts its effective extension to the time step. We also impose 
periodic boundary conditions on the grid to respect condition (20), taking into account that functions evaluated 
at y = L+ ε should be identified with functions at y = −L+ ε to respect the periodicity in the range [−L, L].

As discussed above, the parameter that governs the amount of warp in the extra dimension is given by the 
product kL. One can wonder how the ordinary spacetime limit (corresponding, in our case, to just one spatial 
dimension x) can be recovered. To this end, we consider two different lattice spacing εx and εy along the x and 
y directions, respectively. We first impose the limit kL → 0 , so that the vierbein becomes trivial (or, in other 
words, the metric gµν becomes the Minkowski metric). Still, U will contain the displacement operator Sy(−εy/2) 
along a hidden closed dimension y. To get rid of it, we just need to further take the limit εy → 0 , which yields

The above unitary operator can be interpreted as a QW which describes, in the continuum limit, the one-
dimensional Dirac equation of a massless particle, as a special case of the model.

Results
The QW defined in the previous section is guaranteed to reproduce (in the continuum limit) a Dirac equation 
of the form (16), such as the one corresponding to the RSM. The question that arises concerns the dynamics 
appearing at a finite lattice and time step spacing. Of course, one does not expect the QW to behave exactly as 
the continuum field but, to what extent do they differ? Are there any new features that appear in the discrete 
case? In particular, we are interested in looking for some kind of probability concentration towards the visible 
brane, for a given initial condition. In this Section we explore all these features.

Stationarity of the eigenstates solutions on the quantum walk. As an initial comparison, we start 
by considering the discretized version of the eigenstates corresponding to the continuum limit Hamiltonian, 
obtained before. Such states remain stationary within this limit (i.e. they just evolve by adopting a trivial phase). 
How do they evolve under the action of the QW? We consider an initial state which corresponds to an eigenstate 
of the continuum, with fixed momentum q, and check whether the QW evolution of this state is stationary. The 
initial condition of the walker is therefore

which represents a constant probability density along the ordinary dimension x. As expected, the QW evolution 
does not remain stationary, although it keeps a close resemblance to the initial state. This can be observed from 
Fig. 3, where we represented the normalized marginal probability along the y direction of the walker (after sum-
ming over x) at different time steps, for an initial stationary state solution with n = 2 , and warp coefficient kL = 3.

Localization in the QW. We now investigate the localization capability of the above defined QW, i.e., 
whether it shows a tendency to concentrate the walker towards the visible brane at y = L . We consider an initial 
walker which is fully localized

(38)U = R−1(y)
[

�(y)Sy(−ε/2)
]2
R(y)Sx(−ε),

(39)�(y) =
(

−c(y) is(y)
−is(y) c(y)

)

,

(40)R(y) = 1√
2

(

f ∗(y) if (y)
−f ∗(y) if (y)

)

,

(41)χj,r,s ≡ �x = εr, y = εs|χj� =
(

χ
↑
j,r,s

χ
↓
j,r,s

)

,

(42)χj,r,−s = ησzχj,r,s ,

(43)U → Sx(−εx).

(44)χ0,r,s = φ̃n(q, εs)e
iqεr ,
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where C0 is the initial coin state, and we recall that x = εr and y = εs . We explore the evolution of a walker which 
is initially localized at the center of the extra dimension, that is at y0 = L

2 , and we study the probability distribu-
tion for different values of the warp coefficient, at a given time step. In Fig. 4 we show the surface plot of the 
probability density with the above initial conditions, and C0 = 1√

2
(1, i)T , which induces a symmetric evolution 

in the ordinary dimension. The blue (red) color of the surface represents dominance of the upper (lower) coin 
component, while yellow stands for a superposition of both components.

We notice that most of the probability distribution in the x direction is concentrated along a freely propagating 
front which moves at the maximum speed ( x = ±t ), consistently with the fact that the QW simulates massless 
fermions. We also notice that most of the right propagating distribution (positive values of x) is dominated by the 
upper coin component, while the part propagating to the left (negative values of x) mainly contains the lower coin 
component, a fact that can also be inferred from the explicit evolution of the QW (see Supplementary Informa-
tion for details). The propagation of the walker along the extra dimension y strongly depends on the value of the 
warp coefficient. At t = 5L , the distribution with the lowest value of kL possesses non-zero values on the visible 
brane y = L , while the other two do not. In fact, the displacement of the probability distribution towards y = L 
is slower for the highest kL. In other words, a larger value of the warp coefficient dramatically increases the time 
scale of the dynamics along the extra dimension, and makes it prohibitively expensive (in terms of computational 
cost) to explore larger values of kL than those considered here.

In order to investigate whether the QW exhibits the same behavior as the stationary states, in the sense that 
a higher value of the warp coefficient induces a stronger localization near the visible brane, we study the distri-
bution of the freely propagated parts of the walker (the regions around x = ±t ), where most of the probability 
density is concentrated, as can be readily seen in Fig. 4. The probability distribution associated to these two zones 

(45)χ0,r,s = δx,0δy,y0C0,

Figure 3.  Snapshots of the probability density starting from an initial eigenstate with n = 2 and positive 
energy, for a value of kL = 3 , and q = 10 . The simulation grid has 100 points along the y direction, and enough 
points have been taken in the x direction to ensure that the total probability density does not leak outside the 
boundaries.

Figure 4.  Probability density distribution, at t = 5L , of an initial localized walker centred at (x0, y0) = (0, L/2) 
for different values of kL with initial coin components C0 = 1√

2
(1, i)T . The height of the curve represents the 

probability of finding the walker in that position, and the colors indicate the coin state. The red (blue) color 
indicates a predominance of the upper (lower) component, while yellow stands for a superposition of both 
components. The simulation grid has 100 points along the y direction, and enough points have been taken in the 
x direction to ensure that the total probability density does not leak outside the boundaries.
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will be referred to as the “freely propagating distribution” (FPD). In terms of the spinor components, those are 
the probability density distributions obtained from χR

j,s ≡ χj,j,s and χL
j,s ≡ χj,−j,s , where r = ±j restricts the wave-

function to the two freely propagating peaks. In Fig. 5 we represent the expected value for these distributions 
along the y dimension, which can be defined as

where t = εj , for different values of kL. First of all we notice that this quantity reaches an asymptotic value, which 
is closer to L for higher warp coefficients. Secondly, as discussed above, the warp coefficient induces a change in 
the time scale of the dynamics, so that lower values of the warp coefficient show a faster convergence towards 
the asymptotic state, consistently with the features already observed in Fig. 4.

Mode decomposition of the freely propagating distribution. Our simulations indicate that the FPD 
reaches a steady state along the extra dimension, in a similar fashion as the expected value (46). This evolution 
can be appreciated from the plots of Fig. 6. Al late times (lower row), the probability distribution resembles the 
probability density of a stationary state with positive energy and momentum in one of the lowest modes: n = 0 
for the right FPD, and n = 1 for the left FPD. It is important to recall that, as discussed above, the right (left) 
FPD is predominantly composed by the upper (lower) component of the spinor, and that n = 0 has no lower 
component: see Eq. (36). This causes a fundamental difference when comparing the left and right contributions. 
In order to investigate these features on the time evolution, we introduce a decomposition on the wavefunction 
of the walker as a combination of the stationary states basis. This allows us to write

where the temporal dependence is included on the βn(q, t) coefficients. In the Supplementary Information we 
detail how these factors can be computed, and define their normalization conditions. In particular, we are inter-
ested on the contribution of each value n, therefore we integrate out the dependence in the quasi-momentum q. 
In other words, we are interested on the following (time-dependent) coefficients:

The different mode components Bn(t) of Fig. 6 have been included as an inset in those plots. On the one 
hand, it can be observed that, at long times, when a steady state has been reached, the FPDs are mostly composed 
by the lowest possible mode ( n = 0 or n = 1 , as discussed above). On the other hand, at short times, the FPDs 
contain additional higher modes.

Entanglement entropy. Finally, we study the entanglement properties that the QW exhibits between the 
coin and position degrees of freedom for the already considered, initially localized state. The entanglement can 
be quantified using the von Neumann entropy of the reduced density matrix in the coin space

where ρc(t = εj) =
∑

r,s χj,r,sχ
†
j,r,s is the reduced density matrix in the coin space, i.e. after tracing out the spa-

tial degrees of freedom. In the simple case of a QW on a line with a constant coin operator, the entanglement 
primarily arises as a consequence of the presence of the spin-dependent displacement operator S in the unitary 
U, although it can be modulated by both the angle of the coin operator and by the initial  state32,33. For the same 

(46)�yR(L)(t)� =
∑

s

εs χ
R(L)†
j,s χ

R(L)
j,s ,

(47)χj,r,s =
∫ π/ε

−π/ε

dq

2π

∑

n

βn(q, t)φ̃n(q, εs)e
−iqεr ,

(48)Bn(t) =
∫ π/ε

−π/ε

dq

2π

∣

∣βn(q, t)
∣

∣

2
.

(49)S(t) = −Tr
{

ρc(t) log2 ρc(t)
}

,

Figure 5.  Expected value of the probability distribution along the extra dimension y, as calculated from the 
FPD, for different values of the warp coefficient kL. The initial condition is the same as in Fig. 4.
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reason, we also expect entanglement to be produced in our model, although an analytical calculation, similar to 
previous references, is probably unfeasible for a 2D spatial case which, moreover, includes position-dependent 
unitaries, as in Eq. (38).

In Fig. 7 we plot the evolution of the entanglement entropy of a fully localized initial state for different values 
of the warp coefficient, with a coin state C0 = 1√

5
(1, 2i)T . Notice that this choice is different from that one used 

in the previous section, for reasons that are explained below. It can be seen that the entanglement entropy reaches 
lower values as kL increases, an effect that can probably be due to the fact that the probability density in between 

Figure 6.  Probability distributions of the FPDs along the extra dimension y, for the value kL = 3 . The inset is 
a histogram showing the value of the Bn(t) coefficients, as defined by Eq. (48): see the text for an explanation. 
The left (right) panels show the left (right) FPD. The top panels are calculated at a shorter time t = 50L and the 
bottom ones at a longer time t = 1000L . The initial condition is the same as in Fig. 5, and the simulation grid 
has 200 points along the y direction.

Figure 7.  Evolution of the entanglement entropy with the initial condition Eq. (45) centred at y0 = L/2 for 
different values of the warp coefficient and initial coin components C0 = 1√

5
(1, 2i) . The dotted line represent the 

minimum value the entropy can reach for very high values of kL, which is computed in the Supplementary 
Information. This simulation grid has 50 points along the y direction.
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the FPDs becomes more spread (and therefore “less ordered”) at lower values of kL. This can be observed in 
Fig. 8, where we plotted a zoomed version of Fig. 4, but obtained with the above initial coin components 
C0 = 1√

5
(1, 2i)T . One can see that, for lower values of the warp coefficient, a significant part of the probability 

distribution is scrambled in the intermediate region between both parts of the FPD. This diffusion effect can be 
totally mitigated for extreme values of the warp coefficient, leading to a minimum value of the entropy which is 
completely dominated by the FPD, and can be obtained from the initial coin components. In the Supplementary 
Material we show this limiting situation, and how the corresponding entropy can be computed. The initial coin 
state C0 = 1√

2
(1, i)T previously used produces values of the entropy which are very close to unity in all cases, 

making it difficult to appreciate the effects that are discussed above.

Conclusions
We have investigated a quantum walk which allows to simulate the Randall–Sundrum model of extra dimensions, 
while satisfying the constrains imposed by the symmetries of that model. This model has played an important 
role in high energy physics, aiming to solve the hierarchy problem, by introducing one finite extra dimension that 
possesses two branes at its extremes. The matter fields are confined in the visible brane, while gravity is allowed 
to span along this whole dimension. We worked it out for the case of spin 1/2 fermions in a two dimensional 
space, composed by an ordinary dimension and an orbifolded one, apart from time, and obtained the Dirac 
equation in this spacetime configuration. The boundary conditions of the orbifold on the fermionic field forced 
it to be massless on the bulk. In this lower dimensional space we were able to obtain the eigenenergies of the 
fermionic field, as well as the corresponding eigenstates, showing a probability density which is concentrated 
near the visible brane, a phenomenon that bears an analogy with the localization effect that can be found in 
many  scenarios19–21,23,24,26,27.

This analogy motivated us to seek localization effects on the QW that we introduced to simulate the RSM. 
The QW is defined in such a way that, in the continuum limit, the Dirac equation of the fermionic field for 
the RSM metric is recovered. We investigated the confining capabilities of the QW, by considering an initially 
localized walker away from the visible brane. We concluded that the freely propagating parts of the probability 
distribution, where the probability is mostly concentrated, reach an asymptotic value of the expected position 
along the extra dimension. Moreover, the asymptotic value gets closer to the visible brane for higher values of 
the warp coefficient, which therefore drives the strength of localization, and also noticed that it had an effect on 
the timescale of the dynamics, by delaying them for higher values of the coefficient.

At long time steps, the probability densities show an asymptotic shape, with a resemblance with the eigenstates 
that were obtained in the continuous model, which suggested a study based on the decomposition of the wave-
function in terms of these stationary states. We found that the freely propagating parts of the QW are dominated, 
in the asymptotic regime, by the lowest possible (i.e., compatible with the symmetries of the model) modes. At 
intermediate time steps, the same decomposition manifests a combination of multiple modes with higher energy.

Finally, we found that the entanglement between coin and spatial degrees of freedom is reduced for stronger 
warp coefficients. We associated this result to the higher spreading of the density distribution for the lower values 
of the warp coefficient.

We conclude that quantum walks are suitable candidates for simulating models of field theories with extra 
dimensions that rely on the curvature of the spacetime. Not only the model is interesting from the point of view 
of the field theory: It allows to design a quantum process that can be tailored to exhibit very rich dynamics, show-
ing free propagation in one dimension, and an asymptotic confining behavior on the other one, with rates that 
can be tuned by an appropriate choice of the parameters. In this way, the interplay between high energy physics 
and quantum simulations can be of mutual benefit.

Figure 8.  Probability density distribution, at t = 5L , for an initially localized walker centered at 
(x0, y0) = (0, L/2) , and different values of kL, with initial coin components C0 = 1√

5
(1, 2i)T . The vertical axis 

has been zoomed in to show that the probability density between the two regions of the FPD is more scrambled 
for lower values of the warp coefficient. The colors and grid parameters are the same as in Fig. 4.
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Abstract

Two models are �rst presented, of a one-dimensional discrete-time quantum
walk (DTQW) with temporal noise on the internal degree of freedom (i.e., the
coin): (i) a model with both a coin-�ip and a phase-�ip channel, and (ii) a model
with random coin unitaries. It is then shown that both these models admit a
common limit in the spacetime continuum, namely, a Lindblad equation with
Dirac-fermion Hamiltonian part and, as Lindblad jumps, a chirality �ip and a
chirality-dependent phase �ip, which are two of the three standard error chan-
nels for a two-level quantum system. This, as one may call it, Dirac Lindblad
equation, provides a model of quantum relativistic spatial diffusion, which is
evidenced both analytically and numerically. This model of spatial diffusion
has the intriguing speci�city of making sense only with original unitary models
which are relativistic in the sense that they have chirality, on which the noise
is introduced: the diffusion arises via the by-construction (quantum) coupling
of chirality to the position. For a particle with vanishing mass, the model of
quantum relativistic diffusion introduced in the present work, reduces to the

8Author to whom any correspondence should be addressed.
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well-known telegraph equation, which yields propagation at short times, diffu-
sion at long times, and exhibits no quantumness. Finally, the results are extended
to temporal noises which depend smoothly on position.

Keywords: noisy quantum walks, noisy quantum systems, decoherence, Lind-
blad equation, quantum simulation, relativistic diffusions, telegraph equation

(Some �gures may appear in colour only in the online journal)

1. Introduction

In classical continuous media theory, diffusion in the absence of force �eld designates irre-
versible evolutions which are induced by and compensate for inhomogeneous repartitions of
certain extensive quantities (charge, particle number, momentum and energy density). Under
diffusions, the medium relaxes toward an equilibrium state where these quantities have time-
and space-independent concentrations. On the microscopic scale, diffusion is always associ-
atedwith randommotions. The simplest example is Brownianmotion,whichwas �rst observed
by Brown in 1827, revisited theoretically by Einstein in 1905 [1] and is now the cornerstone
of modern stochastic process theory. Diffusion also occurs in quantum and/or relativistic sys-
tems. The �rst attempts to describe quantum non-relativistic diffusion processes were made
in the 1970s (see reference [2]). Quantum diffusion [3–5] occurs in open quantum systems
interacting with their environment and is usually described through a deterministic differential
transport equation of the Lindblad form [6] obeyed by the so-called reduced density operator
of the system. The problem of �nding macroscopic models of relativistic non-quantum dif-
fusion was �rst considered in the 1940s by Landau and Eckhart [7, 8]. It was �rst revisited
by Cattaneo [9], who suggested to model relativistic diffusion through the telegraph equation,
and whose work, coupled with the Grad expansion technique [10] (see also reference [52]
in reference [11]), laid the basis of the so-called extended thermodynamics theories [12]. All
models produced by these efforts present serious dif�culties, which range from non-causality
and instability (see references [6, 7, 49] in reference [11]) to experimental refutation9 (see ref-
erences [58, 59] in reference [11]). Also, all implementations of the extended thermodynamics
philosophy are based on truncating the Grad expansion, which usually diverges. It therefore
comes as no surprise that some experimental predictions of extended thermodynamics seem to
diverge with the supposed precision of the implementation, thus making extended thermody-
namics void of any real predictive power, at least for some phenomena like second sound (see
the last chapter of [12]). The problem of �nding microscopic models of relativistic non quan-
tum diffusionwas in theory entirely solved by writing down a relativistic version of Boltzmann
equation [13, 14], but practical computations and conceptual issues necessitated also extend-
ing stochastic process theory to the relativistic realm. The �rst relativistic stochastic process
was considered by Dudley [15]. Though well-de�ned mathematically, this process is not of
obvious physical usefulness and fails to predict important phenomena like thermalization. The
�rst relativistic process of physical relevance is the relativistic Ornstein Uhlenbeck process
(ROUP) and was presented in 1997 by Debbasch, Mallick and Rivet [16–18]. Franchi and Le
Jan then revisited the Dudley process taking into account the physics of the ROUP, both in �at

9This experimental refutation has been obtained, in the references cited, in the non-relativistic regime, the relativistic
regime being more dif�cult to access. That being said, because this non-relativistic regime can be derived as a limit of
relativistic extended-thermodynamics models, the abovementioned experiments refute at least the kind of limit which
has been taken and at most these relativistic extended-thermodynamics models themselves.
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and curved spacetimes [19, 20]. A process mixing aspects of the Dudley process and of the
ROUP was later introduced by Dunkel and Hänngi [21, 22]. Finally, the ROUP served as a
basis for the construction of the �rst macroscopic model of bounded velocity diffusion free of
any physical and mathematical pathology [2, 23–25]. Models of this type can be used for rel-
ativistic and non-relativistic bounded velocity diffusions [26]. Let us eventually mention two
historical references on this topic of relativistic stochastic processes, references [27, 28].

In this paper, we develop a novel quantum-simulation scheme which models relativistic
diffusive transport in the quantum regime, by mimicking an appropriate Lindblad equation via
the continuum limit of a noisy discrete-time quantum walk (DTQW). Quantum simulation
is a �ourishing �eld, thanks to its advantages with respect to classical simulation: classi-
cal computers are especially inef�cient at simulating quantum dynamics of highly entangled
systems.

The advantage of some quantum algorithms with respect to their classical counterparts
is already known, as with Grover’s algorithm [29], which can solve the task of search-
ing an element in a database quadratically faster than known classical algorithms. Grover’s
algorithm can be written in terms of a DTQW, whose spatial probability distribution spreads
quadratically faster than that of a random walk. One more example is the proposal of using
quantum walks for ranking nodes on a network [30]. Another application of DTQWs is the
direct simulation of physical dynamics: if the set-up for them is chosen appropriately, they
can be used to model several physical phenomena, e.g., the dynamics of fermions in the
free case [31] or in an external Abelian (i.e., electromagnetic) [31–33] or non-Abelian [34]
Yang–Mills gauge �eld, neutrino �avor oscillations [35], and fermion con�nement [36]. These
DTQW schemes are not limited to square-lattices backgrounds, but can also be designed
on triangle and honeycomb lattices [37, 38]. Moreover, the (classical) �eld dynamics that
DTQWs can mimick is not limited to �at-spacetime backgrounds, can be extended to curved
spacetimes [39–43]. Action principles for DTQWs have been suggested, and the space-
time covariance of the latter has been investigated, both in �at [44, 45] and in curved [46]
spacetime.

The connections between DTQWs and lattice gauge theories have also been explored
[47–50], and Wigner functions for DTQWs have been proposed in references [51–53]. A cru-
cial feature of DTQWs is that they are intrinsically causal, i.e., information propagates, at most,
at a �nite velocity c = 1, which is whyDTQWs are a priori especially suited to model quantum
relativistic diffusions.

This article is organized as follows. Basics about DTQWs are reviewed in section 2, while
section 3 introduces two models with temporal noise and a common continuous limit of
the Lindblad form. Section 4 explores the phenomenology of this limit. Section 5 extends
the previous results to temporal noises which depend smoothly on space. All results are
summarized and discussed in the �nal section, while technicalities are dealt with in the
appendices.

2. The unitary model: discrete-time quantum walk on the line

2.1. Presentation

Consider a series of quantum states, |Ψt〉, indexed by the discrete time t ∈ Nǫ, where ǫ > 0
is the time step, and belonging to a Hilbert space Hc ⊗Hp, where (i) Hc is the so-called coin
(Hilbert) space, which is two dimensional and accounts for an internal, two-state degree of
freedom (hereafter d.o.f.) we call coin (hence the index ‘c’), and (ii)Hp is the position (Hilbert)
space (hence the index ‘p’). The probability amplitudes of this state on the position basis,

3
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{|x〉 , x ∈ Za}, where a > 0 is the lattice spacing, are thus described by a two-componentwave
function,Ψt,x ≡ 〈x|Ψt〉 ≡ (ψL

t,x,ψ
R
t,x)

⊤, where⊤ denotes the transposition.
Consider that |Ψt〉 evolves according to the following standard model of discrete-time

quantum walk on the line,

|Ψt+ǫ〉 = Ûξ̂0t ,ξ̂
1
t ,θ̂t ,χ̂t

|Ψt〉 , (1)

where the one-step evolution operator, called walk operator, is

Ûξ̂0t ,ξ̂
1
t ,θ̂t ,χ̂t

≡ Cξ̂0t ,ξ̂1t ,θ̂t ,χ̂tS( p̂). (2)

This evolution operator is the succession of two unitary operators.
The �rst one is a coin-dependent shift operator,

S( p̂) ≡
[
eiap̂ 0
0 e−iap̂

]
= eiap̂σ

3
, (3)

where σi is the ith Pauli matrix, and p̂ is the quasimomentumoperator, which is Hermitian (this
ensures that S( p̂) is unitary) and satis�es eiap̂ =

∑
x |x〉 〈x+ a|, so that the upper (resp. lower)

component, ψL
t (ψR

t ), is shifted left (resp. right), hence the superscript L (resp. R). Notice that
we have implicitly introduced the LR basis of the coin space, namely, (|L〉 , |R〉), which we
have identi�ed with ((1, 0)⊤, (0, 1)⊤).

The second operator is a so-called coin operator,

Cξ̂0t ,ξ̂1t ,θ̂t ,χ̂t ≡ eiξ̂
0
t

[
eiξ̂

1
t cos θ̂t ieiχ̂t sin θ̂t

ie−iχ̂t sin θ̂t e−iξ̂1t cos θ̂t

]
, (4)

which is nothing but an arbitrary 2× 2 unitary matrix with 4 operator-valued entries,

f̂ t ≡
(
f̂ lt

)
l=0,...,3

≡
(
ξ̂0t , ξ̂

1
t , θ̂t, χ̂t

)
, (5)

acting on the position space. To endow the f̂ lts (varying l and t), with the highest degree of
arbitrariness, onemust consider them (i) Hermitian, to ensure the unitarity of the coin operator,
and (ii) diagonal in the position basis, that is,

f̂ lt |x〉 ≡ f lt,x |x〉 , (6)

(which de�nes the sequences f l : (t, x) 7→ f lt,x, which are real-valued because of hermiticity),
so as to ensure the locality of the walk operator in position space.

The f̂ lts being diagonal in the position basis, they commute between each other, so that we
can write the coin operator as

Cξ̂0t ,ξ̂1t ,θ̂t ,χ̂t = eiξ̂
0
t ei

χ̂t
2 σ

3
ei

ξ̂1t
2 σ

3
eiθ̂tσ

1
ei

ξ̂1t
2 σ

3
e−i χ̂t2 σ

3
. (7)

This readily shows that, if χ is space independent, it simply codes for a global change of coin
basis at time t, which, in addition, commutes with the coin-dependent shift operator, so that,
if χ is moreover time independent, it does not affect the dynamics. In appendix A, we explain
the reasons for choosing this parametrization, equation (4) (or (7)), for the unitary group.

When the entries of the coin operator are time and space independent, the behavior of
this dynamical system, equation (1), is well know. It yields, whatever the values of the

4



J. Phys. A: Math. Theor. 53 (2020) 205303 P Arnault et al

entries, two propagation fronts, one to the left, and the other to the right, and thus exhibits,
in particular, ballistic spread, i.e., O(t) spread. In the long-time limit, the spread is exactly
σ∞(t) = (a/ǫ)t

√
1− sinθ [54, 55]. Notice in particular that this spread10 is independent of ξ0,

ξ1 and χ.
Notice that we use hats for operators acting on the position space, the reason for this being

that we do not identify them with their matrix representation. In contrast, we do not use hats
for operators acting on the coin space, the reason for this being that we do identify them with
their matrix representation.

2.2. Continuum limit

It is well known [39] (i) that the above lattice model, equation (1), possesses a continuum limit,
ǫ→ 0 and a→ 0, for the ballistic scaling11,

a = ǫ, (8)

(which we assume from now on when taking continuum limits), provided, essentially, that ξ0,
ξ1 and θ, also go to zero with ǫ, and (ii) that the richest situation [39] is obtained when they
scale as ǫ, i.e.,

ξ0 ≡ ǫξ̄0 (9a)

ξ1 ≡ ǫξ̄1 (9b)

θ ≡ ǫθ̄, (9c)

which we assume from now on when taking continuum limits (it will be recalled), where ξ̄0, ξ̄1

and θ̄, are arbitrary functions of time and space. Indeed, when these conditions are satis�ed12,
the evolution operator reads

Û
ǫˆ̄ξ0,ǫˆ̄ξ1,ǫˆ̄θ,χ̂

= 1− iǫHˆ̄ξ0,ˆ̄ξ1,ˆ̄θ,χ̂
( p̂)+ O(ǫ2), (10)

so that it has a valid continuum limit—i.e., the walk operator tends to the identity when ǫ tends
to zero—which is generated by the following Hamiltonian,

Hˆ̄ξ0,ˆ̄ξ1,ˆ̄θ,χ̂
(p̂) ≡ α1

(
p̂+ ˆ̄ξ1

)
+Mˆ̄θ,χ̂

α0 − ˆ̄ξ012, (11)

which is a generalization of the 1D Dirac Hamiltonian for a particle with mass matrix

Mˆ̄θ,χ̂
≡ − ˆ̄θD(χ̂), (12)

where

D(χ̂) ≡ diag
(
eiχ̂, e−iχ̂

)
, (13)

and charge q = −1, coupled to an electromagnetic potential with covariant components

10 In reference [55], the spread is computed for ξ0 = ξ1 = 0 and χ = π/2, but one can adapt the demonstration to
arbitrary values for these angles. In short: (i) a constant χ does not even intervene in the dispersion relation of the
DTQW, (ii) a constant ξ0 does not intervene in the group velocity of the DTQW, and (iii) a constant ξ1 is just a
constant shift in the Brillouin zone, which is irrelevant when performing integrals of functions which are periodic with
period the size of the Brillouin zone. For a rigorous mathematical proof of the long-time probability distribution of
the DTQW (from which one can of course compute, in particular, the variance), see [56].
11Ballistic scaling means ǫ ∝ a, and we can choose ǫ = a without loss of generality, i.e., setting a/ǫ as the speed unit.
12Together with regularity conditions for the quantities that we Taylor expand in ǫ [39].
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A0 ≡ ξ̄0 (14a)

A1 ≡ −ξ̄1, (14b)

and with the following representation of the alpha matrices,

α0 ≡ σ1 (15a)

α1 ≡ −σ3. (15b)

We have also introduced 12, the 2× 2 identity matrix.
Assume χ 6= 0: even if χ is spacetime independent,D(χ̂) cannot be absorbed in α1 because

D(χ̂)2 6= 12, so that the Clifford algebra is not be satis�ed, and so the resulting Dirac equation
does not square to the Klein–Gordon equation. When χ = 0, we recover, of course, a standard
Dirac Hamiltonian with real (though possibly spacetime-dependent) mass,

m ≡ −θ̄, (16)

namely,

HÂ0,−Â1,m̂,χ̂=0( p̂) = HDirac
m̂,Â0

( p̂− Â1) (17a)

≡ α1( p̂− Â1)+ m̂α0 − Â012. (17b)

For this reason, we assume from now on that χ = 0, and introduce, for the purpose of
compactness of notations in the continuum-limits sections to come, χ̄ ≡ χ/ǫ, so that,

χ ≡ ǫχ̄ = 0. (18)

Notice that we chooseχ = 0 solely for the sake of simplicity, — i.e., tomatchwith the standard
Dirac Hamiltonian with real (though possibly spacetime-dependent) mass, equation (17b)—,
that is, one could perfectly consider an arbitrary spacetime dependence for χ in the computa-
tions to come, without any change in the results but that one13.

3. Two models of temporal coin noise with a common continuum limit

3.1. Discrete-time quantum walk with coin-flip and phase-flip channels

3.1.1. Lattice model. A simple and well-known model of temporal coin noise for the DTQW
introduced in equation (1), is to consider that, for each evolution t→ t+ ǫ, the walker fol-
lows the unitary evolution with some probability 1− π+, with π+ independent on time,
and that, with probability π+ = π1 + π2, it undergoes either a phase-�ip channel, that is, a
coin-dependent phase �ip14, i.e., evolves through the unitary σ3, with probability π1, or a

13Regarding the role played by a spacetime-independent χ for the above Dirac Hamiltonian, equation (17), the reader
may be interested in reference [57]. Regarding the role played by a spacetime-dependent χ in another class of contin-
uum limits, the reader may be interested in reference [69]. Regarding the role played by the four spacetime-dependent
angles in the original, spacetime-lattice model, equation (1), the reader may consult, for ξ0 and ξ1, references [33, 39,
47–49, 58],—which show, among other results and in various, related settings, that these two angles correspond to
lattice versions of the electromagnetic potential, having lattice U(1) gauge invariance —, and, for θ and χ, reference
[58], which shows that these two angles encode the curvature of a discrete spacetime.
14This phase �ip is coin dependent, but the speci�cation ‘coin dependent’ (i.e., in general, ‘internal-state dependent’)
can be omitted, since a coin-independent phase �ip leads to a trivial, identity channel, which is rarely of interest.
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bit-�ip channel, that is, a bit �ip, i.e., evolves through the unitary σ1, with probability π2

[59, 60].
To describe the behavior of a quantum noisy system statistically, i.e., its average behavior

over a large number of realizations of the noisy dynamics, one needs the density-operator
formalism. In the present case, the evolution equation for the density operator, ρ̂t, is simply,

ρ̂t+ǫ = (1− π1 − π2)Û f̂ t
ρ̂tÛ

†
f̂ t
+ π1σ

3ρ̂tσ
3
+ π2σ

1ρ̂tσ
1. (19)

3.1.2. Continuum limit. A simple condition for equation (19) taken for f̂ t = ǫ ˆ̄f t to have a for-
mal continuum limit as ǫ→ 0 is to assume that πl → ǫ→0 0, l = 1, 2. For simplicity, we assume
that they scale as ǫ,

πl ≡ ǫπ̃l, l = 1, 2, (20)

where π̃l is an arbitrary real number corresponding to a probability per unit time. After Taylor
expanding equation (19) at �rst order in ǫ, canceling out the zeroth-order terms, and letting
ǫ→ 0, we are lead to the following equation,

∂tρ̂ = −i[Ĥo, ρ̂]+ L
Π̃
(ρ̂), (21)

where the Hamiltonian part is the Dirac one, see section 2.2,

Ĥo
t ≡ HDirac

m̂,Â0|t
( p̂− iÂ1|t), (22)

and the non-Hamiltonian, but still trace-preserving one, reads,

L
Π̃
(ρ̂t) ≡ π̃1

[
σ3ρ̂tσ

3 − ρ̂t
]
+ π̃2

[
σ1ρ̂tσ

1 − ρ̂t
]
, (23)

and can be recast in a Lindblad form, whose most general writing is

LX(ρ̂t) ≡
∑

i∈I
Xi

[
Liρ̂tL

†
i −

1

2
{L†i Li, ρ̂t}

]
, (24)

where X ≡ (Xi)i∈I is an arbitrary family of non-negative real numbers indexed by the label i
belonging to some indexing space I, and the Lis are the so-called Lindblad or jump operators,
which act on the Hilbert space of the system and can be non-Hermitian. In the present case,
i.e., in equation (23), we have X = Π̃ ≡ (π̃1, π̃2), i = l = 1, 2, and two Lindblad operators,

L1 ≡ σ3 (25a)

L2 ≡ σ1, (25b)

which are Hermitian, act solely on the coin space, and whose square is proportional to 12.

3.2. Discrete-time quantum walk with random coin unitaries

3.2.1. Lattice model. Another simple and well-known model of temporal coin noise for the
DTQW introduced in equation (1), is to consider that, for each evolution t→ t+ ǫ, the values
of the coin-operator parameters are not �xed numbers but sampled from respective probability
distributions [61], so that we denote them with a prime, ξ0′t,x, ξ

1′
t,x, θ′t,x, and χ′

t,x. For simplicity,
we assume that these random values can depend on space only through their mean value, i.e.,

7
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they have space-independent �uctuations and thus respective centered probability distributions
(that is why we speak of temporal noise), that we denote plt. This means that

f ′lt,x ≡ ǫ f̄ lt,x + ωlt for l = 0, . . . , 3, (26)

where (i) for l = 0, . . . , 2 (resp. l = 3), ǫ f̄ lt,x (resp. 0) is the mean value,whichwe have assumed
scaling as ǫ (resp, vanishing), in order to recover, in the noiseless case, the previous Hamil-
tonian evolution, equation (17), and (ii) ωlt ∈ R is the space-independent �uctuation, newly
sampled from the probability distribution plt at each time, and associated to a random variable
Ω
l
t. Giving oneself a function plt of ωt ∈ R for each t means assuming that the noise has tem-

poral independence, i.e., the random variables Ωt and Ωt′ are independent
15 for t′ 6= t. Now,

in addition to temporal independence, we assume stationarity, i.e., that the plts do not depend
explicitly on time: plt = pl. The four time-indexed random variablesΩl

t associated to the possi-
ble values ωlt , are considered statistically independent, so that the probability density of getting
ω0
t and ω

1
t and ω

2
t and ω

3
t is given by the product

∏3
l=0 p

l(ωlt).
The above model translates into the following evolution for the density operator, ρ̂t,

ρ̂t+ǫ =

∫
dµ U

ǫˆ̄f t+ωt
(ρ̂t), (27)

where the integration measure is

dµ ≡
3∏

l=0

dωlt p
l(ωlt), (28)

with the normalization condition,
∫

dµ = 1, (29)

and where each random unitary is given by

U
ǫˆ̄f t+ωt

(ρ̂t) ≡ Û
ǫˆ̄f t+ωt

ρ̂tÛ
†
ǫˆ̄f t+ωt

. (30)

We have omitted, for the sake of simplicity, the multiplication of ωt by the identity operator
acting on the position space, and will do so from now on unless otherwise mentioned. As
expected (since we impose the linearity of the theory and the Hermiticity of ρ̂t [62]), this
evolution, equation (27), has the form of a Kraus decomposition, the densities of the Kraus
operators being simply the randomunitaries Û

ǫˆ̄f t+ωt
(for simplicity, we have left the probability

density in the integrationmeasure dµ, i.e., we have not included it in the de�nition of the Kraus
operators).

3.2.2. Continuum limit. As in previous sections, we assume that the random variables intro-
duced above,Ωl

t, actually result from the productΩl
t ≡ φl(ǫ)Ω̃l

t, where φ
l(ǫ) is a function going

to zero with ǫ, and Ω̃l
t is new random variable that we introduce. This assumption ensures that

Û
ǫˆ̄f t+Ωt

→ 1 as ǫ→ 0, which, in turn, ensures that equation (27) remains consistent in that

limit. For a large class of functions φl, we have that φl(ǫ) is dominated, for ǫ→ 0, by a term

15This implies, in particular, that the noise is classically Markovian, since one can give, for any t and any ωt ∈ R, the
probability that Ωt = ωt, without the need to know the past history, i.e., the values (ωt′ ){t′<t}, and hence (suf�cient
condition for Markovianity), without the need to know (ωt′ ){t′<t−ǫ}.
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which scales as ǫ to some power ν l > 0. One can show that only ν l = 1/2 for all ls, delivers a
non-trivial, non-unitary, trace-preserving limit for equation (27). We thus assume, in the end,

Ω
l
t ≡

√
ǫ Ω̃l

t, l = 0,..., 3, (31)

with Ω̃l
t independent from ǫ, i.e., with p̃l independent from ǫ16. This assumption is crucial for

the upcoming derivation to be valid, because for the Taylor expansion of equation (33) to hold.
In other words, this means that we have modi�ed our model: indeed, for, e.g., one realization
of this random-unitariesmodel, one samples, at each time, the 4 values ω̃lt from their respective
probability distributions p̃l, and multiplies them by

√
ǫ before taking the resulting products as

arguments of the evolution operator17. This implies that the probabilitymeasure is not anymore
that of equation (28), but that associated to the new random variable Ω̃l

t, namely,

dµ̃ ≡
3∏

l=0

dω̃lt p̃
l(ω̃lt). (32)

The Taylor expansion of Û
ǫˆ̄f t+

√
ǫω̃t

at order ǫ is not completely trivial, but can be derived

from equation (7), and be cast as

Û
ǫˆ̄f t+

√
ǫω̃t

= 1− iǫĤo
t + i

√
ǫ

2∑

l=0

ω̃ltLl −
1

2
(
√
ǫ)2

2∑

l=0

(ω̃lt)
2(Ll)

2

− (
√
ǫ)2
[
ω̃0
t (ω̃

1
t σ

3
+ ω̃2

t σ
1)+ ω̃2

t ω̃
3
t (iσ

2)
]
+ O(ǫ3/2). (33)

In this Taylor expansion, we recover a known, Hamiltonian part, Ĥo
t , given by equation (22),

and the Lls, l = 0, 1, 2, are de�ned by equation (25) with L0 ≡ 12. Notice that the variable
ω̃3
t ≡ χ̃t only appears in the crossed terms, which are those just before the O(ǫ3/2).
Inserting the above Taylor expansion, equation (33), in the evolution equation,

equation (27), and taking into account that the Ω̃l
ts, varying l, are independent random vari-

ables (which is visible in the integration measure, equation (32)), and all have vanishing mean,
yields

ρ̂+ ǫ∂tρ̂ = ρ̂+ ǫ
[
−i[Ĥo, ρ̂]+ L

∆̃2(ρ̂)
]
+ O(ǫ3/2), (34)

the non-Hamiltonian term being given by equation (23), notice the absence of L0, with

∆̃
2 ≡ (δ̃2l )l=0,...,3 (35)

instead of Π̃ ≡ (π̃1, π̃2), where δ̃l is by de�nition the standard deviation of Ω̃l
t for any t. Because

p̃l is time independent, all its moments are, and in particular δ̃2l . Canceling out, in the previous
equation, the zeroth-oder terms in ǫ, dividing then by ǫ, and letting ǫ→ 0, yields equation (21)

16Notice that p̃l cannot depend on time since pl does not.
17That being said, maybe one can show that, though this condition (i.e., equation (31) with Ω̃l

t independent of ǫ), is
suf�cient to derive the results to come, namely, equation (34), it is not necessary. Indeed, maybe one can show that
the following, milder condition is suf�cient to obtain equation (34), namely, that the random variables Ω

l
t scale as√

ǫ only on average, i.e., that their standard deviation does. While the assumption made for the road we are going to
follow, i.e., equation (31) with Ω̃l

t independent of ǫ, implies the previous condition, the converse does not hold: indeed,
although we can for sure always de�ne W l

t ≡ Ω
l
t/
√
ǫ, there is no reason, in the general case, that W l

t does not depend
on ǫ. In the case of uniform or Gaussian distributions, the two conditions are equivalent, but their are a priori not in
the general case.
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with ∆̃2 instead of Π̃. Notice that neither the noise on ξ0, nor that on χ, have any effect in this
continuum limit.

Notice that the present random-unitaries-model formal continuum limit is for a DTQW that
accepts a 1-step continuum limit [63]. The random-unitaries-model formal continuum limit
has started to be explored for DTQWs accepting, not a 1-step continuum limit, but a 2-step
one, in reference [61].

4. Dirac Lindblad equation with chirality-flip channel: a model of quantum
relativistic diffusion

4.1. Description of the problem

4.1.1. Presentation. In the previous section, we have presented two spacetime-lattice models
of quantum transport with temporal noise, equations (19) and (27), that deliver, in the contin-
uum limit, the same (1+ 1)D Lindblad equationwith Dirac Hamiltonian part and two standard
error channels on the chirality: (i) a phase-�ip channel with rate (probability per unit time)
γ1/2 = π̃1 = δ̃21, and (ii) a bit-�ip channel with rate γ2/2 = π̃2 = δ̃22. This Lindblad equation
reads

∂tρ̂ = −i[Ĥo, ρ̂]+ LΓ/2(ρ̂), (36)

where Ĥ
o
is given by equation (22), LX(ρ̂) by equation (24), and

Γ ≡ (γ1, γ2). (37)

For the sake of simplicity, we choose a vanishing electric potential,

(A0,A1) = 0, (38)

and a mass term

m independent of both space and time. (39)

How does the noise, LΓ/2(ρ̂), on the chirality d.o.f. of the Dirac fermion, affect the dynam-
ics of the spatial d.o.f.? A coupling between these two d.o.f.s is indeed expected, at a quantum
level, because the mass entangles them18. We will see in section 4.2 that, although a vanish-
ing mass indeed destroys the purely quantum coupling (i.e., the entanglement) between the
internal and external d.o.f.s, the relativistic nature of the equation still introduces a certain
coupling between the internal and external d.o.f.s, but which can be seen as purely classical,
i.e., the intrinsic quantum nature of the chirality d.o.f. has no purely quantum phenomenal
consequence, and this chirality could, in this massless case, be described in a non-quantum
manner.

4.1.2. Equations on the Pauli basis. We decompose, for convenience, ρ̂t on the Pauli basis,

ρ̂t =
1

2

3∑

µ=0

r̂µt σ
µ, (40)

18This does not hold in a non-relativistic setting, i.e., the massive, free dynamics, does not entangle the internal and
external d.o.f.s. The presence of a non-uniform magnetic �eld does always produce, be the model relativistic or not,
such an entanglement, which is exempli�ed by the historical Stern–Gerlach experiment [64], which can be accounted
for by a non-relativistic model.

10
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where σ0 ≡ 12. The r̂
µ
t s are observables acting solely on the position space, which can be

obtained from ρ̂t by the following partial trace, denoted Trc, on the internal d.o.f.,

r̂µt = Trc(ρ̂tσ
µ). (41)

In appendix B, we brie�y comment on r̂0t and r̂
3
t .

Equation (36) can be rewritten as the following equation ( p̂ is the momentum operator),

∂t
→
r̂ = P p̂

→
r̂ + P†→r̂ p̂+Q

→
r̂ , (42)

on the 4-component vector (of operators)

→
r̂ ≡ (r̂0, r̂1, r̂2, r̂3)⊤, (43)

where we have introduced two 4× 4 matrices,

P ≡




· · · i
· · 1 ·
· −1 · ·
i · · ·


 , QΓ,m ≡




· · · ·
· −γ1 · ·
· · −(γ1 + γ2) −2m
· · 2m −γ2


 , (44)

wherewe have denoted, in the matrices, the zeros by dots to make the writing less cumbersome.
The matrices P and QΓ=0,m are anti-Hermitian, because they correspond to the Hamiltonian
part of the original equation on ρ̂, equation (36), while QΓ,m=0 is Hermitian (more precisely,
diagonal and real), and corresponds to the non-Hamiltonian part of the original equation.

4.1.3. Explicit solution via Fourier transform. Since we have chosen a vanishing electromag-
netic potential, equation (38), a spacetime-independentmass term, equation (39), and a space-
independent noise, equation (42) is diagonal in momentum space.We introduce themomentum
basis, {|p〉 , p ∈ R}. Applying 〈p| on the left of equation (42), and |q〉 on its right, we obtain

∂t~̃rpq = Gpq
~̃rpq, (45)

where

r̃µpq ≡ 〈p| r̂µ |q〉 , (46)

and where we have introduced the following generator of the transport,

Gpq ≡




· · · i(p− q)
· −γ1 p+ q ·
· −(p+ q) −(γ1 + γ2) −2m

i(p− q) · 2m −γ2


 . (47)

The solution of equation (45) is well-known, and reads (we reintroduce the time label),

~̃rt,pq = Mpq(t− t0)~̃rt0,pq, (48)

where

Mpq(t − t0) ≡ e(t−t0)Gpq . (49)

11
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In position space, the solution of our problem can thus be written explicitly as a two-
dimensional Fourier transform, namely,

rµt,xy =
1

2π

∫ ∫

R2
dpdq (Mµ

ν )pq(t− t0)r̃
ν
t0,pq

ei(px−qy), (50)

where we sum over ν = 0, ..., 3. Since the matrix Gpq is diagonalizable and can therefore be
exponentiated, equation (50) provides a formal solution to the dynamics of rµt,xy. However, the
diagonal form (and thus the exponential) is very cumbersome in the massive case, so that the
explicit solution does not give insight on the phenomena it describes. Of course, one can always
compute these integrals numerically and plot all desired observables. In what follows, we have
used this expression only in the massless case, to check that it gives the same result as our
numerical integration. The matrix exponential can in this case be performed directly using a
symbolic mathematics software, without prior diagonalization. In the following sections, we
shall get insight on the different regimes of the dynamics, �rst by viewing the equations directly
in position space, just below.

4.1.4. System of equations in position space, and remarks. Let us rewrite our system of
equations, equation (42), not in momentum space as above in equation (45), but in position
space, by applying 〈x| on the left of equation (42), and |x′〉 on its right, which yields

∂tr
0
xx′ = (∂x + ∂x′ )r

3
xx′ (51a)

∂tr
3
xx′ = (∂x + ∂x′ )r

0
xx′ − γ2r

3
xx′ + 2mr2xx′ (51b)

∂tr
1
xx′ = −i(∂x − ∂x′ )r

2
xx′ − γ1r

1
xx′ (52a)

∂tr
2
xx′ = i(∂x − ∂x′ )r

1
xx′ − (γ1 + γ2)r

2
xx′ − 2mr3xx′ , (52b)

with

rµxx′ ≡ 〈x| r̂µ |x′〉 . (53)

One immediately sees that the mass couples equations (51) and (52). The case of a non-
vanishing mass, m 6= 0, and no noise, Γ = 0, simply corresponds to standard, Dirac propa-
gation [65, 66], and is recalled in appendix C.

Using the de�nition provided in equation (53), one can prove that

(∂x + ∂x′ )r
µ
xx′ |x=x′ = ∂xR

µ
x , (54)

where

Rµx ≡ rµxx, (55)

so that the above system of four equations (51) and (52), considered for x = x′, yields

∂tR
0
x = ∂xR

3
x (56a)

∂tR
3
x = ∂xR

0
x − γ2R

3
x + 2mR2

x (56b)

∂tR
1
x = −i(∂x − ∂x′ )r

2
xx′ |x=x′ − γ1R

1
x (57a)

∂tR
2
x = i(∂x − ∂x′ )r

1
xx′ |x=x′ − (γ1 + γ2)R

2
x − 2mR3

x. (57b)

Notice that the Rµs are real since the r̂µs are Hermitian.
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Decomposing rµxx′ in its real and imaginary parts,

rµxx′ ≡ aµxx′ + ibµxx′ , (58)

and recalling that the r̂µs are Hermitian, equation (57) can be written as equation (60) below,
which show that the reality of R1 and R2 is consistent with their evolution equations, since the
latter only involve real coef�cients and unknowns.

Now, notice that in the two �rst equations above, (56), only the densities, i.e., the quan-
tities taken for x = x′, are involved. It also turns out that one can decouple R0

x from R3
x in

equation (56), by increasing the order of the equations from 1 to 2 in time: after a few
manipulations, one indeed realizes that R0

x and R3
x follow the same, following equation,

equation (59),

∂2t R
d
x + γ2∂tR

d
x = ∂2xR

d
x + 2m∂xR

2
x , d = 0 or 3, (59)

∂tR
1
x = 2∂xb

2
xx′ |x=x′ − γ1R

1
x (60a)

∂tR
2
x = −2∂xb

1
xx′ |x=x′ − (γ1 + γ2)R

2
x − 2mR3

x . (60b)

4.2. m = 0,Γ 6= 0: a chirality-flip noise on massless Dirac fermions yields the telegraph
equation

If m = 0, equations (59) and (60) become

∂2t R
d
x + γ2∂tR

d
x = ∂2xR

d
x , d = 0 or 3, (61)

∂tR
1
x = 2∂xb

2
xx′ |x=x′ − γ1R

1
x (62a)

∂tR
2
x = −2∂xb

1
xx′ |x=x′ − (γ1 + γ2)R

2
x , (62b)

which, as mentioned early in section 4.1.4, decouples equation (61) from equation (62).

4.2.1. Dynamics of the spatial degree of freedom: no quantumness. R0 and R3 are, respec-
tively, the probability density and the left-current density. They code, together, for the diagonal
coef�cients of the density matrix in the full Hilbert space. They follow the same telegraph
equation, equation (61), with characteristic speed and diffusion coef�cients c = 1 and

D ≡ 1

γ2
, (63)

respectively: the chirality-�ip noise causes the massless Dirac fermion to diffuse, in addition
to its unitary propagating behavior. Notice that the phase-�ip noise, characterized by γ1, has
no effect on the dynamics of R0, nor on that of R3, in this massless case; this is commented in
appendix D.
Consider equation (61) alone: because of the vanishing mass, it contains no quantum

feature. If one can write down a dynamical equation for the density and current density,
and needs no quantum amplitude of probability19, this means that the essence of the quan-
tumness of the system, that is, coherence and entanglement, is, if any, limited to the inter-
nal off-diagonal space, described by r̂1 and r̂2, coupled to each other through the system
of equation (52), which is autonomous (i.e., independent of (51)) because m vanishes. That

19 So that no purely quantum phenomena can arise from the coherences rdxx′ , d = 0, 3.
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equation (61) contains no quantum feature is to be understood as the fact that the chirality-�ip
noise affects the spatial dynamics in a purely classical manner, i.e., not via entanglement.

In other words, the telegraph equation can be derived from a purely non-quantum model-
ing of the system. In particular, if viewed as a continuum limit of some discrete-spacetime
dynamics, our system corresponds to a persistent classical random walk [67]. This is in con-
trast with the simpler, well-known classical random walk, which (i) is the one that is usually
considered when the transport has no relativistic feature, and which (ii) leads to diffusion in
the continuum20 [17]. The telegraph equation can model the propagation of classical waves of
light/electricity with dissipation (in wires, for example, hence its name) [67]. At short (long)
times, propagation (diffusion) dominates over diffusion (propagation) [67]. Notice that the tele-
graph equation was proposed by Cattaneo to model relativistic diffusions and can be viewed
as a precursor of extended thermodynamics models.

In the light of the comments of the previous paragraph, the massive noisy quantum model
of the present work, equation (36), can be seen as a quantum model of relativistic diffusion.
Other models which could be quali�ed as such for the same reasons, have been considered
in the literature, but apparently mostly with a noise introduced directly on the spatial d.o.f.
[71–74]. A particularity of the present work is thus to introduce the noise on the internal d.o.f.
only.The solution of the telegraph equation, equation (61), is given by equation (70) for γ1 = 0,
so that b = 0 and κ = γ2 in equation (69).

4.2.2. Dynamics of the internal d.o.f.: standard bit-flip decohering dynamics, classically cou-

pled to the spatial degree of freedom. Without the external d.o.f. (i.e., replace S( p̂) by 1 in
equation (2)), we are left with the two standard error channels [60, 75] that we have introduced
on the coin (see equations (51) and (52)): the populations’ difference r3 decays exponentially
with a rate γ2, and the real (resp. imaginary) part of the coherences, r1 (resp. r2), also decays
exponentially, with a rate γ1 (resp. γ1 + γ2). These two coin error channels21 are purely and
fully decohering, i.e. (this is our terminology), they make the coherences decrease, as time
increases, monotonically and down to zero, respectively, and in any basis of the internal space;
that the populations’ difference go to zero is also independent of the basis22.

Let us now reconsider the external d.o.f.. Similarly to equation (54), one can prove the
following identity,

(∂x − ∂x′ )r
µ
xx′ |x=−x′ = ∂xT

µ
x , (64)

where

Tµx ≡ rµx,−x, (65)

measures the coherence between the states |x〉 and |−x〉, and inserting equation (64) for µ =

1, 2 into equation (52) yields, for m = 0,

∂tT
1
= −i∂xT

2 − γ1T
1 (66a)

∂tT
2
= i∂xT

1 − (γ1 + γ2)T
2. (66b)

20The mathematical connection, via analytical continuation, between the standard, unitary, i.e., non-noisy DTQW,
and the telegraph equation, is well-known [68–70]. In the present work, the connection is not merely mathematical,
but physical, via the introduction of noise in the unitary dynamics. More generally, whether the existence of such a
type of connection via analytic continuation implies a physical connection when introducing a noise is an interesting
question to be investigated.
21By de�nition, a qubit error channel maps a pure state to a mixed state.
22These results can be checked by a simple, direct computation.
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Analogously to the manipulation performed to go from equations (56)–(59), one can actually
decouple T1 and T2: they follow the same telegraph equation as R0 and R3 but with a modi�ed
diffusion coef�cient,

D′ ≡ 1

2γ1 + γ2
, (67)

and an additional self source of decoherence induced by γ1,

∂2t T
i
+ κ∂tT

i
= ∂2xT

i
+ bT i, i = 1 or 2, (68)

with

κ ≡ 2γ1 + γ2 > 0 (69a)

b ≡ −γ1(γ1 + γ2) 6 0. (69b)

The solution of this equation, provided on page 217 of reference [76], reads

Ft,x =
1

2
e−

κ
2 t
[
fx+t + fx−t

]
+
γ2
2

t

2
e−

κ
2 t

∫ x+t

x−t
dy

I1
(
γ2
2 zy
)

zy
fy

+
1

2
e−

κ
2 t

∫ x+t

x−t
dy I0(

γ2
2
zy)
[
gy +

κ

2
fy
]
, (70)

where

zy ≡ (t2 − (x− y)2)1/2, (71)

Iν(X) ≡
+∞∑

n=0

(X/2)ν+2n

n! Γ(ν + n+ 1)
, (72)

is the modi�ed Bessel function of the �rst kind, and where we need two initial conditions
because the equation is of order 2 in time,

fx ≡ F0,x (73a)

gx ≡ ∂tF|0,x. (73b)

The �rst thing to mention is that, if both the initial function, T it=0, and the initial time deriva-
tive, ∂ tT i|t=0, both vanish, then T it = 0 for any t, i.e., the dynamics generates no coherence
between x and x′. This is a consequence of choosing both a vanishing mass and a purely deco-
hering noise. If γ1 vanishes, no decoherence comes from self sources anymore (phase-�ip
channel); the remaining decoherenceonly comes from the chirality-�ip channel, and, as already
mentioned, the dynamics followed by both T1 and T2 is exactly the same as that followed by
R0 and R3, and can be viewed as the consequence of a purely classical coupling between the
internal and the external d.o.f.s. In summary: the initial amount of coherence between the two
internal states which is initially introduced in the system, is, as coherence between x and −x,
spatially transported classically exactly as the probability density.
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4.3. m 6= 0,Γ 6= 0: chirality-flip noise on massive Dirac fermions (in the low-dispersion, that
is, semi-classical regime)

In appendix C, we recall the case, (m 6= 0,Γ = 0), of standard, Dirac propagation [65, 76].
Now, we want to investigate how the (sole) chirality-�ip noise in�uences a massive Dirac
fermion.

Already in the noiseless case, one can distinguish two regimes: (i) a low-dispersion regime,
in which the global propagation, i.e., the average speed of the distribution, dominates over dis-
persion, i.e., over the average speed at which the distribution spreads with respect to the mean
position, and (ii) its counterpart, the dispersive regime. Let us, for simplicity, focus on the �rst
regime, that is, the non-quantum, or, rather, as we have called it, low-dispersion one, that can
be approximately described as the propagation of a classical wave (in vacuum, a classical wave
does not disperse)23. That is, let us study the classical features of our dynamics, equation (56).
As induced from the former, massless case, in section 4.2, it should be meaningful to qualify
this classical dynamics as a massive relativistic diffusion.

4.3.1. Validity of the low-dispersion regime (noiseless study). Let us consider the noise-
less case, detailed in appendix C. If σ, the momentum spread of the initial (Gaussian)
positive-energy wavepacket, equation (C10) for t = 0, is much smaller than the initial average
momentum p0, that is, if

σ

p0
≪ 1, (74)

then, intuitively, dispersion should be negligible with respect to propagation during some
time. Let us evaluate this more precisely. One can prove (not shown) that, if condition (74)
is satis�ed, then one can approximate the dispersion relation Ep =

√
p2 + m2 by a quadratic

function of p− p0 by Taylor expanding it around p0, that is, one can make what we call the
quadratic-dispersion-relation (QDR) approximation, which, conveniently, enables to do ana-
lytical computations (Gaussian integrals). In the QDR approximation, the mean position and
spread are respectively given by

vg ≡
∂Ep
∂p

∣∣∣∣
p=p0

=
p0√

p20 + m2
(75)

and by equation (C15b). One can then prove (not shown) by an explicit computation that
condition (74) actually ensures

vd
vg

≪ 1, (76)

that is, that we are in the low-dispersion regime.

23We say ‘low-dipersion’ rather than ‘non-quantum’ because we consider here no potential energy, so that the coun-
terpart, dispersive regime is not ‘that quantum’ either, in the following sense. Consider �rst the non-relativistic regime:
it is well-known that, without a potential energy, the Schrödigner equation can be seen as a classical wave equation
in a dispersive medium, with dispersion relation p2/2m. Now, if we are not in the non-relativistic regime, the only
quantum feature is Zitterbewegung; apart from it, free Dirac propagation could be described by a scalar amplitude
propagating classically in a dispersive medium, with dispersion relation

√

p2 +m2.
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4.3.2. Physical quantities to be studied. Let us introduce the �rst moment of the probability
distribution, i.e., the mean position,

〈x〉t ≡
∫

R

dx xPt,x, (77)

where Pt,x ≡ R0
t,x is the presence density, or probability distribution, de�ned in equation (55).

Let us also introduce the second, non-centered moment of the probability distribution, that
is,

〈x2〉t ≡
∫

R

dx x2Pt,x. (78)

Finally, let us introduce the exponent,

ηt ≡
d ln(〈x2〉t − 〈x2〉0)

d ln t
, (79)

of the numerical �t of 〈x2〉t, de�ned in equation (78), by a power law, that is,

〈x2〉t≃
�t
αtη + 〈x2〉0, (80)

where α is some constant.

4.3.3. Numerical study. Consider an initial (Gaussian) positive-energy wavepacket,
equation (C10) for t = 0, satisfying condition (74)24, and let it evolve according to
equation (36) with

choice:γ1 = 0, (81a)

notation:γ2 = γ. (81b)

We have implemented this evolution numerically, via an implicit scheme, described in appendix
E. The dynamics displayed can be split into two or three regimes, as detailed further down. The
simplest, two-regimes description is the following one: �rst, a propagative regime, in which
propagation dominates over diffusion, and second, a diffusive regime, in which diffusion dom-
inates over propagation. There are several possible criteria to precisely de�ne the ‘domination’
one refers to. In the three-regimes description, illustrated in �gure 1, there is transient regime,
as we shall see in more detail. Let us characterize all the aforementioned regimes by analyzing
all �gures 1–3.

Let us focus on �gure 2, displaying 〈x〉t. One can easily check (not shown) that the initial
time derivative of 〈x〉t is always vg to a very good approximation. It is thus natural to introduce
a time t1 such that, up to this time, 〈x〉t is approximable vgt. Of course, t1 depends on the desired
precision of this approximation. From 0 to t1, the dynamics is thus not only propagative, but
also low-dispersion. One can then de�ne a transient regime from t1 to some t2 such that for
t > t2, the mean position 〈x〉t ≃ constant, a constant indeed manifestly reached as it can be
seen on �gure 2. Of course, t2 depends on the desired precision of the constant �t of 〈x〉t for
t > t2. The regime from t2 to in�nity is a diffusive one, as we shall see below.

24 So that, by extrapolating from the noiseless study of the previous section 4.3.1, we expect—when the Hamiltonian
part of the Lindblad equation, equation (36), dominates over the noise part—to be in the low-dispersion regime (rather
than the dispersive one).
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Figure 1. Probability density Pt,x ≡ R0
t,x (see equation (55)) of the massive, relativistic

particle experiencing the (quantum) relativistic diffusion governed by the Dirac Lindblad
equation (36) with γ1 = 0, as a function of the position x on the line, for different times t.
The �rst thing to mention is that the parameters and initial wavefunction—a (Gaussian)
postive-energy wavepacket, equation (C10)), of the standard Dirac equation—have been
chosen such that the dynamics is essentially classical, i.e., non-quantum, see the expla-
nations in the main text. The dynamics clearly displays, as time evolves, three regimes.
The �rst, propagative, low-dispersion regime, from t = 0 to a t1 de�ned in section 4.3.3,
is illustrated in the left panel, for which we have chosen γ ≡ γ2 = 0.05, p0 = 1 and
m = 3, so that the group velocity vg ≃ 0.31, and σ = 0.1, so that σ/p0 = 1/10, which
is why the global propagation dominates over dispersion: indeed, one can see that the
mean position 〈x〉t of the distribution (see equation (77)), represented by dashed vertical
lines, differs very little from the ballistic group motion vgt, represented by solid vertical
lines; Of course, the discrepancy between both increases with time. In the middle and
right panels, we have chosen γ = 0.5, p0 = 5 and m = 0.5, so that the group velocity
vg ≃ 0.995, and σ = 0.5 (so that σ/p0 = 1/10 and we should still be, at least initially,
in a low-dispersion case). Notice that the parameters used in the plots have been chosen
in order to qualitatively better display each of the three regimes. The second, transient
regime, from t1 to a t2 de�ned in 4.3.3, is illustrated in the middle �gure: one can very
clearly see how diffusion progressively takes over the ballistic motion of the initial den-
sity peak. The third, diffusive regime, from t2 to in�nity, is illustrated in the right �gure:
one can easily check numerically that this regime tends toward a standard diffusion, with
variance 4Dt, where D = 1/γ.

This was the three-regimes description. The interest of the two-regimes description is that
we naturally introduce a time tmid which, unlike t1 and t2, is not arbitrary, i.e., depending on
some desired precision, but characteristic of the dynamics. This tmid could be, e.g., when the
second derivative of 〈x〉t reaches its maximum (see �gure 2), or when it is the second derivative
of ηt which reaches its maximum (see �gure 3).

Now, that the dynamics always tends toward an exact diffusion for t→+∞, i.e., with a
variance scaling as t, seems to be expected from �gure 3. One can easily check (not shown)
that the diffusion coef�cient is, in all shown cases, that of the massless case,D = 1/γ, i.e., that
the variance equals 4Dt, as expected from the fact that the Lindblad equation is linear and that
there is no other diffusion term than that with diffusion coef�cient D.

Let us comment on the limit position xmax seen on �gure 2. In all the cases studied in �gure 2,
this limit position turns out to be very well approximated by

xmax ≃
�t
xlim(vg, γ) ≡

1

vgγ
≡ D

vg
, (82)

whose numerical values have been represented by black, dashed horizontal lines. Both the
dependencies in vg and D can be understood qualitatively by extrapolating from the massless
case, where the probability density Pt,x ≡ R0

t,x follows a telegraph equation, equation (61), that
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Figure 2. Time evolution of the mean position, 〈x〉t (see equation (77)), of an initial
(Gaussian) positive-energy wavepacket of the standard Dirac equation, see appendix C,
evolved through the Dirac Lindblad equation (36) with γ1 = 0 and notation γ2 = γ,
i.e., a sole chirality-�ip noise. The �rst (resp. second) row of plots corresponds to �x-
ing a width σ = 0.05 and a mean momentum p0 = 0.5 (resp. σ = 0.5 and p0 = 5), and
the ratio σ/p0 = 1/10 is �xed on all plots. The �rst column of plots corresponds to
m = 5, the second to m = 0.5, and the third to m = 0.05. We are in the low-dispersion
regime, where the width of the initial wavepacket is much smaller than the initial
average momentum, σ ≪ p0, so that the competition is expected to be between the
global propagation of the wavepacket and its diffusion due to the noise, the second
one increasingly dominating over the �rst one as time evolves. The wavepacket initially
evolves ballistically at speed vg, but later approaches asymptotically a limit position
xlim(vg, γ) ≡ 1/(vgγ) ≡ D/vg, see equation (82), represented by dashed horizontal lines.
After reaching the limit position, the probability distribution seems to experience an
exact diffusion, see �gure 3. One can see that the top–center (top–right) and bottom–left
(bottom–center) �gures seem to be almost the same, which suggests that the parameters
that characterize the dynamics are (apart from γ), the ‘dispersion/(global propagation)’
ratio, i.e., σ/p0, which characterizes the degree of dispersiveness, and (ii) the group
velocity vg, which characterizes the initial global propagation. The role played by vg,
not only up to xlim, but also after, is discussed further in the right-most series of plots of
�gure 3. Notice that, as vg converges to 1, xlim converges to D.

we rewrite here,

D

c2
∂2t Px + ∂tPx = D∂2xPx. (83)

We recall that here the characteristic speed is c = 1. We have omitted the time index of Pt,x as
in equation (61).

What accounts for xmax diminishing when D does is the following. As D diminishes,
the second time derivative in equation (83), (D/c2)∂2t Px, diminishes, while the �rst time
derivative, ∂ tPx, remains unaffected, so that propagation faints with respect to diffusion.
This is a remarkable speci�city of the telegraph equation. Indeed, D is involved not only
in the usual diffusion term, D∂2xPx, but also in the propagation term, (D/c2)∂2t Px, and
both terms have the same variations as D (they are, more precisely, linear with D), so
that a smaller D not only implies, via the usual diffusion term, a slower diffusion, but
also, via the propagation term, that the diffusion regime is reached earlier. The telegraph
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Figure 3. Time evolution of the exponent ηt (see equation (79)). The choices made are
exactly the same as in the top row of �gure 2, characterized by σ = 0.05 and p0 = 0.5.
We know that our numerical code fails for too small times. In the case γ = 0, the Fourier-
transform solution is computationally easy to plot, and we have checked that in this case
ηt is 2 whatever t. We believe that ηt=0 should be 2 (exact ballistic motion) whatever
γ. It seems from the plot that ηt always tends to 1 when t tends to in�nity, i.e., that the
dynamics tends toward an exact diffusion. The left and middle plots manifestly coindice
if ploted as a function of v2g t.

equation thus appears as the particular case d = D of the following, more general equation,
(d/c2)∂2t f + ∂t f = D∂2x f , in which the diffusion coef�cient D of the �nal diffusive regime
is, this time, independent from the time taken to reach this diffusive regime, controlled by
d (and c).

That xmax diminishes when vg increases could possibly seem counter-intuitive. The follow-
ing explanation can actually account for it. In the telegraph equation, that the characteristic
speed c increases makes propagation faint with respect to diffusion, i.e., makes the diffusive
regime be reached earlier. Now, one can argue that in the massive case, the same mechanism
happens, but with a characteristic speed which is not c anymore, but vg.

It is interesting to put this limit-position effect in perspective with an effect predicted in
the Stern–Gerlach experiment [77]. In this case, the system also experiences entanglement
between the internal and the spatial degrees of freedom. However, the noise is assumed to be
described by the Caldeira–Leggett model, so that it acts on the spatial part, not the internal
one. One �nds a limit momentum, rather than a limit position.

5. Continuum limit for discrete-time quantum walks with temporal coin noise
depending smoothly on the position

5.1. Adding spatial randomness on top of the temporal randomness of the coin unitary

5.1.1. Introduction,and M-point function. We want to allow the temporally random coin uni-
taries of section 3.2 to be random also spatially. We thus introduce a random variable Ωl

t,x for
each lattice position x ∈ L, where, for more de�niteness, we have considered, instead of Zǫ, a
�nite lattice

L ≡ {x1, . . . , xM}, (84)

withM some positive integer. From now on, we will omit the speci�cation ‘∈ L’ when writing
‘x ∈ L’. We keep the temporal independence of the random variables, i.e., Ωl

t1,x
is independent

on Ωl′
t2,x′ for t2 6= t1, whatever (l, x, l′, x′) (this, in particular, implies the classical Markovianity
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of the noise). We assume l-independence in space, i.e., Ωl1
t,x is independent on Ω

l2
t,x′ for l2 6= l1,

whatever (x, x′). Now, we do not assume spatial independence at �xed t and l, i.e., a family of
real numbers

(
ωlt,x
)
x
≡
(
ωlt,x1 , . . . , ω

l
t,xM

)
∈ R

M , (85)

where

M ≡ number of sites of the lattice, (86)

is issued from a sampling of the family of random variables (Ωl
t,x)x according to some arbitrary

M-point function (i.e., probability distribution), that we denote by pl,(M)
t,(x)x

25, where

(x)x ≡ (x1, . . . , xM). (87)

The family (ωlt,x)x has thus a probabilistic weight p
l,(M)
t,(x)x

((ωlt,x)x)
26; in other words, pl,(M)

t,(x)x
((ωlt,x)x)

is the probability (density) of the event ‘Ωl
t,x1

= ωlt,x1 and Ω
l
t,x2

= ωlt,x2 , . . . , and Ω
l
t,xM

= ωlt,xM ’.
As in section 3.2 for the spatially homogeneous noise, we assume the stationarity of the noise:
pl,(M)
t,(x)x

= pl,(M)
(x)x

.
Instead of the evolution of equation (27), we thus have to consider an evolution of the form

ρ̂t+ǫ =

∫
dν VQW

(ǫ f̄ t,x+ωt,x)x
(ρ̂t), (88)

where the integration measure dν, which satis�es the normalization condition
∫
dν = 1, is

given by

dν ≡ (dωt)
M P(M)

(x)x
((ωt,x)x), (89)

having introduced the notation

(dωt)
M ≡

3∏

l=0

∏

x

dωlt,x, (90)

and where, because of the l-independence in space,

P(M)
(x)x

((ωt,x)x) =
3∏

l=0

pl,(M)
(x)x

((ωlt,x)x). (91)

Since the ωt,xs, varying x, are here mute (they are integration variables), and there is no ambi-
guity about the time t at which we are if we decide not to change, we will use the simpli�ed
notation

λx ≡ ωt,x. (92)

25The temporal independence assumed above simply means being able to give oneself such a pl,(M)
t,(x)x

at any t, without
knowing the past history, i.e., the values (ωl

t′ ,x′ ){t′6t},{x′}.
26That this M-point function is arbitrary implies, in particular, that it is not necessarily given, as it would be for
independent random variables, by a product pl,(M)

t,(x)x
((ωlt,x)x) =

∏

xp
l,(1)
t (ωlt,x). Notice that we have not allowed the 1-

point function pl,(1)t to depend on x, i.e., we have impose translational invariance for the noise. Below in the main text,
we extend the de�nition of translational invariance for non-vanishing correlations between the random variables.
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Now, for each family (λlx)x ∈ R
M , the random-unitaries superoperator is, naturally, given by

VQW
(ǫ f̄ t,x+λx)x

(ρ̂t) ≡ V̂QW
(λx)x

ρ̂t

(
V̂QW
(λx)x

)†
. (93)

where the random unitaries are, in the present DTQW case,

V̂QW
(λx)x

≡ Cǫ f̄ t,̂x+λ̂x Ŝ, (94)

with the position-dependent coin operator

Cǫ f̄ t,̂x+λ̂x =
∑

x

Cǫ f̄ t,x+λx |x〉 〈x| , (95)

and where, to lighten notations, we have used

Ŝ ≡ S( p̂), (96)

given in equation (3). As in the spatially homogeneous case in section 3.2, the (densities of)
Kraus operators are simply the random unitaries V̂QW

(λx)x
; there is one such operator for each

4M-uple (λx)x.

5.1.2. We only need the 2-point function because the noise is local. We qualify a spatiotem-
poral noise (λy)y as local if the random unitary V̂ (λy)y , with a priori arbitrary dependence in
(λy)y, has matrix elements of the form

〈x| V̂ (λy)y |x′〉 =
∑

z∈L
Vxx′
λz
, (97)

that is, sums of terms depending, each, on a single λz. It is straightforward to check that the
random unitary V̂QW

(λy)y
, equation (94), is local (with, moreover, the single term z = x in the sum

of equation (97)). For a few precisons on local noises, see appendix F.
Now, for a local noise as de�ned in equation (97), the matrix elements ρxx

′
t+ǫ ≡ 〈x| ρt+ǫ |x′〉

are given by27

ρxx
′

t+ǫ ≡
∑

y,y′ ,z,z′

∫
(dλ)MP(M)

(̃x)̃x
((λx̃)x̃)V

xy
λz
ρyy

′
t V

y′x′
λz′

(98a)

=
∑

y,y′ ,z,z′

∫
dλzdλz′P

(2)
z,z′ (λz,λz′ )V

xy
λz
ρyy

′
t Vy′x′

λz′
. (98b)

In going from the �rst to the second line, we have integrated over the variables that do not
appear in the integrand, and assumed that, at any order n = 1, . . . ,M, there is a single marginal,
i.e., not several ones that would be produced by having integrated the higher-order functions
over different variables, which is ensured if we assume the M-point function to be fully sym-
metric (i.e., symmetric with respect to all pairs of variables), which, by a natural de�nition, is a

27To obtain this, just apply 〈x| (resp. |x〉) on the left (resp. right) of equation (88) considered, more generally, for a
local-noise superoperator V , i.e., made of unitaries satisfying equation (97), not necessarily of the form VQW.
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necessary feature of theM-point function ifwe require the noise to be translationally invariant;
hence, a sole 2-point function appears,

P(2)
z,z′ (λz,λz′) ≡

∫ 


R−1∏

r=0

∏

x̃ 6=z,z′
dλrx̃


P(M)

(̃x)̃x
((λx̃)x̃), (99)

where λx ≡ (λrx)r=0,R−1, R ∈ N being the number of space (time)-dependent parameters which
we consider random in space (in the case of the coin operator parametrized by 4 angles which
has been considered in the present work, the maximum R that we can chose is R = 4, that
is, all four angles random in space, and remember that we denoted r = l). The dynamics
is completely determined by equation (98b), and, hence, by the knowledge of the 2-point
function. Any M-point function, and hence Kraus-operators family (V̂ (λx)x )(λx)x∈RRM , com-
patible with the 2-point function characterizing the model, is a valid one to describe that
model.

5.1.3. Special form of the 2-point function for random variables associated to lattice sites, and

for a translationally-invariant noise. By construction of our model, we do not only have a 2-
point function P(2)

z,z′ (λ,λ
′), but we also have that, when z = z′, then λ = λ′, so that the 2-point

function must have the form [78]

P(2)
z,z′ (λz,λz′) = δzz′P

(1)
z (λz)δ(λz − λz′ )+ (1− δzz′ )P

(2),6=
z,z′ (λz,λz′ ), (100)

where P(1)
z (λz) is the 1-point function, and P

(2),6=
z,z′ is a 2-point function which need only make

sense for z 6= z′, i.e., P(2),6=
z,z′ (λz,λz′ ) is, for z = z′, an arbitrary and irrelevant R+-number.

Requiring the noise to be spatial translationally invariant means requiring

∀(z,λ) ∈ L× R, P(1)
z (λ) = P(1)(λ) (101a)

∀(z, z′,λ,λ′) ∈ L
2 × R

2, P(2)
zz′ (λ,λ

′) = w|z−z′|(λ,λ
′) (101b)

= w|z−z′ |(λ
′,λ), (101c)

i.e., (i) that P(1)(λ) does not depend on the lattice position z, and (ii) that P(2)(λ,λ′)
actually depends only on the distance |z− z′|, and is an even function of (λ,λ′) (i.e., is
symmetric in (λ,λ′)). For random, spatially independent variables, the �rst condition is
of course suf�cient, but if we allow non-vanishing 2-site correlations, the second is also
needed.

5.2. Continuum limit for discrete-time quantum walks with temporal coin noise depending

smoothly on the position

5.2.1. Condition for the temporal continuity of the density operator. Consider equation (98b)
for the DTQW random unitary, equation (94):

ρxx
′

t+ǫ =

∫
dλxdλx′P

(2)
x,x′ (λx,λx′ )C

′
λx
〈x| Ŝ ρ̂t Ŝ† |x′〉C′

λx′
, (102)

where

C′
λx

≡ Cǫ f̄ t,x+λ̃x . (103)
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As in section 3.2.2, we assume

Λ
l
x ≡

√
ǫ Λ̃l

x, l = 0, 3, x ∈ L, (104)

and change the integration measure in accordance. The above condition, equation (104),
ensures, as in the case of a sole temporal noise, that ρ̂t+ǫ − ρ̂t scales as ǫ, i.e., that ρ̂ is a
continuous function of time, and hence that ρ̂ is approximable by a differentiable function of
time; it is in this sense that we can write ∂tρ̂28.

5.2.2. About the difficulties to obtain,once we introduce spatial noise, a PDE description in a

sensible continuum limit. The question we ask ourselves is whether one can get a sensible
limit to the spacetime continuum out of the noisy dynamics described by equation (88), i.e.,
more precisely, whether one can get a PDE for ρ̂ in such a limit. Recall that this is indeed
what we have obtained in the case of a purely temporal noise, see equation (36). Now, because
the spacetime-dependent coin-operator parameters are sampled from random variables, Λ̃l

xs,
which, for each point x of the 1D spatial lattice, are different from one another, then if we take
the lattice spacing ǫ going to zero, the functions of the position resulting from this sampling,
i.e., the realizations (λ̃lx)x of the spatial noise, will be discontinuous everywhere on the line.
Hence, for each realization (λ̃lx)x of the spatial noise associated to the evolution t→ t+ ǫ (i.e.,
each term in the integral of equation (88)), ρt,xx′ ≡ 〈x|ρ̂t|x′〉 can a priori be considered a con-
tinuous function neither of x nor of x′. Now, at each time step, an average is made over all
possible realizations (λ̃lx)x of the spatial noise, see equation (88), and it is possible that in cer-
tain cases, i.e., with certain constraints, this average does only produce continuous, and even
differentiable functions ρt,xx′ of x and x

′. That being said, this is a delicate topic which would
require more work, and we will not treat it in the present article. Let us simplify the problem
and ask ourselves: what are the constraints that one has to impose on the spatial part of the
noise for each realization (λ̃lx)x of this spatial noise to induce a function ρt,xx′ differentiable in x
and x′? A suf�cient condition answering this question is the following: such a differentiability
of ρt,xx′ as a function of x and x′ is trivially guaranteed if we impose all realizations (λ̃lx)x of
the spatial noise to be differentiable functions of the position x themselves. But, imposing this
implies that we loose the notion of spatial noise in the continuum limit, that is, in the contin-
uum limit, the superimposed spatial noise introduced at the level of the DTQW, reduces to mere
spatial dependence of the temporal noise. This is the case we are going to treat in the present
work.

5.2.3. Non-explicit Lindbladian form of the continuum limit. In appendix G, we show that, if
all sequences (λlx)x involved in the integral of equation (88), correspond, not to outcomes of
spatially-dependent random variables, but to values taken by differentiable functions of x (and
with which they coincide in the continuum limit), then equation (102) admits the following
dynamics in the continuum limit, ǫ→ 0,

∂tρ
xx′

= −i 〈x| [Ĥo, ρ̂] |x′〉+NΓ/2,κ|x−x′ | (ρ
xx′ ), (105)

28 In the case where there is no spatial dependence of the parameters of the coin operator, we have also shown the
existence of a formal continuum limit by Taylor expanding in that small parameter,

√
ǫ, before making the Kraus

integral, so that one may think that it is also only in the above-mentioned sense that we can write ∂t ρ̂. However, one
can actually, in this case where there is no spatial dependence, perform the Kraus integral before Taylor expanding
in

√
ǫ, and the result actually yields functions which are differentiable in time, so that ρ̂ also is, exactly, i.e., does not

need to be approximated by a function exhibiting such a feature.
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where the noise term is

NΓ/2,κ|x−x′ | (ρ
xx′ ) ≡

2∑

l=0

γlMl

κl|x−x′ |
(ρxx

′
), (106)

with

Γ ≡ (γ0, γ1, γ2), (107)

and

Ml

κl|x−x′ |
(ρxx

′
) ≡ κl|x−x′ |Llρ

xx′Ll −
1

2
{L†l Ll, ρxx

′}, (108)

where the Lls are given by equation (25) with L0 ≡ 12, and where we have introduced the
‘variances’

γl
2

≡
∫

dλ̃y p̃
l,(1)(λ̃ly) (λ

l
y)
2, (109)

and the ‘correlation coef�cients’

κl|x−x′ | ≡
clx,x′
γ l/2

∈ [−1, 1], (110)

where the clx,x′ s are the 2-point ‘correlation functions’,

clx,x′ ≡
∫

dλ̃xdλ̃x′ p̃
l,(2)
x,x′ (λ̃

l
x, λ̃

l
x′ ) λ̃

l
xλ̃

l
x′ , (111)

which actually depend on |x− x′| only, because of condition (101b) for the translational invari-
ance of the noise. Notice that, while the contribution of the noise l = 0 to the continuum limit
was vanishing in section 3.2.2, here it does not, because of the spatial inhomogeneity. Indeed,
it is because in general κ0|x−x′ | 6= 1, that the contribution l = 0 does not vanish:

M0

κ0|x−x′ |
(ρxx

′
) = (κ0|x−x′ | − 1)ρxx

′
. (112)

One can check that equation (105) is trace preserving, by taking it at x = x′, and summing
over all xs and over L, R. The left-hand side then becomes

∫

R

dx
∑

L,R

∂t[(ρ
uu)xx] = ∂t(Tr ρ̂), (113)

while the right-hand side is (since the Hamiltonian part is trace preserving)

∫

R

dx
[
(ρLL)xx + (ρRR)xx

] 2∑

l=0

γl

(
κl|x−x′ |=0 − 1

)
. (114)

By construction of our 2-point function, see equation (100),

κl|x−x′ |=0 = 1, l = 0, . . . , 2. (115)
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The right-hand side, (114), thus vanishes, and hence so does the left-hand side, which yields
trace preservation.

Notice that the fact that this continuum limit onlymakes sense for a sole temporal coin noise
with smooth spatial variations, and is not valid for a superimposed spatial coin noise, implies
that the ‘correlation coef�cient’ κl|x−x′ | is a differentiable function of |x− x′|, which in turn is
consistent with the fact that our resulting PDE involves, in the Hamiltonian part, derivatives of
ρt with respect to x and x′.

5.2.4. Explicit Lindbladian form. We are going to show that one can derive, from a certain,
quite general family of random unitaries, a continuumLindbladian limit. Consider the dynam-
ical map ensuing from arbitrary temporal-noise random unitaries Q̂φ(

√
ǫ), (i) depending on an

arbitrary sequence φ ≡ (λx)x of values taken by a differentiable function of x, with which the
sequence coincides in the continuum limit ǫ→ 0, and (ii) being a function of the square root√
ǫ of the spatiotemporal-lattice spacing ǫ,

ρ̂t+ǫ =

∫
dν Q̂φ(

√
ǫ) ρ̂t Q̂

†
φ(
√
ǫ), (116)

where the integration measure satis�es
∫
dν = 1. Assume that the random unitaries have the

following Taylor expansion,

Q̂φ(
√
ǫ) = 1+

√
ǫQ̂(1/2)

φ + ǫQ̂(1)
φ + O(ǫ3/2). (117)

Equation (116) then reads

ρ̂+ ǫ∂tρ̂ = ρ̂+
√
ǫH

(
Q̂(1/2)ρ̂t

)
+ ǫ

[
H

(
Q̂(1)ρ̂t

)
+

∫
dν Q̂(1/2)

φ ρ̂t

(
Q̂(1/2)
φ

)†]
+ O(ǫ3/2),

(118)

having introduced the mean value of an operator Ôφ,

Ô ≡
∫

dν Ôφ, (119)

and the Hermitian-symmetric part of an operator Â,

H(Â) ≡ Â+ Â†. (120)

For this expansion, equation (117), to make sense whatever ǫ > 0, one needs

H

(
Q̂(1/2)ρ̂t

)
= 0, (121)

for which it is suf�cient that

Q̂(1/2) ≡
∫

dν Q̂(1/2)
φ = 0, (122)

and one then obtains the following PDE,

∂tρ̂ = Q̂(1)ρ̂t + ρ̂t

(
Q̂(1)
)†

+

∫
dν Q̂(1/2)

φ ρ̂t

(
Q̂(1/2)
φ

)†
. (123)
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Now, Q̂(1) is in general not Hermitian, and can be decomposed into a Hermitian and an anti-
Hermitian part,

Q̂(1)
= Ĝ+ (−iĤ), (124)

where

Ĥ ≡ i

2

[
Q̂(1) −

(
Q̂(1)
)†]

(125a)

Ĝ ≡ 1

2

[
Q̂(1)

+

(
Q̂(1)
)†]

, (125b)

are both Hermitian. Equation (123) can then be rewritten as

∂tρ̂ = −i[Ĥ, ρ̂]+ {Ĝ, ρ̂}+
∫

dν Q̂(1/2)
φ ρ̂t

(
Q̂(1/2)
φ

)†
, (126)

where [·, ·] is the commutator, and {·, ·} the anticommutator. Notice from this equation that Ĥ
is a Hamiltonian. Now, requiring that evolution (116) be trace preserving implies the following
normalization condition,

∫
dν Q̂†

φ(
√
ǫ)Q̂φ(

√
ǫ) = 1, (127)

which, using the Taylor expansion of equation (117), imposes

Ĝ = −1

2

∫
dν
(
Q̂(1/2)
φ

)†
Q̂(1/2)
φ . (128)

Plugging this expression of Ĝ into equation (126) �nally yields

∂tρ̂ = −i[Ĥ, ρ̂]+

∫
dν

[
L̂φρ̂tL̂

†
φ −

1

2

{
L̂†φL̂φ, ρ̂

}]
, (129)

which is a Lindblad equation, with Lindblad operators

L̂φ ≡ Q̂(1/2)
φ . (130)

One can apply this general result to recover (i) that of section 3.2.2, with a pure temporal coin
noise, and (ii) that of section 5.2, with a temporal coin noise which depends smoothly on the
position.

6. Conclusion

Aswe discussed in the introduction, the search for a correct description of diffusive dynamics in
relativistic quantum systems has faced historically many dif�culties, in the attempt to preserve
essential features such as relativistic covariance or causality. In the non-quantum case, these
dif�culties have been overcome. In the quantum case, they are still under study. In the present
paper, we do not address covariance. We present a model that can be used to simulate some
features observed in more involved systems.

Our starting point, see section 2, is a DTQW on a one-dimensional lattice, whose walker
is subject, see section 3, to noise acting on its internal, coin (or chirality) degree of freedom,
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that makes it decohere. We consider two such models of decoherent DTQW. First, a model
with both a coin-�ip and a phase-�ip channel. Second, a model of random coin unitary oper-
ators (so-called random coin unitaries). Noise acting on a two-level quantum system (such as
the chirality part of a chiral system), appears in many physical scenarios, and is commonly
described, microscopically, by spin-boson models29. Such scenarios include the description of
matter in a quantized radiation �eld, the motion of light particles in metals, or superconducting
qubits which are coupled to propagating photons.

Given the update rules that govern the dynamics of DTQWs, their causality is guaranteed by
construction. In fact, an important property of noiseless DTQWs is the ability to reproduce the
dynamics of relativistic particles in the continuum limit, i.e., when both the lattice spacing and
the time step go to zero. This also requires that the parameters of the coin operator that controls
the dynamics follow this scaling in an appropriate manner. One can naturally ask the question
of what is the continuum limit (if any) of the above decoherent-DTQWmodels. As expected,
the existence of such a limit also imposes conditions on the behavior of the parameters that
characterize the noise, as we approach the continuum. Within this assumption, we obtain that
the two decoherent-DTQWmodels introduced above admit a common formal continuum limit,
namely, a Lindblad equation with a Dirac-fermion Hamiltonian part and, as Lindblad jumps,
a chirality �ip and a chirality-dependent phase �ip, which are two of the three standard error
channels for a two-level quantum system. This, as we may call it, Dirac Lindblad equation,
provides a model of quantum relativistic spatial diffusion, which is evidenced both analytically
and numerically in section 4. The presence of the chirality, along with its entanglement with
the spatial motion, is of course, in our noise model, a crucial ingredient in obtaining such a
quantum relativistic system with spatial diffusion, given that the noise acts on the chirality.

We have investigated the resulting dynamics. For a particle with vanishing mass, the model
reduces to the well-known telegraph equation, which yields propagation at short times, dif-
fusion at long times, and exhibits no quantumness, in the sense that it can be described by a
wave equation on the density of presence of the particle. On the other hand, the massive case
has been analyzed numerically, and exhibits a rich phenomenology.We analyzed in detail the
dynamics that appears when the initial state is Gaussian, and identi�ed the relevant parameters
of the problem. In the low-dispersion regime, corresponding to an initial momentum width
which is much smaller than the initial average momentum, the average position �rst propa-
gates ballistically, with a velocity that equals the group velocity and, after a transient regime,
asymptotically approaches a limit position.

We also extended, in section 5, our formal-continuum-limit procedure to temporal noises
which depend smoothly on position. We stress that this does not correspond to adding a spatial
noise in any way.

Noiseless quantum walks have numerous applications. In quantum algorithmics, they are
known to be universal computational primitives. In quantumsimulation, they can emulate high-
energy phenomena like particles propagating in external gauge �elds (including a gravitational
potential). And it has been suggested that quantum walks can also serve as building blocks for
discrete models of gauge theories. Thus, stochastic quantum walks such as those considered
in this article are useful tools to investigate the effects of decoherence, both in quantum algo-
rithmics and in quantum simulation. To be fair, the results presented above are only partial and
should be extended, not only to quantum walks on graphs, but also to many-particle quantum

29Reference [75] provides such a microscopic model in a framework which is very close to that of the present work; the
only difference regarding the noise aspect is that they consider the depolarizing channel, which is an equally weighted
sum of the three standard error channels for two-level systems, while we consider only two of these three channels,
and with arbitrary weights.
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walks, i.e. quantum cellular automata. But they reveal, through quantumwalks, a profound and
unexpected link between quantumalgorithms running in a non ideal, ‘open’ quantum computer
and relativistic diffusions. The link between decohering gauge theories and relativistic diffu-
sions is perhaps less surprising, but it seems never to have been mentioned in the literature so
far. Speaking quite generally, the results presented in this article show that the vast body of
knowledge accumulated on classical relativistic diffusions can contribute to our understanding
of open quantum systems, at least in situations where quantum walks play a natural role. And,
vice-versa, studying decoherence of systems which can be modeled with quantum walks can
teach us about relativistic diffusions.
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Appendix A. Euler-angles parametrization of SU(2)

Consider the coin operator of equation (7) with, for simplicity, spacetime-independent entries.
Up to the global phase ξ0, this arbitrary 2× 2 unitary matrix,

C(ξ0,ξ1,θ,χ) ≡ eiξ
0
R(ξ1,θ,χ) ∈ U(2), (A1)

is nothing but an arbitrary coin rotation, which can be written as

R(ξ1,θ,χ) ≡ ei
ξ1+χ

2 σ3eiθσ
1
ei

ξ1−χ
2 σ3 ∈ SU(2). (A2)

We have put the dependence on the angles between round brackets to indicate that these angles
are constant in spacetime, i.e., only correspond, each, to one real variable.

We have chosen to parametrize this coin rotation with the angles ξ1, θ, and χ, which are the
following linear combinations of the Euler angles of SO(3) for a passive rotation:

ψ = ξ1 − χ (A3a)

φ = ξ1 + χ (A3b)

Θ = 2θ, (A3c)

see reference [70], appendix F. Notice that θ is just half of the Euler angle giving the lati-
tude. Notice also on equation (A2) that χ simply corresponds to a change of coin basis in the
equatorial plane of the Bloch sphere. This parametrization is a compromise between (i) good
visualization of the action of the coin rotation on the Bloch sphere, equation (A2), which is why
we use almost the Euler angles—the only subtlety being, as the reader may have noticed, the
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visualization of ξ1 [70]—, and (ii) compactness of writing in a single-matrix form, equation (4),
which is why we do the above linear combinations30, equation (A3).

Appendix B. Quantum continuity equation

Equation (41) shows, in particular, (i) that31

r̂0t = Trc(ρ̂t) = ρ̂LLt + ρ̂RRt , (B1)

is the operator corresponding to the probability of presence regardless of the internal state
(partial trace of ρ̂t over the internal d.o.f.), and (ii) that,

r̂3t = ρ̂LLt − ρ̂RRt , (B2)

is the left-current operator. Points (i) and (ii) can be illustrated by the fact that one of the
four coupled PDEs implied by equation (36) on the r̂µt s, is (we omit the time label to lighten
notations),

∂t r̂
0
= i[ p̂, r̂3], (B3)

which is the quantum-operatorversion of the 1D continuity equation; indeed, in position space,
i.e., applying 〈x| on its left, and |y〉 on its right, equation (B3) delivers

∂tr
0
xy = (∂x + ∂y)r

3
xy, (B4)

where rµxy ≡ 〈x| r̂µ |y〉, and considering this equation, (B4), for x = y, yields (see equation (54)),

∂tR
0
x − ∂xR

3
x = 0, (B5)

where Rµx ≡ rµxx. Equation (B5) is a standard continuity equation, not speci�c to a quantum
setting. R0

x is the probability density, and R
3
x the left-current density.

Notice the following. ‘How much’ quantum information contained in equation (B3) mani-
fest itself (so that the equation cannot be reduced to its non-quantum version, equation (B5)),
is conditioned to ‘how much’ the evolution equation for r̂3 contains quantum information as
well. In the present case, we will see in section 4.2.1 see that this demands that the mass m
does not vanish. Now, we know a priori that this condition is, although necessary, not suf�-
cient, because in the non-relativistic limit, the internal and external d.o.f.s do not get entangled
by the free dynamics, as mentioned early in section 4.1.1. So, another necessary condition for
equation (B3) to contain purely quantum information is, for the present model, that the latter
is relativistic.

30 Indeed, if we had stuck strictly to using the Euler angles, we would have linear combinations of ψ and φ in the
argument of the exponentials that appear in the matrix.
31The four ρ̂uvt s, u, v ∈ {L,R}, are the components of ρ̂t on this basis of the mixed coin states that we call canonical,
which is induced by the LR basis of the coin pure states: ρ̂ ≡ ∑

u,v=L,Rρ̂
uv
t |u〉〈v|.
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Appendix C. m 6= 0,Γ = 0: standard, massive Dirac fermions, a very brief
reminder

C.1. General solution for a pure initial state

When Γ = 0, the dynamics is unitary. Hence, if we do not wish to evolve mixed initial states,
the density-operator formalism is not necessary; we can work with the state-vector formalism.
The evolution of an arbitrary pure state from time t0 = 0 to time t is given by

Ψt,x =
1√
2π

∫

R

dpΨ̃t,pe
ipx, (C1)

where

Ψ̃t,p = α+
p V

+
p e

−iEpt + α−
p V

−
p e

iEpt, (C2)

is the decomposition, at any time t, of the momentum amplitude distribution on the chirality
eigenbasis of the considered Hamiltonian,

h(p) ≡ HDirac
m,0 (p) =

[
−p m
m p

]
, (C3)

see equation (22). The eigenvalues are ±Ep, with

Ep ≡
√
p2 + m2, (C4)

and two possible eigenvectors are32

V±
p ≡

(
1

±Ep + p

m

)
. (C5)

The coef�cients α± of the decomposition, equation (C2), are, apart from the normalization
condition,

∫

R

dp
(
|α+

p |2||V+
p ||2 + |α−

p |2||V−
p ||2
)
= 1, (C6)

arbitrary complex-valued functions of p.

C.2. Choice of the initial condition

Unless otherwise mentioned, we choose a positive-energy initial state with Gaussian momen-
tum distribution of center p0 and spread σ, that is,

α+
p = βp−p0 ≡

√
N
√
gσp−p0 (C7a)

α−
p = 0, (C7b)

where

gσp ≡
1√
2πσ

e
− p2

2σ2 , (C8)

32These are non-normalized in the internal space; there is no need of doing so.
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and N is a normalization factor, such that (see equation (C6))

∫

R

dpNgσp−p0

[
1+

(
Ep + p

m

)2
]
= 1. (C9)

C.3. Group and dispersion velocities

With the initial condition of equation (C7), the state evolution is

Ψt,x =
1√
2π

∫

R

dp Ap−p0e
i(px−Ept), (C10)

where

Ap−p0 ≡ βp−p0V
+
p . (C11)

One can show that a suf�cient condition for the dispersion relation, Ep, to be considered
quadratical, i.e., for what we call the quadratical-dispersion-relation (QDR) approximation to
be made, is

σ ≪ p0, (C12)

which corresponds to Ap−p0 sharply peaked around p = p0. Within the QDR approximation,
the mean position and the centered spread are well approximated by the following, ballistic
formulae [79]

Xt ≡ 〈x〉t ≃ vgt (C13a)

Σt ≡
√
〈x2〉t − 〈x〉2t ≃ Σ0

√
1+

v2d
Σ

2
0

t2, (C13b)

with

Σ0 ≡
1

4σ2
+ a, (C14)

and where the group and dispersion velocities are respectively given by

vg ≡
∂Ep
∂p

∣∣∣∣
p=p0

=
p0√

p20 + m2
(C15a)

vd ≡ Γ|p=p0σ
2
+ b, (C15b)

where

Γ|p=p0 ≡
∂2Ep
∂2p

∣∣∣∣
p=p0

. (C16)

The parameters a and b, intervening respectively in equations (C14) and (C15b), are a real
numbers that can be computed analytically (within the QDR approximation).
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Appendix D. Phase-change noise channel on a massless discrete-time
quantum walk

In section 4.2.1, we have mentioned that the phase-�ip noise, characterized by γ1, has no
effect on the dynamics of R0 and R3 in the massless case. This would actually be the case
of any phase-change jump operator, i.e., with the following properties, (i) it acts solely on
the chirality, internal Hilbert space, (ii) it is diagonal, and (iii), it is unitary, that is, it has
the form J = diag(exp(iϕL), exp(iϕR)), which adds, to each of the two wavefunction compo-
nents (left- and right-moving), an arbitrary phase (ϕL and ϕR). Indeed, the phases of these
two wavefunction components do simply not in�uence the spatial dynamics in the massless
case.

Now, if we reintroduce a non-vanishing spacetime-lattice spacing ǫ, i.e., if the walker does
experience the discreteness of spacetime, then any such J, e.g., even the identity diag(1, 1),
doesmodify the spatial dynamics, but this is simply because applying the noise term π1Jρ̂tJ in
equation (19) makes in particular the walker stay, with probability π1, at his position during a
�nite, i.e., non-vanishing amount of time∆t = ǫ, that is, the values of ϕL and ϕR are irrelevant
to this phenomenon.

Appendix E. Numerical implementation of the Dirac Lindblad equation (36)

The Dirac Lindblad equation (36), which can be written as equation (42), is given, in position
space, by the system of equations (51) and (52), which can be recast as

∂t~r + A∂x~r + A′∂x′~r = F~r, (E1)

where (i)~r ≡ (r0, r1, r2, r3)⊤ (see equation (53)), (ii) the so-called Jacobian matrices are

A ≡ iP =




· · · −1
· · i ·
· −i · ·

−1 · · ·


 , (E2a)

A′ ≡ −iP†
=




· · · −1
· · −i ·
· i · ·

−1 · · ·


 = A⊤, (E2b)

where the dots stand for zeros and P is given in equation (44), and the so-called source-term
matrix is, for γ1 = 0,

F ≡ Q(γ1=0,γ),m =




· · · ·
· · · ·
· · −γ −2m
· · 2m −γ


 , (E3)

where Q is given in equation (44). Given that the matrices A and A′ are Hermitian and
commute, there exists a unitary matrix,

U ≡ 1√
2




1 · · 1
· i 1 ·
· −i 1 ·

−1 · · 1


 , (E4)
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that simultaneously diagonalizes them,

Λ ≡ UAU−1
= diag(−1,−1, 1, 1) (E5a)

Λ
′ ≡ UA′U−1

= diag(−1, 1,−1, 1). (E5b)

This allows to rewrite the system of equations as

∂t~v +Λ∂x~v +Λ
′∂x′~v = S~v, (E6)

where

~v ≡ (v0, v1, v2, v3)⊤ ≡ U~r (E7a)

S ≡ UFU−1. (E7b)

System (E6) is a hyperbolic system of PDEs, and its solution is thus in particular solely
determined by the initial condition ~vt=0.

We integrated this system numerically via the Strang operator-splitting method, which con-
sists in splitting the single-time-step evolution into two parts: one corresponding to the homo-
geneous evolution of the system (i.e. S = 0), and the other one corresponding to the evolution
with null �uxes (i.e. Λ = Λ

′ = 0). This method is particularly adapted to the present case,
since the homogeneous solution is exactly solvable,

vµt,x,x′ = vµ
0, x−λµ t, x′−λµ ′t, (E8)

where the λµs (resp. λµ
′
s), µ = 0, . . . , 3, are the 4 eigenvalues of the matrix Λ (resp. Λ′). For

the second part of the evolution, one has to solve, as mentioned,

∂t~v = S~v. (E9)

This equation has a well-known explicit solution, which requires the exponentiation of the
matrix S. A direct numerical implementation of this exponential introduces well-known stiff-
ness problems. To address this issue, we implement instead the following�rst-order (i.e., Euler)
explicit-implicit scheme,

~vt+ǫ − ~vt
ǫ

= αS~vt + (1− α)S~vt+ǫ, (E10)

where the parameter α has been adjusted by hand to α = 0.533.
The accuracy of the splitting method can be improved from O(∆t) to O(∆t2) by using the

so-called Strang splitting, where we take half a step with the one-time-step source term evolu-
tion operator,Ls

ǫ/2, a full step with the one-time-step homogeneous evolution operator Lh
ǫ , and

�nally half another step with the source term operator. During a time interval ǫ, the algorithm
thus reads

~vt+ǫ = Ls
ǫ/2L

h
ǫL

s
ǫ/2~vt. (E11)

33Our criterion to choose α has been to minimize, by hand, the discrepancy of the numerically obtained ~vt from the
discretized equation of motion, equation (E6), at the �nal time of the simulation.
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Appendix F. About local noises

A typical example of local noise, as de�ned by equation (97), would be

V̂ (λy)y = ÂÔ(λy)y B̂, (F1)

where the only operator, Ô(λy)y , that depends on the noise, (i) is purely local, i.e.,

Ô(λy)y ≡
∑

z

Oz
(λy)y

|z〉 〈z| , (F2)

with Oz
(λy)y

acting solely on the internal d.o.f. (which is why it has no hat), and (ii), depends

locally on the noise, i.e., Oz actually only depends on λz,

Oz
(λy)y

≡ ozλz . (F3)

Indeed, if the random unitary has the form of equation (F1) with the precisions (i) and (ii) given
just above, the matrix elements would be of the form of equation (97), with

V̂xx′
λz

≡ 〈x| Â |z〉 ozλz 〈z| B̂ |x′〉 . (F4)

Let us show that the fact that the operator Ô(λz)z is purely local is necessary for the noise
to eventually be local without breaking the translational invariance of the system. We do a
reduction to absurd. Assume that Ô(λz)z is not purely local, i.e., that, whatever34 x, there exist
x′ 6= x such thatOxx′

(λy)y
6= 0. Imagine now thatOxx′

(λy)y
only depends on someλz, i.e.,Oxx′

(λy)y
= oxx

′
λz
.

Translational invariance imposes that, whatever x, (i) x− z = cte (we also have x′ − z = cte2,
but wewill not need it). But, x and x′ should not play a different role in a translationally invariant
system, i.e., we must have oxx

′
λz

= ox
′x
λz
, so that (ii) x′ − z = cte, which, together with (i), implies

that x′ = x, which contradicts the fact that x′ 6= x, and completes the proof. That Ô(λz)z is purely
local is thus necessary for the noise to be local. However, this condition is a priori not suf�cient,
one could imagine a unitary O(λy)y that acts purely locally, i.e., only on the internal degree of
freedom, but whose action depends on the random variables at all points, i.e., depends indeed
on the whole family (λy)y.

Notice that V̂QW
(λy)y

, equation (94), has a decomposition of the form of equation (F1) in which,

more particularly, Â is the identity, so that the sum over z in equation (97) reduces to the single
term z = x, namely,

〈x| V̂QW
λx

|x′〉 ≡ C′
λx
〈x| Ŝ |x′〉 , (F5)

where

C′
λx

≡ Cǫ f̄ t,x+λx . (F6)

Appendix G. Continuum limit of discrete-time quantum walks with temporal
coin noise depending smoothly on the position

If, for each evolution t→ t+ ǫ, all sequences (λlx)x involved in the integral of equation (88),
correspond, not to outcomes of spatially-dependent random variables, but to values taken

34 ‘Whatever’ is necessary, not only ‘there is’, because of the requirement of translational invariance.
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by differentiable functions of x (and with which they coincide in the continuum limit), then
the continuum limit of each of them exists, and is obtained via Taylor expansion in ǫ of the
spacetime-lattice dynamics.

We know, from equation (33), that the following Taylor expansion holds,

C′√
ǫλ̃x

〈x| Ŝ = 1− iǫ 〈x| Ĥo
t +

[
i
√
ǫ

2∑

l=0

λ̃lxLl −
1

2
(
√
ǫ)2

2∑

l=0

(λ̃lx)
2(Ll)

2

− (
√
ǫ)2
[
λ̃0x(λ̃

1
xσ

3
+ λ̃2xσ

1)+ λ̃2x λ̃
3
x(iσ

2)
]
+ O(ǫ3/2)

]
〈x| . (G1)

Similarly, we have

Ŝ |x′〉C′√
ǫλ̃x′

= 1+ iǫĤo
t |x′〉+ |x′〉

[
−i

√
ǫ

2∑

l=0

λ̃lx′Ll −
1

2
(
√
ǫ)2

2∑

l=0

(λ̃lx′ )
2(Ll)

2

− (
√
ǫ)2
[
λ̃0x′ (λ̃

1
x′σ

3
+ λ̃2x′σ

1)+ λ̃2x′ λ̃
3
x′ (iσ

2)
]
+ O(ǫ3/2)

]
, (G2)

Plugging equations (G1) and (G2) into equation (102) yields

ρxx
′
+ ǫ∂tρ

xx′
= ρxx

′
+ ǫ
[
−i 〈x| [Ĥo, ρ̂] |x′〉+ Fxx′ (ρ

xx′ )
]
+ O(ǫ3/2), (G3)

where we recognize a standard Hamiltonian part, and where the noise term is given by

Fxx′ (ρ
xx′ ) ≡

2∑

l=0

F l
xx′ (ρ

xx′ ), (G4)

where—using that p̃l,(2)x,x′ (λ̃
l
x, λ̃

l
x′ ) is symmetric (for the functions vl : x 7→ vlx and v

l : x′ 7→ vlx′ ,
de�ned below, to indeed be the same), which is the feature (101c) of the translationally invariant
noise de�ned in equation (101)—we obtain

F l
xx′ (ρ

xx′ ) ≡ clx,x′Llρ
xx′L†l −

1

2

(
vlxL

†
l Llρ

xx′
+ vlx′ρ

xx′L†l Ll
)
, (G5)

where the Lls are given by equation (25) with L0 ≡ 12, and with the 2-point ‘correlation
functions’ and the ‘variances’ respectively given by

clx,x′ ≡
∫

dλ̃xdλ̃x′ p̃
l,(2)
x,x′ (λ̃

l
x, λ̃

l
x′ ) λ̃

l
xλ̃

l
x′ (G6a)

vly ≡
∫

dλ̃y p̃
l,(1)
y (λ̃ly) (λ

l
y)

2. (G6b)

Now using (i) that p̃l,(1)y does not depend on y—which is the feature (101a) of the transla-
tionally invariant noise de�ned in equation (101)—, so that vy = v, and (ii) assuming that

clx,x′ actually only depends on |x− x′| and not (x, x′), which is guaranteed if p̃l,(2)x,x′ behaves
the same (feature (101b) of the translationally invariant noise de�ned in equation (101)), we
obtain

∂tρ
xx′

= −i 〈x| [Ĥo, ρ̂] |x′〉+NΓ/2,κ|x−x′ | (ρ
xx′ ), (G7)
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where the noise term is now

NΓ/2,κ|x−x′ | (ρ
xx′ ) ≡

2∑

l=0

γlMl

κl|x−x′ |
(ρxx

′
), (G8)

where we have renamed the ‘variances’ in accordance with section 3.2,

γl ≡ 2vl, (G9)

and introduced the ‘correlation coef�cients’,

κl|x−x′ | ≡
clx,x′
vl

∈ [−1, 1], (G10)

so that

Ml

κl|x−x′ |
(ρxx

′
) ≡ κl|x−x′ |Llρ

xx′Ll −
1

2
{L†l Ll, ρxx

′}. (G11)
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Solitons in a photonic nonlinear quantum walk: lessons from the continuum
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We analyze a nonlinear QW model which can be experimentally implemented using the compo-
nents of the electric field on an optical nonlinear Kerr medium, which translates into a rotation in
the coin operator, with an angle which depends (in a nonlinear fashion) on the state of the walker.
This simple dependence makes it easy to consider the space-time continuum limit of the evolution
equation, which takes the form of a nonlinear Dirac equation. The analysis of this continuum limit
allows us, under some approximations, to gain some insight into the nature of soliton structures,
which is illustrated by our numerical calculations. These solitons are stable structures whose tra-
jectories can be modulated by choosing the appropriate initial conditions. We have also studied the
stability of solitons when they are subject to an additional phase that simulates an external electric
field, and also explored if they are formed in higher dimensional spaces.

I. INTRODUCTION

The quantum walk (QW) is a powerful toolbox with
many applications. It can be shown to constitute a uni-
versal model of computation [1–3] with algorithmic ap-
plications, such as search problems [4–9] or element dis-
tinctness [10]. QWs manifest into two main categories.
Continuous-time QWs (CQWs) are described by a lo-
cal Hamiltonian originated from the adjacency matrix on
some graph with a time evolution which is dictated by the
Schrödinger equation, while discrete-time QWs (DQWs)
are defined by a unitary evolution operator which relates
two consecutive time instants in a stroboscopic way. An-
other important difference is that, in the case of DQWs,
the Hilbert space associated to the graph needs to be
enlarged with an additional degree of freedom (the so
called “coin” space). In spite of this different formu-
lation, it is possible to establish a connection between
CQWs and DQWs [11–15]. In this work, we will concen-
trate on DQWs.

From a physical point of view, DQWs have also been
used for the simulation of various physical theories and
phenomena. Many of these applications are motivated
from the fact that, under the appropriate conditions, the
continuum limit of DQWs is the Dirac equation. In this
way, DQWs can be used to simulate spin-1/2 particles in
both external Abelian [16–18] and non-Abelian [19] gauge
fields. Such simulations can also be applied to relativistic
gravitational fields [20–24]. DQWs also show additional
interesting phenomena [25–27].

QWs have been implemented using different setups
[28], such as photons in various optical devices [29–35],
atoms trapped in arrays of light [36], ion traps [37], or
superconducting qubits [38].

∗ andreu.angles-castillo@uv.es

In this work, we analyze a variant of the DQW which
introduces nonlinearities on the angle of the coin op-
erator, and shows some similar phenomena as in the
Non-Linear Optical Galton Board (NLOGB) model in-
troduced in [39], where such nonlinearities appeared as
phases on the different components of the dynamical
map. The main result in that reference was the appear-
ance of soliton-like structures with a rich phenomenology
that can be controlled by varying the coupling strength
to the nonlinear Kerr medium. In the model that is pro-
posed here, we also observe the formation of solitons with
a characteristic profile. The continuum space-time limit
can be easily obtained, and it turns out that it provides
much information about the soliton nature, which is con-
firmed by our numerical simulations. It also allows to
limit the conditions for stability for solitons. We observe
that these solitons remain stable when they cross each
other. Under the presence of an external electric field,
we obtain different situations, depending on the strength
of the field and the magnitude of the nonlinearity.

This paper is organized as follows. In Sect. II we
first recall the setup for the linear DQW, and review the
different proposals to account for a nonlinear DQW. In
Sect. III we introduce our own proposal, and we dis-
cuss its experimental implementation based on nonlinear
Kerr optical media. Sect. IV is devoted to the analysis
of the continuum space-time limit, which is afterwards
illustrated by our numerical calculations in Sect. V. We
conclude in Sect. VI by summarizing our main findings.

II. OVERVIEW ON LINEAR AND NONLINEAR
DQWS

We start by briefly revisiting the standard (linear) and
nonlinear models to describe the DQW for a walker on a
one-dimensional lattice.
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A. Linear DQW

Let us consider a particle (the walker) that can move
along a discrete lattice with positions x = jǫ, j ∈ Z,
with ǫ the lattice spacing. A position Hilbert space Hx

is associated to this system, which is spanned by the
basis {|x〉}, with x the lattice positions. As mentioned
in the Introduction, we also need an additional degree
of freedom that defines the coin Hilbert space Hc, and
will be spanned by two orthogonal states {|↑〉 , |↓〉}. The
total Hilbert space is, therefore, the tensor product H =
Hx ⊗ Hc, and the basis that spans the whole space is
{|x〉 ⊗ |↑↓〉}j∈Z. For reasons that will be explained in
Sect. IV, we define a time step evolution of the walker
using the same amount ǫ, i.e. the state |ψt〉 at a given
time t evolves as

|ψt+ǫ〉 = U |ψt〉 , (1)

with U the evolution operator. The operator U is the
composition of two unitary operators,

U = SC , (2)

where C = I ⊗ R is the coin operator acting on Hc. In
the latter equation, S represents the conditional displace-
ment operator, which can be formally written as

S = e−iσz p̂ , (3)

with p̂ the lattice quasi-momentum operator, and σi, i =
x, y, z the Pauli matrices acting on the {|↑〉 , |↓〉} states.
As for the operator R, it will be represented by a 2 × 2
unitary matrix. An example is given by

R ≡ e−iθσy =

(
cos θ − sin θ
sin θ cos θ

)
. (4)

In what follows, we will set ǫ = 1, so that x = j.
However, we will need to restore this parameter in Sect.
IV, in order to derive the continuum limit of Eq. (1).

In terms of the tensor basis in H, one can expand |ψt〉
as follows:

|ψt〉 =
∑

x

[ut,x |x, ↑〉 + dt,x |x, ↓〉] . (5)

In other words, the corresponding spinor is

Ψ(t, x) ≡ 〈x |ψt〉 = ut,x |↑〉 + dt,x |↓〉 ≡
(
ut,x
dt,x

)
. (6)

Finally, the operator S takes the form

S =
∑

x

(
|x+ 1〉 〈x|⊗ |↑〉 〈↑|+ |x− 1〉 〈x|⊗ |↓〉 〈↓|

)
. (7)

B. Nonlinear DQW

The discrete non-linear QW was not first introduced
as such, but as a nonlinear Optical Galton Board [39],
mainly because "nonlinear quantum walk" is close to be
an oxymoron, being quantum mechanics a linear theory;
however, the term Non-linear Quantum Walk (NLQW)
has made its way through the literature and we adhere
to it, but we must keep in mind that the waves used in
a NLQW cannot be true quantum wave–functions but
some other type of waves.

The NLOGB is a coined DQW on the line in which
the wavefunction acquires an additional coin–state-
dependent nonlinear phase φc,NL depending on the prob-

ability as φc,NL = i2πα |ct,x|2 with c = u, d and α the
nonlinearity strength. This is equivalent to either (i) re-
placing the standard QW coin operator R by the inho-
mogeneous non–linear coin operator

Rt,x =

(
ei2πα|ut,x|2 cos θ −ei2πα|dt,x|2 sin θ

ei2πα|ut,x|2 sin θ ei2πα|dt,x|2 cos θ

)
, (8)

or to (ii) generalizing the conditional displacement oper-
ator as

S =

L∑

x=−L

ei2πα|ut,x|2 |x+ 1〉 〈x| ⊗ |↑〉 〈↑| (9)

+ei2πα|dt,x|2 |x− 1〉 〈x| ⊗ |↓〉 〈↓| . (10)

In [39], the NLOGB was numerically studied and the ex-
istence of solitons and of rich spatio-temporal dynamics,
including chaotic behaviour, was shown. The NLOGB
was later experimentally implemented by Wimmer et al.
[40] in a system involving the propagation of light pulses
in optical fibres, an implementation in which the dis-
placement operation consists in delaying or advancing
the pulses, so that the QW occurs along the physical
time dimension. More recently, the same group made
a proposal of NLQW in optical mesh lattices [41], see
also the related paper [42], a system that has been re-
cently revisited by Yue et al. [43]. The NLOGB model
has also been the subject of several theoretical studies,
including the study of its continuous limit as a nonlin-
ear Dirac equation [44–46]. Further numerical studies
by Buarque and coworkers centred on self-trapping [47],
breathing dynamics [48], and rogue waves [49]. There
has also been made a rigorous mathematical study of the
discrete model [50, 51] including the demonstration of
long term soliton stability [52]. Recently, the NLOGB
has been extended to three-state coins [53], and general-
ized to include the effect of perturbing potential barriers
[54].

Moreover, NLQWs different from the NLOGB have
been proposed. Shikano et al. [55] proposed a NLQW
in which the nonlinearity is due to a feed-forward



3

quantum-coin mechanism such that the coin elements be-
come cos θt,x = |ut−1,x+1| + i |dt−1,x−1| and sin θt,x =√

1 − |cos θt,x|2. Lee et al. show how the dynamics of

a nonlinear Dirac particle can be simulated by NLQWs
with a measurement-based feed-forward scheme, slightly
different from that of Shikano et al., considering both
Gross-Neveu and Thirring types of nonlinear couplings.
Gerasimenko et al. [56] introduced the nonlinearity

through the operator exp
[
−iκ

(
|ut,x|2 − |dt,x|2

)
σy

]
, so

that the nonlinear phase–shift depends on the ”popula-
tion difference” |ut,x|2 − |dt,x|2, and concentrated in the
study of the influence of zero modes on the formation of
solitonic structures in the continuum limit. In [57] the
work in [56] was generalized by using mathematical tech-
niques appropriate for Floquet systems, which allowed
for the finding of new bifurcations.

Another alternative is that of Mendonça et al. [58],
who propose a non–linear displacement operator of the
form

S =
L∑

x=−L

1√
1 + αPt,x

[|x+ 1, ↑〉 〈x, ↑| + αPt,x |x, ↑〉 〈x, ↑|]

+

L∑

x=−L

1√
1 + αPt,x

[|x− 1, ↓〉 〈x, ↓| + αPt,x |x, ↓〉 〈x, ↓|] ,

(11)

with

Pt,x = |ut,x|2 + |dt,x|2 , (12)

defined as the probability density of the walker at time
t and at position x. They numerically find and describe
a variety of nonlinear phenomena, which were further
studied in [59].

As for Mallick et al. [60], they use the nonlinear map

ut+1,x = cos θut,x−1 + eiφx−1(t) sin θdt,x−1 , (13)

dt+1,x = −e−iφx+1(t) sin θut,x+1 + cos θdt,x+1 , (14)

with φx = γPx + ηx, where ηx is a noise term, and study
the breakdown of Anderson localization induced by the
nonlinearity. Finally, in [61] single atoms are suggested
as nonlinear beam–splitters in their proposal of a NLQW.

Closely related studies are those by Solntsev et al. [62],
who incorporate biphoton generation –an intrinsic non-
linear process– in a photonic wave-guide array and study
the potential of the system to generate entangled light,
but the quantum walk is linear; Verga [63] studies edge-
states in a QW with both linear and nonlinear disorder;
Bisio et al. [64] analytically diagonalize a discrete-time
on-site interacting fermionic cellular automaton in the
two-particle sector; Adami et al. [65] study a NLQW
naturally induced by a quantum graph with nonlinear

delta potentials; Templeman et al. [66] study topolog-
ical protection in a strongly nonlinear interface lattice;
and Held et al. [67] introduce Gaussian QWs, which
are NLQWs in which the coins are substituted by two-
mode squeezers. As stressed by the authors, this kind of
NLQWs directly lead to accessible quantum phenomena,
rendering possible the quantum simulation of nonlinear
processes.

We must also mention works on continuous time
NLQWs. In [68] the destruction of Anderson localiza-
tion by nonlinearity is studied through discrete Ander-
son nonlinear Schrödinger equations that correctly de-
scribe the one-dimensional disordered waveguide lattices
used in the experiments of Lahini et al. [69]. But most
studies are related to the problem of database searching.
Ebrahimi Kahou et al. study this problem with cou-
pled discrete nonlinear Schrödinger equations, and dis-
cuss the implementability of the model with BECs [70].
Meyer and Gong study quantum search with the Gross–
Pitaevskii equation [71, 72] concluding that it solves the
unstructured search problem more efficiently than does
the Schrödinger equation, because it includes a cubic
nonlinearity, and Chiew et al. [73] demonstrate that
the nonlinear quantum search can be more efficient than
quantum search for graph comparison. Di Molfetta et
al. [74] generalize the Meyer-Gross algorithm to two di-
mensions finding a clear advantage over the linear QW.
Finally, in [75] the thresholds between modulational sta-
bility, rogue waves and soliton regimes are studied with
coupled nonlinear Schrödinger equations with on site sat-
urating non-linearity.

In the present paper, we introduce an alternative for-
mulation of the NLQW which is appropriate for light
polarization qubits propagating in Kerr media. Specifi-
cally, we introduce a nonlinear coin in which the rotation
angle is given by θ = θ0 + θnl with θ0 constant and θnl
depending on the light polarization state, hence in the
coin state.

III. MODEL

A. NLQW coin and map

The non-linear Quantum Walk (QW) we propose intro-
duces the non-linearity in the coin operator. The unitary
operator R is now defined in a way that depends on the
state of the walker

R(θt,x) = e−iθt,xσy =

(
cos θt,x − sin θt,x
sin θt,x cos θt,x

)
. (15)

The angle of rotation is given by

θt,x = θ0 + α|ut,x||dt,x| sin δt,x , (16)

where we explicitly expressed the upper and lower com-
ponents given by their modules and complex angle as
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ut,x = |ut,x|eiϕ
u
t,x , dt,x = |dt,x|eiϕ

d
t,x and δt,x = ϕu

t,x−ϕd
t,x

is the phase difference. If we write how the components
evolve explicitly after each time step, we get

ut+1,x = cos(θt,x−1)ut,x−1 − sin(θt,x−1)dt,x−1 ,

dt+1,x = sin(θt,x+1)ut,x+1 + cos(θt,x+1)dt,x+1 .
(17)

B. Experimental proposal

In proposing the nonlinear rotation term in Eq. (16),
we are thinking in a QW photonic platform, using light–
polarization qubits [76, 77], and including optical media
with Kerr–type nonlinearity. It is well known that in an
isotropic Kerr medium the normal modes of propagation
are circularly polarized, their corresponding indexes of
refraction are given by [78]

n± = n0 +
1

2n0

[
A |E±|2 + (A+B) |E∓|2

]
, (18)

where the subscripts + and − make reference to right-
and left-circular polarization, respectively, n0 is the lin-
ear refractive index, and A and B are the Maker-Terhune
coefficients for the non–linear medium, whose ratio de-
pends on the specific physical mechanism responsible for
the Kerr effect (e.g., A = B for nonlinear electronic re-
sponse). In such a medium, the phenomenon of nonlinear
polarization rotation occurs, by means of which a polar-
ized monochromatic–wave that propagates a distance z
along the nonlinear medium has the expression

~E (z) =E+σ̂+ + E−σ̂−

=
(
A+σ̂+e

iθnl +A−σ̂−e
−iθnl

)
eikmz ,

(19)

where km = (n+ + n−)ω/2c is the mean propagation

constant, σ̂± = (x̂± iŷ) /
√

2 are the unit circular polar-
ization vectors, and

θnl =
1

2
(n+ − n−)

ω

c
z =

B

4n0

(
|E−|2 − |E+|2

) ω
c
z .

(20)
This expression shows that the polarization state of the
light undergoes a rotation θnl after the propagation, the
circular components changing from σ̂± to σ̂′

± = σ̂±eiθnl ,
and the linear components of the polarization passing
from (x, y) at the entrance to

x′ = x cos θnl − y sin θnl , (21)

y′ = x sin θnl + y cos θnl , (22)

at the exit. Notice that for linearly polarized light
|E−|2 = |E+|2, and hence θnl = 0. Notice also that,
the rotation does not change the proportion |E−| / |E+|.

Now, we take the linear polarization components as the
coin state basis, so that the displacement operator acts
on these linear components. It is then necessary the use
of the additional standard coin rotation θ0 in Eq. (16),

because, after the action of the displacement operator,
the field is linearly polarized at the displaced positions,
and we have seen that there is no nonlinear rotation for
linear polarizations, which means that the nonlinear coin
would not act but in the first step. Finally, by writing
θnl in terms of the linear polarization components of the
field, one arrives at the expression in Eq. (16).

IV. CONTINUUM LIMIT

The continuum limit of the QW is obtained by retain-
ing the lowest order, i.e. O(ǫ), in the unitary evolution
defined by Eq. (1). To this purpose, we need to restore
the parameter ǫ both in the lattice spacing and in the
time step. The continuum limit of this quantum walk
can be obtained following the standard method. Details
and definitions are given in Appendix A.

The non-linear Dirac equation obtained from this limit
reads

[iγµ∂µ −m(Ψ(t, x))] Ψ(t, x) = 0 , (23)

where the Dirac matrices are γ0 = σy and γ1 = iσx and
the mass term is given by

m(Ψ(t, x)) = θ̃0 − α̃

2
Ψ†(t, x)σyΨ(t, x) , (24)

where we defined the rescaled angle ǫθ̃0 = θ0 and non-
linearity parameter ǫα̃ = α. We notice that this mass
term is different from that obtained from the NLOGB in
[44]. We can write this equation in terms of the spinor

components Ψ (t, x) = (u (t, x) , d (t, x))
T

as

(∂x + ∂t)u+ θ̃d = 0 , (25)

(∂x − ∂t) d+ θ̃u = 0 , (26)

with

θ̃ ≡ θ̃0 + i
α̃

2
(u∗d− ud∗) , (27)

where we alleviated the notation by not writing the ex-
plicit spatial and time dependence of each component.
This system of equations can be rewritten in terms of the
modulus and phases of the spinor components u = Ueiϕu

and d = Deiϕd . After defining

δ = ϕu − ϕd , σ = ϕu + ϕd , (28)

one easily gets

∂xσ + ∂tδ = −θ̃ U
2 −D2

UD
sin δ ,

∂xδ + ∂tσ = θ̃
U2 +D2

UD
sin δ ,

(∂x + ∂t)U = −θ̃D cos δ ,

(∂x − ∂t)D = −θ̃U cos δ ,

(29)

with

θ̃ ≡ θ̃0 + α̃UD sin δ . (30)
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A. Homogeneous stationary solutions

In order to gain some insight into the solutions of the
system, we first study the homogeneous stationary solu-
tions and their stability. Let us focus on the last two
equations of Eq. (29), which can be related as

∂t(U
2 +D2) = −∂x(U2 −D2) , (31)

which for stationary solutions1, and from the condition of
normalization of the wavefunction, implies that U = D,
and hence ∂tU = 0. We can now define I = U2 = D2 to
rewrite Eq. (29) as

∂xσ + ∂tδ = 0 ,

∂xδ + ∂tσ = 2θ̃ sin δ ,

∂xI = −2Iθ̃ cos δ ,

(32)

with θ̃ = θ̃0 + α̃I sin δ, and we used the fact that ∂tI = 0.
To further derive homogeneous stationary solutions, we
impose ∂xI = ∂xδ = 0, which implies that ∂tσ = 2θ̃ sin δ
and 2Iθ̃ cos δ = 0. The latter equation admits several
solutions: (i), I = 0 (trivial solution); (ii) θ̃ = 0, which

implies I sin δ = −θ̃0/α̃ that only exists for I >
∣∣∣θ̃0/α̃

∣∣∣
and for which ∂tσ = 0; and (iii), the two solutions
δ = ±π/2 that exist for any value of I and for which

∂tσ = ±2θ̃ = 2
(
α̃I ± θ̃0

)
. Notice that for positive

(negative) θ̃0/α̃, solution δ = −π/2 (δ = π/2) merges

with solution θ̃ = 0 for I =
∣∣∣θ̃0/α̃

∣∣∣.

We have performed the linear stability analysis of these
solutions by analysing the linearized evolution of pertur-
bations of the form δveλteikx with δv small. The results
can be summarized as follows: (i), the trivial solution,

solution θ̃ = 0, and solution δ = π/2 are all three neu-
trally stable with two pairs of complex conjugated purely
imaginary eigenvalues (different for each solution); and
(ii), solution δ = −π/2 is unstable versus perturbations

with wavenumber 0 < k2 < θ̃0 when I < θ̃0/α̃, and un-
stable versus all perturbations, more unstable the larger
k2 is, when I > θ̃0/α̃. All details are given in Appendix
B.

Hence, there is a clear distinction between solution
δ = π/2, which is neutrally stable, and solution δ =
−π/2, which is unstable versus perturbations with non–
null wave-number. This is reminiscent of the modula-
tional instability occurring in optical fibres [78].

1 A stationary solution refers to a static probability distribution
where the phases of the spinor components can still have time
dependence.

B. Solitons as stationary solution of the continuum
equation

We aim to look for stationary solutions of the system
of differential equations defined in Eq. (32). To obtain a
closed stationary solution, we need to resort to assump-
tions that are backed up by the observations made for
the discrete model in Section VA. First of, we observed
that the phases sum σ is independent of the position in-
side the soliton-like structure in the discrete model of the
QW, so that extending this observation to the first equa-
tion we can conclude that δ is time independent. We
also observed that σ has a linear time dependence, and
found that it was ∂tσ = −2θ0, so that we end up with
the following system of two equations

∂xδ = 2θ̃ sin δ + 2θ0 ,

∂xI = −2Iθ̃ cos δ .
(33)

To further proceed we need to resort to an observation
made for the discrete model again, which is that non-
linear effects are enhanced when δ is close to −π

2 , and
assume that only small fluctuations about this value lead
to soliton-like structures, that is, δ ≈ −π

2 + ∆. Approx-
imating the trigonometric functions up to first order in
∆ and θ̃ = θ̃0 − α̃I these equations reduce to

∂x∆ = 2α̃I ,

∂xI = −2(θ̃0 − α̃I)∆I ≈ −2θ̃0∆I ,
(34)

where in the last equation we considered that the term
I2∆ is negligible2. The solution of this system of equa-
tions is now exact and gives the following solution,

∆(x) =
α̃

2
tanh

(
α̃θ̃0
2
x

)
,

I(x) =
α̃θ̃0
8

sech2

(
α̃θ̃0
2
x

)
,

(35)

where we imposed the normalization condition to obtain
the constants of integration. This solution is then con-
firmed to describe well a stationary soliton in the discrete
model, which is numerically studied in Sect. V.

V. NUMERICAL

The appearance of soliton-like structures is ubiquitous
in the study of NLQWs [39, 51, 54]. The key feature to
keep the non-linearity of the walker present, that coun-
teracts the natural dispersion of the walker and keeps
the solitonic behaviour, is to have the relative phase of

2 The probability density squared I2 for an extended soliton struc-
ture is small, and ∆ is also assumed to be small.
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Figure 1. In this figure, we plot the evolution of the probability density (II B) of an extended initial walker, where the spin
states in locations x = [−50, 50] all have the same initial coin state. The coin angle θ0 = π/3 and the non-linearity parameter
is α = 2π in all panels. In the first panel, the initial coin state is |ψ0〉 = (1,−i)T /

√
2 so that δ = −π/2, while in the last two

panels the initial coin state is |ψ0〉 = (1, i)T /
√

2 with a corresponding δ = π/2. The initial intensity of each initial condition is
given in the title of each panel. The intensity of the walker is given by a heatmap, black indicates low probability density and
brighter/hotter colours indicate higher probability density.

the walker components around δt,x ≈ ±π
2 , as can be seen

from Eq. (16). For that reason, the spatial distribution of
the relative phase between components will play an im-
portant role in the formation and stability of solitons. In
order to explore the ability of this new proposed NLQW
to form soliton-like structures, we consider in Fig. 1 an
extended initial condition where the spin is uniformly
distributed, where we plot the probability density, as de-
fined by Eq. (II B), in different situations.

We first study an initial condition with δ = π/2. We
found in the stability analysis of Sect. IVA that solutions
with this phase difference were neutrally stable, meaning
that perturbations are not enhanced nor diminished. It
can be seen in the left panel of Fig. 1 that the prob-
ability density of the walker with this phase difference
is mostly uniform after some initial interactions. When
δ = −π/2 the stability becomes dependent on the value
of the intensity I. On the one hand, when Iα/θ0 < 1
only perturbations with small wave number (0 < k < θ0)
are enhanced. In the central panel of Fig. 1 we can see
the appearance of soliton-like structures that have an ex-
tended (low k) stable probability distribution. On the
other hand, when Iα/θ0 > 1 perturbations of any wave
number are enhanced. In the left panel of Fig. 1 it can be
seen that no extended structures are formed, and most
part of the probability is scattered.

A. Solitons

When the soliton-like structures of the central panel of
Fig. 1 are formed, we observe that the probability dis-
tribution of the walker components are well described by
the typical sech2(x) function. If we consider this distri-
bution as an initial condition with relative phase between
walker components corresponding to δ = −π/2

〈
x
∣∣ψsoliton

0,x

〉
= Nβ

(
sech(βx)
i sech(βx)

)
, (36)

Figure 2. (Top) Probability distribution of the walker. (Bot-
tom) Phase difference between walker components. The red
dashed line represents the analytical solution obtained in
Eq. (35) for both quantities. The initial condition is given
by Eq. (36) and is evaluated at t = 500, 501, 502, 503, 504.

The parameters of the quantum coin are α̃ = 1 and θ̃0 = π/3

and the initial width of the walker is given by β = α̃θ̃0/2, for
a spacing ǫ = 0.5. The spatial coordinate has also been scaled
as x̃ = ǫx.

where Nβ is a normalization constant that depends on β,
we observe that the associated probability distribution
remains stationary at different times. While this initial
condition produces a soliton-like structure, it might not
represent the stationary state of the evolved soliton.

In Fig. 2 we show the probability distribution of the
walker and the difference of the walker phases δt,x after
t = 500 and 4 subsequent steps. We also plot for compar-
ison the stationary solution obtained in the continuum
limit Eq. (35). The probability distribution is stationary
and perfectly fits the analytical solution. The phase dif-
ferences have oscillating values around the boundary of
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0

0.05

0.1

Figure 3. Density plot of the evolved probability distribution
of three solitons initially localized at x = 50, x = 0 and x =
−50 with different relative phase distributions, with ν = 2/3,
ν = 1/2 and ν = 0, respectively. They all have the shame
initial width with β = 1/2. The angle is θ0 = π/4, and the
non-linearity parameter is α = π.

0

0.05

0.1

Figure 4. Density plot of the evolved probability distribution
of two solitons initially localized at x = 50 and x = −50 that
propagate in opposite directions with ν = −2/3 and ν = 2/3,
respectively. They all have the shame initial width β = 1/2.
The angle is θ0 = π/4, and the non-linearity parameter is
α = π.

the soliton, but the behaviour around the centre of the
soliton is well described by the analytical solution of the
continuum model.

We also observed that the phase sum is constant in
the x direction (inside the soliton), while it has a linear
dependence in time. This dependence is observed to be

σsoliton
t,x = σ0 − 2θ0t , (37)

where σ0 is the initial value the sum of the phases, and
we notice that this expression is only valid in the regions
inside the soliton. This observation in consistent with
the assumptions made in Sect. IVB.

We also considered an initial condition of the form

〈x |ψ0,x〉 = Nβ

(
sech(βx)

ieiν tanh(βx) sech(βx)

)
. (38)

In this case we did not observe a stationary soliton, but
a soliton that propagates at a constant velocity. We ob-

Figure 5. Probability distribution of the walker (upper panel),
and phase difference between components (lower panel) with
initial condition (39) evaluated after t = 500 steps. The pa-

rameters of the quantum coin are α̃ = 1 and θ̃0 = π/3. The

initial width of the walker is given by β = α̃θ̃0/2 and the in-
tensity I = β, for a spacing ǫ = 0.5. The spatial coordinate
has also been scaled as x̃ = ǫx.

served that if ν is positive, the initial soliton-like struc-
ture propagates to the right (positive x) and, if it is neg-
ative, it propagates to the left, i.e., ν plays the role of
velocity on this initial condition. In Fig. 3 we present
the evolution of three initial solitons propagating with
different values of ν: two that propagate with different
velocities, and another one with ν = 0 that remains sta-
tionary. The probability distribution and relative phases
are the same as in the static soliton, but with the centre
displaced at a constant velocity. This initial condition
produces a kick, after which he soliton propagates at a
constant velocity.

Another feature that is characteristic of solitons is that
the interaction between them leave the shape of their
wave packets unaltered. This effect is also showcased by
the solitons generated in this QW. In Fig. 4 we show the
collision of two solitons propagating in opposite direc-
tions, and it can be observed that they cross each other
without any significant modification after the crossing.

B. Dark solitons

While an initial condition with δ = π/2 was not ob-
served to form soliton-like structures, it was pointed out
that, in the continuum limit, homogeneous solutions are
marginally stable, i.e., there are no modulational insta-
bilities (those that form patterns). This fact is indicative
that if a constant amplitude I is a solution in some region,
the amplitude −I is also a solution. The front connect-
ing these two regions, i.e., a domain wall type of initial
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Figure 6. Evolution of the initial soliton considered in Fig. 2 which is subject to a constant electric field after t = 100. The
intensity of the electric field is given in the title of each panel. The intensity of the walker is given by a heatmap, black indicates
low probability density and brighter/hotter colours indicate higher probability density.

condition with δ = π/2, should therefore be stable. In
Fig. 5 we represent the stationary probability and phase
difference obtained from an initial condition

〈
x
∣∣ψdark

t

〉
= I

(
tanh(βx)

−i tanh(βx)

)
, (39)

with a smooth transition between the two regions. It
can be observed that the left and right regions remain
constant and keep the initial phase difference δ = π/2.
The valley of the central part represents the dark soliton,
and right in the centre, where the probability distribution
is null, the phase difference is not well-defined.

C. Solitons in electric fields

We now explore whether these structures are robust
against the presence of electric fields. To include the
effect of an electric field we modify the step evolution
defined in Eq. (1) by

|ψt+1〉 = eiΦXSC |ψt〉 , (40)

where X is the position operator, and Φ plays the role
of the electric field intensity. In the limit where the non-
linearity parameter α is null, this unitary evolution cor-
responds to a Dirac equation with constant electric field
in the continuum limit. It was pointed out in [26, 79]
that, for values of Φ that are small rational fractions of
2π, the walker displays oscillations around the initial po-
sition and if Φ is an irrational multiple of 2π the walker
exhibits localization. If Φ is a large rational fraction of
2π the walker quickly exhibits dispersion. In Fig. 6 we
explore the dynamics of a soliton under the effect of the
electric field in these three regimes. It can be observed
that for irrational values of Φ the walker remains local-
ized, but the smooth structure of the initial soliton is
lost. If Φ is a rational fraction of 2π the walker under-
goes some oscillations but quickly disperses. And if Φ is
a smaller fraction of 2π the oscillations of the walker are
maintained for longer times.

In Fig. 7 we explore how the dispersion of the walker,
characterized by the evolution of its standard deviation

σt =
√

〈x2〉 − 〈x〉2 , (41)

Figure 7. Dispersion of the walker for different values of the
non-linearity parameter α̃ and electric intensity Φ. The initial
condition is given by Eq. (36), with a value of β = α̃θ̃0/2 and
the value θ0 = π/3 has been set for the coin.

evolves under these regimes for different values of the
non-linearity parameter. On the one hand, it can be ob-
served that for higher values of the non-linearity parame-
ter α the dispersion produced by the values of Φ = 2π/20
and Φ = 2π/40 is slowed down, and the amplitude of the
oscillations produced by Φ = 2π/60 is reduced. On the
other hand, when Φ is an irrational fraction of 2π the
non-linearity parameter α does not seem to have any ef-
fect on the localization of the walker.
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D. No solitons in 2D

This NLQW can be extended to a two-dimensional spa-
tial Hilbert space as Hx ⊗ Hy with basis {|x〉 ⊗ |y〉} to-
gether with the same 2 internal degrees of freedom as
before, and spinor components ut,x,y, dt,x,y. The time
step is defined as

|ψt+1〉 = SyCSxC |ψt〉 , (42)

where Si = e−ip̂iσz is the conditional shift operator in the
direction i = {x, y}, and C is the same coin operators as
before, with the rotation angle similarly defined as

θt,x,y = θ0 + α|ut,x,y||dt,x,y| sin
(
ϕu
t,x,y − ϕd

t,x,y

)
, (43)

where there is a dependence on the values of the walker
in both dimensions.

It was discussed in [80] that non-linear QWs, that in-
troduce the non-linearity in form of phases on the walker
components, can be exploited to perform efficient search
tasks on the two-dimensional grid. In line with those
findings, we observed that the NLQW that introduces
non-linearities in the coin rotation operator angle pro-
duces ballistic dispersion, indicating that no soliton-like
structures are formed in the two-dimensional case.

VI. CONCLUSIONS

In this work, we have analysed a nonlinear QW model
which can be experimentally implemented using the com-
ponents of the electric field on an optical nonlinear Kerr
medium. Differently to the Non Linear Optical Galton
Board model studied in [39], where nonlinearities appear
as two separate phases on the coin operator (or, equiva-
lently, of the displacement operator), here they give rise
to a rotation in the coin operator, with a single angle
which depends (in a nonlinear fashion) on the state of
the walker. This simple dependence makes it easy to
consider the space-time continuum limit of the evolution
equation, which takes the form of a nonlinear Dirac equa-
tion. The analysis of this continuum limit allows us, un-
der some approximations, to gain some insight into the
nature of the soliton structure, which is illustrated by our
numerical calculations.

These solitons are stable structures whose trajectories
can be modulated by choosing the appropriate initial
conditions. From the continuum limit stability analy-
sis, we were able to predict the existence of dark soli-
tons which were numerically characterized. We have also
studied the stability of solitons when they are subject to
an additional phase that simulates an external electric
field. For electric field intensities that are irrational the
solitons remained localized but their smooth character-
ized structure is lost. For rational fractions of 2π electric
field intensities, we characterized two regimes. For strong

electric fields, an initial soliton becomes slowly disrupted
and the walker disperses, so that an increase of the non-
linearity parameter slows down the dispersion produced
by the strong electric field. For weak electric fields, oscil-
lations of the soliton central position are present. Finally,
we also explored a 2D version of these model, where no
evidence of soliton formation was found.

To summarize, nonlinear quantum walks constitute an
interesting field with a rich phenomenology that can be
used for a better control of its algorithmic and simulation
properties.
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Appendix A: Derivation of the continuum Limit

We can rewrite the walker time step of Eq. (1), using
spinors, as

Ψ(t+ ǫ, x) = e−ǫ∂xσze−iσyǫθ̃(t,x)Ψ(t, x) (A1)

where we have expressed it in terms of t and x that are
both discretized by the same amount ǫ. When the limit
ǫ → 0 is taken, the continuum limit of the equation is
obtained. We have rescaled the original rotation angle
by the same spacing θ̃(t, x)ǫ = θt,x. These definitions
allow us to write the l.h.s. of the equation as

Ψ(t+ ǫ, x) ≈ Ψ(t, x) + ǫ∂tΨ(t, x) , (A2)

while we can approximate the r.h.s. as

(
1 − ǫσz∂x

)(
1 − iǫθ̃(t, x)σy

)
Ψ(t, x) . (A3)
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The zero order O(ǫ0) exactly match in both sides, and
the first order terms O(ǫ) define the following continuous
equation

∂tΨ(t, x) = −σz∂xΨ(t, x) − iθ̃(t, x)σyΨ(t, x) , (A4)

which can be rewritten as Eq. (23).

Appendix B: Stability analysis

We start with Eqs. (29) and substitute in them
fi (x, t) = f̄+δfi (x, t), fi ∈ {U,D, δ, σ}, with δfi a small
perturbation and f̄i the homogeneous-stationary solution
values. After linearization of Eqs. (29) around the steady
state (i.e, by neglecting nonlinear terms in the perturba-
tions), the equations of evolution for the perturbations
can be written as

∂t~p = L̂ · ~p, , (B1)

~p = col (δU, δD, δδ, δσ) , (B2)

L̂ij =

[
∂ṗi
∂pj

]

pi=p̄i

, (B3)

where the matrix elements L̂ij are given by

L̂11 = −L̂22 =
(
θ0 − θ̄

)
cos δ − ∂x ,

L̂33 = L̂44 = L̂14 = L̂24 = 0 ,

L̂12 = L̂21 =
(
θ0 − 2θ̄

)
cos δ̄ ,

L̂13 = −L̂23 =
√
Ī
(
θ̄ sin δ̄ − αĪ cos2 δ̄

)
,

L31 = −L32 = −2θ̄ sin δ/
√
Ī ,

L34 = −∂x ,
L̂41 = L̂42 = 2

√
Īα sin2 δ̄ ,

L43 = −2
(
θ0 − 2θ̄

)
cos δ̄ − ∂x ,

with θ̄ = θ0 + αĪ sin δ̄, and the overbar indicating the
homogeneous stationary solutions.

Equation (B1) admits solutions of the form

~p′j = ~p′0je
λjteikx , (B4)

where λj are the eigenvalues of the matrix L̂ and ~p′j are
the eigenvectors. Clearly, whenever Re (λj) > 0, for a
particular value of k, the corresponding steady state is
unstable versus perturbations in the form of plane waves
with wavenumber k.

Next, we detail the stability properties of the different
homogeneous steady states. For the trivial solution Ī =
0, as for solution θ̃ = 0, the characteristic polynomial

can be written as P (λ) =
(
λ2 + k2

)2
= 0, hence λ2 =

±ik and these solutions are consequently neutrally stable
whenever they exist.

Figure 8. Real part of the eigenvalue that solves the charac-
teristic equation P−(λ) = 0 and is scaled by θ0, i.e., we plot
ℜ(λ/θ0). The white regions represent the space where the
real part of λ is null.

For solutions δ = ±π/2, the characteristic polynomials
read,

P± (λ) = λ4 + 2
[
k2 + 2

(
αĪ ± θ0

)2]
λ2

+ k4 + 4k2αĪ
(
αĪ ± θ0

)
= 0 ,

(B5)

where ± corresponds to ±π/2. It is not difficult to show
that P+ (λ) = 0 provides purely imaginary eigenvalues,
hence the solution δ = +π/2 is neutrally stable. Con-
trarily, P− (λ) provides two couples of eigenvalues, one
of which has a positive real part. In Fig. 8 we are rep-
resenting the real part of the eigenvalue, multiplied by
θ0, in the plane

(
αI/θ0, k

2/θ20
)
. It is clearly seen that:

(i) for αI/θ0 = 1 the eigenvalue is zero for all k; (ii) for
αI/θ0 < 1 the eigenvalue is positive for k2/θ20 < 1 and
null for k2/θ20 > 1; and (iii) for αI/θ0 > 1 the eigen-
value is positive for all k. Hence, we conclude that there
is a long-wavelength modulational instability whenever
αI/θ0 < 1, and a short-wavelength modulational insta-
bility whenever αI/θ0 > 1.
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