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Abstract 

Multilevel methods allow researchers to investigate relationships that expand across levels 

(e.g., individual, team, organization). The popularity of these methods for studying 

organizational phenomena has increased in recent decades. Methodologists have examined 

how these methods work under different conditions, providing an empirical base for 

making sound decisions when using these methods. In this article, we provide 

recommendations, tools, resources, and a checklist that can be useful for scholars involved 

in conducting or assessing multilevel studies. The focus of our article is on two-level 

designs in which Level-1 entities are neatly nested within Level-2 entities, and top-down 

effects are estimated. However, some of our recommendations are also applicable to more 

complex multilevel designs.  
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Many organizational phenomena are multilevel because they involve variables that 

reside at different levels of analysis. To investigate relationships that span across levels, 

multilevel (ML)1 modeling methods are needed. Thus, researchers interested in ML 

phenomena need to know how to deal with several key aspects involved in an ML study. 

Moreover, considering the increasing use of ML methods in our field (González-Romá & 

Hernández, 2017), reviewers need to be prepared to evaluate manuscripts that implement 

these methods. This requires understanding certain important issues and knowing some 

appropriate ways to handle them. Fortunately, research on ML methods is ripe enough to 

offer a set of recommendations (summarized in Table 1), several tools and resources (see 

Table 2), and an evaluation checklist (see Table 3), which can be useful to researchers who 

plan to conduct a multilevel study and reviewers and journal editors who frequently 

evaluate ML studies. Thus, the goal of the present article is to provide a set of 

recommendations and resources. We hope to contribute to the field by a) offering a 

comprehensive approach that covers the initial stages to the final stages of ML studies; b) 

helping researchers to make sound decisions when planning ML studies; c) increasing the 

rigor of ML studies; and d) facilitating reviewers’ work when evaluating ML manuscripts. 

Due to space limitations, we focus on two-level designs in which Level-1 (L1) entities are 

neatly nested within Level-2 (L2) entities (e.g., employees nested within teams; 

departments nested within firms), and top-down effects are estimated. We do this because 

these are the most frequently used designs in our field (Molina-Azorín et al., 2020). 

When and why we use multilevel methods 

 
1 Readers can see the list of abbreviations used in this article in the appendix. 
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 Typically, researchers use ML modeling methods when the relationships 

investigated involve variables that reside at different levels. In these cases, researchers 

collect data about the study variables in a sample of L1 entities (e.g., individuals, 

departments) who belong to the sampled L2 units2 (e.g., teams, firms, respectively). This 

results in a database with a nested structure.  

 Due to several factors (e.g., social interaction), employees in the same unit tend to 

have similar work experiences. Thus, nested data tend to show some degree of non-

independence. Analyzing nested data by means of ordinary least squares (OLS) regression 

at the lower level can have undesirable consequences because the OLS assumption of 

independence of observations is violated (Heck & Thomas, 2015). In this regard, Bliese and 

Hanges (2004) showed that: i. estimating the relationship between an L2 variable and an L1 

variable by using OLS regression leads to an increase in Type I error; and ii. estimating the 

relationship between two L1 variables using OLS regression and nested data leads to an 

increase in Type II error and a loss of statistical power (Bliese & Hanges, 2004). 

Furthermore, Bliese et al. (2018) showed that even a very low degree of non-independence 

(as indicated by an Intraclass Correlation Coefficient (ICC) = .013) affects the standard 

errors of parameter estimates. Thus, we recommend that researchers use ML modeling 

methods when analyzing data with a nested structure (Bliese et al., 2018). 

Construct meaning  

Generally, multilevel studies involve constructs specified at higher levels. It is 

extremely important to clarify the meaning of these constructs before formulating the study 

hypotheses and conducting the analyses (Chen et al., 2004; Jak, 2019; Preacher et al., 

 
2  We use the term “unit” to refer to the different types of work-units that can be identified in organizations 
(e.g., team, department, organization). 
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2010). Without this clarification, it is not possible to fully and precisely interpret the 

empirical results obtained for these constructs and draw the subsequent conclusions.  

Unfortunately, current practices in published studies do not reflect the importance of 

construct clarification. Kim et al.’s (2016) review concluded that “explicit discussions of 

how researchers conceptualize the constructs in their studies … at each level are lacking” 

(p. 892). ML researchers should take the construct meaning issue seriously. Hence, we 

propose that researchers address the following points: 

1. Provide an explicit definition of all the study constructs, especially those residing at 

higher levels (Chen et al., 2005). 

2. Specify the nature of higher-level constructs. Higher-level constructs can be of different 

types. A useful typology was proposed by Kozlowski and Klein (2000), who distinguished 

among: a) global unit properties, which are properties of the unit as a whole (e.g., unit size); 

b) shared unit properties, which describe characteristics that are common to unit members 

and originate in lower-level properties (e.g., team climate); and c) configural unit 

properties, which also originate in lower-level properties, but convey the pattern of 

individuals’ experiences and attributes within a unit (e.g., climate uniformity). 

3. When necessary, explain how higher-level constructs emerge. Some higher-level 

constructs originate in individuals’ properties (e.g., perceptions, affect, behaviors). The 

latter combine through certain processes (e.g., social interaction) to yield higher-level 

constructs that have some features (e.g., sharedness, synergy, complementarity) that are not 

present in the corresponding individual elements (Eckardt et al., 2021). In these cases, it is 

necessary to explain how higher-level constructs emerge from individual properties to fully 
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understand the nature and foundation of the former3. Unfortunately, this explanation is 

frequently missing in research manuscripts (Eckardt et al., 2021; González-Romá, 2019). 

This explanation requires: 1. specifying the type of emergence involved, and 2. explaining 

the processes and factors involved in the emergence of higher-level constructs.  

 Kozlowski and Klein (2000) proposed an emergence typology with two general 

types, composition and compilation. Composition processes of emergence explain how 

convergence and within-unit agreement develop to yield a shared unit property. One of the 

psychosocial processes that explain convergence and within-unit agreement is social 

interaction (Ashforth, 1985). Compilation processes promote variability and configuration, 

and they explain how different types or/and amounts of individual-level properties combine 

to yield higher-level configural properties. One factor that may explain variability and 

configuration within units is demographic diversity (González-Romá & Hernández, 2014). 

Explaining how higher-level constructs emerge helps to understand the relationship 

between higher-level constructs and their individual-level counterparts. This relationship 

can also be clarified by using Chan’s (1998) composition models.  

4. When ML models include isomorphic constructs, test for isomorphism. ML isomorphism 

means that:  i. “higher-level constructs have similar meanings and properties as their lower-

level counterparts” (Tay et al., 2014, p. 78); and ii. both types of constructs show similar 

relationships with other constructs within an ML nomological network (Kozlowski & 

Klein, 2000). Generally, isomorphic constructs appear in homologies (i.e., ML models 

positing parallel relationships between constructs across levels). An often overlooked point 

 
3 Some higher-level constructs operationalized via aggregation do not require a theory of emergence because 
they do not imply new features (e.g., sharedness) emerging from the combination of individual properties 
(e.g., the aggregation of individual sales to operationalize team performance) (Eckardt et al., 2021). The 
emergence requirement will depend on the nature of the involved construct. 
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is that ML isomorphism requires psychometric isomorphism or measurement equivalence 

across levels (Jak, 2019; Tay et al., 2014). Psychometric isomorphism is crucial when 

higher-level constructs are formed following composition models of direct-consensus and 

referent-shift consensus (Chan, 1998). However, it is not required for additive, dispersion, 

or process composition models (see Tay et al., 2014, p. 85). Psychometric isomorphism 

involves ascertaining whether: i. the same dimensions underlie the investigated construct at 

different levels; and ii. factor loadings are invariant across levels. This isomorphism can be 

tested by ML factor analysis (see Tay et al., 2014). Note that if different dimensions 

underlie the studied construct at different levels, the dimensions used to describe the 

involved entities at different levels cannot be the same. If the factor loadings change across 

levels, the defining characteristics of the studied construct change across levels, and the 

construct cannot have the same interpretation across levels. Finally, we recommend taking 

the validity of constructs across levels seriously and implementing some of the different 

approaches proposed in the literature (see Chen et al., 2004; Tay et al., 2014). 

Formulating multilevel hypotheses  

Hypotheses specify the expected relationships between variables (Bacharach, 1989). 

When formulating hypotheses, researchers have to be aware of: i. the precise meaning of 

the variables involved in the statistical analysis conducted for hypothesis testing; and ii. 

what this analysis really does. This will ensure that the hypothesized relationships are 

aligned with the estimated relationships. This is especially important when formulating ML 

hypotheses because the variables and relationships mentioned in the hypotheses often do 

not completely match the variables and relationships modeled in the statistical analysis. In 

fact, current practice shows that we (researchers) frequently fail to formulate multilevel 

hypotheses that are fully aligned with the estimated relationships (see LoPilato & 
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Vandenberg, 2015; Bliese et al., 2018). To avoid this, a deeper understanding of what ML 

modeling methods really do in four specific cases can be helpful. We focus on these cases 

because they are quite common in ML research and offer room for improvement. 

1. Hypotheses involving an individual-level predictor centered within cluster. Centering is a 

common practice that helps to interpret variable values by setting a reference zero point. 

When an L1 (e.g. individual) predictor’s influence is of interest and a cross-level 

interaction effect is examined, the general recommendation is to center L1 predictors (X) 

around the group mean4 (Aguinis et al., 2013; Enders & Tofighi, 2007; this practice is 

called centering within cluster (CWC) or group-mean centering). In these cases, centered 

values indicate subjects’ standings on X relative to the unit mean, rather than an absolute 

value. CWC changes the meaning of values in L1 predictors. The associated ML 

hypotheses should acknowledge this change (Bliese et al., 2018). Thus, instead of 

hypothesizing that “At L1, X is positively/negatively related to Y”, we should hypothesize 

that “At L1, subjects’ relative X is positively/negatively related to subjects’ relative Y”. 

2. Hypotheses about cross-level direct effects. The intercept-as-outcome ML model is 

popular among researchers. It is used to estimate cross-level direct effects (relationships 

between an L2 predictor and an L1 outcome). This model can be represented as follows: 

L1 equation: Yij = β0j + β1j Xij + rij   (1) 

L2 equations:  β0j = γ00 + γ01 Pj + U0j   (2)  β1j = γ10 + U1j (3) 

Yij is the score on the outcome of subject i from unit j, Xij is the score on an L1 predictor of 

subject i from unit j, Pj is the score on an L2 predictor for each unit, β0j and β1j are the 

 
4 Cross-level interactions can also be investigated with grand-mean centering provided that the mean of the 
involved L1 predictor is reintroduced at L2 and its effect on the outcome and the interaction effect between 
this mean and the L2 moderator are controlled for (see Aguinis et al., 2013; Bliese et al., 2018). 
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regression intercept and slope, respectively, estimated in each unit (j), γ00 and γ10 are 

regression intercepts, γ01 is a regression slope, and rij, U0j, and U0j are residual terms. 

Frequently, γ01 is interpreted as estimating the relationship between an L2 predictor 

(Pj) and the L1 outcome (Yij). However, this interpretation is not accurate (Bliese et al., 

2018; LoPilato & Vandenberg, 2015). As equation (2) shows, γ01 estimates the relationship 

between an L2 predictor (Pj) and an L2 outcome (β0j). Thus, to interpret γ01 accurately, the 

meaning of β0j must be clarified. In this model, β0j is a unit mean in the outcome (Yij), 

adjusted after controlling the effect of the unit mean in the predictor. Specifically, 

jjjj XY 10 ββ −= 5 (see González-Romá, 2019; LoPilato & Vandenberg, 2015). Therefore, 

when hypothesizing cross-level direct effects, instead of hypothesizing that “Pj is related to 

Yij”, we should hypothesize that “Pj is related to the units’ mean in Yij”. 

3. Mediation hypotheses involving a higher-level variable. In nested data, the variance of 

variables measured at L1 can be decomposed into two orthogonal components: a between-

cluster component and a within-cluster component6 (Preacher et al., 2010). Variables 

measured at L2 (e.g., unit size) only have between components of variance. “Because 

Between and Within components are uncorrelated, it is not possible for a Between 

component to affect a Within component or vice versa” (Preacher et al., 2010, p. 210). 

Therefore, “any mediation effect in a model in which at least one of X, M, or Y [i.e., the 

predictor, the mediator, or the outcome] is assessed at Level 2 must occur strictly at the 

between-group level” (Preacher et al., 2010, p. 210). Thus, when researchers formulate 

 
5 The specific meaning of β0j depends on the specific form of the multilevel model. As this equation shows, 
when there is no L1 predictor or when an included L1 predictor is group-mean centered, β0j equals the 
(unadjusted) unit mean in the outcome. 
6 The proportion of variance of Y corresponding to these components can be estimated by computing ICC. 
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mediation hypotheses that involve an L2 variable, the hypothesized relationships among the 

between components of the involved variables should be specified. 

4. Moderation hypotheses. Because L1 variables have between- and within-cluster 

components, when they appear in interaction terms it is extremely important to specify the 

component involved in the interaction. Depending on this component, the meaning of the 

interaction term and the corresponding moderation hypothesis may change (see Preacher et 

al., 2016). Fortunately, being aware of all the possible moderation effects in an ML design 

offers opportunities for theoretical development because it helps to uncover “hidden” 

moderations. Thus, we suggest that researchers think carefully about all the possible 

moderation effects existing in a given ML design, specify the within and between 

components involved, and focus on the ones dictated by their theoretical framework. 

Deciding on Conventional ML modeling or ML Structural Equation Modeling 

Although Conventional ML modeling (CMLM) and ML Structural Equation 

Modeling (MLSEM) are valid routes in ML research, the latter has several advantages. 

First, MLSEM can simultaneously account for measurement and sampling error (Marsh et 

al., 2009), whereas CMLM ignores both types of errors, which can bias the parameter 

estimates (Lütke et al., 2008, 2011). Second, MLSEM provides goodness-of-fit indices for 

each level of analysis (Ryu, 2014), whereas judging fit in CMLM is troublesome (Hox, 

2010). Finally, MLSEM partitions the variance of L1 predictors into two orthogonal 

(between and within) latent components (Asparouhov & Muthén, 2019), whereas in 

CMLM the effects operating at different levels are conflated (e.g. Preacher et al., 2011; 

Zhang et al., 2009). The two sources of variance can be deconflated by CWC the L1 

predictors and reintroducing the cluster means at L2 (a procedure known as CWC(M); 

Zhang et al., 2009). However, this latter approach still assumes that the observed means are 



9 

perfectly reliable indicators of the L2 scores. 

Despite the advantages of MLSEM, we do not suggest that MLSEM should replace 

CMLM. In fact, MLSEM has a major drawback: due to its complexity, it only performs 

well with larger samples. MLSEM shows more convergence problems (Li & Beretvas, 

2013, Ludtke et al., 2011) and requires larger samples to reach similar power levels as 

CMLM (McNeish, 2017a; Zigler & Ye, 2019). In fact, small samples can often be more 

simply and effectively analyzed with CMLM (McNeish, 2017a). In addition, the choice 

may also depend on the types of variables modeled (Chen et al., 2004). For example, 

correcting for sampling error is an issue of concern when L1 variables are aggregated to 

operationalize L2 constructs (e.g., unit climate), but not for global L2 variables that have no 

L1 analogue (e.g., firm size). Similarly, measurement error is of particular concern when 

modeling constructs operationalized with several items responded to by individuals (e.g., 

unit culture), but it may be less important for variables such as salary or sales. Finally, 

neither CMLM nor MLSEM adequately deals with measurement error in dispersion 

constructs. 

Thus, the choice between MLSEM and CMLM depends on sample size, model 

complexity, and the types of effects researchers want to test. MLSEM can generally be 

recommended if samples are large enough (i.e., a minimum of 100 L2 units with 15 

subjects per unit –González-Romá & Hernández, 2017) or  measurement and/or sampling 

error is an issue. For small samples, CMLM is recommended (McNeish, 2017a). However, 

if the model is too complex to be tested with CMLM, Bayesian MLSEM is recommended 

(Hox et al., 2012; Asparohouv & Muthén, 2019), especially with informative priors (e.g., 

Holtmann et al., 2016; McNeish, 2017a). 

Data preparation and sample size  
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Before testing the study hypotheses, researchers need to consider several important 

issues: mean centering predictors, outliers, missing data, and sample size. 

1. Mean-centering. When centering L1 predictors (including mediators and covariates), it is 

advisable to disentangle the between- and within-cluster components (Zhang et al., 2009). 

As mentioned earlier, in CMLM this is typically accomplished with CWC(M) (Enders & 

Tofighi, 2007; Zhang et al., 2009), which allows researchers to test and quantify the effects 

at both levels of analysis (Enders, 2013; LaHuis et al, 2019). If the interest is in directly 

estimating contextual effects (whether the relationship between the predictor and the 

outcome differs across levels), L1 predictors should be grand-mean centered7, and their 

cluster means introduced at L2 (GMC(M)). The L2 slope captures the contextual effect, and 

the L1 slope represents the unconflated within effect (Enders, 2013; Hoffman, 2019). 

Regardless of the centering option, modeling the cluster means at L2 prevents bias due to 

omitted L2 variables (Antonakis et al., 2021; Bell et al., 2019). It is important to point out 

that the fact that cross-level and between-level (and contextual) effects can be analyzed by 

mean centering the L1 predictors and reintroducing the cluster means at L2 does not imply 

that an L2 construct exists (although this may be the case). L2 constructs that are 

operationalized from L1 data require a composition model to justify how higher-level 

constructs emerge and specify how the lower-level data should be combined to compose 

the higher-level construct (Kozlowski & Klein, 2000, van Mierlo et al., 2008).  

When using MLSEM, the between and within variance components of L1 predictors 

are disentangled by latent mean centering (Asparouhov & Muthén, 2006a, 2019; Lüdtke et 

al., 2011). A simpler hybrid option is sometimes used for complex models, where only the 

 
7 In this case, raw or uncentered scores can also be used if there is a meaningful zero 
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between variance is modeled as a latent component (to correct for sampling error), while 

the L1 predictor is kept uncentered (Asparouhov & Muthén, 2019). Because centering 

occurs behind the scenes in MLSEM, researchers need to be aware that the default options 

may change depending on the estimation methods, software, and ML models (Asparouhov 

& Muthén, 2019, 2020; Hoffman, 2019). Thus, we strongly advise researchers to find out 

what these options are, in order to interpret the effects correctly.  

2. Outliers. They can occur at different levels and bias ML results (Kloke et al., 2009; 

Pinheiro et al., 2001). Thus, outliers must be identified to assess whether they are errors to 

be corrected (e.g., sampling or coding errors) or meaningful outliers that influence ML 

results (Aguinis et al., 2013a; Langford & Lewis, 1998). In the latter case, researchers can 

delete outliers or use robust methods to reduce their impact (e.g., bootstrapping, heavy-

tailed, or rank-based methods) (e.g., Aguinis et al., 2013a; Finch, 2017), but this impact 

should be assessed and explained (Aguinis et al., 2013a; Loy & Hoffman, 2013).  

3. Missing data. Missing data models should be consistent with the specific ML statistical 

models tested; the former should include the effects considered in the latter (Grund et al., 

2016; 2019; van Buuren, 2018). Consistency is achieved by employing estimation methods 

that use all the available data when fitting a model, such as Full Information Maximum 

Likelihood (FIML) (see Grund et al., 2019)8, Fully Bayesian methods (Asparouhov & 

Muthén, 2019, 2020), or multiple imputation (MI). ML extensions of traditional MI work 

well for random intercepts and contextual effects (see Mistler & Enders, 2017). However, 

for random slopes, Fully Bayesian MI is recommended (Enders et al., 2020; Goldstain et 

 
8 FIML deals with missing data in outcome variables (for which distributional assumptions are assumed). 
This limitation can be solved by using MLSEM and defining predictors as endogenous variables (see Grund 
et al., 2019).  
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al., 2014). These methods are available in MI packages such as BLIMP (Keller & Enders, 

2019) or JOMO (Quartagno et al., 2019).  

4. Sample size recommendations. Deciding on the best combination of L1 and L2 sample 

sizes is a complex issue because it depends on many factors, such as the level of 

dependency in the data (ICC), the effect size, the estimation method, or the type of effect, 

among others. In general, simulations suggest that it is better to have more groups of fewer 

individuals than the other way around, for both CMLM and MLSEM. However, the latter is 

more demanding in terms of sample size. The reader can consult several reviews on sample 

size guidelines for different conditions and types of effects (González-Romá & Hernández, 

2017; McNeish & Stapleton, 2016a; Hox & McNeish, 2020). These reviews show that 

CMLM typically offers unbiased and precise parameter estimates with samples as small as 

20-30 L2 units of 5-10 cases each. However, it is more demanding in terms of power, 

especially for cross-level interactions. For example, Arend and Shäfer (2019) showed that, 

for medium ICCs, effect sizes, and slope variance components, adequate power levels (≥ 

.80) were reached with L2/L1 sample sizes of 40/3 or 30/5 (for L1 effects), and 

combinations ranging from 150/3 to 90/25 and from 200/9 to 125/25 (for cross-level direct 

effects and interactions, respectively). For MLSEM, the reviews mentioned above suggest 

that although 50 groups may suffice for small models, a minimum of 100 L2 units of 15-20 

L1 units each is typically required to reach convergence and accurate estimates. If samples 

are smaller, Bayesian estimation is recommended (Asparohouv & Muthén, 2020; Zitzmann 

et al., 2016) with carefully selected priors (Depaoli & Clifton, 2015).  

Although sample size guidelines are useful, they are based on specific conditions 

that may not generalize to the researcher’s case. Thus, it is advisable to carry out power 

analysis to establish the sample sizes required at different levels (Scherbaum & Pesner, 
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2019)9. Although software based on approximate formulas can be used for simple models 

with fixed effects, Monte-Carlo-based simulation is the recommended strategy (e.g., Arend 

& Shäfer, 2019; Lane & Hennes, 2018; Sagan, 2019). In a priori analysis, different 

scenarios with different effects and sample sizes can be simulated to make a more informed 

decision about recommended sample sizes to reach enough power (see Arend & Shäfer 

(2019) for examples, guidelines, and recommendations). However, we acknowledge that a 

priori power analyses may be very hard to run with complex models. 

Fitting an ML model   

ML models are typically estimated using Maximum Likelihood methods (Hox et al., 

2018)10. Particularly, in CMLM, FIML and REML (Restricted Maximum Likelihood) can 

be used, which are robust against mild violations of assumptions (e.g., non-normal 

residuals) when samples are large. With large samples, FIML is preferable to REML 

because it allows nested models that differ in fixed and/or random parts to be compared by 

means of chi-square tests (Hox, 1998). However, if the number of L2 units is small (i.e., 

less than 50 plus the number of L2 predictors –Snijders & Bosker, 2012), REML is 

recommended because it shows less bias in variance components (Hox et al., 2018; Hox & 

McNeish, 2020). Results of REML improve further if the Kenward-Roger correction is 

applied (McNeish, 2017a, 2017b).  

 In MLSEM, the conventional method is FIML (Hox et al., 2018). FIML is often 

combined with robust chi-squares and standard errors (Robust Maximum Likelihood -

RML) if distributional assumptions are unmet (Hox et al., 2010). In fact, when normality is 

 
9 For an overview of Methods for Power Estimation in Two-Level Models, see Arend and Shäfer (2019) 
10 For brief and accessible introductions to different ML estimation methods and sample size requirements, 
see Hox et al. (2018) and McNeish and Stapleton (2016b) 
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seriously violated, robust standard errors are more precise, provided that samples are large 

(100 groups) (Maas & Hox, 2004). However, Hox et al. (2010) warned against the practice 

of using RML with small samples without testing distributional assumptions. When 

assumptions hold and data are continuous, RML only performs well with a large number of 

clusters (i.e., 200). This can be generalized to ordinal data with five or more categories 

(which are often assumed to be continuous and analyzed by RML; see Padget & Morgan, 

2020). With fewer categories, other robust methods such as Diagonally Weighted Least 

Squares are preferred (Asparahouhov & Muthén, 2007; DiStefano & Morgan, 2014, Heck 

& Thomas, 2015). 

When samples are small, models are intractable with maximum likelihood (e.g., 

random slopes and categorical items), or they show convergence issues, Bayesian 

estimation is recommended11, both for CMLM and MLSEM. However, although Bayesian 

methods improve convergence rates (Depaoli & Clifton, 2015), the use of uninformative 

priors does not generally overcome Maximum Likelihood estimates in terms of bias and 

power (NcNeish, 2016), and it may even make them worse (McNeish, 2017a). Thus, 

informative priors should be chosen carefully (Bolin et al., 2019). However, informative 

priors do not have to be strong to be useful (McNeish, 2016). Weak priors are even 

preferred if it is unclear how to form strong ones (Depaoli & Clifton, 2015)12.  

 One advantage of using MLSEM is that SEM programs provide a variety of indices 

to assess model fit. However, well-known fit indices designed for the single-level case 

 
11 For a primer on Bayesian estimation, see Jebb and Woo (2015) and Kaplan and Depaoli (2013). For a 
recent systematic review and comparison of different frequentist and Bayesian estimation methods in ML 
research with small samples, see Smid et al. (2020) and Zittman et al. (2020). For suggestions on prior 
construction, see Gelman (2006), McNeish and Stapleton (2016b), Smid et al. (2020), and Zittman et al. 
(2020). 
12 For suggestions on prior construction, see Gelman (2006), McNeish and Stapleton (2016b), Smid et al. 
(2020), and Zittman et al. (2020). 
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present two important problems in ML models: 1. Model fit assessment is dominated by 

model fit at the lower level because the sample size at this level is much larger; and 2. when 

the indices indicate a poor fit, it is not possible to determine the level where the reason for 

the model misfit resides. This situation led methodologists to derive procedures to obtain 

level-specific indices of model fit (e.g., Yuan & Bentler, 2007; Ryu & West, 2009). Some 

of them have been implemented in software packages (e.g., Mplus, Muthén & Muthén, 

2017; OpenMx, Rappaport et al., 2020). We strongly recommend that researchers compute 

the available level-specific indices to assess the fit of MLSEM models. 

Testing ML effects 

Before testing ML effects such as cross-level direct effects and interactions, it is 

common to test whether there is enough variability across intercepts and slopes, 

respectively (Gavin & Hofmann 2002). When testing variability, the one-tail likelihood 

ratio test (see Hox et al., 2018) and the confidence intervals created around the variance 

estimated by Residual Bootstrap or Bayesian methods (see Aguinis et al, 2013b) are 

recommended. However, their results should not keep researchers from testing cross-level 

hypotheses (Aguinis et al. 2013b, LaHuis & Ferguson, 2009) due to low statistical power 

(Berkhof & Snijders 2001, LaHuis & Ferguson, 2009). Instead, ICC(1) and ICC(β) 

(Aguinis & Culpepper, 2015) can help to quantify the amount of variance attributed to 

intercept and slope differences, respectively.  

Fixed effects are typically tested by means of the Wald test13. When cross-level 

interactions are significant, Preacher et al.’s (2006) tools are helpful for analyzing and 

interpreting the conditional effects. When the interest is in ML mediation, different types of 

 
13 Some authors argue that the Likelihood Ratio Test (LRT) strategy is a better option because the Wald test 
is more sensitive to model parameterization (see Hox et al., 2018).  
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indirect effects of a predictor X on an outcome Y via a mediator M are possible (depending 

on whether the variables reside at L1 or L2) (Bauer et al., 2006; Zhang et al., 2009). 

Regardless of the mediation model, indirect effects (which involve products of coefficients) 

do not distribute normally. The Monte Carlo-based Confidence Interval method is typically 

recommended to test for significance of the indirect effect (Fang et al., 2019; Tofighi & 

MacKinnon, 2011). Bayesian estimation (especially with informative priors) is also 

promising when samples are small (Fang et al, 2019).  These recommendations also apply 

to ML conditional mediation models when conditional indirect effects are tested across 

different levels of the moderator (see Hayes & Rockwood, 2020). Table 2 shows a number 

of useful tools for these additional tests and plots for both CMLM and MLSEM.  

Reporting ML analysis 

To foster transparency and replicability, authors should provide information about 

their methodological decisions and justify their soundness. The recommendations provided 

in this paper should be considered. Moreover, when reporting ML results, researchers 

should strive to provide confidence intervals (Tonidandel et al., 2015), effect sizes [see 

Hammaker & Muthén (2020), LaHuis et al., (2019) and Rights & Sterba (2019)], and 

power levels (Scherbaum & Pesner, 2019). For more recommendations on reporting ML 

research, see Ferron et al. (2008), Jackson (2010), Monsalves et al. (2020), and Luo et al. 

(2021). 

Conclusion 

A limitation of this article is that we focused on a typical two-level design and did not 

consider other alternatives (e.g., designs with three levels, cross-classification of L1 

entities, and bottom-up effects; see Heck et al., 2013; Preacher et al. 2010). However, 

because the two-level designs considered are quite popular in our field, we think the 
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recommendations, tools, and resources presented will help to improve the quality of ML 

studies and facilitate reviewers’ and editors’ work.  
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Table 1 

Multilevel topics and their corresponding recommendations 

 
Topics Recommendations References  
When and 

why ML 
methods are 
used 

• When the data analyzed have a nested structure (no matter whether the 
relationships investigated span across level or do not) ML methods allow 
researchers to deal with nonindependence of data 

Bliese & Hanges (2004) 
Bliese et al. (2018) 
 

Construct 
meaning and 
emergence 

• Provide an explicit definition of higher-level constructs 
• Specify the nature of higher-level constructs 
• When needed, explain how higher-level constructs emerge: 

- specify the type of emergence involved 
- explain the psychosocial processes and factors involved in the emergence of 

higher-level constructs 
- explain the relationship between higher-level constructs and their individual-

level counterparts 
• Test for psychometric isomorphism when needed 

Chan (1998) 
Chen et al. (2004) 
González-Romá (2019) 
Jak (2019) 
Kozlowski & Klein (2000) 
Tay et al. (2014) 

Elaborating 
multilevel 
hypotheses 

• Adjust the formulation of ML hypotheses to: i. the precise meaning of variables, 
and ii. what ML analysis really does. 

• Pay attention to the following cases: 
- an individual-level predictor (X) is centered within cluster: note that centered 

values represent subjects’ standings on X relative to the group mean, not the 
absolute value. 

- a hypothesis about a cross-level direct effect is formulated: note that the outcome 
variable is a(n adjusted) meana in the outcome variable (Y), not the individual 
values in the outcome variable. 

- a mediation hypothesis involving a higher-level variable is formulated: the 
expected relationships should be specified among the between components of the 
involved variables 

Bliese et al. (2018) 
González-Romá (2019) 
LoPilato & Vandenberg (2015) 
Preacher et al. (2010) 
Preacher et al. (2016) 
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- a moderation hypothesis is formulated: think carefully about all the possible 
moderation effects, specify the within and between components involved, and 
focus on those dictated by the adopted theoretical framework 

Deciding on 
CMLM or 
MLSEMb 

• MLSEM can be typically recommended if samples are large enough considering 
the model’s complexity (i.e. a minimum of 100 L2 units with 15-20 subjects per 
unit).  For smaller samples, or if sampling/measurement error is not a serious 
concern, researchers should 
a) Use the modified versions of CMLM by using CWC(M) or GMC(M)c, 

depending on the research hypotheses to unconflate L1 slopes. Or, 
b) Use Bayesian MLSEM 

• Some additional issues must be considered when choosing between CMLM or 
MLSEM: 
- For 2-1-1 and 2-2-1 models, where the indirect effects are “between” effects, 

MLSEM is preferred if the number of clusters is large enough (at least 50 for 2-
1-1 models and 80 for 2-2-1 models) 

- For 1-1-1 models with random slopes, the CWC(M) is recommended when 
either a very small within indirect effect is expected or a negative covariance 
between the random coefficients could suppress the within indirect effect. 

González-Romá & Hernández 
(2017) 

Hox et al. (2012)  
Li & Beretvas (2013) 
McNiesh (2017a) 
Ziegler & Ye (2019) 

Centering L1 
predictors  

• In CMLM, the within- and between-level effects of L1 predictors (including 
mediators and covariates) should be unconflated and differentiated by CWC(M) or 
GMC(M). The choice depends on: 
- Whether researchers want the L2 effects to capture between or contextual effects. 

In the former case, CWC(M) is the best option. In the latter, GMC(M) allows a 
direct test of contextual effects 

• When the interest is in cross-level interactions in which it is assumed that L1 
slopes vary at random and depend on an L2 moderator, CWC can be used. 
However, in this case, the between-portion variance of L1 scores (which may 
interact with the L2 moderator) is ignored. Thus, the typical recommendation is to 
use CWC(M) – although GMC(M) is also a valid option.  

Aguinis et al., (2013) 
Asparouhov & Muthén (2019) 
Enders & Tofighi (2007) 
Hoffman (2019) 
Hoffman & Gavin (1998) 
Rights et al. (2019) 
Zhang et al. (2009) 
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• If Grand Mean Centering (GMC) instead of GMC(M) is used, the L1 effect will be 
a conflated mixture of within and between variances. GMC should be avoided 
unless researchers have sound reasons to do it. 

• In MLSEM, latent mean centering is typically recommended. For complex models 
(e.g. with random slopes or cross-level interactions), latent mean centering 
requires Bayesian estimation methods. If researchers want to use Maximum 
Likelihood methods in complex models, the hybrid centering option should be 
used. If the sampling ratio approaches 100%, there are no missing data, and cluster 
sizes are large, centering based on observed means (CWC(M)) should be used 
because it works better than using latent means 

Detecting and 
managing 
outliers 

• Check whether there are outliers in the initial database and, when present, analyze 
the influence of these outliers by comparing the results with those obtained either 
by deleting outliers or by minimizing their impact by means of robust techniques. 

• Explain observed differences, if any 

Aguinis et al (2013a) 
Finch (2017) 
Loy & Hoffman (2013) 

Handling 
Missing 
Data 

• To handle missing data, use estimation methods that employ all available 
information in the data (FIML or Full Bayesian), or use ML multiple imputation 
methods, which should be congenial to the research model (i.e. the imputation 
model should take into account the nested structure of the data and include all the 
parameters included in the statistical model to be tested).  

• Listwise deletion should be avoided, especially when missing data are observed in 
the predictors and covariates and the missing mechanism is not completely at 
random. 

Asparouhov & Muthén (2020) 
Grund et al. (2019) 
Hayes (2019) 
 
 

Sample sizes 
and power 

• Check whether L1 and L2 sample sizes are large enough to test the hypotheses 
involved in the research model (e.g. cross-level moderation, mediation, etc.), 
according to existing simulations, and considering the ML approach (CMLM or 
MLSEM) and the estimation method (e.g. FIML, REML, Bayesian). “With 
smaller samples: keep the model simple” (Hox & McNeish, 2020; pp. 221-222) 

• Whenever possible (i.e. if the model complexity allows this), plan the minimum 
sample size required to have enough power to detect ML effects using existing 
software.  

González-Romá & Hernández 
(2017) 

McNeish & Stapleton (2016a) 
McNeish (2017a)  
Hox & McNeish (2020). 
Hox et al., (2018) 
Lane & Hennes (2018) 
Mathieu et al. (2012)  
Arend & Shäffer (2019) 
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• After carrying out the analyses, estimate and report the actual power levels 
attained by means of existing software or Monte-Carlo simulations 

Fitting an ML 
model   

• Choose the most adequate estimation method considering sample size, 
distributional assumptions, and model complexity. When using frequentist 
methods: 
- In CMLM use FIML estimation methods if samples are large enough (i.e. at least 

50 L2 units plus the number of L2 predictors; Snijders & Bosker, 2012). For 
smaller samples, use REML and a Kenward-Roger correction if possible. 

- In MLSEM, use FIML if distributional assumptions hold and samples are large 
(typically 100 L2 units of 15-20 individuals). If distributional assumptions are 
seriously violated and items are continuous or approach continuity, use Robust 
standard errors and chi-square tests. For categorical items, use methods based on 
Weighted Least Squares. 

• If samples are small, models are intractable with maximum likelihood, or they do 
not converge in proper solutions, use Bayesian Estimation methods, and whenever 
possible, use informative priors. 

• The estimation methods available (and the default methods), as well as the 
particular corrections to obtain robust standard errors, depend on the particular 
software used. Check the reference manuals (and updates) for the particular 
version of the software to be used 

• When using MLSEM, assess model fit at each level. 

Asparahouhov & Muthén 
(2007) 
Depaoli & Clifton (2015) 
Hox et al. (2010) 
Hox & McNeish (2020) 
NcNeish, (2017a, 2017b) 
Ryu (2014) 
Ryu & West (2009) 
Yuan & Bentler (2007) 
 

Testing 
effects 

• Quantify the proportion of criterion variance attributed to intercept and slope 
differences by means of ICC(1) and ICC(β). Despite the power problems for 
detecting random effects, if researchers want to test whether this variability is 
statistically significant, Wald’s test should be avoided. The one-tail likelihood 
ratio test, Residual Bootstrap, or Bayesian methods are better alternatives.  

• When testing cross-level moderation effects, plot and test for conditional effects 
and regions of significance. 

• When testing for mediation and moderated mediation, use adequate tests that do 
not assume that the indirect effects (and the conditional indirect effects) follow a 

Aguinis & Culpepper (2015) 
Aguinis et al. (2013b) 
Fang et al. (2019) 
González-Romá & Hernández 
(2019) 
Hox et al. (2018) 
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normal distribution, such as Monte-Carlo based confidence intervals or Bayesian 
estimation. For moderated mediation, test for conditional indirect effects. 

Reporting • Provide detailed information about the methodological decisions made and justify 
their soundness, and consider the following issues: 
1. Construct operationalization: a) measurement instruments and adaptations; b) 

aggregation procedures for construct operationalization (e.g. ICCs and 
emergence); and c) psychometric quality (reliability and validity, and when 
necessary, measurement equivalence) aligned with the levels of analysis. 

2. Outlier detection and management 
3. Missing data treatment 
4. Centering methods used 
5. Model specification, estimation methods, and software. If Bayesian methods are 

used, provide details of the prior distributions and the methods used to select 
them 

6. Apart from the statistical significance of the parameter estimates, provide 
confidence intervals, effect sizes, power estimates, and, when possible, 
goodness-of-fit at each level  

Bladwin & Fellingham, (2013). 
Ferron et al., (2008) 
Geldhof et al. (2014) 
Jak (2019) 
Jackson (2010) 
LaHuis et al. (2019) 
Monsalves et al. (2020) 
 

Note.  a The specific interpretation of the associated intercept depends on the specific model being tested and the centering procedure 
used. 

 b For a primer on MLSEM with Mplus syntax and examples, see Vandenberg and Richardson (2019) 
 c GMC(M): Grand-Mean Centering with cluster means introduced as L2 predictors 

d Contextual=Between-Within. Thus, regardless of the centering option, both between and contextual effects can be obtained 
 and tested. 
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Table 2 

Multilevel tools and resources 

 
Objective  
To compute ICCs: 
 

• ICC(1): Rpackage “ICC” (Wolak et al., 2012) 
   https://cran.r-project.org/web/packages/ICC  
  Excel tool referenced in Biemann et al. (2012) 
• ICC(β): Rpackage “ICCbeta” (Aguinis & Culpepper, 2015) 
  https://cran.r-project.org/package=iccbeta 

To impute ML missing 
data 

• Package ‘micemd’ (Audigier et al., 2018) 
   https://www.rdocumentation.org/packages/micemd/versions/1.6.0  
  https://stefvanbuuren.name/fimd/sec-level2pred.html 
• REALCOM-Impute (Goldstein, 2014) 
  http://www.bristol.ac.uk/cmm/software/realcom/imputation.html 
• BLIMP (Enders et al. 2018, 2020; Keller & Enders, 2019)  
  http://www.appliedmissingdata.com/multilevel-imputation.html 
• JOMO (Quartagno et al., 2019)   
  https://cran.r-project.org/web/packages/jomo  
• Stat-JR (Browne et al., 2019)  
  http://www.bristol.ac.uk/cmm/research/missing-data/ 
• Mplus (Muthén & Muthén, 2017)  
  TYPE = IMPUTATION command (Asparohouv & Muthén, 2010) 
 
• For recommendations depending on the types of effects to be tested and examples using 

different software packages, see Table 6 of Grund et al. (2018) 
• For recent reviews on ML multiple imputation, see Grund et al. (2019) and van Buuren 

(2018) 
To run power analysis 

and determine sample 
• Optimal Design (Raudenbush et al., 2011) 
  http://hlmsoft.net/od/ 

https://cran.r-project.org/web/packages/ICC
https://cran.r-project.org/package=iccbeta
https://www.rdocumentation.org/packages/micemd/versions/1.6.0
https://stefvanbuuren.name/fimd/sec-level2pred.html
http://www.bristol.ac.uk/cmm/software/realcom/imputation.html
https://cran.r-project.org/web/packages/jomo
http://www.bristol.ac.uk/cmm/research/missing-data/
http://hlmsoft.net/od/
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size requirements to 
reach acceptable power 

• PinT (Bosker et al., 2007) 
  https://www.stats.ox.ac.uk/~snijders/multilevel.htm#progPINT 
• MLPowSim (Browne et al. 2009).  
  http://www.bristol.ac.uk/cmm/software/mlpowsim/  
• ML-power (Mathieu et al., 2012)  
  https://aguinis.shinyapps.io/ml_power/ 
• R package SIMR (Green, & Macleod (2016a, 2016b; see also Arend & Shäffer, 2019). 
  https://cran.r-project.org/web/packages/simr/index.html 
 
• For Mplus syntax examples to conduct a Monte Carlo simulation to estimate power, see 

Lane and Hennes (2018) 
• For a recent review on power analyses and sample size in multilevel models, see 

Scherbaum and Pesner (2019). 
To estimate effect sizes • r2mlm: R-Squared Measures for Multilevel Models (Rights & Sterba, 2019) 

  https://CRAN.R-project.org/package=r2mlm  
• R package bootmlm: Bootstrap Confidence Intervals for ML Standardized Effect Size (Lai, 

2019; 2020) 
  https://rdrr.io/github/marklhc/bootmlm/man/bootmlm.html  

To fit a ML model and 
assess goodness-of-fit 

• For a comparison of different common programs that can fit ML models, see McCoach et 
al. (2018).  

• For a detailed review of the capabilities and characteristics of the programs that support 
Bayesian ML analyses, see Mai and Zhang (2018) 

• For recommendations about how to build priors when using Bayesian estimation, see 
Gelman (2006), Smid et al. (2020), and Zittman et al. (2020) 

• For computing fit indices at different levels, use Yuan & Bentler (2007) syntax 
(http://www3.nd.edu/~kyuan/multilevel/Multi-Single.sas) or programs such as Mplus 
(Muthén & Muthén, 2017) and OpenMx (Rappaport et al., 2020) 

To test and plot ML 
moderation effects: 

 

• Interactive calculation tools for establishing simple intercepts, simple slopes, and regions of 
significance (Preacher et al., 2006)  

  http://www.quantpsy.org/interact/hlm2.htm 

https://www.stats.ox.ac.uk/%7Esnijders/multilevel.htm#progPINT
http://www.bristol.ac.uk/cmm/software/mlpowsim/
https://cran.r-project.org/web/packages/simr/index.html
https://cran.r-project.org/package=r2mlm
https://rdrr.io/github/marklhc/bootmlm/man/bootmlm.html
http://www3.nd.edu/%7Ekyuan/multilevel/Multi-Single.sas
http://www.quantpsy.org/interact/hlm2.htm
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• Interplot 
  https://cran.r-project.org/web/packages/interplot/vignettes/interplot-vignette.html  
• Mplus syntax using the LOOP option and PLOT option in the MODEL CONSTRAINT 

command  
• Supplemental materials by Preacher et al. (2016) for MLSEM with Mplus 
  http://quantpsy.org/pubs/preacher_zhang_zyphur_2016_(code.appendix).pdf  

To test for indirect 
effects and conditional 
indirect effects (ML 
moderated mediation) 

 

• MLmed macro in SPSS (Rockwood & Hayes, 2020): 
  https://njrockwood.com/mlmed 
• Supplemental materials by Bauer et al. (2006) for SAS, SPSS and HLM: 
  http://dx.doi.org/10.1037/1082-989X.11.2.142.supp 
  http://www.quantpsy.org/pubs/bpg_2006_supp_spss.zip 
  http://www.quantpsy.org/pubs/bpg_2006_supp_hlm.zip  
• RMediation package (Tofighi & MacKinnon, 2011) 
  https://CRAN.R-project.org/package=RMediation  
  https://amplab.shinyapps.io/MEDMC/  
• Preacher & Selig’s (2010) calculator 
  http://quantpsy.org/medmc/medmc111.htm 
• Causal Mediation analysis (Tingley et al., 2014: 2019) 
  https://CRAN.R-project.org/package=mediation  
• Supplemental materials by Zyphur et al (2019) for MLSEM with Mplus 
  http://quantpsy.org/pubs/zyphur_zhang_preacher_bird_supp.zip  

For Bayesian Multilevel 
Mediation 

• Vourre (2017) 
  https://cran.r-project.org/package=bmlm  

 
  

https://cran.r-project.org/web/packages/interplot/vignettes/interplot-vignette.html
http://quantpsy.org/pubs/preacher_zhang_zyphur_2016_(code.appendix).pdf
https://njrockwood.com/mlmed
http://dx.doi.org/10.1037/1082-989X.11.2.142.supp
http://www.quantpsy.org/pubs/bpg_2006_supp_spss.zip
http://www.quantpsy.org/pubs/bpg_2006_supp_hlm.zip
https://cran.r-project.org/package=RMediation
https://amplab.shinyapps.io/MEDMC/
http://quantpsy.org/medmc/medmc111.htm
https://cran.r-project.org/package=mediation
http://quantpsy.org/pubs/zyphur_zhang_preacher_bird_supp.zip
https://cran.r-project.org/package=bmlm
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Table 3 

Checklist for evaluating multilevel studies 

 
Do the authors … 

 
1. Justification 

Yes No Not 
applicable 

1.1. Explain why they (do not) use multilevel modeling methods?  
2. Construct meaning and emergence  

2.1. Provide explicit definitions of the study’s higher-level constructs? 
2.2. Specify the nature of the investigated higher-level constructs? 
2.3. Explain, when needed, how the specified higher-level constructs emerge? 

- Specify the type of emergence involved? 
- Explain the psychosocial processes and factors involved in the emergence of higher-level constructs?  
- Explain the relationship between higher-level constructs and their individual-level counterparts? 
- Test for psychometric isomorphism when the research model includes isomorphic constructs? 

 
3. Elaborating multilevel hypotheses 

3.1. Adjust their ML hypotheses to: i. the precise meaning of variables, and ii. what ML analysis really does? 
- Correctly formulate hypotheses involving a L1 predictor (X) that has been centered within cluster, 

showing that the centered values represent subjects’ standings on X relative to the unit mean?  
- Correctly formulate hypotheses about a “cross-level direct effect”, showing that the outcome variable is 

an a(n adjusted) meana in the outcome variable? 
- Correctly formulate mediation hypotheses involving a higher-level (L2) variable, showing that the 

expected relationships involve the between components of the studied variables? 
- Specify the moderation effects being tested by clarifying the within and between components of the 

predictor and moderator involved?  
 

4. Choosing between CMLM and MLSEM 
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4.1. Justify their choice considering the research hypotheses (i.e. the types of effects to be tested and the types 
of constructs -aggregate or global- of interest)?  

4.2. Justify their choice considering the recommendations about sample sizes at different levels and the effects 
of interest? 

 
5. Centering L1 predictorsb 

5.1. If raw data or grand-mean centering is used, provide a sound justification for not disentangling within and 
between variance sources? (e.g. Chen et al., 2019) 

5.2. Disentangle the between and within effects when using CMLM? 
5.3. Justify their centering choice considering the study hypotheses? 
5.4. Adequately interpret the parameter estimates to match the centering option used? 

   

 
6. Managing Outliers 

6.1. Assess whether there are meaningful outliers?  
6.2. Indicate the method used to detect outliers? 
6.3. When meaningful outliers are detected … 

- Indicate how they were addressed? 
- Compare the results with and without outliers’ influence and provide an explanation for different results, 

if any? 
 

7. Handling Missing data 
7.1. Report the proportion of missing data at different levels? 

   

7.2. Handle missing data by either 
- Using estimation methods that utilize all available information and make it possible to handle the 

observed missing data (for a particular level, predictor, or outcome), or 
- Imputing missing data using multiple imputation models that are congenial to the statistical ML model? 
- If using multiple imputation, do authors report the software used for this purpose? 

 
8. Considering the adequacy of Sample Sizes 

8.1. Provide evidence that the sample size is reasonable according to existing simulation studies, considering: 
- The analytical approach (CMLM or MLSEM)? 
- The ML effects of interest (L1 effects, cross-level direct and interaction effects, mediation, etc.)? 

   



45 

- The estimation method (e.g. FIML, REML, Bayesian)? 
8.2. Carry out power analysis before data collection (if the complexity of the model allows for it) to safeguard 

that the study sample is large enough to reach an acceptable power? 
 

9. Fitting the ML model 
9.1.Indicate the software used to test the research model? 
9.2. Provide adequate justification for the estimation method used, considering: 

- The sample size? 
- The effects of interest? 
- The satisfaction of distributional assumptions? 

9.3. Describe the priors and the reasons to use these priors if Bayesian estimation methods are used? 
9.4. Provide information about whether the model converged in a proper solution? 
9.5. Explain how convergence/estimation problems, if any, were solved?  
9.6. Assess model fit at each level when MLSEM is fitted? 
 

10. Testing and quantifying the hypothesized ML effects 
10.1. Clearly explain what variables are included in the fixed and random parts of the model, including control 

variables and interaction terms? 
10.2. Indicate the particular tests used (e.g. Wald test, Likelihood Ratio Test, Monte Carlo) taking into account 

recommendations depending on the types of effects tested? 
10.3. Provide Standard Errors and Confidence intervals for the parameters of interest? 
10.4. Provide indicators of the size of the effects of interest? 
10.5. Provide information about power? 
10.6. Qualify the effects tested by considering the results of power analysis and effect sizes?c 
10.7. When testing moderation effects…  

- Focus on the right within and/or between components of the moderation depending on the level at which 
the predictors and the moderators are located.  

- Provide additional information about the tested effect through a graphical representation that shows how it 
changes across the range of the moderator values with the corresponding significance region? 

10.8. When testing mediated or indirect effects… 
- Focus on the right within and/or between components of the indirect effects, depending on the level at 

which the predictors and the mediators are located? 
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- Estimate the right indirect effect, considering whether or not the paths involved in mediation vary at 
random within the L2 units? 

- Test for significance of the indirect effects by means of methods that do not assume a normal distribution? 
10.9 When testing moderated mediation or conditional indirect effects 

- Focus on the right within and between components of the moderation depending on the levels at which the 
predictors, the mediators, and the moderators are located?  

- Estimate the right conditional indirect effect, considering whether the paths involved in mediation vary at 
random? 

- Test for significance of the conditional indirect effects by using methods that do not assume a normal 
distribution? 

- Provide additional information about the conditional indirect effects through a graphical representation 
that shows how effects change across the range of the moderator values with the corresponding 
significance regions? 

 
Note. Checklists are useful tools. However, they must be used with some flexibility because some items may not apply to some 
specific situations.  
a The specific interpretation of the associated intercept depends on the specific model being tested and the centering procedure used. 
b L2 predictors can only be centered by using GMC (this should be done if zero has not a meaningful interpretation) 
c For example, a non-significant effect should be trusted more or less depending on whether the power is high enough or not (e.g. 
Mathieu et al., 2012), in combination with the effect size (LaHuis et al., 2019). If the effect is considered relevant in practice, and 
power is low, studies should cross-validate the results with larger samples. Some indirect ways of increasing power (e.g. adding 
relevant covariates, using more reliable measurement instruments) can also be used (Mathieu et al., 2012; Pituch & Stapleton 2012, 
Scherbaum & Ferreter 2009). 
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Appendix 

List of abbreviations used in the article (in alphabetical order) 

CMLM  Conventional Multilevel Modeling  

CWC   Centering Within Cluster 

CWC(M)   Centering Within Cluster with reintroduction of cluster means  

FIML   Full Information Maximum Likelihood 

GMC    Grand Mean Centering 

GMC(M)   Grand Mean Centering with reintroduction of cluster means  

ICC   Intraclass Correlation Coefficient  

L1   Level-1 

L2   Level-2 

MI   Multiple Imputation 

ML   Multilevel 

MLSEM  Multilevel Structural Equation Modeling  

OLS   Ordinary Least Squares 

REML   Restricted Maximum Likelihood 

RML   Robust Maximum Likelihood 

SEM   Structural Equation Modeling 

 


