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Estimation of Personalized Minimal Purkinje
Systems From Human Electro-Anatomical Maps

Fernando Barber , Peter Langfield, Miguel Lozano, Ignacio García-Fernández, Josselin Duchateau ,
Mélèze Hocini, Michel Haïssaguerre , Edward Vigmond, and Rafael Sebastian

Abstract— The Purkinje system is a heart structure
responsible for transmitting electrical impulses through the
ventricles in a fast and coordinated way to trigger mechan-
ical contraction. Estimating a patient-specific compatible
Purkinje Network from an electro-anatomical map is a chal-
lenging task, that could help to improve models for electro-
physiology simulations or provide aid in therapy planning,
such as radiofrequency ablation. In this study, we present
a methodology to inversely estimate a Purkinje network
from a patient’s electro-anatomical map. First, we carry out
a simulation study to assess the accuracy of the method
for different synthetic Purkinje network morphologies and
myocardial junction densities. Second, we estimate the
Purkinje network from a set of 28 electro-anatomical maps
from patients, obtaining an optimal conduction velocity in
the Purkinje network of 1.95 ± 0.25 m/s, together with the
location of their Purkinje-myocardial junctions,and Purkinje
network structure. Our results showed an average local acti-
vation time error of 6.8±2.2 ms in the endocardium. Finally,
using the personalized Purkinje network, we obtained cor-
relations higher than 0.85 between simulated and clinical
12-lead ECGs.

Index Terms— Purkinje system, electro-anatomicalmaps,
personalized electrical activation, arrhythmia.
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I. INTRODUCTION

THE Purkinje system (PKN) is a network responsible for
the fast transmission of the electrical impulses that trigger

the ventricular depolarization [1]. In human hearts, the net-
work extends over the right (RV) and left ventricular (LV)
endocardium as well as within the trabeculae carnae, allowing
a faster and more synchronized activation of the myocardium,
and an efficient contraction [2]. From a geometrical point of
view, it can be seen as a set of interconnected 1D cables, that
branch and anastomose, connecting to the underlying endocar-
dial tissue at discrete locations, known as Purkinje-myocardial
junctions (PMJs). The fascicular structures are so thin that can
not be differentiated in-vivo with clinical imaging acquisition
techniques such as magnetic resonance imaging (MRI) or
computed tomography (CT). Therefore, the characterization
or reconstruction of the PKN from patient-specific human
data is a challenging problem [3]. In humans, high-resolution
imaging techniques have allowed only the segmentation of
proximal sections of the PKN from images acquired ex vivo
in combination with specific markers [4], [5]. In animals,
several studies have analyzed and modelled either the proximal
sections macroscopically [6], [7], or random sections observed
with the combination of confocal microscopy and specific
inks [8].

An alternative way to reconstruct the PKN is to estimate it
inversely from electrical activation sequences from the endo-
cardium by means of electro-anatomical maps (EAMs). EAMs
can be acquired in vivo, using catheters that map the electrical
activity of a patient in real-time, producing a spatio-temporal
map of the activation sequence (LAT). Therefore, the structure
can be estimated not from images but from the electrical
sequence that produces when it activates.

Some methods have already been presented to estimate
the PKN from EAMs, by building an initial random fractal
network, and reducing the activation time error by moving,
adding or pruning branches and PMJs from the initial net-
work [9] or looking for local minima on EAMs and placing
there PMJs [10].

Clinically, the PKN structure is very relevant since it
is responsible for the initiation and maintenance of certain
life-threatening arrhythmias. For instance, it is known that
some His-Purkinje system-related macro re-entry ventricu-
lar tachycardias (VT) are triggered or supported by the
PKN, and that the ablation of specific Purkinje-myocardial
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Fig. 1. Pipeline designed to estimate a PKN from an EAM and carry out personalized electrical simulations. Arrows before each step indicate the
input parameters required from previous steps or the user. Pts is the list of sampled points in the EAM, Pts’ are the points filtered and re-annotated,
Ω stands for the anatomical domain (endocardium), Θ is the list of PMJs, Ξ is the list of branches and connected PMJs, and �max is the maximum
error allowed to connect a PMJ to Ξ. CVT and CVP stands for the estimated conduction velocity for tissue and Purkinje, respectively.

junctions (PMJs) or bundles can stop the arrhythmia [11].
Radio-frequency ablation (RFA) is considered a potential
first-line therapy for patients with idiopathic VT, because these
VTs can be eliminated by ablation in a high percentage of
patients. However, in some types such as focal Purkinje VT,
the recurrence rate is around 29% [12], and there are several
complications associated with ablation. In cases of idiopathic
ventricular fibrillation (IVF), the main cause of unexplained
sudden cardiac death, the majority of cases (up to 93%) are
triggered by premature ventricular contractions (PVCs) that
originate from the PKN [13]. Finally, it is important to add that
some patient might develop symptoms to some pathologies
such as heart failure when in sinus rhythm, which makes also
very important to understand the His-Purkinje system with
more detail.

All these facts evidence the necessity of being able to
incorporate a PKN in personalized biophysical heart models
aimed to simulate and reproduce several types of arrhythmia.
However, the construction of a realistic computational PKN
for humans is complex, and in general does not provide a
personalized activation sequence [7]. Therefore, generic PKN
models are usually included in 3D ventricles for mechanistic
studies [3].

In this paper, we present a pipeline (see Fig. 1) to first
estimate the location of a set of PMJs from EAMs based on
an improved version of the algorithm presented in [14], and
second, one of the main contributions of this study, an algo-
rithm to estimate a simplified PKN from the EAM, based on
the location and activation time of the PMJs. The pipeline has
been validated on several synthetic PKN configurations, with
simulated activation maps, subject to different activation time
error amplitudes, where we assess geometrical and electrical
differences in estimated PKN. Following, the algorithm has
also been tested on a set of 28 clinical datasets (14 LV and
14 RV EAMs) obtained from patients in sinus rhythm without
structural heart disease. As a result, we obtained for every case,

TABLE I
SUMMARY OF FIVE SYNTHETIC PKNS

the PKN model, the optimal conduction velocity (CV) in the
PKN, and an average LAT error from direct comparison of
simulated and patient clinical data. The simulated activation
sequence using the estimated PKN together with estimated
CVs for tissue and Purkinje, provided a good match between
simulated and clinical 12-lead ECGs, validating the PKN
sequence of activation. To our knowledge this is the largest
validation of such estimation methods carried using clinical
data.

II. MATERIAL AND METHODS

A. Synthetic Models

We built a set of five synthetic PKNs on a generic LV
endocardium, reconstructed from a MRI sequence, using
the stochastic method described in [7]. The properties of the
PKNs are summarized in Table I. Column Name identifies the
scenario, PMJ represents the number of PMJs in the scenario,
Density is the average and standard deviation of the number of
PMJs per segment (17 AHA segment division), TAT PKN is
the total activation time of the Purkinje Network, TAT ENDO
is the total activation time for the whole endocardium.

First, we will evaluate the performance of the PKN esti-
mation, by using all the PMJs from the original model and
without measurement error (σ = 0), and compare estimated
and original PKNs. Following, we will develop more complex
scenarios in which for each original PKN we: i) simulate the
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corresponding His-Purkinje LAT map for the endocardium;
ii) sample the activation times on the endocardial tissue
randomly at a number of locations (1000 samples), mimicking
a virtual EAM; iii) we add Gaussian noise to the LAT values
to emulate measurement errors, or wrongly annotated samples;
iv) we estimate the PMJs from the noisy samples; and v) we
estimate the PKN associated to these estimated PMJs. Note
that since all PMJ LATs are relative to the activation of the
atrio-ventricular node, i.e., the first node of the PKN, and that
we only consider anterograde activation (from PKN to tissue)
we have not added the PMJ delays, which will imply adding
a fix and constant delay to all the PMJs.

B. Patient Data

A total of 28 EAM datasets (from 13 patients, where
P13 was mapped twice) have been included in the study.
Anonymized EAMs (12 men and 1 women, between 16 and
63 years old) were provided by Bordeaux University Hospital
using CARTO 3 system (Biosense Webster, Inc., Diamond
Bar, CA, USA), and different catheters namely, NaviStar
ThermoCool ablation catheter and PentAray (see Table III
Patient columns, where ’A/S’ stands for age and sex, and
’Ind’ stands for the clinical indication). The patients had an
indication of either idiopathic VF (IVF) or syncope, hyper-
trophic cardiomyopathy (HCM), Brugada Syndrome (BS) or
ventricular tachycardia (VT). For two patients, P12 and P13,
MRI data was also available. For every patient, three studies
were acquired in sinus rhythm: a map of the LV endocardium,
a map of the RV endocardium and a map of the epicardium
(not used or required in this study). Five patients benefited
from high density endocardial mapping with a decapolar
catheter to map the endocardium of the RV and LV (P1, P2,
P6, P8, P9).

For each EAM, the set of measurement points was filtered
to ensure the quality of the data. In particular, points exhibiting
non physiological peak-to-peak amplitudes or LAT values
were disregarded (see Table III Sampl. column (acquired
samples) vs. #Pts (samples kept)). In particular, sample points
with a bipolar peak-to-peak amplitude below 1.5 mV or with
a local activation time outside the range [−200, 200] ms,
or farther than 7 mm away from the endocardial wall were
discarded. After this filtering, LAT annotations of the EAMs
were automatically determined by the Confidense module of
CARTO 3 System. However, large delays between close areas,
where there was no underlying substrate that could explain
them, were observed in most patients due to wrong time anno-
tations at sample points. We re-annotated each EAM sample
using a tailor-made Matlab code that selects the deflection
on the distal bipolar signal (M1-M2) closest to the point of
maximum negative slope on the distal unipolar signal (M1).

Fig. 2 (second row) presents the resulting LV EAMs in
5 patients after the data was filtered and re-annotated. After
the re-annotation of the samples, a linear interpolation was
performed to obtain the LAT on every point of the 3D mesh.

For visualization purposes, in this study the LAT maps
are projected into a unitary 2D disk using a quasi-conformal
projection (QCM) as in [15]. In particular, we used the

Fig. 2. LV original EAMs and re-annotated EAM, projected into a 2D
unitary disk. A set of 5 EAMs, as they are obtained from the system
(top row), and after applying filters, and re-annotating the local activa-
tion maps (bottom row). After the re-annotation, the data was linearly
interpolated on the 3D mesh, and projected using a quasi-conformal
transformation onto a disk. The colorbar describes the local activation
time from blue (t = 0ms), to red (t = 100ms).

conformal energy minimization (CEM) algorithm [16], based
on discrete Laplace-Beltrami operator. It is important to point
out that this transformation on a ventricular geometry does not
respect distances and produces a compression of the points
that are in the apical area, and an expansion of the points in
the basal area. However, this representation is very convenient
to compare data from different LV geometries in a common
reference space. To avoid inconsistencies, the trabeculations
that crosses the ventricular cavity, and the papillary muscles
were removed to obtain a smooth surface without holes before
the projection was performed.

C. Algorithm for PMJ Estimation

To estimate a set of PMJ, we use the method proposed by
Barber et al. in [14], which is briefly described here. The
interested reader can find a detailed description of the algo-
rithm therein. In this PMJ estimation method, the endocardial
domain is discretized by means of an homogeneous simplicial
2-complex in a three-dimensional space, �. The EAM, either
synthetic or acquired during an intervention, is defined by a set
P of measurement points. All these points belong to the set V
of the vertices of �. The procedure takes the location pi and
LAT ti of the points in P , to generate a set of points � ⊆ V
that are compatible with the observed activation times. The set
V is traversed to evaluate if each vertex is a feasible activation
point. By means of a hypothesis contrast, if a given vertex
can be considered a PMJ, then a new candidate θi is added
to �. This step is done in lines 1–8 of Algorithm 1. After
the generation of the set � of candidate PMJs, all the θi ∈ �
are evaluated to determine their quality. Since the activation
of the points in P is a consequence of the activation of the
PMJ, we test whether the points activated by the candidates
θi with higher activation time can also be explained by PMJ
that activated earlier. If that is the case, the oldest PMJ are
removed. This is described in lines 10–18 of Algorithm 1.

One of the key steps of the algorithm is the assessment of
the activation times τi (line 3 of Algorithm 1. As described
in [14], this is done using a characterization of the PMJ
that considers the heart activation as a deterministic process
subject to random measurement error. Under this assumption,
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Algorithm 1 Estimation of PMJs From EAMs
1: for all x ∈ V
2: T ← {τi (x) = ti − d(pi , x)/v, : (pi , ti ) ∈ P}
3: Tok ← {τi ∈ T : is a compatible activation time}
4: if |Tok| ≥ 3,
5: Add (x, Tok) to �
6: A(x)← {pi : pi can have been activated by x}
7: end if
8: end for
9: �← sor t (�, key = τi , decreasing)

10: repeat
11: changed ← False
12: for all θ ∈ �
13: if ∀ p ∈ A(θ), ∃ θ � 	= θ ∈ � : p ∈ A(θ �),
14: �← �− {x}
15: changed← True
16: end if
17: end for
18: until not (changed)
19: Output ← �

the values of the τi for a given candidate PMJ are tested
by means of a hypothesis contrast. In order to make this
step more robust, we have introduced an additional condition
before accepting a set of activation times as a compatible
set. We note that there must be a linear relationship between
the activation times of the compatible measurement points ti
and the distances d(pi , x). The introduction of this additional
requirement to build Tok in line 3 of the algorithm reduces
the size of � by around a 10% preventing the inclusion of
spurious PMJ and, subsequently, saving time in the second
part of the algorithm.

The set of PMJs is estimated for a range of predefined
tissue conduction velocities (CVs), from 0.4 to 0.9 m/s, to take
into account potential slow propagation due to pathological
tissue such as fibrosis, among others. Finally, after testing
all the CVs, the estimated set of PMJs with less average
error at the sampling points, �E AM , is the one kept for the
next stage. Note that, although fiber orientation is considered
in the forward propagation, for the estimation of PMJs we
used geodesic distances on the endocardial surface, which
does not use the underlying fiber orientation. In that sense,
it is important to point out that the extensive trabecullations
observed in the inner surface of the ventricles [17] do not
follow the fiber orientation (described for the subendocardial
area (∼60 degrees) [18]), but one defined by the main direction
of the trabecullae), and the PKN is thought to run inside them.

D. Algorithm for PKN Estimation

The proposed method starts with the estimation of the PMJs
from an EAM (see Fig. 1, step 3), as described in previous
section. The ultimate goal of the PKNs estimation algorithm
is to find a PKN branching configuration that is able to
connect all the estimated PMJs at the estimated LATs, with the
minimum number of branches and error (see Fig. 1, step 4).
We start by considering the set of estimated PMJs that were

Algorithm 2 Estimation of PKN for a Set of Given PMJs

1: List Branches← �0

2: for all 	 ∈ [1, 	max ]
3: for all θi ∈ �
4: (xi , ti )← θi

5: [ξi ] ← argminξi∈�i−1

{
ti −

(
t (ξi )+ |ξi−xi |�

v

)}
6: if (ξi ≤ 	) and �i−1∩ ListBranches = ∅
7: Add �i−1 to li st Branches
8: Remove θi from �
9: end if

10: end for
11: end for
12: Output ← li st Branches

obtained in the previous step, � = {θ1, . . . , θn} ⊂ V ×R+.
For each PMJ θi = (xi , ti ), the point xi ∈ � (nodes on the
endocardial surface) will be called the location and ti ∈ R+
the estimated LAT at the PMJ. Without loss of generality,
we will assume that PMJs are in ascending order of LAT, that
is, i ≤ j ⇒ ti ≤ t j . We will also consider, �, a connected
simplicial 1-complex to represent the branches that form the
PKN. Each vertex or node in � will have an associated LAT,
that corresponds to its activation time according to the PKN
generated and the CVP through the PKN. The estimated PKN,
will have the constraint that all the vertices of � will be in a
vertex or an edge of �, and all the edges of � will coincide
with an edge of � or will be contained in one of its faces.
Moreover, the terminal vertices of � have to be locations of
the estimated PMJs.

We build the estimated PKN in an iterative fashion (see
Algorithm 2). An initial branch �0, corresponding to the
His bundle and left bundle branch (LBB), is built before the
algorithm generates any further branch. The initial branch
always starts from a location determined by the user and
expands to the apex through the septal wall following the
shortest path, which is obtained by calculating the geodesic
path between both points. Then, we process the PMJs in
order of LAT, starting by the earliest one. Therefore, we start
building the PKN from the region closer to the LBB, which is
expected to show smaller LAT errors due to the shorter path
from the Atrioventricular Node (AVN).

After step i , we have processed i − 1 PMJs in � and have
built an estimated tree �i−1 that connects them. We pick θi

and solve the fast marching method on � starting from θi to
obtain the distance from the estimated PMJ to all the vertices
on �i−1. Then, we try to connect the PMJ θi with �i using a
geodesic that ends at a point ξi ∈ �i−1. The connection point
is chosen as the solution of the optimization problem

ξi = argminξi∈�i−1

{
ti −

(
t (ξi )+ |ξi − xi |�

v

)}
, (1)

s.t . path�(ξi , xi ) ∩�i−1 = ∅, (2)

where | · |� is the geodesic distance on �, path�(ξi , xi ) is the
geodesic created to connect xi with ξi , and v is the CVP in
the PKN. With the constraint on the path, we exclude new
branches that intersect the PKN created so far. In summary,
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we are trying to connect the estimated PMJ to the current PKN
at a location so that the LAT at the PMJ matches the estimated
one, provided a CVP , v, inside the PKN. Only solutions
with an error value, �P M J < 	n (user-defined threshold at
iteration n), will generate a new branch for the PKN in each
iteration. In cases in which the residual in Eq. 1 is above the
threshold, the candidate θi is not connected. Once the iteration
ends with the last θi , the process is restarted trying to connect
the disregarded PMJs to the estimated PKN, using a larger
threshold. The algorithm stops when all the PMJs have been
connected to � or when the error threshold in the unconnected
PMJs reaches a predefined bound (	max).

After each iteration, the set of remaining PMJs can only
be reduced or, in the worst case, remain without changes.
As a result, the algorithm is guaranteed to stop either by the
integration of all the PMJs in the PKN or by the removal
of all the remaining PMJs when 	max is reached. The PKN
built by means of Algorithm 2 it is not the unique possible
PKN compatible with the observed EAM. It has, however,
the property of being minimal in the sense that it is formed
by geodesic curves in �.

III. RESULTS

A. Estimation of PKN From Synthetic Models

For the five synthetic PK scenarios, we obtained the set
of estimated PMJs, and the set of estimated PKNs. For the
estimation of PKNs, we compared the results when using as
an input to the algorithm either original PMJs (Table II, σ = 0)
or estimated PMJs (Table II, σ = [0.5; 2.5]).

As it can be observed, when using the original PMJs
(location and LAT taken directly from the model) the errors,
�P M J s and �E AM , are smaller, and the PKN structure is
reproduced more accurately, i.e, the distance between the
original PKN and the estimated PKN is smaller (see Table II
and Fig. 3, first row). When all the PMJs are available,
the resulting PKN (red tubes) can easily follow the branching
pattern of the original underlying PKN (yellow tubes), with
the estimated branches overlapping the original branches in
most cases (distances between original and estimated PKN
around 0 mm). In Fig. 3, it is highlighted using single headed
arrows, the location of the estimated PKN branches that almost
match between original ones. As expected, when estimated
PMJs with Gaussian noise were used, LAT times changed and
the corresponding estimated PKN started to diverge from the
original PKN. This effect is clear in Fig. 3, where estimated
branches are farther from the original than the same cases
with less LAT error. The effect of the sample error is not
linear with respect to the distance, as can be seen in Table II,
since the morphology and complexity of the PKN also plays
an important role.

When using the original PMJs (σ = 0) as input, �P M J s

(the difference in LAT at PMJs between original and obtained
through the PKN) and �E AM (errors after propagating the
signal to all endocardial mesh points) are on average below
0.85 ms for all scenarios. The average distance between tree
segments is smaller than 1 mm. In addition, around 95%
of the PMJs could be connected to the tree with an error

Fig. 3. Detailed comparison of PK3 with different Gaussian noise in the
samples. PKNs are rendered with tubes, yellow for the original, and red
for the estimated. Blue spheres are the PMJs, either original or estimated
(for Gaussian noise σ = 0.5 and σ = 2.5). Single headed white arrows
point out a perfect fit between original and estimated PKN, while double
headed arrows show the displacement between them. Black circles point
out PMJs not connected to the tree due to temporal errors.

below 	max < 4.0 ms. Not all PMJs could be connected
due to a restriction imposed on the PKN with respect to
overlapping branches. It is noteworthy, that the number of
PMJs in the model affected both errors �P M J s and �E AM .
When models include a large density of PMJs (PK1, 1224
PMJs), �P M J s and �E AM where slightly smaller than for
less crowded models (PK5, 206 PMJs).

When the estimated PMJs were used to build the PKN (see
Fig. 3 second and third rows, and Table II), the CVP in the
PKN had to be estimated. Note that, for simplicity, in the
simulations we used a reference CVP of 1.0 m/s in the original
PKN. In scenarios with estimated PMJs, the percentage of
PMJs available to build the PKN decreased considerably.
We used 1000 EAM samples to estimate the PMJs. In dense
scenarios such as PK1 (1224 PMJs), we estimated 9.3% of
PMJs when the Gaussian noise introduced was σ = 0.5, and
5.4% when σ = 2.5, while in coarser models such as PK5,
we estimated 40.3% when the noise was σ = 0.5, and 27.7%
when σ = 2.5. Since we only could estimate a subset of the
original PMJs, the algorithm tends to overestimate the CVP ,
as can be seen in Table II, where most cases have an optimal
value above 1.0 m/s. Having less PMJs estimated, the resulting
PKN is simpler (less branches), and the estimated CV is larger.
In Table II the number of branches of each estimated PKN is
summarized in column labeled ‘# Br’. Using the proposed
methodology the number of branches in an estimated PKN is
always the number of PMJs plus one branch (bundle branch).

Fig. 4 presents the activation maps of the original sim-
ulations, and those produced from the estimated PKNs for
different errors, where it can be appreciated a very good match
between the activation sequences. Errors at PMJs, �P M J s , are
below 1 ms in all scenarios, however, the average error across
the mesh, �E AM , (measured at the 1000 sampled EAM points)
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TABLE II
ESTIMATION OF THE PKN FROM ESTIMATED PMJS. ESTIMATED CONDUCTION VELOCITIES (CVP) ARE IN M/S. �max < THRESHOLD SHOWS THE

PERCENTAGE OF ESTIMATED PMJS CONNECTED TO THE PKN BELOW A THRESHOLD ERROR. ΔPMJs SHOWS THE AVERAGE TIME ERROR

BETWEEN ESTIMATED TIME AT PMJS AND TIME AT WHICH THE WAVEFRONT ARRIVES THROUGH THE PKN. #BR SHOWS THE NUMBER OF

BRANCHES IN THE PKN. ΔEAM SHOWS THE AVERAGE TIME ERROR BETWEEN LAT AT ENDOCARDIAL SAMPLES AND TIME AT WHICH

ACTIVATION WAVEFRONT ARRIVES USING THE ESTIMATED PKN

Fig. 4. Comparisons between LAT maps on synthetic models. Activation
maps generated by original (SIM) and estimated PKNs subject to different
Gaussian errors (σ = 0.5 and σ = 2.5), visualized on a projected disk.
Times in the colorbar are provided in milliseconds.

increases due to two main reasons: i) the underestimation in
the overall number of PMJs, which is around 10% of the real
ones; and ii) the error in the LAT of the estimated PMJs. The
same explanation applies to the increase in distance error, since
due to the low number of PMJs and branches in the estimated
PKN, the distance to the original PKN is larger. In summary,
�E AM is below 3 ms, even when σ = 2.5, in all scenarios
except PK1, which has a very large number of PMJs.

B. Estimation of PKN From EAMs

The set of clinical EAMs acquired from patients was used
to estimate the corresponding PKNs. First, all the EAMs were
analyzed, filtered and re-annotated, obtaining more physiologi-
cal patterns of activation (see Fig. 2). Table III, column ‘#Pts’
indicates the final number of points available in each EAM
after filtering, which was on average 195.

For the estimation of PMJs, an optimal CV for tissue (CVT )
has to be estimated for each case. Therefore, the estimation
was carried out considering a range of CVT between 0.4 m/s

and 0.9 m/s, to take into account both potential slow prop-
agation due to pathological tissue such as fibrosis, and fast
conduction velocities due to underestimation of PMJs. For
each CVT , we obtained an estimation of the total number
of PMJs, the number of EAM samples that support each
of those PMJs (and their correlation), and the error �E AM

after propagating from the estimated PMJs to the endocardial
samples. The best results were used as an input to estimate
the PKN.

The number of PMJs obtained from the real cases ranged
from 11 to 51, which was expected mainly due to the low
number of endocardial samples finally used to estimate them
(between 73 and 387 samples), the errors in the LAT maps
and the sample location errors (a detailed geometry was not
used in almost any case). The error �E AM when directly
activating the endocardium from the PMJs (PKN structure not
considered) ranged from 3.61 ms to 20.20 ms, with an average
of 8.13± 4.12 ms. This error can be explained looking at the
percentage of EAM samples that were compatible with any
of the PMJs estimated, which is included in Table III, column
labeled as ‘Link’. It is important to remark that during the
estimation of the PMJs only a subset of the EAM samples
actually produced PMJs for a given CVT . i.e., the ‘link’ factor.
In general, when less than 70% of the samples generate PMJs,
LAT errors are large (> 10 ms). This is explained by the
fact that, once the propagation from the PMJs is carried to
the whole mesh, non-contributing EAM samples are not in
agreement with the LATs, increasing the error. Therefore,
the ‘Link’ is a measure of confidence in the PKN estimation,
that can help assessing the accuracy together with the error
�E AM . There may be several reasons to explain small ‘Link’
numbers, such as wrongly annotated samples that make the
map spatio-temporally incoherent, or tissue inhomogeneities
that produce local changes in CV that affect the convergence
of the inverse estimation. When considering only cases with
a Link over 70%, the average error �P M J s decreases to
6.10 ± 1.8 ms (Table III last row). To further validate the
results, we performed a cross-validation in those cases where
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TABLE III
QUANTITATIVE ANALYSIS OF ERRORS ON THE ESTIMATION OF THE PKN FROM CLINICAL EAMS. A/S STANDS FOR AGE/SEX; #PTS: POINTS

OF EAM AFTER FILTERING; LINK: PERCENTAGE OF PTS CONSISTENT WITH ESTIMATED PMJS; CVS CONDUCTION VELOCITIES IN M/S
FOR TISSUE (T) AND PURKINJE (P); TAT: TOTAL ACTIVATION TIME OF THE PMJS; #PMJS: ESTIMATED PMJS; �max < THRESHOLD,

NUMBER OF ESTIMATED PMJS CONNECTED TO THE PKN BELOW A THRESHOLD ERROR; AVG: AVERAGE RESULTS; AVG> 70:
AVERAGE FOR CASES WITH LINK OVER 70%

the Link value was high (around 80%). In particular, we esti-
mated the PMJs from: i) 70% of the samples (#Pstm), and
left the remaining 30% (#Pval) for validation of the LAT;
and ii) using a leave-one-out cross validation. For the first
case, we randomly selected the points to estimate and validate
20 times, and calculated the average values of all estimations,
which are summarized in Table IV. As expected, in the first
validation (70/30) # PMJs estimated decreased and the error
�70P M J s increased around 2ms in average for each case. The
leave-one-out cross validation obtained better results in error,
�1P M J s (ms), since the PMJs were properly estimated and the
increase in error was only due to non spatio-temporal coherent
LATs. That means that the methodology requires denser EAMs
and very accurate calculation of the annotated LATs to provide
consistent results.

The CV in the PKN (CVP K ) also had to be estimated. The
algorithm estimated PKNs for velocities in the range between
1.5 and 2.5 m/s on the best PMJ estimation solution, based on
final average error �P M J s . The final anatomy of the estimated
PKN changes as a function of the CVP K , since the sum of
branch lengths has to shorten as we increase CVP K for a
given PMJ with a specific estimated LAT. For instamce, for
a given set of estimated PMJs, using a CVP K = 1.7 m/s,
branches in the septum branch out earlier (shorted path from
AV node to PMJ is required) than the case of CVP K = 2.3 m/s.
The arrival time at the PMJs also changes, and therefore

the LAT of the PMJs differs (within the allowed threshold),
resulting in different errors and number of PMJs connected.
For most of the cases, summarized in Table III, the optimal
CVP K was between 1.7 m/s and 2.1 m/s, with an average of
1.95 m/s, which resulted in more than 80% of PMJs connected
and average errors �P M J s under 1.3 ms (Table III, column
‘�P M J s’). �P M J s is the difference between the estimated
PMJ activation time and the time when the PMJ is activated
through the estimated PKN.

For the PKN estimation, the maximum error allowed at a
PMJ to connect a branch to it was set to 	max < 5 ms, to keep
average errors under a reasonable threshold. The number
of estimated PMJs connected to the PKNs was on average
88%. Since in most scenarios estimated PMJs included PMJs
incorrectly estimated, we expected that the PKN algorithm
filtered some of them, and therefore a 100% connection was
not desirable. In fact, when more PMJs were connected to a
PKN the average LAT error �P M J s increased, which required
a trade-off between PMJs connected and average LAT error.
We chose to get the maximum number of PMJs connected,
with a maximum average LAT error �P M J s below 1.3 ms.
As can be observed in Table III, �P M J s was on average
0.76± 0.9 ms.

Fig. 5 summarizes a comparison of LV LAT maps for ten
patients, including the re-annotated EAMs used to estimate
the PKN (first row), the PMJs estimated and the LAT map
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TABLE IV
CROSS-VALIDATION OF THE ESTIMATION OF PMJS FOR A SET OF

REPRESENTATIVE DATASETS. #Pstm IS THE NUMBER OF SAMPLES

USED TO ESTIMATE PMJS, AND #Pval THE NUMBER OF SAMPLES

USED TO VALIDATE THEM USING A 70/30 CROSS-VALIDATION.
CROSS-VALIDATION ERRORS FOR 70/30, Δ70PMJs, AND FOR

LEAVE-ONE-OUT,Δ1PMJs, IN MS

Fig. 5. Comparisons between projected LV LAT maps for five patients,
showing i) EAM re-annotated and interpolated (first row), ii) Simulated
LAT map from estimated PMJs (no PKN included, stimulated from tissue)
(second row), and iii) Simulated LAT map from estimated PKN (third row).
Maps are color-coded from t = 0 ms (blue regions) to t = max ms (red
regions), relative to each EAM.

obtained when simulating from the PMJs (second row), and
the LAT map obtained when the activation was triggered from
the estimated PKN (third row). As can be observed, the PMJ
and PKN LAT maps are very similar, since most PMJs were
connected to the corresponding PKN and the LAT errors
�P M J s were small (see Table III, column ‘�P M J s’). However,
there are differences with respect to the EAM, specially for the

Fig. 6. Comparison of PKNs estimated from two different EAM studies
from the same patient. LATs (first row) and Error at PMJs (second row)
for (a) study 1 (P13A), and (b) study 2 (P13B).

case of patients P1 and P2. EAM maps shown in the first row
are obtained after re-annotating the LAT of the endocardial
samples and interpolating the data. Therefore, it is important
to take into account that the resulting interpolated LAT map
is not exactly the real activation sequence of the patient,
since the activation time range is bounded by the earliest
and latest sample acquired. Moreover, a Gaussian kernel is
used to interpolate the LATs, which introduces a smoothing
effect that reduces the range of the LATs. Overall, the best
results were obtained for P5 LV, P8 RV, and P9 (see Table III,
column ‘�E AMs ’). The reason for those improved results was
a larger number of EAM samples (above 300 in most of
them) together with a high Link factor (> 84%). On the
contrary, the worst cases showed Link values around 63% and
large errors. The number of PMJs estimated did not correlate
with the error, although the best cases included more than
30 PMJs estimated, which is above the average (22 PMJs) in
our study. There was an outlier, patient P6, that showed an
error �E AMs of 21.0 ms, which was really high compared
with the other cases. This particular case corresponded to a
case with NICD (QRSd 138 ms), which probably had some
problems at the level of the PKN, or the myocardial tissue,
which hamper the estimation that assumes homogeneous CV
on both media during the optimization procedure. Only a
very dense and curated EAM could provide enough infor-
mation to estimate local non-homogenoeus CVs in a reliable
way.

For the particular case of patient P12, the LATs anno-
tated for each point in the EAM were manually corrected
by an expert electrophysiologist, and inconsistent samples
were removed. In addition, the endocardial anatomy was
obtained from MRI, and the EAM was mapped to it. As a
result, we observed that a larger proportion of PMJs could
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Fig. 7. Comparison between simulated LAT and EAM for P12. LATs obtained by simulating patient P12 using the estimated PKN (top row), compared
to LATs from patient EAM (bottom row). (a) Epicardial LATs on the 3D mesh (left) and equivalent projected onto a disk (right). (b) Endocardial LATs
on the 3D mesh and projection of the LV onto a disk.

Fig. 8. Comparison between clinical and simulated 12-lead ECG on patient P12 geometry. Each subplot includes, the clinical patient ECG recorded
at precordial leads in sinus rhythm (red traces), the Simulated ECG using the estimated PKN (black traces), the simulated ECG using discrete
endocardial points to match Durrer’s [20] activation sequence (blue traces), and the simulated ECG using an stochastic PKN generated using
L-systems [7] (green traces).

be estimated, compared to other cases with more samples.
In addition, both the number of PMJs connected and the aver-
age errors were smaller. For patient P13, we had two different
EAM studies (P13A and P13B), which were used to obtain
two different estimations of the PMJ set. As can be observed
in Table III and Fig. 6, the optimal CVs (2.3 m/s) in the PKN
matched for both ventricles in both cases. The estimated PMJs
for each study differs in the number of PMJs (e.g. LV (a) 17
vs (b) 21) and the location of some of them. When the PKN
was estimated, the final number of PMJs was almost the same
(LV (a) 16 vs (b) 19), and the sequence of activation showed a
similar pattern with respect to early and late activated regions.

Nonetheless, we did not observe a perfect coincidence between
the LAT maps since the original EAMs were not identical,
despite being recorded from the same patient. We performed a
cross-validation between both EAMs, i.e., estimating the PMJs
from one EAM and validating the activation sequence with
the second. As expected, the errors were large: i) Estimating
with PK13A and validating with PK13B, we obtained an error
of 9.9ms and 19.1ms for LV and RV, respectively. That fact
reveals that since EAMs: i) show only partial and interpolated
information to electrophysiologist, and ii) assume stationarity
on the electrical activation over time, two different acquisitions
might show maps that do not match. Therefore, estimated
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PKN can only aim at reproducing the EAM data observed
and not the location of PMJs, provided that enough samples
have been acquired. Note that although the results activating
from the PMJs are better that using the PKN, it is necessary
to include the PKN structure since in many pathological sce-
narios involving arrhythmias the PKN is activated retrogradely
from the tissue, which completely changes the normal order
of activation of PMJs.

To further validate the PKN method, we performed full
biventricular biophysical simulations for patients P3, P5,
P8, P9, and P12 using the corresponding estimated PKNs,
and the geometry of P12 as reference, where all EAMs
were fit. All the details about the protocol to perform the
biophysical simulations can be found in [19]. As can be
observed in Fig. 7 for P12, the EAM activation sequences in
the epicardium (a) and the endocardium (b), were properly
reproduced by the simulation, following the main patterns.
The total activation times of the EAM and the simulation
matched each other. We also simulated the electrical activation
obtained in the 3D model using commonly used approaches,
namely the sequence of activation that mimicked Durrer’s
descriptions [20], and the one resulting from a fractal-based
generic Purkinje system generated using L-systems
as in [7].

The extracellular potentials generated in the heart for each
configuration were propagated to the torso surface to obtain
the 12-lead ECG. Fig. 8 shows for each lead the clinical
ECG recorded from the patient (red trace), together with three
tested configurations: estimated PKN (black traces), Durrer’s
activation (blue traces), and stochastic PKN generated using
L-systems (green traces). From the plots it can be appreciated
that PKN configuration (black trace), i.e. the estimated PKN,
reproduces the polarity of the signal in all precordial leads
V1-V6. In V3 and V4, the other configurations (Durrer and
Fractal) show negative polarity, as compared with the clinical
and PKN ECGs. The worst case was obtained for lead V2,
which could be due to the displacement of the patient’s lead
due to the location of a CARTO patch necessary for the EAM
system. The extended leads also provided a good match in
terms of polarity for the PKN configuration, although signal
amplitudes differed in most cases. This was expected due to
the fact that our torso model does not have limps, and in
addition the organ conductivities were not optimized for this
particular patient, and instead generic values from the literature
were used. For the rest of the simulations we compared the
clinical and the simulated 12-lead ECGs, as depicted in Fig. 9,
and obtained a very close match in terms of QRS duration,
polarity and in most cases amplitude. Finally, we compared
quantitatively the ECGs by calculating the Pearson’s correla-
tion between the clinical ECG and the simulated one using
the estimated PKNs. Table V shows the results. As displayed
in bold face, the P12 PKN configuration outperforms all
the other generic activation sequences used in the modeling
literature, showing the highest correlation (>0.80) for all leads,
except lead V6 (correlation) and lead I (RMSE) in which
Durrer’s configuration showed better results. For the rest of
estimated PKNs (fit to P12 geometry), the correlation was

Fig. 9. Comparison of clinical and simulated 12-lead ECGs using
estimated PKNs. Red plots correspond to clinical traces, and black plots
to simulated ones, for (a) P3, (b) P5, (c) P8, and (d) P9.

very high except for three particular cases: P5-V3, P8-V3 or
P9-V6. These results highlight the importance of the activation
sequence of the endocardium compared to other factors such
as the patient-specific cardiac geometry.
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TABLE V
QUALITY INDICES OF SIMULATED 12-LEAD ECGS FOR THREE DIFFERENT ACTIVATION CONFIGURATIONS

IV. DISCUSSION

In this work, we have presented a novel methodology to
estimate a PKN for a given patient by estimating its PMJs and
branching structure from an EAM. From the estimated model,
it is possible to obtain information about the PMJ locations
(early activated regions) as well as reproduce the patient
electrical sequence of activation and the ECG using computer
simulations. This is important since the Purkinje system has
been shown to play a crucial role in several types of cardiac
arrhythmia, such as VT or idiopathic VF [11]. The PKN cannot
be directly observed in vivo and it is very complex to map
with current clinical technology [5]. This is one of the main
reasons why having accurate computer models of the PKN to
carry out biophysical simulations is so important. Clinically,
a better knowledge of the PKN structure of a patient showing
VT triggered from the PKN could help in the identification
of ablation sites. Recently, it has been proposed the use of
ablation for “De-Networking” of the Purkinje system in cases
in which it has been implicated as a source of initiation of
VF [21].

In the modeling literature the most common approach to
build a PKN is manually [22], [23], by developing random
networks based on fractals (L-systems), or following opti-
mization criteria [3], [24], [25]. Some authors have chosen to
segment the proximal sections of the PKN in animals such
as dog [6] using Lugol’s solution or calf [7] using Indian
ink. Many computational studies simply neglect the PKN
and focus on pathologies, where there is little involvement
of the ventricular conduction system, such as scar-related
VT [26], [27]. Having a more faithful PKN, able to reproduce
the sequence of activation of a specific patient with an error
of a few milliseconds, can help in virtual therapy planning
and optimization of RFA or cardiac resynchronyzation therapy
(CRT) [22].

A. PKNs From Synthetic Models

By means of a simulation study, we have verified that the
methodology presented is able to estimate the most relevant
PMJs or early activated areas with small spatio-temporal
errors. In addition, the main bundles of the PKN (anterior
and posterior) could be properly reconstructed, and most of
the estimated PMJs (> 80%) successfully connected to the
PKN considering physiological CVs in both tissue and PKN.
The percentage of estimated PMJs that can be successfully
connected to the PKN decreases as we increase σ from

0.5 to 2.5, due to errors in location and LAT of estimated
PMJs (note that Gaussian noise was inserted in the samples
as described in [14]). In general, the percentage of estimated
PMJs that are connected to the PKN with 	max < 4 ms
is around 75%. In distal areas, where the branching pattern
is complex, the morphology could not be reproduced, but
only simplified representations of the PKN. It is important
to remark that since branch intersections are not allowed by
design, the resulting PKN is a tree instead of a closed network.
Nonetheless, the estimated PKN can reproduce the sequence
of activation observed in the EAM of the patient, avoiding
the use of a random PKN with an arbitrary number of PMJs.
Errors at PMJs, �P M J s , were below 1 ms in all scenarios.

B. PKNs From Patient EAMs

A few computational studies have also focused on the in
vivo estimation of a compatible PKN from EAMs [10], [28],
[29]. For instance, in [28], a complex fractal-based PKN
is built on the endocardium as a background network, and
following PMJs are either moved, removed or added to the
network to reduce the error �E AM . Our minimal PKNs,
estimated from the data, had less than 100 branches and
50 PMJs (see Table III), while the fractal models in [28]
had between 1500 and 2500 branches, and 200 to 250 PMJs,
similar to our synthetic PKNs. Still, there is a remarkable
difference in the optimal CVP K obtained in our study that
ranged between 1.7 and 2.1 m/s, compared to the 3.9 m/s
obtained in [28], or 2.25 m/s used in [6]. It is important to
point out that the average conduction velocity of 1.95 m/s
estimated in the PKN was very stable between cases, and
can be considered as a physiological parameter for the human
PKN. Although conduction velocities for PKN in the range
of 3-4 m/s [20] have been used in several computational
studies, some experimental studies have reported other data:
1.85 m/s [30], 2.2 m/s [31], 1.56 ± 0.59 m/s [32], 1.41 ±
0.4 m/s [33], and 1.62m/s [34].

We avoided performing a CV over-fitting, that is, adapting
locally the CV in different regions so that our simulation
match exactly the clinical data. Instead, we opted for a global
optimization of the CV within physiological ranges, which is
what would be expected in a real helathy PKN.

One of the main advantages of the method proposed is that
the PKN is built from estimating the optimal branches for the
estimated PMJs, while other methods use simple criteria to
place the PMJs [10]. In such approach, one could place the
PMJs exactly on each of the endocardial EAM samples, and
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use the measured LAT, obtaining an error �E AMs of 0 ms.
However, that will not correspond to any possible PKN for a
patient, since EAM samples do not correspond to PMJs. In
our approach, each of the PMJs that is placed in our model
can explain the activation of many endocardial EAM samples,
i.e. it is compatible with their spatio-temporal location given
a global CV.

It is important to point out that sparse EAMs or wrongly
annotated ones will cause a reduction in the number of
estimated PMJs, which in turn could generate poor PKNs
with larger errors in the activation maps. In this study, after
filtering the patient EAMs, the number of endocardial samples
was always under 400 points, which makes it difficult to
obtain a large number of estimated PMJs. Four of the PKN
models, namely P8 and P9 (LV and RV), which showed
smaller errors, correspond to high density EAMs. That is why
it is key to use high-dense maps such as those provided by
multi-polar catheters. However, we did not observe a direct
relationship between the number of PMJs estimated for a
given model and the final error at the EAM samples. One of
the most relevant measures of quality is the Link percentage.
Therefore, estimated PKNs with a ‘Link’ factor (percentage
of EAM samples that gave rise to PMJs) under 70% should
be considered carefully or discarded, since the PKN will not
be able to reproduce the sequence of activation in at least
30% of the samples. This generates, on average, errors above
10 ms, which cannot be considered a personalized activation.
We encountered this problem in 8 out of 28 PKN models
estimated. Those studies will require a careful revision of
EAM LATs, and analysis of local inhomogeneities.

Other studies have reported mean absolute errors at the
endocardial mesh, using an estimated PKN, between 4.9 ±
4.1 ms and 7.4±6.6 ms [28], and 5.8±4.5 ms in [9], but using
EAMs provided by EnSite NavX system, and patient geometry
segmented from MRI. Errors obtained in our models fitted
to a segmented LV endocardium were 6.42 ms (219 EAM
samples) for patient P12, and 5.61 ms (118 EAM samples),
and 6.39 ms (151 EAM samples) for the two maps of P13.
Including all cases, if we consider PKNs with Link higher
than 70% (Table III, AVG> 70), the average error at EAM
from the PKN was 6.10± 1.8 ms.

Finally, we showed by means of biophysical simulations
that the sequence of activation generated by the personalized
PKN from five patients produced as a result virtual ECGs
comparable in morphology to the patient clinical ones, and
showed a high correlation (> 80%) in almost all 12-leads
ECG. In addition, virtual ECGs generated by stochastic pro-
cedures or following descriptions from the literature resulted in
non-physiological ECGs. To our knowledge, other studies that
try to estimate the PKN have never obtained the corresponding
ECGs by simulation. Although, previous studies on synthetic
PKN such as [25], [35] obtained simulated ECGs to compare
the effect of model parameters or simulate His-Bundle pacing
in different scenarios [36]. It is important to remark that
comparing simulated and clinical ECG can be only considered
as a surrogate validation.

There are several limitations of the methodology. First of
all, the estimated PKNs are trees, and not networks with

closed loops, as observed in real Purkinje networks at both
proximal [4], [5] and terminal sections [37]. That feature
provides the network with resiliency in case of local conduc-
tion blocks, or damage of part of the tissue, but since we
cannot estimate the location of those loops, we choose not
to add them synthetically. However, if desired, loops could
be created in the required density, without altering the LATs
at the PMJs. The location of the estimated PMJs depends
indirectly on the location of the endocardial samples acquired
in the cathlab, and therefore, non-homogeneous maps will give
rise to unbalanced PMJ distributions and PKN morphologies.
A homogeneous sampling is therefore required to obtain
meaningful PKNs that can be compared among patients. It is
important to remark that we could not validate the morphology
of the PKN, or the location of the estimated PMJs in real
patients, since all the studies are performed in vivo. How-
ever, the results obtained in synthetic PKN showed that the
estimated PKNs were similar to the original ones (comparing
distance and angles), and the location of estimated PMJs
was close to original one. Nonetheless, to obtain accurate
results, the number of endocardial samples, and their LAT
error should be bounded. Finally, we observed that in patients
with pathologies that affect conduction velocities, such as
patient P6 (NICD), the error �E AMs increases with respect to
other cases. That inhomogenous activation which might affect
the PKN should be specially treated, and probably consider
several CVs on the PKN to account on local delays.

In conclusion, we believe that incorporating more person-
alized information to the biophysical models of the heart,
or even into the EAM systems, could help in therapy planning
and optimization. The use of computer models to optimized
therapies require not only the personalization of the anatomy
of the heart but also their electrical properties. In that sense,
having a more personalized PKN model and sequence of
activation that help to understand patient particularities or
enable to study the effect of different treatments on the ECG
would be fundamental. In this paper, we aimed at estimating
and validating the methodology in patients that are in sinus
rhythm. In the future, we will analyze whether the presented
methodology is useful to predict potential arrhythmia mecha-
nisms sustained by the Purkinje system, and planning RFA
ablation targeted at the Purkinje system. In such scenario,
it would be important to record the location from which
electrophysiologist trigger the arrhythmia in the patient and
the resulting ECG, so that it can be reproduced in silico to
validate the retrograde activation sequence of the PKN.

On the other hand, if the estimation method developed
would be integrated into an EAM navigation system, the map-
ping could be guided, improving the robustness of the results.
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