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Abstract—Multiple Coupled Inductors are used in power
electronics to improve dynamic cross regulation and to reduce
mass and volume, mainly in high performance application, like
space or defense, where manufacturing cost is not the main driver.
These elements can be modeled with its inductance matrix which
is a symmetric and positive semidefinite matrix.

The inductance matrix eases circuit analysis, many known
circuital models are directly related to it and it can be used in
SPICE simulation via its coupling coefficient component, which
can be identified as the normalized matrix of the inductance
matrix. Therefore, a precise and correct measurement technique
of the inductance matrix or coupling coefficient matrix is needed.

This paper analyzes different measuring techniques described
in technical literature and proposes a new method to measure
the coupling coefficient or inductance matrix of tight coupled or
dissimilar turns’ number windings, where other methods fail. A
discussion follows, to know the influence of parasitic elements in
the accuracy of the new proposed method called resonance (RE)
method.

The paper adds three experimental examples to verify the
theoretical study and concludes that the RE method provides
correct values of coupling coefficient k of tight coupled or dis-
similar turns’ number windings compared to other measurement
techniques.

Index Terms—inductors; inductance measurements; magnetic
devices; mutual coupling

I. INTRODUCTION

SWITCHING mode power supplies with multiple-outputs
are widely employed. The use of multiple coupled induc-

tors (MCI) is still a hot topic [1]–[5] in order to save volume,
mass, reduce current ripple, improve dynamic cross regulation
and reduce EMI. Therefore, it is an important goal to have an
accurate and easy to measure model of a MCI that helps to
analyze the circuit and guarantees the simulation of the power
converter.

A. Coupled Inductors Models

It is known that the inductance matrix allows to describe
complex inductors with multiple windings and the coupling
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between all of them. Many other models are based on approx-
imations and reductions of the inductance matrix, that result
in simple equivalent circuits.

Unfortunately, these approximations can not always be
applied to complex coupled inductors. Therefore, knowing the
inductance matrix precisely allows either to use the inductance
matrix for mathematical circuit analysis or derivation of other
existing models related to it like the cantilever model [6]. Of
course, inductance matrix does not take into account second
order effects, like parasitic capacitance and losses in the core
and the windings, but it precisely describes the coupling
between all the windings.

Other models, like the described in [7], [8] and [9], are used
for transformers with two (or even three) windings. But it is
difficult to add more windings to these models and they lose
their simplicity and accuracy, because they neglect the cross
coupling influence. For example, the π model is only useful
for two windings as explained in [10].

Many of the models described in [8], [10]–[13] were pro-
posed to determine the leakage (and magnetizing inductance)
of the magnetic element, which is known to be responsible for
voltage spikes and parasitic ringings during switching action.
But it is very difficult to determine these parasitic elements
and their influence for more than two windings (see [6]).

In [10], [12] and [13] the H field is studied (Ampere’s law)
and together with the geometry of the magnetic element and
using the reluctance model, the leakage inductance is deduced.
In [8] a more detailed study is done because it includes Eddy
current losses and demonstrates that they affect the leakage
inductance. Maxwell’s equations are not only used in [8], but
also in [14] and [15]. Geometry also plays an important role,
but the dependence of leakage with geometry in this study
makes it difficult to generalize the method to more complex
structures.

In [16], coupled inductors are proposed to reduce losses and
it shows a clear relation between the reluctance model and the
inductance matrix.

Unfortunately, none of the previous described models can
be easily generalized for many windings.

The cantilever model described in [6] is so far the most
accurate generalized model as it considers “n” windings, and
it uses circuital elements to describe the behavior of the MCI.
It is not a reduced model and its relation to the inductance
matrix is provided. In [6], another model is also presented
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that improves convergence of SPICE simulation when used
for complex MCI.

B. Inductance Matrix Measurement

Therefore, the inductance matrix has been chosen as the
preferred model to describe MCI because it not only provides
easy circuit analysis capabilities, but almost all other models
found in literature are related to it.

The next step and main objective of this paper is to measure
correctly and accurately the elements of the inductance or
coupling coefficient matrix. It is known that the inductance
matrix is symmetric, with real and positive elements and as
demonstrated in [17], it is also positive semidefinite (PSD).
This also applies for the coupling coefficient matrix. But the
PSD condition is only necessary, thus we can have PSD induc-
tance matrices that are not correct (this will be demonstrated
later). In addition, under low coupling coefficient conditions,
mutual inductances can change from positive to negative when
changing the geometry of the system, like demonstrated in
[18] and [19]. If geometry is maintained constant, like when
using ferrite cores, and the dot convention (phasing) is taken
into account, windings can be arranged in such a way that
measured mutual inductance is always positive.

Among others, one of the properties of PSD matrices is that
all their eigenvalues are real and positive. In fact, some SPICE
simulators check for this condition before simulating circuits
having coupling coefficients k defined among its inductors
(using component K).

If the measured inductance matrix is not PSD, then the
measuring procedure has to be analyzed and corrected, to
assure that the resulting matrix is PSD. Experimentation
shows that, besides the windings’ number (matrix dimension),
coupling and turns’ ratio between windings strongly influence
correct measurement results (that yield to a PSD matrix).

Approaching the problem from a more physical point of
view has been done in [12]–[15]. These references propose
similar measurement methods based on energy balance and
Maxwell equations and comparing them to a Finite Elements
Model (FEM) in order to measure the self, mutual and leakage
inductance. Mathematical complexity of energy balance and
Maxwell equations make this approach unpractical for more
than three windings.

The following general methods have been identified in
technical literature.

• Short-Open Method (SO)
• Differential-Cumulative Method (DiC)
• Cross-Voltage-to-Current Method (xVI)

The classical method to measure leakage and magnetizing
inductance directly is the SO circuit technique, where one
winding is shorted to measure the leakage inductance and
afterwards left open to measure the magnetizing inductance.
But this technique is not very useful for a MCI.

In [20], the DiC method is presented and it is demonstrated
that this method improves the results obtained with the de-
scribed short and open circuit method. The DiC method is
directly applicable to measure a complex inductance matrix.

Another characterization method described in [6], [7] and
[21] (called by the authors xVI), proposes to measure the
voltage-to-current ratio across different windings. But the
xVI method has been discarded for two reasons. First, the
difficulty of measuring high frequency, low amplitude signals
and, second, the distortion of the sinusoidal signals, that makes
it very difficult to compare input and output amplitudes. Large
turns’ ratio and low inductances, make these two reasons even
more important. This results in a high error in the measurement
and therefore in the calculated mutual inductances.

Applying the different methods found in technical literature
to multiple coupled inductors with different turns’ ratio or
large coupling coefficients between them, could lead to a result
where the inductance matrix is non PSD, and even worse, a
coupling coefficient matrix with some of its elements larger
than one, (kij > 1). There are several causes for this result,
either the measuring equipment is not precise enough, the
methods are not appropriate due to some of the problems
mentioned above or due to loss of accuracy.

Therefore, the authors propose a new method to characterize
multiple coupled inductors, whose resulting inductance matrix
is PSD.

C. Definition of concepts

Basic concepts are reviewed in this subsection to help
the reader to understand the paper. The inductance matrix is
defined as (1)

L =


L11 L12 · · · L1n

L21 L22 · · · L2n

...
...

. . .
...

Ln1 Ln2 · · · Lnn

 (1)

where Lii are the self inductances and Lij are the mutual
inductances.

The coupling coefficients matrix represents the coupling
coefficient of each winding to each other [17].

The elements of the coupling coefficient matrix related to
two different windings, Lii and Ljj , are given by

kij =
Lij√
LiiLjj

(2)

The inductance matrix can be related to the coupling coef-
ficient matrix with the following matrix product,

L = D · k · D (3)

where D is a diagonal matrix defined by

Dij =

{√
Lii, if i = j;

0, if i ̸= j.
(4)

Therefore, the coupling matrix can be considered the nor-
malized inductance matrix. In addition, the coupling matrix is
PSD, if and only if the inductance matrix is PSD.
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II. DIFFERENTIAL-CUMULATIVE METHOD (DIC)

The DiC method, described in [20], is the most accurate
measuring technique for MCI known so far. The DiC method
is used to characterize coupled inductors and to do so it groups
the windings in pairs and measures the total inductance of
its two configurations, in phase and in opposing phase. To
properly apply the method, we need to know the dot (phasing
or winding sense) of each winding, as shown in Fig. 1.

L11 L22

(a) Cumulative measurement Ls 12

L11 L22

(b) Differential measurement Lo 12

Figure 1. Windings’ connection to measure mutual inductance between two
windings, L11 and L22, applying the DiC method.

The mutual inductance (Lij) is calculated applying (5).

Lij =
Ls ij − Lo ij

4
(5)

and its related coupling coefficient is

kij =
Ls ij − Lo ij

4
√
LiiLjj

(6)

The self inductances, Lii and Ljj , are measured directly on
each winding.

Practical measurements show that the resulting matrix when
using this measurement method is not always PSD, which
suggests that its application is limited to certain conditions.

A. Accuracy of DiC method

The relative error of the results obtained with the DiC
method has been calculated to analyze its limitations.

The relative error of the mutual inductance, εLij/Lij , with
this method is given by

εLij

Lij
=

Ls ij

Ls ij − Lo ij

εLs ij

Ls ij
+

Lo ij

Ls ij − Lo ij

εLo ij

Lo ij
(7)

And the relative error of the coupling coefficient, εkij/kij ,
is given by

εkij
kij

=
εLij

Lij
+

1

2

εLii

Lii
+

1

2

εLjj

Ljj
(8)

Both equations, (7) and (8), clearly show that the relative
error of the Lij and kij will increase rapidly for similar
values of Ls ij and Lo ij . To perform a simplified analysis
we will suppose that the relative errors of all inductance
measurements is the same and equal to εL/L. This is only
a rough approximation but allows to have a better insight into
these equations.

εL

L
≈ εLs ij

Ls ij
≈ εLo ij

Lo ij
≈ εLii

Lii
≈ εLjj

Ljj
(9)

This converts (7) for the mutual inductance into,

εLij

Lij
=

Ls ij + Lo ij

Ls ij − Lo ij

εL

L
(10)

And converts (8) for the coupling coefficient into,

εkij
kij

=
2Ls ij

Ls ij − Lo ij

εL

L
(11)

To better understand these two equations, (10) and (11),
their two factors that multiply the relative error εL/L are of
importance. Only the case of (11) is going to be studied here
but the results also apply to (10).

If we take into account the influence of the turns’ ratio
nij =

√
Lii/Ljj and coupling coefficient kij in Ls ij and

Lo ij and normalize them with respect to Lii, we will be able
to analyze how nij and kij affect the relative error of the DiC
method. Based on Fig. 1 it is easy to calculate the expression
shown hereafter,

Ls/o ij

Lii
= 1 +

1

n2
ij

± 2
kij
nij

(12)

Inserting (12) into the factor of (11) we obtain the following
expression,

2Ls ij

Ls ij − Lo ij
=

1 + 1
n2
ij
+ 2

kij

nij

2
kij

nij

(13)

If we represent (13) graphically we will easily appreciate
the influence of nij and kij in the relative error.
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Figure 2. Factor 2Ls ij

Ls ij−Lo ij
, affecting the relative error of kij (see (13)

found in (11)), as a function of 1
nij

and kij for the DiC method.

Fig. 2 clearly shows that the relative error factor shown in
(13) increases very fast when 1

nij
< 0.2 for any kij . In fact

the factor becomes larger for smaller kij . This means that for
very different turns’ number between Lii and Ljj the DiC
method will loose accuracy very fast.

On the other hand, the authors have detected experimentally
that the DiC method also provides larger values of kij as
expected when 1

nij
= 1 and kij > 0.9. The measured values

are usually too close to one (0.999 or even 1.000) or even
greater than one. But this error observed is not due to the
relative error factor as seen in Fig. 2. Two other reasons are
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given, both mechanical and physical that could lead to this
error.

Therefore, three reason, related to specific conditions, have
been identified where the DiC method is not accurate enough
and could lead to wrong measurements.

1) When Lii ≫ Ljj , which means 1/nij ≪ 1 (for any kij),
then Ls ij ≈ Lo ij and the relative error of kij and Lij

increases rapidly. In other words, for a very small (or
large) turns’ ratio of two windings, if the DiC method is
used to measure the coupling coefficient, the result will
have a very large relative error.

2) When 1/nij = 1 and kij ≈ 1, then both windings
have been wound in parallel and very tightly around
the core. So the phasing dots of both windings will be
close together. Considering Fig. 1, it can be deduced that
the differential measurement will need a very short wire
connection compared to the cumulative measurement.
Even choosing the long wire to measure both configura-
tions and trying to keep the area spanned by this wire the
same, the measurement of Ls ij will tend to be greater
and Lo ij smaller. This means that the resulting kij (see
(6)) and its equivalent Lij (see (5)) will be larger as
well.

3) Finally, the flux density found in the core under config-
uration (a) (flux of both inductors is added) is different
from configuration (b) (flux of both inductors is canceled
out) of Fig. 1. If the dependence of the relative perme-
ability with the flux density [22] is considered, then Ls ij
will be as it should be but Lo ij will be smaller than it
should be. Again, this means that the resulting kij (see
(6)) and its equivalent Lij (see (5)) will be larger. This
effect is material dependent and manufacturers usually
provide permeability changes for fluxes above 1 mT .

The first reason is important enough not to be neglected
and the other two will have a small effect but add together
and appear when very critical measurements have to be done.
Having identified these problems, this paper proposes a new
method that should be used for multiple coupled inductors with
large values of kij or coupled inductor pairs with dissimilar
turns’ number to measure correct and accurate PSD inductance
matrices.

III. RESONANCE METHOD (RE)

The new characterization method proposed in this paper has
been called resonance (RE) method. The aim of the RE method
is to measure both, the self and mutual inductance (resulting in
a PSD inductance matrix) using an external resonance capac-
itor, Cr, by analyzing the MCI in the frequency domain. The
method should at least provide a correct measurement (a PSD
inductance matrix) where the DiC method fails (dissimilar
turns’ number or tightly coupled inductors).

Having the setup shown in Fig. 3, where Cr is loading
winding L22 and all other windings are left open, the absolute
value of the impedance, |Z|, seen into winding L11 can be
studied.

Once the resonance frequencies of |Z| are measured, the
self and mutual inductances can be calculated, as will be

+

−
v1

R11

i1

L11

R22

i2

L22 Cr

+

−
v2

Rnn

in

Lnn

+

−
vn

|Z|

Figure 3. Application of the RE method. |Z| is measured loading one
secondary winding with Cr .

demonstrated later. The self and mutual inductance for other
windings are measured changing the capacitive load, Cr

to another winding (L11, L22,..., Lnn) and measuring the
impedance seen at each other of the different windings.

A. Impedance study

The study of impedance |Z| includes the parasitic resistance,
as shown in Fig. 3. Frequency dependency of core losses, skin
effect and proximity effect are not all included in the series
resistances but can be represented with mutual resistances
like suggested in [23] and [24]. The influence of the shown
resistances and mutual resistances will be studied later on.
Losses represented by mutual resistances will be neglected if
their value is of the same order or smaller than the diagonal
elements of the resistance matrix. As shown later, its influence
in the measurement is not altering the results.

The equations system of the circuit shown in Fig. 3, where
vi is the winding voltage, ii is the winding current and s is the
Laplace variable, can be expressed in matrix form as shown
in (14),


v1
v2
...
vn

 =




L11 L12 · · · L1n

L21 L22 · · · L2n

...
...

. . .
...

Ln1 Ln2 · · · Lnn

 · s+

+


R11 R12 · · · R1n

R21 R22 · · · R2n

...
...

. . .
...

Rn1 Rn2 · · · Rnn


 ·


i1
i2
...
in

 (14)

As seen in Fig. 3, all but winding L22 are in open circuit,
and therefore their currents are zero (i3 to in are zero).

We are only interested in the winding pair L11 and L22 and
so we only take into account the expressions of v1 and v2 of
(14).

The capacitive load is connected to winding L22 (see Fig. 3)
and then the voltage between its terminals is

v2 = − 1

Cr s
i2; (15)

Z = v1/i1 can be derived, if (15) is replaced into the
expression of v2 of (14), then finding an expression for i2
and replacing it into the expression of v1 of (14). Taking into
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account that L12 = L21, the total impedance seen into winding
L11 is

Z(s) =
v1
i1

= R11 + L11s−
Crs(L12s+R12)

2

1 + CrR22s+ CrL22s2
(16)

B. Analysis of the ideal impedance expression

If we neglect the resistances (hence R11 = R22 = R12 =
0), we can simplify (16) and obtain the expression of the ideal
impedance,

Zideal(s) =
L11s+ Cr(L11L22 − L2

12)s
3

1 + CrL22s2
(17)

We can easily calculate zeros and poles and their corre-
sponding resonance frequencies. The resonance frequency of
the pole, ωp, is given by (18) and the resonance frequency of
the zero, ωz , is given by (19)

ωp =
1√

L22Cr

(18)

ωz =
1√

L22Cr

1√
1− L2

12

L11L22

=
ωp√

1− L2
12

L11L22

(19)

Combining both, ωp and ωz with (2), an expression for k12
can be derived.

k12 =

√
1− ω2

p

ω2
z

(20)

Graphically, this means that looking at the Bode plot of the
impedance (see Fig. 4), the “distance” in frequency between
both resonance frequencies is related to the coupling coeffi-
cient. The larger the “distance” between resonance frequencies
is, the larger the coupling coefficient is.

Otherwise, and based on the first part of (19), the mutual
inductance L12 can be calculated using the following expres-
sion,

L12 =

√
L11L22 −

L11

Crω2
z

(21)

Taking two windings at each time and repeating this process
for any two pair of windings, allows to calculate all mutual
inductances.

C. Accuracy of RE method

The RE method accuracy will be calculated in order to
compare to the previously calculated accuracy of the DiC
method. The relative error of kij with this method (based on
(20)) is given by

εkij
kij

=
ω2
p

ω2
z − ω2

p

(
εωp

ωp
+

εωz

ωz

)
(22)

Using (20) we can rewrite (22) into,

εkij
kij

= 2
1− k2ij
k2ij

εf

f
(23)

Where the relative error of fp and fz , which is the same
as the relative error of ωp and ωz , has been supposed to be
the same and equal to εf/f . Eq. (23) clearly shows that the
relative error becomes small when kij ≈ 1, but large for kij ≪
1. Lij will be calculated knowing kij and using (2), and its
accuracy will depend on the accuracy of kij . The turns’ ratio
nij has no influence on (23).

The influence of other parameters are studied hereafter to
know the limitations of the RE method.

D. Normalization of impedance expression

To perform a more generalized analysis of the impedance
expressions and the method itself, normalized expressions are
going to be derived.

First, we normalize the ideal impedance represented by (17).
The impedance has been normalized to the characteristic

impedance of the resonant tank, Zr, and the frequency has
been normalized to the resonance frequency of the pole ωp.
The new normalized impedance is therefore defined as,

Zideal norm(sn) =
Zideal(s)

Zr
where Zr =

√
L22

Cr
, sn =

s

ωp
(24)

and (17) now becomes,

Zideal norm(sn) = n2

(
sn

(
1− k212

)
s2n + 1

s2n + 1

)
(25)

where n is the turns’ ratio and defined as,

n =

√
L11

L22
(26)

Using (24) and (26) and defining the damping factors ξ1,
ξ2 and ξ12 as

ξ1 =
R11

2L11ωp
, ξ2 =

R22

2L22ωp
, ξ12 =

R12

2L11ωp
(27)

the real impedance expression (16) can be normalized as
well,

Znorm(sn) = n2

(
2ξ1 + sn − sn

(k12sn + n2ξ12)
2

s2n + 2ξ2sn + 1

)
(28)

E. Influence of winding resistance

In this section, the influence of the resistances R11, R22

and R12 on the expression of the impedance shown in (16)
is presented. This influence has to be known to evaluate the
valid range of applicability of the RE characterization method.

In order to perform a generalized study we will analyze
|Znorm| represented by (28) in relation to ξ1, ξ2 and ξ12.

Fig. 4 shows the influence of ξ1 in the normalized
impedance |Znorm| for a given coupling coefficient k (called
k12 in (28)) and a turns’ ratio n. It can be seen that ξ1 only
affects the second resonance, which corresponds to the zero of
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the impedance. The second resonance can degenerate fading
out the effect of the zero (see Fig. 4) for large values of ξ1.

Due to the fact, that the RE method relies on precisely
reading the resonance frequencies, it is clear that a higher
accuracy is achieved when the resonance is less damped.

0.1 1 10 100 1k 10k
0.01

0.1

1

10

100

1k

n2

sn

snn
2(1− k2)

Frequency ω
ωp

|Z
n
o
r
m
|

ξ1 = 0.01
ξ1 = 0.015
ξ1 = 0.05
ξ1 = 0.1
ξ1 = 0.2

Figure 4. Bode plot of |Znorm| for several values of parameter ξ1 and
keeping ξ2 = 0 (k = 0.997, n = 2.123).

Fig. 5 shows the influence of ξ2 in the normalized
impedance |Znorm|. In this case, the variation of the ξ2 affects
both resonance frequencies, the zero and the pole.

0.1 1 10 100 1k 10k
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1

10

100

1k

n2

sn

snn
2(1− k2)

Frequency ω
ωp

|Z
n
o
r
m
|

ξ2 = 0.01
ξ2 = 0.015
ξ2 = 0.05
ξ2 = 0.1
ξ2 = 0.2

Figure 5. Bode plot of |Znorm| for several values of parameter ξ2 and
keeping ξ1 = 0 (k = 0.997, n = 2.123).

Fig. 6 shows clearly that ξ12 only affects the zero of the
impedance. The most interesting behavior is that its effect
is not monotone growing because some values of ξ12 (for
example ξ12 = 0.015) damp less than smaller values (ξ12 = 0).
But this behavior is of little help as it cannot easily be
predicted. Thus, the limit for ξ1 and ξ2 that degrades |Znorm|
can be considered the worst case, because the influence of ξ12
is smaller. Therefore, the rest of the analysis will be focused
only on ξ1 and ξ2 neglecting ξ12. In any case, if the resonance
frequencies become degraded by any factor, it is clear that the
RE method could not be used.

The next subsections show which values of ξ1 and ξ2 limit
the use of the proposed RE method.

1) Maximum value for ξ2: It is important to know the
maximum acceptable value for ξ2 before the RE method

0.1 1 10 100 1k 10k
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100
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n2
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snn
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|Z
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o
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m
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Figure 6. Bode plot of |Znorm| for several values of parameter ξ12 and
keeping ξ1 = 0.05 and ξ2 = 0.01 (k = 0.997, n = 2.123). It can be
observed that some values of ξ12 partially cancel the damping effect of ξ1
and ξ2.

becomes useless. It is assumed that the impedance does not
provide useful information of its zeros and poles when they
degenerate (and so does the expression of the impedance).
|Znorm| degenerates when the imaginary part of the pole is
equal to zero. The expression of the poles of |Znorm(sn)|,
presented in (29), has to be analyzed.

sn,p = −ξ2 ±
√
ξ22 − 1 (29)

As the imaginary part is given by the square root (see (29)),
the pole degenerates if the radicand becomes equal or greater
than zero.

Therefore the only acceptable values for ξ2 have to fulfill
the following condition

ξ2 < 1 (30)

Equation (30) corresponds in our circuit (see Fig. 3) to the
following equation,

R22 < 2

√
L22

Cr
(31)

If the pole of |Znorm| fulfills (30), the pole will not
degenerate. This statement applies also to (31). Note that (31)
depends on the resonant capacitor Cr. Then, if the capacitor
has a high value, the maximum value of R22 will decrease
and the pole will degrade faster.

2) Maximum value for ξ1: In this case, the degeneration of
the zero cannot be directly related to the condition of having
the imaginary part of the zeros equal to zero, as the expression
of the numerator of (28) is a third order equation. Therefore,
two different conditions have been applied to find out when
the zero degenerates and its frequency becomes difficult to
read.

The two conditions are,
1) It is considered that the zero frequency is degenerated

and it can be hardly read from the Bode plot (see Fig. 5,
for example for ξ2 = 0.1, where the local minimum of
|Znorm| is not so clear anymore), when the amplitude



TRANSACTIONS ON POWER ELECTRONICS, VOL. XX, NO. X, XXX 2018 7

of the crossing point of the two asymptotes (n2/sn and
sn n

2(1− k2)) at each side of the frequency of the zero
of |Znorm| is less than the amplitude of |Znorm| itself
at this frequency. In Fig. 5 this condition applies when
ξ2 > 0.05.

2) It is considered that the natural frequency of the zero is
different to the frequency of the local minimum of the
Bode plot. This difference becomes larger the higher the
damping factor, ξ2, is. This condition is more restrictive
than the previous one

The graphical solution of the first condition is shown in
Fig. 7
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Figure 7. Graph that represents for which values of ξ2 related to k the
amplitude of |Znorm| becomes smaller than the amplitude of the crossing
point of the asymptotes at both sides of the series resonance of |Znorm| and
thus having a degenerated zero. ξ1 is swept as parameter.

When applying the second more restrictive condition to
Fig. 7, Fig. 8 is obtained, which gives even smaller values
for ξ2 as critical condition to read the zero frequency.
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Figure 8. Graph that combines condition of the error introduced by the
difference between the natural frequency and the minimum (zero) frequency
of the Bode plot (limit established at 1%) and Fig. 7. This graph represents
for which values of ξ2 related to k, the zero of |Znorm| degenerates. ξ1 is
swept as parameter.

From Fig. 8, it can be concluded that, as expected, ξ1 and ξ2
limit the readability of the zero of |Znorm|, which is needed to
determine the coupling coefficient and the mutual inductance
with the proposed method. Fig. 8 also shows a maximum for

different values of k and this maximum depends on ξ1 and
ξ2. For low coupling coefficients k, the influence of ξ1 and
ξ2 becomes critical and the proposed method could become
useless. For large coupling coefficients k, the influence of ξ1
and ξ2 becomes less critical and it usually corresponds to
unrealistic values. Thus it can be concluded that the proposed
method is appropriate for large values of coupling coefficient,
k. As normalized values have been used during all the study,
they can be denormalized for any real application.

3) Frequency deviation of pole and zero: As already men-
tioned before, the difference between natural frequency and
the local maximum and minimum of the impedance plays an
important role. The proposed method relies on the readout
of the local maximum and minimum frequency of the Bode
plot of the impedance, but if the read out frequency does not
correspond to the natural frequency, then the calculation of the
coupling coefficient k will not be correct. The authors have
thus performed an analysis checking for an error of less than
1 % between both frequencies, local maximum or minimum
and the corresponding natural frequency.

Part of this study was already done in section III-E2 for the
zero, but the analysis for the pole has not yet been shown.
A first limit obtained for the pole is expressed by (30), but it
has still to be checked if the ratio between pole and maximum
frequency is less than 1 %. This last condition has been added
to Fig. 8, and is shown in Fig. 9
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Figure 9. Graph that combines Fig. 8 and the error introduced by the
difference between the natural frequency and the maximum (pole) frequency
of the Bode plot (limit established at 1 %). This graph represents for which
values of ξ2 related to k, the zero and the pole of |Znorm| degenerate. ξ1
is swept as parameter.

Fig. 9 clearly shows that the conditions found for the zero
are more restrictive than the condition for the pole. Thus, once
the conditions for the zero (see Fig. 8) are fulfilled, then the
read out of the pole has an error much smaller than 1 %.

F. Capacitor selection

Another very important point for a correct result when
applying the RE method is to choose the right resonance
capacitor, Cr. This strongly depends on the parasitic capaci-
tance present in the magnetic element and related to the two
windings under measurement.
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In order to measure the overall parasitic capacitance, the
capacitive slope of the impedance Bode plot, without an ex-
ternal resonance capacitor can be used. This slope corresponds
to the slope of the line connecting the pole and the zero. As an
example, Fig. 10 shows a measured Bode plot of a three-phase
transformer having all its windings in open circuit, where the
capacitive behavior and the line mentioned earlier is shown
and labeled by “C”.

10 100 1k 10k 100k 1M 10M
10

100

1k

10k

100k

C

Frequency (Hz)

|Z
|

(Ω
)

Figure 10. Measured impedance, |Z|, of a three-phase transformer with all
secondaries in open circuit. The thick line, called “C”, highlights the capacitive
behavior.

It is clear, that the load capacitor, Cr, must be much greater
than the parasitic capacitance, because when the capacitor
is connected to the secondary winding, the total impedance
|Z| reflected to the primary, sums all the capacitors of the
magnetic element, Ctotal = Cr +

∑i
k=0 Cpk

. Therefore, the
load capacitor, Cr, should be ten to hundred times larger than
the overall parasitic capacitors (Cr ≫ Ctotal parasitics). Then,
the parasitic capacitance can be neglected and will not affect
the measurement.

But an excessive value of resonance capacitor, Cr, influ-
ences the degradation of |Znorm|, because Cr appears in (18)
and ωp appears in ξ1 and ξ2 (see (27)). This could be written
as having Cr within the following range.

Ctotal parasistics ≪ Cr < min

(
4ξ21n

2 L11

R2
11

, 4ξ22
L22

R2
22

)
(32)

Based on the limit shown in Fig. 8, for k = 0.9, the limits
chosen could be ξ1 = 0.1 and ξ2 = 0.02, which allows to
calculate the extreme values of the range of Cr with (32).

G. Applicability

Having studied the influence of parasitics in the proposed
RE method, two statements can be done regarding the appli-
cability of the RE method.

1) The parasitic elements have a stronger influence at low
values of coupling coefficient, k (see Fig. 8).

2) The RE method works best for large values of coupling
coefficient k because the resonances are farther away
from each other in the frequency domain (see (20)).
For low values of k both frequencies become close

together and it will be much more difficult to measure
them, because both magnitudes of the impedance will be
similar and high frequency resolution will be necessary.

These statements add up to the accuracy already discussed
in section III-C.

IV. FINITE ELEMENT ANALYSIS (FEA)

Once the new RE method has been analyzed and the already
known DiC method has been explained, the authors suggest to
make a Finite Element Analysis (FEA) in order to crosscheck
a measured coupling coefficient matrix. The FEA provides
the user with a simulated physical approach of the coupling
coefficient matrix and helps to identify which calculated values
can be right and which can be wrong.

If both methodologies (RE and DiC) are applied to measure,
for example, a three phase inductor, both can result in PSD
matrices but having different elements. The question that arises
is which of both matrices is correct. Using the simulated cou-
pling coefficient matrix obtained with the FEA, the user can
know which of the measurements is closer to the simulation
and therefore identify which one is the more accurate one.

The next figure shows a simplified structure of a three-phase
inductor which will be used to run the FEA and to demonstrate
which of the measured coupling coefficients are correct.

Figure 11. Physical model of the three phase inductor used by Maxwell 3D
to perform a FEA. The eddy currents method was used, supposing µr = 800,
a gap of 0.25mm, at a frequency of 50Hz.

The resulting coupling coefficient matrix is equal to:

k12 = 0.511 k13 = 0.295 k23 = 0.494 (33)

These values allow us to know what are the expected
measured values for these coupling coefficients and select the
correct matrix in case we have measured two PSD matrices
with two methods and have reached two different results.

V. EXPERIMENTAL VALIDATION

In this section three different coupled inductors are char-
acterized with the two methods already explained, namely
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DiC and RE. The results of both methods are compared
with each other and the resulting matrices have been checked
for the PSD condition. These experiments will demonstrate
the applicability of both methods related to the coupling
coefficient k.

The measurement equipment has been LCR meter 4284A
(for DiC) and network analyzer E5061B (for RE), both from
Agilent™and calibrated and compensated.

The three coupled inductors measured, listed hereafter, have
different cores and correspond to different applications.

1) Coupled inductor with five windings on an iron powder
toroidal core with different coupling coefficients and
turns’ ratio to test all possible conditions studied.

2) Output filter coupled inductor with seven windings on
a molypermalloy powder toroidal core where all its
coupling coefficients are close to one.

3) Three-phase grid filter inductor with three windings
wound on three laminated-iron core legs. Coupling co-
efficients are expected to be small.

A. Five windings on iron powder toroid

The first magnetic element consists on a toroidal core
(Micrometals™T130-26) with five windings. Three windings
of twenty, twenty and five turns have been wound very tightly
coupled on one side and two windings of twenty and five turns
have also been wound tightly coupled on the other side (see
Fig. 12). The turns’ ratio and the coupling coefficients between
the different windings therefore change from one to the other.
The inductor has been soldered to a PCB and pins have been
placed on the back to avoid any movement of the windings
which could alter the measured inductance.

Figure 12. Five windings’ coupled inductor on an iron powder core. On
the left side are three well coupled windings and on the right side two well
coupled windings. But these last two windings are not so well coupled to the
first three ones.

Both methods (DiC and RE) have been applied to measure
the inductance matrix of this coupled inductor. The capacitor
used for the RE method is Cr = 1 µF, having a lower limit
of Cr min = 142 pF and an upper limit of Cr max = 10.9 µF
(see (32)). The frequency chosen for the DiC method was
100 kHz.

The used core covers all possible cases: n = 1, n ≪ 1,
k ≈ 1 and k < 1. The turns’ ratio is shown hereafter (see
(34)) and the approximate factors multiplying the relative error

(called error factor as seen in (35) and (36)) have also been
calculated (based on (13) and (23)). The relative error has not
been calculated at this time because it depends on the relative
error of the measurement instrument, which in our case are
very different and does not allow to fairly compare both results
(for 4284A, 0.08% < εL/L < 16.94%, and for E5061B,
εf/f ≈ 0.000007%). The approximate error factors given pro-
vide a better insight comparing the accuracy of both methods
independently of the measurement instrument. Measurement
instrument clearly plays a crucial role in accuracy, but when
comparing both methods the results could be misleading. In
this case only the RE coupling coefficient matrix is PSD.

n =


1 1.00 0.25 1.00 0.25

1.00 1 0.25 1.00 0.25
0.25 0.25 1 0.25 1.00
1.00 1.00 0.25 1 0.25
0.25 0.25 1.00 0.25 1

, (34)

kDiC =


1 1.000 0.943 0.710 0.668

1.000 1 0.941 0.709 0.667
0.943 0.941 1 0.625 0.584
0.710 0.709 0.625 1 0.970
0.668 0.667 0.584 0.970 1

 and

error factor of kDiC =


1.01 2.18 1.42 3.03

1.01 2.18 1.42 3.04
2.18 2.18 3.30 1.75
1.42 1.41 3.30 2.10
3.03 3.04 1.75 2.10

 (35)

kRE =


1 0.994 0.915 0.702 0.646

0.994 1 0.913 0.705 0.658
0.915 0.913 1 0.615 0.584
0.702 0.705 0.615 1 0.950
0.646 0.658 0.584 0.950 1

 and

error factor of kRE =


0.02 0.39 2.06 2.79

0.02 0.40 2.02 2.62
0.39 0.40 3.30 3.87
2.06 2.02 3.30 0.22
2.79 2.62 3.87 0.22

 (36)

The error factors of this experiment confirm the hypothesis
that magnetic elements with very different turns’ ratio will be
more error prone than with n = 1 with the DiC method.

The other two reasons affecting the accuracy of the DiC
method and explained in section II can be detected in (35),
where the coupling coefficient of the two windings having 20
tightly coupled turns (n = 1) is measured to be 1.000. The
authors think that this value is not real and the correct value
will be closer to the measurement of the RE method, which
is 0.994. Not only the values are better measured with the RE
method but also its error factor is much smaller. Thus, larger
coupling coefficients k are also better measured with the RE
method.

In addition and to check how the frequency affects the RE
method, all the coupling coefficients have been measured with
several resonant capacitors Cr.

Fig. 13 clearly shows that the coupling coefficient k does
almost not change with frequency, except for low values of
Cr, where the influence of Ctotal parasitics begins to affect
the measurement. As expected, low values of k are also very
sensitive to the value of Cr, both due to the limit imposed
by ξ1 and ξ2 and other parasitic elements, like R11 and R22

(see (32)) and the increase of the error factor itself for lower
values of k (see (36)).
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Figure 13. Influence of Cr in all ten coupling coefficients of matrix (36).

B. Seven windings on MPP toroid

The second magnetic element consists on a toroidal core
(Magnetics™ 55348-A2), which has seven windings all tightly
wound together (all coupling coefficients are close to one). A
picture is shown in Fig. 14. The turns’ ratio is given by (37).

Figure 14. Seven windings coupled inductor on a MPP toroidal core.

Both methodologies (DiC and RE) have been applied to
measure the inductance matrix of this coupled inductor. The
capacitor used for the RE method is Cr = 470 nF, having a
lower limit of Cr min = 7nF and an upper limit of Cr max =
124 µF (based on (32)). The frequency chosen for the DiC
method was 100 kHz.

Both measured matrices correspond to high coupling coeffi-
cients, as expected, but only the RE inductance matrix is PSD.
The DiC measured matrix has even some physically wrong k
values (k > 1).

n =



1 0.50 0.50 0.22 0.22 0.22 0.06
0.50 1 1.00 0.50 0.50 0.50 0.11
0.50 1.00 1 0.50 0.50 0.50 0.11
0.22 0.50 0.50 1 1.00 1.00 0.26
0.22 0.50 0.50 1.00 1 1.00 0.26
0.22 0.50 0.50 1.00 1.00 1 0.26
0.06 0.11 0.11 0.26 0.26 0.26 1


(37)

kDiC =



1 0.984 0.984 0.984 0.983 0.967 0.885
0.984 1 0.997 0.998 0.996 0.982 0.950
0.984 0.997 1 0.996 0.996 0.982 0.951
0.984 0.998 0.996 1 1.005 0.984 0.977
0.983 0.996 0.996 1.005 1 0.984 0.968
0.967 0.982 0.982 0.984 0.984 1 1.033
0.885 0.950 0.951 0.977 0.968 1.033 1


(38)

kRE =



1 0.993 0.990 0.979 0.971 0.985 0.990
0.993 1 0.991 0.983 0.969 0.987 0.993
0.99 0.991 1 0.972 0.983 0.987 0.990
0.979 0.983 0.972 1 0.973 0.967 0.980
0.971 0.969 0.983 0.973 1 0.975 0.974
0.985 0.987 0.987 0.967 0.975 1 0.984
0.990 0.993 0.990 0.980 0.974 0.984 1


(39)

Therefore, this experiment demonstrates that magnetic ele-
ments with high coupling coefficient are better measured with
the RE method. The influence of the turns’ ratio can also be
appreciated on the low values measured in this case with the
DiC method.

To check how the frequency affects the RE method, all
the coupling coefficients have been measured with several
resonant capacitors Cr.
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Figure 15. Influence of Cr in all twenty one coupling coefficients of matrix
(39).

Fig. 15 clearly shows that the coupling coefficient k does
almost not change with frequency, except for low values of
Cr, where the influence of Ctotal parasitics begins to affect
the measurement.

C. Three windings on E-type laminated-iron core

Finally, a three-phase grid filter inductor of 2mH, 10A,
where all windings have the same turns’ ratio, has been mea-
sured. The capacitor used for the RE method is Cr = 10 µF,
having a lower limit of Cr min = 112 pF and an upper limit
of Cr max = 1mF (see (32)). The frequency chosen for the
DiC method was 100Hz.

Both methods (DiC and RE) have also been applied to this
inductor. The resulting matrices, for both methods, are PSD,

The coupling coefficient matrices measured for both cases
are,

kDiC =

 1 0.575 0.315
0.575 1 0.576
0.315 0.576 1

 (40)

kRE =

 1 0.628 0.612
0.628 1 0.629
0.612 0.629 1

 (41)

Equations (40) and (41) show two PSD matrices but with
different elements. As already explained in section IV, where
this inductance was used as example, the FEA provides theo-
retical values (shown in (33)), that justify that (40) represents
the correct coupling coefficient matrix.
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This time, the experiment demonstrates that low coupling
coefficient magnetic elements are better measured using the
DiC method instead of the RE method, due to the loss of
accuracy for low values of k when using the RE method.

D. Applicability results

The presented experimental validation confirms the theo-
retical results discussed earlier. Thus, it can be concluded
that both methods have to be used depending on the turns’
ratio n and the coupling coefficient k of a windings’ pair.
The accuracy analysis found in section II-A has shown that
the turns’ ratio plays an important role and dissimilar turns’
number can increase the relative error of the DiC method
very fast, independently of the coupling coefficient k. Due
to physical and mechanical constraints, the DiC method can
also be error prone and additional errors can add up if the
coupling coefficient k is close to one. Finally, as explained in
section III-C, for values of k close to one, the relative error
of the RE method is small as long as the other limitations
analyzed are respected. Summarizing, the recommended areas
of application are shown in Fig. 16.
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Figure 16. Applicability of the new presented RE and the known DiC method
depending on the turns’ ratio n and the coupling coefficient k to measure
coupling coefficient and mutual inductance.

It has been demonstrated that the RE method provides a
valid measurement where the DiC method has an unaccept-
able relative error. In addition, when coupling coefficient k
becomes very large, the DiC method could also provide less
accurate results compared to the RE method, although in this
case the error depends on the measurement technique and the
core material (mainly iron powder and soft ferrites). Anyhow,
under this condition, the RE method will have higher accuracy
and should be the preferred option.

Taking into account that magnetic elements of DC/DC
converters, which definitely is a very important application
area in power electronics and in those cases that have high
coupling coefficients, kij , the RE method could be considered
the most accurate method to measure the coupling coefficient
and mutual inductances matrices of multi-winding magnetic
parts.

VI. CONCLUSIONS

This paper proposes a new method to measure coupling
coefficients and mutual inductances for dissimilar turns’ num-
ber or tightly coupled windings called resonance method
(RE). It allows to measure the inductance matrix, assuring
that the resulting matrix is positive-semidefinite (PSD) under
conditions where other methodologies fail.

The RE method is compared to the DiC method and its
application range has been established. In fact, the RE method
should be applied to windings with dissimilar turns’ number
or high coupling coefficient k, where the DiC method does
not provide accurate results. It is recommended to apply
the RE method for turns’ ratio 1/n < 0.2 and coupling
coefficient between a pair of windings larger than k ≳ 0.95.
For coupling coefficient lower than k ≲ 0.95, the DiC method
should be used. These values are approximate and depend
also on the measurement instrument accuracy and physical
and mechanical constraints. The paper shows also, how the
Finite Element Analysis confirms the measured values for a
three-phase inductor.

The influence of losses and parasitic capacitance of the
magnetic element when applying the RE method to measure
its inductance matrix has also been studied in a normalized
manner, using normalized frequency sn, the damping factors
ξ1, ξ2 and ξ12 and the normalized impedance |Znorm|. The
normalized study allows to determine the influence of resis-
tance together with the chosen resonance capacitor and the
inductance value. The range of the resonance capacitor to be
used in the RE method has been established.
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[3] O. Kircioğlu, M. Ünlü, and S. Çamur, “Modeling and analysis of
dc-dc sepic converter with coupled inductors,” in 2016 International
Symposium on Industrial Electronics (INDEL), Nov 2016, pp. 1–5.

[4] X. Huang, F. C. Lee, Q. Li, and W. Du, “High-frequency high-
efficiency gan-based interleaved crm bidirectional buck/boost converter
with inverse coupled inductor,” IEEE Transactions on Power Electronics,
vol. 31, no. 6, pp. 4343–4352, June 2016.

[5] D. Ebisumoto, M. Ishihara, S. Kimura, W. Martinez, M. Noah, M. Ya-
mamoto, and J. Imaoka, “Design of a four-phase interleaved boost
circuit with closed-coupled inductors,” in 2016 IEEE Energy Conversion
Congress and Exposition (ECCE), Sept 2016, pp. 1–6.

[6] D. Maksimovic, R. W. Erickson, and C. Griesbach, “Modeling of cross-
regulation in converters containing coupled inductors,” IEEE Transac-
tions on Power Electronics, vol. 15, no. 4, pp. 607–615, Jul 2000.

[7] G. W. Ludwig and S. A. El-Hamamsy, “Coupled inductance and reluc-
tance models of magnetic components,” IEEE Transactions on Power
Electronics, vol. 6, no. 2, pp. 240–250, Apr 1991.



TRANSACTIONS ON POWER ELECTRONICS, VOL. XX, NO. X, XXX 2018 12

[8] W. G. Hurley, D. J. Wilcox, and P. S. McNamara, “Calculation of short
circuit impedance and leakage impedance in transformer windings,” in
Power Electronics Specialists Conference, 1991. PESC ’91 Record.,
22nd Annual IEEE, Jun 1991, pp. 651–658.

[9] B. Cogiore, J. P. Keradec, and J. Barbaroux, “The two winding ferrite
core transformer: An experimental method to obtain a wide frequency
range equivalent circuit,” in 1993 IEEE Instrumentation and Measure-
ment Technology Conference, May 1993, pp. 558–562.

[10] A. Dauhajre and R. D. Middlebrook, “Modelling and estimation of
leakage phenomena in magnetic circuits,” in 1986 17th Annual IEEE
Power Electronics Specialists Conference, June 1986, pp. 213–226.

[11] X. Margueron and J. P. Keradec, “Design of equivalent circuits and char-
acterization strategy for n-input coupled inductors,” IEEE Transactions
on Industry Applications, vol. 43, no. 1, pp. 14–22, Jan 2007.

[12] J. Zhang, Z. Ouyang, M. C. Duffy, M. A. E. Andersen, and W. G.
Hurley, “Leakage inductance calculation for planar transformers with a
magnetic shunt,” IEEE Transactions on Industry Applications, vol. 50,
no. 6, pp. 4107–4112, Nov 2014.

[13] Z. Ouyang, J. Zhang, and W. G. Hurley, “Calculation of leakage
inductance for high-frequency transformers,” IEEE Transactions on
Power Electronics, vol. 30, no. 10, pp. 5769–5775, Oct 2015.

[14] W. G. Hurley and M. C. Duffy, “Calculation of self- and mutual
impedances in planar sandwich inductors,” IEEE Transactions on Mag-
netics, vol. 33, no. 3, pp. 2282–2290, May 1997.

[15] J. P. Keradec, B. Cogitore, and F. Blache, “Power transfer in a two-
winding transformer: from 1-d propagation to an equivalent circuit,”
IEEE Transactions on Magnetics, vol. 32, no. 1, pp. 274–280, Jan 1996.

[16] A. Pietkiewicz and D. Tollik, “Coupled-inductor current-doubler topol-
ogy in phase-shifted full-bridge dc-dc converter,” in INTELEC -
Twentieth International Telecommunications Energy Conference (Cat.
No.98CH36263), 1998, pp. 41–48.

[17] Y. Tokad and M. B. Reed, “Criteria and tests for readability of the
inductance matrix,” Transactions of the American Institute of Electrical
Engineers, Part I: Communication and Electronics, vol. 78, no. 6, pp.
924–926, Jan 1960.

[18] X. Liu and S. Y. R. Hui, “Equivalent circuit modeling of a multilayer
planar winding array structure for use in a universal contactless battery
charging platform,” IEEE Transactions on Power Electronics, vol. 22,
no. 1, pp. 21–29, Jan 2007.

[19] Y. P. Su, X. Liu, and S. Y. R. Hui, “Mutual inductance calculation of
movable planar coils on parallel surfaces,” IEEE Transactions on Power
Electronics, vol. 24, no. 4, pp. 1115–1123, April 2009.

[20] J. G. Hayes, N. O’Donovan, M. G. Egan, and T. O’Donnell, “Inductance
characterization of high-leakage transformers,” in Applied Power Elec-
tronics Conference and Exposition, 2003. APEC ’03. Eighteenth Annual
IEEE, vol. 2, Feb 2003, pp. 1150–1156 vol.2.

[21] K. V. Kantak, “Coupled inductor characterization and spice modeling,”
in Fifth Annual Proceedings on Applied Power Electronics Conference
and Exposition, March 1990, pp. 330–335.

[22] C. McLyman, Transformer and Inductor Design Handbook, Fourth
Edition, 4th ed. CRC Press, 2016.

[23] C. R. Sullivan, “Computationally efficient winding loss calculation with
multiple windings, arbitrary waveforms, and two-dimensional or three-
dimensional field geometry,” IEEE Transactions on Power Electronics,
vol. 16, no. 1, pp. 142–150, Jan 2001.

[24] B. X. Foo, A. L. F. Stein, and C. R. Sullivan, “A step-by-step guide to
extracting winding resistance from an impedance measurement,” in 2017
IEEE Applied Power Electronics Conference and Exposition (APEC),
March 2017, pp. 861–867.

David Gilabert-Palmer received the B.Sc. and
M.Sc. degree in Electronic Engineering from the
University of Valencia, Spain, in 2014. He is cur-
rently working towards his Ph.D. on complex cou-
pled inductors at the University of Valencia. He is
also a member of the Laboratory of Industrial Elec-
tronics and Instrumentation. The research interests
include high-frequency magnetics, coupled inductors
and space power electronics.

Esteban Sanchis-Kilders (M’00-SM’14) was born
in Valencia, Spain, in 1967. He received the M.Sc.
degree in physics, with specialization in electron-
ics, and the Ph.D. degree from the University of
Valencia, Spain, in 1990 and 1997, respectively.
His employment experience includes one year with
GH Industrial S.A. and two years with the Power
Conditioning Section of the European Space Agency
(Noordwijk, The Netherlands). Since 1997 he is with
the University of Valencia where he is Full Professor
since 2016. He is also a member of the Laboratory

of Industrial Electronics and Instrumentation. His main research interests are
space power electronics, magnetism control and industrial applications.

Vicente Esteve (M’03-SM’14) was born in Valencia,
Spain, in 1961. He received the M.Sc. and Ph.D.
degrees from the University of Valencia, Spain, in
1986 and 1999, respectively. He is currently an
Associate Professor at the University of Valencia
and is a member of the Laboratory of Industrial
Electronics and Instrumentation. His research activ-
ities include high-frequency rectifiers and inverters
for industrial applications, high-power inverters for
induction heating, and electronic instrumentation.
He is a consultant of several electronics companies

in the field of power supplies and advanced topologies.

Agustı́n Ferreres was born in Sant Mateu, Spain, in
1963. He received the M.Sc. degree in physics with
specialization in electronics and the Ph.D. degree in
electronic engineering from the University of Valen-
cia, Spain, in 1993 and 1999, respectively. For two
years, he was a Power Electronics Researcher with
the R+D Department of GH Industrial S.A. In 1995,
he joined the Laboratory of Industrial Electronics
and Instrumentation of University of Valencia, where
he is currently an Associate Professor. His research
interests include space power electronics and indus-

trial applications.

Juan B. Ejea was born in Xàtiva, Spain, in 1969.
He received the M.Sc. degree in physics, with
specialization in electronics, and the Ph.D. degree
in electronic engineering from the University of
Valencia, Spain, in 1993 and 2000, respectively. His
employment experience include two years with GH
Industrial S.A., two years with the Power Section
of the European Laboratory for Particle Physics
(CERN), Geneva, Switzerland. Since 1995 he is with
the University of Valencia where he is currently
Associate Professor. He is also a member of the

Laboratory of Industrial Electronics and Instrumentation. His main research
interests are space power systems and industrial applications.



TRANSACTIONS ON POWER ELECTRONICS, VOL. XX, NO. X, XXX 2018 13

Enrique Maset (M’00) was born in Xàtiva, Spain,
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