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Abstract. We focus on the problem of shock wave formation in a model of

blood flow along an elastic artery. We analyze the conditions under which
this phenomenon can appear and we provide an estimation of the instant of

shock formation. Numerical simulations of the model have been conducted

using the Discontinuous Galerkin Finite Element Method. The results are
consistent with certain phenomena observed by practitioners in patients with

arteriopathies, and predict the possible formation of a shock wave in the aorta.

1. Introduction. We address the problem of studying shock wave formation in
arteries. This was first noticed by Čanić et al. in [3]. Such a wave could appear
if heart beats were too abrupt and then the blood could be faster than the usual
blood wave. From a clinical point of view, it could be identified with the so-called
pistol-shot heard, with a stethoscope, in some patients with aortic insufficiency. We
have initially considered the model of blood flow in non-rigid arteries proposed by
Sherwin et al. in [27, 28]. We have estimated when and where the first shock wave
could be formed in aorta and we have linked it with certain clinical conditions. For
the interested reader in this research topic, although with different and sometimes
less general models, we refer to [10, 21, 29].

The paper is organized as follows: In Section 2 we describe the continuity and
momentum equations needed to set the model. We also add the tube law for
reducing the dimension of the system, by giving a relation between blood pressure
and arterial amplitude. A theoretical estimation of the location of the shock wave is
described in Section 3. A numerical implementation and the results of simulations
are reported in Section 4. Finally, conclusions and future research lines are outlined
in Section 5.
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2. Formulation of the 1D model. First, we briefly describe the assumptions and
governing equations of the compliant artery model, following the notation in [28].
The term compliant, in physiology, refers to the ability of a hollow organ or vessel to
distend, increasing its volume. The artery can be considered as an axisymmetric,
elastic tube, as shown in Figure 1. Thanks to symmetry, only the longitudinal
coordinate x is considered. Let S(x) denote the cross section of an artery at a point
x. The area of the cross section is A(x, t) =

∫
S(x)

dσ. The average blood velocity

over the section is u(x, t) = 1
A(x,t)

∫
S(x)

û(x, t)dσ, and the internal pressure over

the cross section is given by p(x, t) = 1
A(x,t)

∫
S(x)

p̂(x, t)dσ, where û(x, t) and p̂(x, t)

denote the values of the velocity and the pressure.

Figure 1. An artery as a compliant tube, where variable x denotes
the spatial coordinate and t the temporal one.

Since we are going to focus in large arteries (> 1 mm) such as the aorta, we can
assume that the blood behaves as a Newtonian fluid [7, 19, 23]. We also assume
that it is an incompressible fluid, therefore density ρ and dynamic viscosity µ are
constant. For the derivation of the dynamics equations we introduce the dependent
variable Q(x, t) = A(x, t)u(x, t), that will represent the volume flux at a given x-
section at time t. Therefore, the three state variables of the model are A, u, and p,
or equivalently, A, Q, and p. The governing equations of the model will consist of
two conservation equations, and a third one responsible for modelling the artery as
an elastic material.

2.1. Continuity equation. Under the fluid dynamics’ continuum hypothesis, ma-
croscopic properties such as density, pressure, and velocity are taken to be well-
defined at infinitesimal volume elements. Thus, fluid properties can vary continu-
ously from one volume element to another, and they are the resulting averaged val-
ues of the molecular properties. With this, if we take a portion [0, l] of an artery as a

control volume, conservation of mass is expressed as V (t) =
∫ l

0
A(x, t)dx and, hence,

the rate of mass change (or volume, if ρ is constant) is ∂V (t)/∂t = Q(0, t)−Q(l, t).
Using the definition of V (t), the fundamental theorem of Calculus, and assuming

that A, u and Q are smooth enough, the resulting continuity equation is:

∂A

∂t
+

∂Q

∂x
≡ ∂A

∂t
+

∂(uA)

∂x
= 0. (1)

2.2. Momentum equation. The concept of momentum of Newtonian dynamics
states that the rate of change of momentum within the control volume plus the
net flux of momentum out the control volume is equal to the applied forces on the
control volume. Here, we have to weight with the blood density ρ, because the flux
is involved. Considering the tube as axisymmetric, this can be expressed as

∂Q

∂t
+

∂(αQu)

∂x
= −A

ρ

∂p

∂x
+

f

ρ
. (2)
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where f represents the friction force per unit length, and α is the Coriolis coefficient.
Following [28], we assume a frictionless flow, leading to a flat profile with f = 0 and
α = 1. This is a reasonable choice, since the source term is one order of magnitude
smaller than the effects of non-linear advection [2]. Moreover, an inviscid flow does
not generate boundary layer, and then it is physically reasonable to assume such
profile [14]. Summing up, combining equations (1) and (2), we can write the system
in conservative form as

Ut + F(U)x = 0, x ∈ R, t > 0 (3)

where U =

[
A
u

]
, F(U) =

[
uA

u2

2 + p
ρ

]
, and subscripts denote derivatives.

2.3. The tube law. To close the system, an additional equation is necessary, either
differential or algebraic, for linking the pressure with the varying amplitude due to
tube wall elasticity (known as the local tube law). Several tube law expressions
have been proposed in the literature [3, 12, 24, 22, 25, 27, 28, 30, 32, 33] based upon
different assumptions depending on how the flow was modelled and which theory
has been used (such as shell theory [34] or plate theory [5]).

In this work, we have considered the assumption of a thin wall tube, where each
section is independent of the others [27, 28]. This model is based on linear elasticity,
using Hooke’s law for continuous media, namely σ = εE, being σ the stress, ε the
strain and E the Young’s modulus. The stress is a physical quantity that expresses
the internal forces that neighbouring particles of a continuous material exert on
each other, while the strain is the measure of the deformation of the material. The
Young’s modulus characterizes the stiffness due to the elasticity of the material.

Let us denote the radius of an artery by R(x, t) and R0(x) = R(x, 0) its initial
state. Here, h0(x) will be used to denote the vessel-wall thickness and sectional
area at the equilibrium state (p, u) = (pref, 0), where pref is the reference pressure.
We assume a cross section of a vessel with a thin wall (h ≪ R), that is isotropic,
homogeneous and incompressible, and that deforms axisymmetrically with each
circular cross-section independently of the others. Making these assumptions, we
can express the strain as ε = R−R0

(1−ν2)R0
, where ν is the Poisson’s ratio, the ratio

of transverse contraction strain to longitudinal extension strain in the direction of
stretching force. Along with Young’s modulus, ν uniquely determines the properties
of a (linear) elastic material. By Young-Laplace’s law [16, 35], assuming that there
is not external pressure, we can relate the pressure with the stress as p = h0σ

πR .
Combining the previous expressions, we arrive to the tube law

p(x, t) = pext + β(x)
(√

A(x, t)−
√
A0(x)

)
, (4)

where β(x) =
√
πh0(x)E

(1−ν2)A0(x)
is the parameter determining the material properties,

with A0(x) = A(x, 0), and pext is the external pressure. There are no problems
with the denominator in this expression, since in the materials involved ν ∈ [0, 0.5].
Moreover, although in capillaries the amplitude A0 is very small, in those cases the
wall thickness h0 is still smaller than A0, and h0/A0 remains bounded.

3. Shock wave formation in compliant arteries. Čanić and Kim found suf-
ficient conditions for the existence of a smooth flow [2, Th. 3.1], which permit to
conclude that the tube does not collapse spontaneously. If not, the arterial ampli-
tude could shrink over time until the vessel gets blocked. The proof is mainly based
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on the study of the solution and its derivative along the characteristics, see [17, 18].
The system (3) can be rewritten in its quasi-linear form as

Ut +HUx =

[
At

ut

]
+

[
u A

c2/A u

] [
Ax

ux

]
=

[
0
g

]
= G, (5)

with

c2 =
β
√
A

2ρ
, g =

1

ρ

(
− ∂p

∂β

∂β

∂x
+

∂p

∂A0

∂A0

∂x

)
. (6)

To see what kind of problem we are dealing with, we look at the eigenvalues of
H, that can be diagonalized as H = P−1DP with

P =

[
c
A 1

− c
A 1

]
, D =

[
u+ c 0
0 u− c

]
. (7)

Now, λ1 = u+ c > 0 and, since β is usually considerably bigger than the typical
blood velocities, we have that λ2 = u− c < 0. For typical values of the parameters,
we refer to the compilation in [26, Appendix]. Hence, we have two real and distinct
eigenvalues for the quasi-linear problem, which means that our problem is strictly
hyperbolic [31]. We look for the characteristic variables (Riemann invariants) that
would satisfy (5). The left and forward characteristics emanating from the origin
x1(t), x2(t) can be obtained and also the characteristic variables W1,2, as indicated
in [27, 28], with

W1,2 = u± 4
√
β/(2ρ)A1/4. (8)

Since in a physically meaningful solution β is always positive, the variables (A, u)
can be written in terms of (W1,W2).

A =

(
W1 −W2

4

)4 (
ρ

2β

)2

& u =
W1 +W2

2
. (9)

We shall assume that U (x, t) ∈ R2 and F : R2 → R2 is a smooth function of U.
Since the system in (5) is strictly hyperbolic, the system in characteristic form is

∂W1

∂t
+ λ1 (W1,W2)

∂W1

∂x
= 0, &

∂W2

∂t
+ λ2 (W1,W2)

∂W2

∂x
= 0 (10)

where W1, W2 are the unknown functions and λ1, λ2 are smooth functions of W1

and W2. Due to the hyperbolicity, this can be done at least locally. We also assume
that the system is non-linear in the considered domain, that is ∂λ1

∂W1
, ∂λ2

∂W2
̸= 0.

Consider the domain D = {(x, t) : t ≥ 0, x1 (t) ≤ x < +∞} with x1 (t) ∈ R.
Here we have the initial boundary–value problem

W1 (x, 0) = W 0
1 (x) , W2 (x, 0) = W 0

2 (x) , ∀ x ∈ [x1(0),+∞[

W2 (x1 (t) , t) = g (W1 (x, t) , t)
(11)

where we can assume without loss of generality that x1 (0) = 0.
Čanić and Kim also found sufficient conditions for the hyperbolicity of the system

[2, Th. 3.1]. They decomposed the domain as D = D1∪D2, with D1 = {(x, t) : 0 ≤
x ≤ x2(t), t ≥ 0} and D2 = {(x, t) : x2(t) ≤ x < +∞, t ≥ 0}, see Figure 2.

They first showed the hyperbolicity on the bounded domain DT
2 , T > 0, which

is the restriction of D2 to the semiplane of t ≤ T . Later, sufficient conditions were
provided for the existence of a unique C1 solution (W1(x, t),W2(x, t)) of the initial
boundary problem given by (10)-(11) on D. However, in our case one of those
conditions does not hold, since we have λ2 = W2, then

∂λ2

∂W2
= 1 > 0.
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Figure 2. Decomposition of the domain D.

Remark 3.1. Čanić and Kim concluded the smoothness of the solution, through
a slight modification of the equations, a different tube law, assuming the non-
singularity of the cross-sectional area, and taking pulsating boundary conditions.

The question that arises is whether the lack of smoothness could be plausible.
In our main result we obtain an estimation of the first shock wave appearance. We
follow the steps of Čanić and Kim [2, th. 3.1], applied to the model by Sherwin et
al. [28]. Keener and Sneyd also obtained a similar (but less general) result in [15].
For the sake of clarity we use the notation ut =

∂u
∂t in our development.

Theorem 3.1. Let us consider the initial boundary problem stated in (10)-(11).
Let us assume constant initial data A(x, 0) = A0, u(x, 0) = 0. Let ω be the first
time when the forward characteristic intersects the left spatial boundary. Then, the
the time ts of the first shock formation is given by

ts = ω +
λ1

ut(0, t)
= ω +

u(0, t) + 4
√

β/(2ρ)A(0, t)1/4

ut(0, t)
. (12)

Proof. In terms of Riemann invariants, the initial data read W 0
1,2(x) = ±4

√
β
2ρA

1/4
0 .

Then, W1 is constant everywhere in the region of smooth flow D1. The character-
istics x2(t) are straight lines in D2 emanating from (0, 0), with x′

2 = λ1. Therefore,
the solution on D1 is bounded by the left boundary x1 = 0 and the forward char-
acteristic x2, see Figure 2.

There, the solution is driven by u(·, t) on x1(t) and will develop shock waves
due to the fact that ut(·, t) changes of sign. We use the following expressions of
u(x, t) and A(ω, t) taken from [2, Eq. 3.15 & 3.16], in which x̃ (ω, t) is the forward
characteristic passing through the point (ξ, ω).

u (x, t) =
eh(W1(ξ,ω),W2(ξ,ω))

A (ω, t)

∂W1

∂x
(ξ, ω) (13)

with

A (ω, t) = 1 +
∂W1

∂x
(ξ, ω) eh(W1(ξ,ω),W2(ξ,ω))

×
∫ t

ω

∂λ1

∂W1
(W1 (x̃ (ω, τ) , τ) ,W2 (ξ, ω)) e

−h(W1(x̃(ω,τ),τ),W2(ξ,ω))dτ

(14)

To estimate the time and location of the shock wave formation (ts, xs) we take
into account that the partial derivative ∂W1/∂x at (ts, xs) must blow up. This
occurs at the point where the denominator in (13) vanishes. Hence, the time ts can
be calculated by recalling that λ1 = W1, which implies that ∂λ1/∂W1 = 1, and that
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W1 = W 0
1 everywhere. This implies in (14)

eh(W1(ξ,ω),W2(ξ,ω))−h(W1(x̃(ω,τ),τ),W2(ξ,ω)) = 1 (15)

and then

A(ω, t) = 1 +
∂W1

∂x
(ξ, ω)(t− ω). (16)

Differentiating W1 = g (W2, t) along x = x1 (t) we have

∂W1

∂x
=

1

x′
1 (t)− λ1

[
∂g

∂W2
· (x′

1 (t)− λ2) ·
∂W2

∂x

]
. (17)

and then we can conclude

∂W1

∂x

∣∣∣∣
x1=0

= −2
ut(t)

λ1
+

λ1

λ2

∂W2

∂x
. (18)

Since ∂W2/∂x = 0, we obtain

A(ω, t) = 1− ut(t)

λ1
(t− ω). (19)

Therefore, isolating, we get the first time ts in which a shock wave is formed

ts = ω +
λ1

ut(0, t)
= ω +

u(0, t) + 4
√

β/(2ρ)A(0, t)1/4

ut(0, t)
. (20)

An inspection of (20) indicates that the shock will be produced sooner if the
inflow u(0, t) accelerates or/and if the walls of the vessel are less rigid (due to
the β factor). In order to explore the connections of the shock wave with the
pistol-shot heard in aortic insufficiency, we take as an approximation the measures
in [11, 19, 6]. We assume A0 = A(0, t) ≈ 4×10−2 m and the blood flow velocity as 1
m/s, according to [20]. Also β is computed with the parameters in [26, Appendix].
For a healthy person we have taken ut(0, t) = 7 m/s2, following the correlations
of [20], and a Young’s modulus of E = 105 Pa. Hence, the values of time and place
for the first shock wave are

ts ≈
1 + 4

√
29633.5/(2× 1050)(4× 10−2)1/4

7
≈ 1.1s, xs = tsλ1 ≈ 8.5m, (21)

a distance that, according to [9], is far from the mean length of aorta, 33.2 cm.
Now, for a patient with aortic insufficiency, the heart increases its volume and,

since the aortic valve does not close properly, the muscle must do a greater contrac-
tion. As a consequence, a greater blood flow acceleration happens in each heart beat,
see [13]. Using the aforementioned bibliography, we take a value of ut(0, t) = 15
m/s2. Moreover, in some cases aortic insufficiency comes associated to a decrease
in wall rigidity (also associated to aneurysm), which could be represented by taking
a value of E = 2 · 103Pa. With this new choice of parameters, we have:

ts ≈
1 + 4

√
592.67/(2× 1050)(4× 10−2)1/4

15
≈ 0.13s, xs = tsλ1 ≈ 0.25m. (22)

This result indicates that the formation of shock waves inside the aorta is con-
sistent with the model. Next, we present some numerical simulations that describe
our progress in the simulation of shock waves.
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4. Numerical simulations. In this section we provide the results of a numerical
simulation using a set of parameters compatible with the formation of a shock wave.
The propagation of the velocity and the amplitude have been simulated using the
Discontinuous Galerkin Finite Element Method (DG-FEM) as in [27]. For being
applied, a modal discretization of the solution has been done. Here, the state
variables are not values of the solution, but its coefficients in a certain basis. In
our case, we have considered the base of Legendre polynomials. So as to, at each
time step we compute the coefficients of each polynomial up to certain degree. The
numerical solution given by a DG-FEM scheme can be discontinuous at element
interfaces and this discontinuity is resolved by the use of a so-called numerical flux
function, which is a common feature within Finite Volume Methods. We refer
to [8, 26] for a more detailed explanation of the implementation. This method is
proposed by Sherwin et al. [28] for its numerical robustness when a smooth flow is
present. However, depending on the degree used for polynomials, it can provide a
solution too smooth to reproduce strong shock waves. As a consequence, we only
expect to be able to observe weak waves.

In their simulations, Sherwin et al. [28] show the feasibility and usefulness of
the method for this type of problems using some non-physiological parameters to
augment the effect of the travelling wave. In our experiments we have chosen a set
of parameters that are more physiologically meaningful.

Next, we describe the experimental setup. Let T be the period of a wave and
w = 2π/T . We consider a beat-like left inflow velocity as

u(0, t) = u(0, 0) + 2 · 1[0,T/2](t) sin(wt), t > 0 (23)

with 1[0,T/2](t) equal to 1 if 0 ≤ t ≤ T/2, and 0 otherwise, see Figure 3.

Figure 3. Several beat like boundary conditions (23) for u(0, 0) = 0.

In the present simulation, we have chosen the stiffness parameter β = 104, the
period T = 0.8, a blood density of ρ = 1050 kg/m3, both null initial blood flow
velocity and external pressure, and an inflow artery amplitude of 4 · 10−2m. The
inflow and outflow amplitudes coincide with the initial one. The outflow velocity
also coincides with the null initial one. Although this assumption could affect the
simulation when the traveling wave reaches the end of the artery, our simulation
only reproduces the initial phase of the wave formation when it travels along the
first elements, far from the outflow boundary condition.

For the DG-FEM discretization we use a cubic polynomial basis in the compu-
tational interval of [0, 200], with 10 equally distributed elements. The time step is
∆t = 10−3. In Figure 4 we can appreciate the progressive formation of the weak
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Figure 4. Formation of a shock wave with a beat-like boundary
condition. The discontinuity at x = 20 is due to the nature of the
DG method, which provides two values in the frontier between
elements.

shock wave in the first element of the mesh. Note that he discontinuity present at
x = 20 corresponds to the frontier between two elements and not to a discontinuity
in the solution. This discontinuity appears as a result of the DG-FEM formulation,
that provides two values for the velocity in inter-element frontiers. We note how
this does not appear as an abrupt anomaly in the velocity function, but as a slight
“accumulation” when the weak shock is about to be formed. We can appreciate
this weak shock more clearly in the last plot of figure 4 (146 ms) around 18-19 cm.
This weak shock should not be seen as a classical shock wave due to its magnitude,
but as a zone of accumulation of the velocity. This also makes clinical sense since if
these shock waves were too sharp and sudden they will cause further complications
resulting in more morbid conditions. In Figure 4 we can also see how the magni-
tude of the inflow velocity (rising in the top right plot) allows the shock wave to be
formed, although not instantly. In a smoother framework we could observe how the
transition between times 80 and 146 conserves the crest of the wave. Based on these
numerical results we can say that the traveling wave evolves to a weak shock wave
in the range of time and distance simulated. It has to be still analyzed whether we
will be able to simulate strong shock waves with the numerical method used or if,
on the contrary, the smoothness of the numerical solution makes it difficult to show
it without using very high degree polynomials. In the later case, we consider using
methods specific for shock wave detection, such as schemes used in similar studies
on nonlinear acoustics [4].
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5. Conclusion. We have started the study of finite time shock wave formation in
arteries under the compliant artery 1D-model by Sherwin et al., showing that, after
a time interval given by (12), a shock wave appears. This extends previous work in
shock wave formation by Čanić et al. [3].

We have considered a set of parameters closer to the physiological interpretation
than in previous works on the topic. Our results predict the appearance of a shock
wave inside the aorta for parameters compatible with the existence of arterial in-
sufficiency. Nevertheless, in order to confirm the connection with the pistol-shot, a
deeper and more precise study of the parameters should be carried out.

The model has been implemented using Discontinuous Galerkin FEM, and this
has permitted us to reproduce the appearance of a weak shock wave while preserving
the smoothness of the flow. An interesting point to be addressed is to determine
what is the range of parameters that still can be used for simulations with this
method and whether other numerical methods will improve the simulation of the
shock wave [4]. Other possible research line is to study the properties of blood
flow in compliant arteries compared to flow of other types of fluids in deformable
pipes [1].
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