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Preface

The absence of a well-established theory concerning gravity and its behavior at
high energies demands a global effort to construct a viable quantum theory for
the gravitational field. The complexity of this issue calls for a multidisciplinary
approach, that incorporates a wide range of viewpoints, from sophisticated
mathematical tools and statistical techniques to ambitious experiments. A deep
understanding of our fundamental theories, their capabilities and limitations, as
well as an improvement of the main roads in them are essential steps towards
achieving the ultimate goal, the development of a satisfactory theory that
combines gravity and quantum physics. This PhD thesis is situated within this
context, with particular emphasis on investigating the existence and properties
of exotic compact objects resembling black holes.

In the last decade, we have witnessed significant technological advancements
that have transformed the direct observation of extremely compact astrophysical
objects into a reality. This has highlighted that the black holes predicted
by Einstein’s General Theory of Relativity are consistent with observations.
However, given that the current precision of gravitational wave observatories
and very long baseline radio astronomy observatories, such as the LIGO-Virgo-
KAGRA collaboration and the Event Horizon Telescope, is not sufficient to
unequivocally confirm the Kerr hypothesis—which stands that all black holes in
the Universe are described by the Kerr metric—it becomes necessary to consider
alternative explanations that allow us to confront the data with potential
deviations from General Relativity. These deviations are expected both for
theoretical considerations linked to quantum gravity and for phenomenological
reasons related to the potential existence of sources of dark matter and energy.
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2 Preface

These sources are crucial to justify the standard cosmological model and the
growth of large-scale structures.

Exploring alternatives beyond General Relativity is challenging, primarily
due to technical complexities, as equations become highly intricate and, analyt-
ical and numerical methods are not developed or optimized beyond General
Relativity. Obtaining analytical solutions that accurately depict compact ob-
jects is, in itself, a formidable challenge. Moreover, the endeavor to extract
gravitational wave profiles for studying the merger processes of these com-
pact objects, in order to extract characteristic information from these theories,
presents an even greater challenge.

Recently, alternative gravity theories that are likely to have an optimal
analytical and numerical treatment have been characterized. By formulating
gravity theories in metric-affine-type manifolds where the gravitational La-
grangian is an arbitrary function of traces of the Ricci tensor and the metric, it
is possible to establish a correspondence between the solution space of General
Relativity and these theories. This facilitates discovering solutions and studying
their dynamical properties within these alternative theories by solving similar
problems within the framework of General Relativity.

Furthermore, among the wide range of exotic compact objects detailed in
the literature that could potentially exhibit characteristics similar to black holes,
boson stars occupy a prominent role. Unlike conventional stars, predominantly
composed of fermionic matter, boson stars are formed by bosonic particles and
described by scalar or vector fields. Consequently, when referring to boson stars
we do not refer to a unique singular entity but instead to an entire family of
astronomical objects which depend on the specific boson that constitutes them.

It can be found in the literature that boson stars have a significant potential
to mimic part of the phenomenology of black holes, as they share multiple
similarities in various observational aspects. Due to all these effects and with
the aim of maintaining simplicity in the resulting equations at an acceptable
level, we will dedicate our study to the conjunction between boson stars and
alternatives to the General Theory of Relativity.
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Derived from the outcomes of this study and driven by curiosity and the will
to explore the boundaries of established gravitational scenarios, we will also delve
into the concept of wormholes—a topological phenomenon widely popularized
by science fiction. This concept allows for the identification of two spatially
separated regions connected by a sort of spacetime tunnel. The foundational
principles underlying these objects and the observable consequences they entail
can offer valuable insights in our quest to deepen our understanding of the
constraints governing gravitational models.

The thesis is structured into two distinct parts. The first part, encompassing
Chapters 1 through 5, delves into the exploration of boson stars within the
framework of modified gravity. In Chapter 1, we introduce the reader to the
concept of boson stars, while Chapter 2 provides an overview of modified gravity
theories. In Chapter 3, we put together the notions acquired from the preceding
chapters, studying boson stars in a modified gravity scenario. Chapter 4 inquires
deeper into our study by performing numerical evolutions to the boson stars
described in the previous chapter. This first part culminates with Chapter 5,
where we investigate the gravitational collapse of the aforementioned boson
stars.

The second part comprises three chapters. Chapter 6 introduces the reader
to the concept of wormhole, while Chapter 7 explores various observational
aspects of an asymmetric Reissner-Nordström thin-shell wormhole. The final
chapter, Chapter 8, introduces a novel line element describing an asymmetric
Ellis-type wormhole with a bounded areal radius. Within this chapter, we
further explore various observational implications associated with this unique
wormhole configuration.

Throughout the thesis, we use Greek indices α, β, . . . when referring to space-
time indices, while Latin indices i, j, . . . are used for spatial indices. Symmetric
and anti-symmetric tensors are represented using parentheses and brackets,
respectively. Unless stated otherwise we use a system of natural units in which
c = G = ~ = 1. Any additional conventions employed will be explicitly
mentioned in the text.
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Part I.

Boson Stars and Modified Gravity
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Chapter 1.

Boson stars

1.1. Overview

When discussing boson stars, the first image that may come to mind is that of
an object of astrophysical proportions. Nevertheless, the origin of these entities
can be traced back to a longstanding debate about the fundamental nature of
particle-like entities.

In the 1950s, John Wheeler delved into the Newtonian notion of a body
and aimed to build a self-gravitating and divergence-free entity. The con-
ventional representation of three-dimensional objects as bodies moving along
geodesics implies an idealization where a nonzero mass is concentrated at a
single one-dimensional point. Consequently, this implies the occurrence of
metric singularities at the location of the object. Wheeler succeeded in creating
an object that was free of singularities and could fulfill the role of bodies within
the framework of General Relativity [6]. These objects are characterized by
a smooth, classical electromagnetic field coupled to gravity, which adopts a
closed circular toroidal form with a high concentration of energy. The gravi-
tational attraction associated with the field energy sustains this configuration.
Wheeler named these entities geons, an abbreviation derived from the phrase
gravitational-electromagnetic entity. Unfortunately, these objects were found

7



8 Boson stars

to be unstable over time due to the gradual leakage of field energy, leading to
their dissolution [7, 8].

Subsequently, in 1968, Kaup expanded upon Wheeler’s concept of geon by
replacing the electromagnetic field with a complex massive scalar field, giving
rise to what he named as Klein-Gordon geon [9], which is now commonly
referred as boson star. Kaup semiclassically coupled the complex scalar field to
gravity, where matter is treated as a quantum field while its energy-momentum
tensor is calculated classically, and gravity is described by General Relativity.
A year after Kaup’s work, Ruffini and Bonazzola [10] quantized a real scalar
field and discovered that the same energy-momentum tensor, as well as the
same field equations, were obtained when analyzing a macroscopic system.

The existence of these solutions had to satisfy Derrick’s theorem [11], which
establishes that a regular, localized, time-independent scalar field cannot possess
stability and, consequently, cannot exist. This restriction is avoided by adopting
a harmonic ansatz for the complex scalar field. As a result, we are presented
with a non-static oscillating scalar field that gives rise to a boson star within
a static spacetime. The boson star itself represents a stationary soliton-like
solution.

A boson star can be understood as a collection of particles that follow the
dynamics dictated by the Klein-Gordon equation, and therefore, it exhibits a
dispersive behavior. To ensure stability, the presence of a confining mechanism
becomes crucial. This confinement mechanism arises from the mass µ associated
with the field, which generates a potential barrier. Consequently, boson stars
can be regarded as macroscopic self-gravitating Bose-Einstein condensates.

Given that boson stars can be regarded as macroscopic quantum states,
it is possible to apply the Heisenberg uncertainty principle to estimate their
maximum mass. Assuming that the boson star is confined within a radius
∆x = R and possesses a maximum momentum of ∆p = µc, where µ represents
the mass of the constituent particle, the uncertainty principle, ∆x∆p ≥ ~, can
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be expressed as,

µcR ≥ ~ . (1.1)

To determine the maximum mass, we consider that it tends towards the
Schwarzschild mass, leading to R = 2GMmax/c

2. Consequently, we find

Mmax =
1

2

~c
Gµ

=
1

2

M2
Pl

µ
, (1.2)

where M2
Pl ≡ ~c/G is the Planck mass. As has been calculated, the mass of

a boson star exhibits an inverse relationship with the mass of the constituent
scalar field particle. Thus, from this perspective, the mass and size of a boson
star can vary across atomic and astrophysical scales, depending on the mass
of the constituent boson. Furthermore, the inclusion of a self-interacting term
in the field’s potential may introduce variations in the mass of the bosonic
star [12].

The extensive range of mass scales exhibited by boson stars stands as a
significant motivation for their study. These objects could potentially represent
astrophysical entities, particularly since experimental observations have yet to
definitively rule out the existence of exotic compact objects and determine the
true nature of dark matter. Moreover, investigating boson stars can contribute
to our understanding of the compact objects abundances and mass spectrum
observed by the gravitational wave observatories LIGO-Virgo [13, 14], exem-
plified by the intriguing case of GW190521 [15], which has been proposed to
arise from the head-on collision of two Proca stars [16], that are the vectorial
cousins of scalar boson stars [17]. This exemplifies the profound implications of
gravitational wave interferometers in raising questions about the nature and
origins of merged compact objects (see [18–20]).

In addition to their potential astrophysical significance, boson stars have
the capacity to surpass galactic sizes. This scales combined with the fact that
they only interact gravitationaly, positions them as plausible candidates for
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serving as dark matter halos that explain the observed flat rotation curves of
spiral galaxies [21–23].

Beyond the question of whether boson stars actually exist, their large
compactness, approaching those of black holes, along with the absence of
horizons and the simplicity of the model provide motivation for studying these
objects. Such investigations offer valuable insights into the behavior of gravity
in the strong-field regime.

The investigation of boson stars offers notable advantages in comparison to
the study of neutron stars or other fermionic stars. Unlike neutron stars, boson
stars do not possess a sharply defined stellar surface, resulting in the avoidance
of discontinuities in the equations governing their dynamics. On the other hand,
fermionic stars matter is typically described as a perfect fluid which needs an
equation of state to be fully determined and are subject to hydrodynamical
equations. Consequently, the dynamic study of this kind of stars needs the
intrincate analysis of turbulence and shock formation. Such, considerations are
not needed in the study of bosonic stars.

Lastly, it is crucial to address the choice of fundamental particle that serves
as the building block for the bosonic material constituting the star. Currently,
the Higgs boson is the only particle within the Standard Model of particles that
potentially fulfills this role, possessing a mass of 125 GeV/c2. However, to form
a boson star with a mass equivalent to that of the Sun, a constituent boson
with a mass lighter than 10−19 GeV/c2 is required. To find such particles we
will have to look in Beyond Standard Model theories, with special mention to
those incorporating the axion particle [24].
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1.2. Static boson stars: the
Einstein-Klein-Gordon system

In order to obtain a boson star, we shall start by describing the action of the
system. To do so, we couple a massive complex scalar field to the General
Theory of Relativity. The action for the system is given by

S =

∫
d4x
√−g

(
R

2κ
+ LM

)
. (1.3)

Where, κ = 8π, g is the determinant of the metric tensor gαβ and R is the Ricci
curvature scalar defined as R = gαβRαβ. The Ricci tensor Rαβ is calculated
using the Levi-Civita connection Γραβ [25], and it is given by

Rαβ = ∂βΓραρ − ∂ρΓραβ + ΓσαρΓ
ρ
σβ − ΓσαβΓρσρ . (1.4)

With the Levi-Civita connection expressed using its Christoffel symbols

Γαβγ =
gαρ

2
(∂γgρβ + ∂βgργ − ∂ρgβγ) . (1.5)

The first term of the above action Eq. (1.3) is the Einstein-Hilbert action and
is the responsible for describing gravity dynamics in the context of the theory
of General Relativity. The second term is the matter Lagrangian, in this case,
the Lagrangian of a massive complex scalar field coupled to gravity, that reads

LM = −1

2

[
gαβ∂αΦ∗∂βΦ + V (|Φ|2)

]
. (1.6)

Here, Φ is a complex scalar field and with an asterisk (∗) we denote its complex
conjugate. V (|Φ|2) is the potential associated to this scalar field. By applying
the principle of least action and performing variations with respect to the metric
tensor gαβ, we obtain the Einstein field equations

Rαβ −
1

2
gαβR = κTαβ , (1.7)
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Tαβ =
1

2
[∂αΦ∗∂βΦ + ∂αΦ∂βΦ∗]− 1

2
gαβ
[
gρσ∂ρΦ

∗∂σΦ + V (|Φ|2)
]

, (1.8)

where Tαβ represents the energy-momentum tensor.

Varying the action with respect to the field yields the Klein-Gordon equations(
� +

dV

d|Φ|2
)

Φ = 0 , (1.9)

(
� +

dV

d|Φ|2
)

Φ∗ = 0 , (1.10)

where � := (1/
√−g) ∂α

(√−ggαβ∂β) is the d’Alembertian operator.

One can observe the symmetry exhibited by the matter Lagrangian Eq. (1.6)
under global U(1) transformations Φ→ Φeia, where a is a constant. According
to Noether’s theorem, this symmetry implies the existence of a conserved
4-current, which reads

Jα =
∂LM
∂ (∂αΦ)

δΦ +
∂LM

∂ (∂αΦ∗)
δΦ∗

=
i

2
gαβ (Φ∗∂βΦ− Φ∂βΦ∗) .

(1.11)

By integrating the time-like component of the 4-current, J0, over spatial coor-
dinates, we obtain the Noether charge

N =

∫
J0
√−gdx3 . (1.12)

Following the approach of Ruffini and Bonazzola [10], we identify N as the
total number of bosonic particles.
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As mentioned earlier, in order to satisfy Derrick’s theorem, we adopt the
harmonic ansatz for the scalar field

Φ(r, t) = φ(r)eiωt . (1.13)

Since we require the spacetime to be static, despite the time-dependence of
the complex scalar field, for the case of spherical symmetry, we can introduce
the line element in Schwarzschild-like coordinates (also known as polar-areal
coordinates)

ds2 = −A(r)2dt2 + B(r)2dr2 + r2dθ + r2 sin θ2dϕ2 , (1.14)

where A and B are two real metric functions.

We implement the harmonic and spherically symmetric ansatz into the
Einstein and Klein-Gordon equations, Eq. (1.7), Eq. (1.9) and Eq. (1.10),
respectively. The only remaining task is to specify the field potential V (|Φ|2).
For our purposes, we consider a free massive complex scalar field, leading to
the potential

V
(
|Φ|2

)
= µ2Φ∗Φ , (1.15)

where µ is a constant representing the mass of the constituent boson. Following
the approach of [26,27] we write the Einstein-Klein-Gordon system of differential
equations:

∂rB
B =

1− B2

2r
+
κr

4

[
B2µ2φ2 + ω2φ2 B2

A2
+ ψ

]
, (1.16)

∂rA
A =

B2 − 1

r
+
∂rB
B +

κr

4

[
−2B2µ2φ2

]
, (1.17)

∂rψ = −ψ
(

2

r
+
∂rA
A − ∂rB

B

)
− ω2φ

B2

A2
+ B2µ2φ , (1.18)
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where we define ψ = ∂rφ. Eq. (1.16) is obtained from the tt component of the
Einstein equation, while Eq. (1.17) is obtained from the rr component. The
third equation, Eq. (1.18), follows from the Klein-Gordon Eq. (1.9).

In order to solve the system, we need to specify appropriate boundary
conditions. In the case we are considering, we impose asymptotic flatness,
which means that far away from the boson star, the spacetime should be flat
and asymptotically approach Minkowski spacetime. This can be expressed as

B(∞)2 = 1 , A(∞)2 = 1 , (1.19)

φ(∞) = 0 , ψ(∞) = 0 . (1.20)

At the origin, we impose regularity, requiring that all functions are smooth at
r = 0.

∂rB|r=0 = 0 , ∂rA|r=0 = 0 , (1.21)

∂rφ|r=0 = 0 , ∂rψ|r=0 = 0 . (1.22)

By introducing these four conditions into the Einstein-Klein-Gordon system,
we obtain

B(0) = 1 , A(0) = A0 , (1.23)

φ(0) = φ0 , ψ(0) = 0 , (1.24)

where α0 and φ0 are constants.

It is worth introducing the concept of the Misner-Sharp mass [28], which
serves as a geometrical measure of the total mass enclosed within a given radius
of a spherically symmetric object in an asymptotically flat spacetime. For our
numerical simulations, we will utilize the expression of the Misner-Sharp mass
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evaluated at the maximum radial value of our finite grid as an approximate
measure of the total mass of the boson star. Its expression is

M =
rmax

2

(
1− 1

B(rmax)2

)
. (1.25)

By combining this expression with the number of particles, we introduce the
notion of binding energy Eb, which arises naturally

Eb = M −Nµ . (1.26)

The sign of the binding energy will determine the fate of unstable models,
leading to either their migration to stable configurations or the dispersion of
the bosonic star.

At this stage, we are set to solve the Einstein-Klein-Gordon system numer-
ically, utilizing the given boundary conditions. It is important to note that
only one parameter remains free, namely, the central density of the scalar field
φ(r = 0) ≡ φ0. The remaining parameters, A0 and ω, are determined by the
condition of asymptotic flatness once φ0 is chosen. For a given ω, there exists a
set of n discrete eigenvalues that satisfies this condition. As n increases also
does the number of radial nodes of φ. Here, we will focus on the nodeless n = 0

case, known as the ground state or fundamental family.

In Figure 1.1, we have depicted the radial profile of the solved functions
with φ0 = 0.07. The value obtained for the frequency is ω/µ = 0.863 with
an associated mass of M = 0.632MPl/µ. We can now observe more clearly
some properties of the boson star that were previously mentioned. The solution
represents a localized lump of scalar field, lacking a definite surface. The radial
profile of the scalar field density, φ, exhibits a smooth decrease from its maximum
point at r = 0, gradually approaching zero density asymptotically. Due to
the absence of a well-defined surface, the radius of a boson star is typically
defined as the radial value of a sphere that encloses 99% of the mass. It is
noteworthy that the boson star radius is scaled by the mass of the constituent
boson, implying that a lighter boson results in a larger star.
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Figure 1.1.: Radial profiles of the metric and scalar field functions.

Moreover, the radial profiles of the metric functions demonstrate that this
solution does not possess a horizon. Then, the solution is everywhere regular
and asymptotically flat.

Now, solving the Einstein-Klein-Gordon system for a collection of φ0, we
obtain the results shown in the top pannel of Figure 1.2. The figure displays
the mass of each configuration as a function of the central scalar field φ0 and
the frequency ω. Notably, there exists a maximum mass Mmax ≈ 0.633M2

Pl/µ,
corresponding to a central scalar field value of φ0 ≈ 0.08. Increasing the value
of the central scalar field beyond this point does not lead to an increase in the
mass of the boson star, in fact, the mass decreases. Consequently, there exists
an upper limit to the mass spectrum that boson stars can exhibit, beyond which
no static configuration can exist, in analogy with the Chandrasekhar mass limit
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for white dwarfs. The following sections will demonstrate that configurations to
the left of the maximum mass are stable, while those to the right are unstable.
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Figure 1.2.: Existence curves of spherically symmetric boson stars, obtained by
solving Eq. (1.16)-Eq. (1.18). The upper panel displays with a solid
line the Misner–Sharp mass against the central value of the scalar field
φ0 while the dashed line represents the number of particles against the
same parameter. Mass and particle number are also plotted in the
bottom panel against the frequency of the scalar field ω in units of µ.
Square symbols indicate the maximum values of the mass, inverted
triangles the values where the binding energy changes sign.
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In the bottom panel of Figure 1.2, we observe the characteristic spiral
behavior displayed by boson star solutions. This implies that boson stars
exist within a finite range of frequencies, indicating that only oscillations
with sufficient frequency can prevent gravitational collapse, yet not excessively
energetic, which would cause dispersion. Notice that boson stars exist only for
frequencies ω < µ.

The underlying cause for the large masses that boson stars have, despite
being composed of light bosons, is the elevated particle occupation number,
as depicted by the dashed lines in Figure 1.2. We highlight in the mentioned
figure the values at which the binding energy undergoes a change in sign using
inverted triangles. Finally, the relation between the occupation number and
the mass will determine the fate of the time evolution of the boson star.

1.3. Numerical Relativity

It would be of high interest to find analytical solutions of time-dependent
boson stars in General Relativity. However, the inherent complexity associated
with the fundamental nature of General Relativity makes this goal extremely
difficult. The Einstein field equations constitute a system of ten coupled and
nonlinear partial differential equations in four dimensions. When written in
fully expanded form in a general coordinate system, these equations involve
thousands of terms. Consequently, exact solutions of the Einstein equations
are only known in cases with high symmetry, either in space or in time. These
solutions typically involve spherical or axial symmetry, static or stationary
configurations, as well as homogeneous and/or isotropic scenarios. If the goal is
to investigate systems of astrophysical relevance characterized by strong and
dynamic gravitational fields exhibiting minimal or no symmetry, exact solutions
to the field equations become inherently impossible to obtain.

Furthermore, Einstein’s theory unifies the concepts of space and time into
the concept of spacetime. This unification represents one of the most significant
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achievements of the theory, offering a fundamentally different perspective on
gravity compared to Newtonian physics. Gravity is now understood as a
manifestation of the geometry of spacetime. Consequently, discussing space
and time separately loses its significance. However, when attempting to time
evolve the static configurations obtained in the previous section, the concept of
spacetime difficults our aim, as we cannot directly evolve dynamically initial
data as we would in Hamiltonian physics.

Numerical Relativity [29, 30] emerged in the 1960s [31] as an attempt to
develop numerical methods that discretize the spacetime and solve Einstein’s
field equations using computational algorithms. By approximating spacetime
continuum with a discrete grid, Numerical Relativity facilitates the simulation
of gravitational phenomena. Initially, the limited computational resources
available constrained simulations to highly symmetric and relatively simple
scenarios. However, the advancement of powerful computers in recent decades
has significantly expanded the capabilities of Numerical Relativity, enabling
researchers to address more intricate problems within the realm of General
Relativity, such as the dynamics of rotating stars, black holes, and gravitational
collapse. This progress aligns with the emergence of advanced gravitational
wave detectors, which use the templates obtained from the Numerical Relativity
simulations to look for signals in their data.

1.3.1. The 3+1 formalism and the ADM equations

Our goal is to decouple the concepts of space and time in order to make predic-
tions of initial data sets. Given appropriate initial and boundary conditions,
one should be able to predict the evolution of the gravitational field in the
future, this is known as the Cauchy problem for General Relativity. The first
attempt to describe General Relativity in terms of a three-dimensional space
plus one-dimensional time decomposition, or as it is more commonly known
3+1 decomposition, was carried out by Darmoise in the 1920s [32], followed
by Lichnerowicz and Choquet-Bruhad [33–37]. In 1962 Arnowitt, Deser, and
Misner published their work [38], which introduced an approach that laid the
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foundation for the field of Numerical Relativity. The approach, named after
them, is called the ADM formalism.

The first step is foliating the spacetime manifoldM, equipped with a metric
tensor gµν . To do so, we have to consider that events of the spacetime can be
time ordered. By introducing the time parameter t, we can slice the spacetime
into spatial 3-hypersurfaces (Cauchy surfaces) that correspond to constant
global time and label them accordingly with the value of t. The collection of
these slices, denoted as Σt, does not intersect and covers the entire manifold
M. The normal vector to each hypersurface is given by ∇µt, which must be a
one-form pointing in a timelike direction as it represents the gradient of a time
coordinate. Its norm is expressed as

gµν∇µt∇νt = − 1

α2
, (1.27)

where α denotes the lapse function, which is always positive. Next, we define
the unit vector normal to the hypersurfaces as

nµ ≡ −αgµν∇νt , (1.28)

where the minus sign has been chosen in such a way that the normal vector
points in the direcction of growing t. From the definition, it is obvious that
nµnµ = −1.

The induced metric on every hypersurface Σt is defined as

γµν ≡ gµν + nµnν . (1.29)

By contracting either with the spatial projector operator γµν or with the
time projector operator Nµ

ν ≡ −nµnν , tensors can be decomposed into purely
spatial components (on the hypersurface Σt) and purely temporal components
(orthogonal to Σt). To express the Einstein field equations in a 3+1 form, we
need to project the tensors involved onto the hypersurfaces. Let us begin with
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the covariant derivative, which defines the curvature tensor

DαA
β
δ = γραγ

β
σγ

τ
δ∇ρA

σ
τ , (1.30)

where Aβδ represents any tensor. This covariant derivative is compatible with
the induced metric Dαγ

β
δ = 0, which fixes a Levi-Civita 3-connection

(3)Γαβδ =
1

2
γαµ (∂δγµβ + ∂βγµδ − ∂µγβδ) . (1.31)

The Ricci curvature tensor on the hypersurface Σt, also known as the intrinsic
curvature, is then defined as

(3)Rα
βγδ = (3)Γαβδ,γ − (3)Γαβγ,δ + (3)Γµβδ

(3)Γαµγ − (3)Γµβγ
(3)Γαµδ . (1.32)

Similarly, we can introduce the concept of extrinsic curvature, which quanti-
fies the change of the normal vector to a hypersurface under parallel transport
between two points on that hypersurface. It provides information about the
curvature of the hypersurface Σt within the manifold. The extrinsic curvature
is denoted as

Kαβ = −γ µ
α γ

ν
β ∇(µnν) . (1.33)

Alternatively, it can be expressed as the Lie derivative of the induced metric
along the normal vector,

Kαβ = −1

2
Lnγαβ . (1.34)

At this stage, one might consider the natural evolution vector to be the
normal vector nµ. However, this assumption is incorrect since the foliation is
characterized by the one-form ∇µt, and the normal vector nµ is not its dual.
Specifically, nµ∇µt = −αgµν∇µt∇νt = α−1. To address this, we introduce a
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vector defined as

tµ = αnµ + βµ , (1.35)

which is dual to the foliation characterizing one-form,

tµ∇µt = αnµ∇µt+ βµ∇µt = 1 . (1.36)

Here, βµ represents the shift vector, which is purely spatial. The lapse function
α, determines the proper time interval between two hypersurfaces, while the
shift vector indicates the spatial coordinate displacement relative to the normal
vector, as depicted illustratively in Figure 1.3.

Figure 1.3.: Representation of two adjacent 3-hypersurfaces, Σt and Σt+dt. It is
also displayed the definition of the evolution vector tµ, in terms of the
normal vector nµ, and the shift vector βµ.
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Using that αLn = Lt−L~β, we can rewrite the definition of extrinsic curvature
as a Lie derivative of the induced metric along the normal vector Eq. (1.34) as

Ltγµν = −2αKµν + L~βγµν . (1.37)

This is the evolution equation for the induced metric. Let us write here the
explicit expression for the Lie derivative acting on a scalar, a vector and a
tensor, respectively

L~uϑ = uµ∂µϑ , (1.38)

L~uvα = uµ∂µv
α − vµ∂µuα , (1.39)

and

L~uBαβ = uµ∂µB
αβ −Bµβ∂µu

α −Bαµ∂µu
β . (1.40)

We can perform three kinds of projections on the Einstein’s field equations:
onto the hypersurface, mixed and normal projection. Respectively

γαµγ
β
ν

(
Rαβ −

1

2
gαβR− κTαβ

)
= 0 , (1.41)

γµαnβ
(
Rαβ −

1

2
gαβR− κTαβ

)
= 0 , (1.42)

nαnβ
(
Rαβ −

1

2
gαβR− κTαβ

)
= 0 . (1.43)
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After some algebraic manipulations, these projections lead to the evolution
equation for the extrinsic curvature

LtKµν =−DµDνα + α
(

(3)Rµν − 2Kβ
νKµβ +KKµν

)
−κα

(
Sµν −

1

2
γµν (S − ρ)

)
+ L~βKµν ,

(1.44)

the momentum constraint equation

M≡ DνK
ν
µ −DµK − κjµ = 0 , (1.45)

and the Hamiltonian constraint equation

H ≡ (3)R +K2 −KµνK
µν − 2κρ = 0 . (1.46)

Where source terms, that are projections of the energy-momentum tensor, are
defined as

ρ = nαnβTαβ , (1.47)

jµ = γ α
µ nβTαβ , (1.48)

Sµν = γαµγ
β
νTαβ , (1.49)

and S = Sµµ. It can be shown that the evolution of the constraint equations
preserves the constraints if they are initially satisfied.

Up to this point, all calculations have been performed in a tensorial way,
without specifying a vector basis xµ. Let us choose the coordinate basis. We
require three basis vectors to be spacelike, satisfying nµ(ej)

µ = 0. We choose
the evolution timelike vector tµ as the time-basis vector, given by tµ = (e0)

µ.
With these choices, the Lie derivative along the vector t corresponds to the
partial derivative with respect to time, i.e., Lt = ∂t. Purely spacelike vectors
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will be expressed with a null temporal component, for example, the shift vector
βµ = (0, βi).

From the definition of the time vector tµ, it follows that the (future-oriented)
unit normal timelike vector of each hypersurface is nα = (1/α,−βi/α), and its
dual is nα = (−α, 0, 0, 0).

The contravariant components of the metric are calculated with the previous
assumptions and recalling the definition of the induced metric Eq. (1.29),

gµν =

 −1/α2 βi/α2

βi/α2 γij − βiβj/α2

 . (1.50)

Similarly, the covariant components are

gµν =

 −α2 + βiβ
i βi

βi γij

 . (1.51)

The system formed by the six evolution equations for the induced metric
Eq. (1.37) plus six evolution equations for the extrinsic curvature Eq. (1.44) plus
the momentum constraint Eq. (1.45) and the Hamiltonian constraint Eq. (1.46),
form the so-called ADM system of equations. They define a 3+1 projection of
the Einstein field equations, and provide a numerical framework to compute
solutions for General Relativity. However, in practice, the ADM formalism is
found to be of little utility because it crashes rapidly. The main reason for this
failure is that there is an ambiguity in the definition of the evolution equation
for the extrinsic curvature, Eq. (1.44).

In the original work by Arnowitt, Deser, and Misner, they obtained a slightly
different equation for the evolution of the extrinsic curvature, which included an
additional term proportional to the Hamiltonian constraint, H. One may think
that this would not be a huge problem since they are physically equivalent.
It should be noted that the constraint is preserved in time if it is satisfied
initially, and thus, adding this null term should not affect the evolution of the
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extrinsic curvature. However, in numerical simulations, the initial conditions
are typically provided as numerical approximations rather than exact solutions.
Due to the fact that there are second derivatives of the metric, written in the
Ricci scalar R, adding the Hamiltonian constraint results in the alteration of
the system of differential equations and becomes a weakly hyperbolic system.
Consequently, the system is considered an ill-posed Cauchy problem, leading to
an unreliable evolution in numerical computations.

1.3.2. The BSSN formulation

In order to overcome the limitations that the ADM system exhibits, in the
decade of 1990s, a reformulation of the system was presented by Baumgarte
and Shapiro [39] and Shibata and Nakamura [40] (BSSN). This formalism,
incorporates additional parameters and equations into the system, aiming
to create a strongly hyperbolic system of differential equations that yield a
well-posed Cauchy problem.

The spatial metric is written in terms of a conformal metric γ̂ij, defined by
a conformal factor ψ, which is chosen in such a way that the determinant of
conformal metric is γ̂ = 1. It reads as

γ̂ij = ψ−4γij , (1.52)

ψ = γ1/12 . (1.53)

Where γ is the determinant of γij. Within the BSSN formalism, the extrinsic
curvature is decomposed into its trace K and its conformal trace-free part

K = γijKij , (1.54)

Âij = ψ

(
Kij −

1

3
γijK

)
. (1.55)
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The additional variables introduced are the conformal connection functions,
which can be expressed as

Γ̂i = γ̂jkΓ̂i jk . (1.56)

Here, Γ̂i jk are the Christoffel symbols of the conformal metric.

In contrast to the ADM formalism, which relies on the induced metric γij
and the extrinsic curvature Kij as variables, the BSSN formalism employs
17 variables: γ̂ij, ψ, K, Aij and Γ̂i. As they have been presented above, in
equations Eq. (1.52)-Eq. (1.56).

Our objective now is to rewrite the evolution equations of the ADM system
using these new variables. After some algebraic manipulation, we arrive at the
following expressions

∂tγ̂ij = L~β γ̂ij − 2αÂij , (1.57)

∂tψ = L~βψ −
1

6
ψαK , (1.58)

∂tÃij = L~βÃij + ψ−4 [−DiDjα + αRij]
TF + α

(
KÃij − 2ÃikÃ

k
j

)
, (1.59)

∂tK = L~β∂mK −DiD
iα + α

(
ÃijÃ

ij +
1

3
K2

)
, (1.60)

∂tΓ̂
i =L~βΓ̂i − 2Âij∂jα + 2α

(
Γ̂ijkÂ

kj − 2

3
γ̂ij∂jK − γ̂ijSj + 6Âij∂j(lnψ)

)
− ∂j

(
βl∂lγ̂

ij − 2γ̂m(j∂mβ
i) +

2

3
γ̂ij∂lβ

l

)
,

(1.61)
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where TF in Eq. (1.59) denotes the trace-free part of the expression inside the
brackets.

Having performed these calculations, we are now presented with a system
of 17 evolution equations Eq. (1.57)-Eq. (1.61), accompanied by the previous 4
constraint equations Eq. (1.45)-Eq. (1.46). Collectively, these equations form
the BSSN system,the formulation used in most current 3+1 Numerical Relativity
codes, which serves as the foundation for numerical computations in General
Relativity.

1.3.3. Gauge conditions

As the reader may have noticed, the BSSN system, as well as the underlying
Einstein equations, do not provide any information regarding the specific form
or evolution of the lapse function α and the shift vector βi. These variables
are gauge variables which we have freedom to chose. There are infinite options
when choosing the gauge condition. Depending on the physical system that
we are evolving numerically, we will have to choose a gauge condition that
facilitates or even allows us to perform our simulations.

For clarity, let us start by computing the acceleration of Eulerian observers

aµ =nν∇νnµ = nν∇ν(−α∇µt) = −nν∇να∇µt− nνα∇ν∇µt

=− nν∇να∇µt− nνα∇µ∇νt =
1

α
nνnµ∇να− nνα∇µ

(
−nν
α

)
=

1

α
nνnµ∇να + nν∇µnν −

1

α
nνnν∇µα

=
1

α
(nνnµ∇να−∇µα) =

1

α
γνµ∇να =

1

α
Dµα

=Dµ lnα .

(1.62)

From here follows the relation between the acceleration of Eulerian observers
and the lapse function.
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First, we must chose a suitable lapse function α, commonly referred to as
choosing a slicing condition, as it determines the manner in which the manifold
is foliated into slices. The most straightforward option is to set α = 1, known
as geodesic slicing, where the proper time of Eulerian observers (coordinate
system) coincides with the coordinate time t. However, this choice gives rise
to some issues. The acceleration of Eulerian observers is null, pointing that
they follow geodesics. While this would not pose a problem for simulating
an empty void, the purpose of employing the BSSN formalism is to simulate
astrophysical scenarios, where matter is present and the spacetime geometry is
non-flat. In such cases, observers move in diverse directions and may eventually
collide, leading to the existence of multiple coordinate systems at a given point.
Consequently, geodesic slicing is not widely used.

Instead, adopting a maximal slicing proves to be more advantageous. In
maximal slicing, the volume elements v ≡ ∇µn

µ = −K are maintained constant,
preventing Eulerian observers from intersecting one another. This condition is
accomplished by requiring that Eq. (1.60) remains constant. The equation that
governs the evolution of the lapse function is then expressed as the following
elliptic equation

DiD
iα = α

(
ÃijÃ

ij +
1

3
K2

)
. (1.63)

maximal slicing also possesses the feature of being a singularity-avoiding slicing,
which is particularly useful when studying the gravitational collapse of an object
into a black hole. During the formation of a black hole, a singularity appears
at its center, making it desirable for the slicing condition to avoid these points.
With maximal slicing, the lapse function collapses to zero at the center of the
black hole (see Figure 1.4). Consequently, long simulations of black holes can
be successfully conducted.

The only disadvantage that maximal slicing has is the computational effort
that it requires, as numerically solving elliptic equations is usually a compu-
tationally demanding task. In 1995, a new family of slicing conditions called
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Figure 1.4.: Diagram illustrating the gravitational collapse of a star.The lapse func-
tion exhibits a decreasing trend towards the center of the configuration.
This decrease effectively enables the slices (depicted as blue lines) to
avoid the singularity.

Bona-Massó slicing was introduced [41]

∂tα− L~βα = −α2f(α)K . (1.64)

Here, f(α) is an arbitrary function. Specifically, choosing f(α) = 2/α yields
a slicing condition that possesses the same advantages as maximal slicing but
with reduced computational requirements. When this specific form of f(α)

is employed, the slicing condition is referred to as 1+log slicing, as the lapse
function takes on this form after solving the above equation. In practice, 1+log
slicing is implemented as

∂tα = L~βα− 2αK . (1.65)
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For many systems, it is sufficient to set the shift vector to null, as it has been
proven to be a favorable choice in some cases. However, in certain scenarios,
it is desirable to counteract the distortion and dragging effects caused by the
energy-momentum tensor in spacetime. Various proposals have been made
to define an appropriate shift vector, such as the minimal distortion shift.
This shift vector choice aims to minimize the distortion tensor ΣabΣ

ab under
variations of βi. The deformation and distortion tensors are defined as:

Θab =
1

2
γµaLtγ̂µb , (1.66)

Σab = Θab −
1

3
γ̂abΘ

i
i . (1.67)

Similar to the lapse function, this shift selection is effective but can be further
optimized in terms of computational cost. This leads us to the Gamma-driver
shift condition, which is defined as

∂tβ
i =

3

4
αBi , (1.68)

∂tB
i = ∂tΓ̂

i − ηBi , (1.69)

where Bi is an auxiliary variable and η is a positive constant.

The 1+log condition for the lapse function and the Gamma-driver condition
for the shift vector are typically the most widely used choices in the field of
Numerical Relativity. In this study, we will employ these conditions as well.

1.4. Dynamical boson stars

After familiarizing ourselves with the computational procedure for the time
evolution of an astrophysical scenario, we are ready to apply it to our specific
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case of interest, namely, a boson star [42]. Applying the conditions considered in
Section 1.2 for the boson star, such as spherical symmetry, to the 3+1 formalism
of Numerical Relativity, leads to the following form of the line element

ds2 =− (α2 − βrβr)dt2 + 2βrdrdt

+ e4χ(t,r)
(
a(t, r)dr2 + r2b(t, r)dΩ2

)
.

(1.70)

Where dΩ2 = dθ2 + sin2 θdϕ2 is the spherical sector, a(t, r) and b(t, r) are the
conformal metric components, and χ(t, r) is a conformal factor.

Correspondingly, the equations of motion for the scalar field are derived
by reformulating the Klein-Gordon equation in terms of the following two
first-order variables

Ψ := ∂rΦ , (1.71)

Π := nα∂αΦ =
1

α
(∂tΦ− βrΨ) . (1.72)

By introducing these variables, the equations of motion for the scalar field
can be expressed as

∂tΦ = βr∂rΦ + αΠ , (1.73)

∂tΨ = βr∂rΨ + Ψ∂rβ
r + ∂r (αΠ) , (1.74)

∂tΠ = βr∂rΠ +
Ψ

ae4χ
∂rα + αKΠ− αµ2Φ

+
α

ae4χ

[
∂rΨ + Ψ

(
2

r
− ∂ra

2a
+
∂rb

b
+ 2∂rχ

)]
(1.75)

During the time evolution of these functions, solved using a second-order
Partially Implicit Runge-Kutta method (PIRK) [43–45], we need to specify
a stress-energy tensor and its 3+1 projections. For the specific case at hand,
the corresponding stress-energy tensor is given by Eq. (1.8) with the potential
Eq. (1.15). The projections are performed using the unit normal vector nα

and the induced metric γαβ, as shown in Eq. (1.47)-Eq. (1.49). The matter
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source terms appearing in the BSSN evolution equations Eq. (1.57)-Eq. (1.61)
are defined as follows:

ρ =
1

2

[
Π2 +

Ψ2

ae4χ
+ µ2Φ2

]
, (1.76)

Sa =
1

2

[
Π2 +

Ψ2

ae4χ
− µ2Φ2

]
, (1.77)

Sb =
1

2

[
Π2 − Ψ2

ae4χ
− µ2Φ2

]
, (1.78)

jr =
1

2

[
1

ae4χ
(ΠΨ∗ + Π∗Ψ)

]
. (1.79)

Here, we have introduced the notation Sa ≡ Srr and Sb ≡ Sθθ ≡ Sϕϕ.

We take as initial condition the static solutions found in Section 1.2. These
solutions are formulated in polar-areal coordinates, so a coordinate transfor-
mation to isotropic coordinates is necessary to perform the time evolution
in our particular numerical code, called NADA1D [45] that assumes spherical
symmetry and employs spherical isotropic coordinates. Thus, we set Φ(t = 0, r),
Ψ(t = 0, r) and Π(t = 0, r). Also, the conformal factor has been determined by
the coordinate change. Following Ref. [46], we have to ask the initial conformal
spatial metric to be flat, γ̂(t = 0) = x4 sin2 θ, which sets the initial metric
components, a(0, r) = b(0, r) = 1.

As discussed in Section 1.2, the fate of the boson star strongly depends on its
initial parameters. Referring to the top pannel of Figure 1.2, we find that boson
stars with initial configurations to the left of the maximum mass configuration
exhibit stability, while those to the right of this point are unstable.
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1.4.1. Stable models

Consider an initial configuration of a boson star characterized by the following
parameters:

Φ0(t = 0) ω M EB

0.02 0.95419 0.47514 -0.00679

We have introduced Φ0(t) ≡ Φ(t, r = 0) for the central value of the scalar
field.

Figure 1.5 illustrates the magnitude of the central value of the scalar field
Φ0(t) over time in the given scenario. The plot reveals that the scalar field
does not strictly fulfills the assumption of being time-independent; instead,
it exhibits oscillations over time due to the numerical error associated with
the discretization of the grid. However, the plot also demonstrates that the
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Figure 1.5.: Time evolution of the central value of the scalar field for a stable boson
star for three different grid resolutions. We used a dashed line to plot
the result with base resolution, a dotted line for double resolution and
a solid line for quadruple resolution.
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numerical calculations approach the time-independent outcome at the continuum
level with second-order convergence. The rest of the evolved functions show the
same trend as the one shown by the scalar field, they oscillate with frequency
ω.

The fundamental frequency of oscillation for the scalar field is determined
through a Fourier Transform analysis. Remarkably, the analysis reveals that
this frequency aligns with the value of ω determined by the initial data.

1.4.2. Unstable models

Let us now investigate the behavior of boson stars whose initial parameters lie
to the right of the maximum mass configuration, corresponding to the unstable
branch, and possess negative binding energy. Its initial parameters are:

Φ0(t = 0) ω M EB

0.1 0.82296 0.62180 -0.01775

Numerical investigations [42] have demonstrated that these models inevitably
undergo gravitational collapse, leading to the formation of a Schwarzschild black
hole. However, under certain perturbations, these models can also transition to
the stable branch of equilibrium configurations [47, 48]. Specifically, if the only
perturbation affecting the initial data is due to discretization errors, the models
undergo a migration process towards the stable branch. Conversely, when a
slightly larger perturbation is included in the initial data, the models collapse
and form black holes.

A migrating boson star transforms into a different boson star configuration,
maintaining the same mass but residing in the stable branch of equilibrium
configurations. Consequently, the central scalar field of the star exhibits a
smaller value. For instance, Figure 1.6 illustrates the migration of a boson star,
depicting its movement from an initial central scalar field value of Φ0(t = 0) = 0.1

to a final value of Φ0 ≈ 0.06. Remarkably, this final value corresponds precisely
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to the scalar field at which a stable boson star with the same mass is obtained
(Figure 1.2). The corresponding Fourier Transform analysis points towards the
same direction, showing that after the migration the frequency of the boson star
is the one of the configuration with the same mass as the original but located
in the stable branch.
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Figure 1.6.: Time evolution of the central value of the scalar field for an unstable
boson star with negative binding energy.

Now, we are going to truly perturb this solution. To introduce perturbations,
we augment the initial scalar field by 2% using a multiplication factor of 1.02
after solving the Einstein-Klein-Gordon system, and check that this perturbation
does not alter the sign of the binding energy EB. The metric variables a and
α are not recomputed. The perturbation results in a slight violation of the
constraints. However, given the relatively small magnitude of the perturbation
(though larger than the discretization error), the overall solution remains largely
unchanged.

To identify the emergence of black holes during the evolution, we determine
the black hole mass by evaluating the area A, of the apparent horizon and
employing the formula MBH =

√
A/16π. Figure 1.7 displays the temporal

progression of both, the boson star mass (MBS) and the black hole mass (MBH).
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The boson star mass has been calculated using the Komar expression for the
mass as shown in [49].
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Figure 1.7.: Monitoring the mass of a collapsing boson star (MBS) and the mass of
the resulting black hole (MBH).

In contrast to the migrating scenario, introducing a 2% perturbation in
the initial data triggers the gravitational collapse, resulting in the eventual
formation of an apparent horizon. This transition is evident from the sudden
change observed in the boson star’s mass evolution, accompanied by a rapid
increase in the black hole mass from zero. We are able to observe that the
mass of the final black hole is slightly smaller than the mass of the original
boson star. This discrepancy arises as a consequence of some of the scalar field
being released after the collapse. This indicates that, during the collapse into a
black hole, a remnant of the initial scalar field lingers in the form of a spherical
shell or cloud encircling the black hole [49]. Comparing the cloud of scalar field
with the known behavior of scalar fields around black holes, studied in [50], we
arrive to the conclusion that it forms a long-lived quasi-bound state. Moreover,
the oscillating frequency of the quasi-bound state is different from that of the
initial boson star.
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Lastly, we are going to compute the time evolution of a model whose initial
conditions are:

Φ0(t = 0) ω M EB

0.18 0.76904 0.50671 0.01353
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Figure 1.8.: Time evolution of the central value of the scalar field for an unstable
boson star with positive binding energy.

This is a unstable boson star with a positive binding energy. In Figure 1.8
we plot the output of the evolution of this model for the central value of the
scalar field. As one may see in the plot, the central value of the scalar field
exhibits a rapid decline over time, leading to a significant radial expansion of
the boson star, ultimately resulting in its dispersion. The occurrence of this
unstable scenario is associated with a positive binding energy, which results in
an excess of energy causing the star to lose its bounded nature.
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1.5. Further aspects of boson stars

In the present chapter, we have explored the construction of spherically symmet-
ric boson stars and investigated their dynamical evolution. However, numerous
aspects of boson stars have been extensively studied in the literature. In this
section, we briefly discuss some of these aspects that are relevant to our work.

Self-Interacting Boson Stars: A prominent variant of boson stars is the
self-interacting boson stars [12]. In this case, the scalar field potential includes
a self-interaction term given by

V (Φ) = µ2|Φ|2 +
λ

2
|Φ|4 . (1.80)

Previously, we utilized a free-field potential, as discussed in Section 1.2. When
assigning constituent boson masses based on known bosonic particles, it results
in boson stars with relatively low masses. However, the introduction of the self-
interaction term allows larger masses to be obtained. Moreover, self-interacting
boson stars can also exhibit solitonic behavior, forming localized and stable
configurations.

Spinning boson stars: Spinning boson stars possess notable features that
distinguish them from their non-rotating counterparts [51,52]. Similar to the
magnetic or azimuthal quantum number in atomic systems, the angular mo-
mentum in spinning boson stars is expected to be quantized, shaping them into
a toroidal form [53]. The rotation of boson stars induces frame dragging effects,
causing spacetime to become twisted. However, it is crucial to acknowledge
that spinning boson stars are susceptible to various instabilities, which can lead
to the loss of angular momentum or gravitational collapse. Furthermore, nu-
merical calculations involving spinning boson stars are highly complex requiring
three-dimensional fully non-linear numerical simulations [54]. The investigation
of these objects’ stability remains an active area of research.

Proca Stars: Vector boson stars, also known as Proca stars, possess distinct
characteristics compared to boson stars due due to the different nature of the
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fields involved. They are composed of spin-1 complex vector fields, while (scalar)
boson stars consist of spin-0 complex scalar fields. The matter Lagrangian for
Proca stars is described by the Proca Lagrangian [17],

LM = −1

4
FabF̄

ab − 1

2
µ2AaĀ

a . (1.81)

Despite their spin-1 nature, Proca stars share several features with boson
stars, including carrying a conserved Noether charge, exhibiting harmonic time
dependence, existing within a certain range of frequencies, and having masses of
the same order of magnitude. Remarkably, Proca stars have been observed to be
more stable than spin-0 boson stars when angular momentum is introduced [55].
The study of Proca boson stars provides further insight into the behavior and
stability of compact objects beyond the scalar field paradigm.

Boson Star Binaries: Systems consisting of two boson stars have received
significant attention in the literature, providing insights into various aspects
of this complex scenario [54, 56, 57]. The coalescence of boson star binaries
serves as a major source of gravitational waves, making their study valuable
due to potential observational counterparts. Boson star binaries solely interact
gravitationally, resulting in an intriguing phenomenon that highlights their
solitonic nature. In head-on collisions with high initial velocities, the boson stars
pass through each other, creating an interference pattern during the interaction
while approximately retaining their original shapes afterward [58]. Alternatively,
for sufficiently low initial velocities, the boson stars can merge and form a new
boson star [56]. Depending on the initial energy of the system, this merged
state may undergo gravitational collapse and form a black hole.

Boson Star Formation: The scenario of boson star formation has been
investigated through numerical simulations of diluted clouds of scalar field [59,
60]. Initially, the cloud represents an unbound state with a higher amount of
kinetic energy compared to potential energy. During the process of gravitational
cooling, the cloud gradually expels the excess scalar field, reducing its kinetic
energy and allowing the system to become bound. As a result, the scalar field
cloud collapses under its own self-gravity, shedding excess kinetic energy in



Boson stars 41

the process. This mechanism provides insights into the formation of boson
stars and their dynamical evolution from initially unbound states to bound,
self-gravitating structures.

To delve deeper into the subject and gain a broader perspective regarding
boson stars, we direct the reader to widely recognized reviews [27,61].
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Chapter 2.

Modified gravity

2.1. Introduction

Gravity, the universal force that governs the interactions between objects with
mass, holds the key to comprehend the fundamental mechanics underlying
the motion, structure, and dynamics of our physical world. As we survey the
current landscape of gravitational research, it becomes undeniable that General
Relativity stands as the preeminent theory, elegantly explaining the complexities
of gravity and shaping our understanding of the fundamental workings of the
universe.

Emerging in 1915 [62], General Relativity has been extensively validated
through a range of experimental tests across different scenarios [63]. It has
provided successful explanations and predictions for various phenomena, includ-
ing the observed precession of Mercury’s orbit and the gravitational deflection
of light by massive objects [64]. Notably, General Relativity revolutionized
our understanding of gravity by portraying it as a profound geometric effect
rather than a conventional force. In this framework, gravity is interpreted as
the dynamics of spacetime geometry, where matter fields evolve. This view-
point conventionally represents the gravitational field using the metric of a
pseudo-Riemannian manifold and its associated curvature tensor [25,65].

43
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An empirical milestone in the validation of General Relativity occurred in
September 2015 [66] with the direct detection of gravitational waves, confirming
a prediction derived from the theory. This groundbreaking achievement provided
direct evidence of the existence of these ripples in spacetime, strengthening the
validity of General Relativity. Since then, 90 gravitational wave events have
been confirmed.

Furthermore, General Relativity has played a fundamental role in the de-
velopment of modern cosmology. Independently pioneered by Friedmann [67]
and Lemaître [68], and subsequently expanded upon by Robertson and Walker
[69, 70], it paved the way for the formulation of the Friedmann-Lemaître-
Robertson-Walker (FLRW) metric. This metric provides a descriptive frame-
work for comprehending the large-scale structure and evolution of the universe.
However, tensions arise when comparing the predictions of the theory with
observational data. To reconcile these discrepancies, the prevailing framework
in modern cosmology is the ΛCDM (Λ Cold Dark Matter) model [71]. This
model incorporates the influence of dark energy, an unknown form of energy
that affects the universe on large scales, and dark matter, an unobserved type of
matter that interacts solely through gravity. In particular, various experiments
yield conflicting results regarding the value of the Hubble parameter [72], in
other words, the rate at which astrophysical bodies move away from us.

In addition to these cosmological implications, General Relativity also
predicts the existence of certain singularities, regions in spacetime that are
ill-defined and can be reached by observers in a finite proper time. Within
this theory, two types of singularities arise. First, the Big Bang singularity
corresponds to an early-time singularity associated with the origin of the
universe. Second, black holes, astronomical objects of extreme density predicted
by General Relativity, accommodate a singularity at their centers. The presence
of singularities challenges the viability of General Relativity as a fundamental
theory describing gravitational interactions.

While General Relativity has been successful in explaining phenomena in
a wide range of scales, it encounters limitations when trying to understand
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gravity at extremely small distances. At atomic scales, the classical framework
of General Relativity is no longer applicable, and quantum effects become
important. General Relativity does not incorporate the principles of quantum
mechanics that govern the behavior of particles and fields in these situations.
As a result, the reconciliation of these two theories remains unresolved.

Moreover, the theory of General Relativity was formulated based on the
principles of mathematical elegance and the fulfillment of the equivalence
principle. However, it has not undergone direct experimental verification to
validate its fundamental structure. Although its viability has been confirmed
across a broad range of scales, from the millimeter scale to the astronomical
scale, we cannot definitively assert that this theory is the ultimate description of
gravity applicable to all scales. Deviations between the predictions of General
Relativity at higher energy regimes and experimental observations are plausible,
revealing the potential limitations of the theory.

The tension arising from observational data and theoretical issues within
the fundamental framework of General Relativity has led to the exploration of
extensions to the theory. Various efforts have been made in this direction, driven
either by phenomenological motivations or by theoretical considerations [73]. To
better understand these extensions, let us first describe the framework of General
Relativity. Differential geometry serves as the mathematical foundation, where
spacetime is represented as a manifold equipped with a metric tensor, which
measures the distance between events. This leads to the notion of a connection,
which describes how vectors are transported along curves in spacetime and
gives rise to the concept of the covariant derivative. The gravitational aspect
of the theory is encoded in the gravity Lagrangian, which, together with the
matter Lagrangian, LM, forms the action of General Relativity, known as the
Einstein-Hilbert action

S =

∫
d4x
√−g

(
R

2κ
+ LM

)
. (2.1)

Where, κ = 8π is the Einstein gravitational constant in natural units, g is the
determinant of the metric tensor gµν and R is the Ricci curvature scalar.
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With the aforementioned elements, we establish a framework in which
spacetime is described in geometric terms, where matter resides and has the
ability to shape the structure of spacetime. Simultaneously, the dynamics of
matter are influenced by the properties of spacetime, creating a mutual interplay
between the two. At the same time observers evolve in this spacetime respecting
the causality of the events observed putting a constraint to the speed of light
and the speed at which information is transported. The main ways of going
beyond General Relativity are modifying the basic elements of the differential
geometry and the description of the gravity Lagrangian.

The connection Γλµν plays a crucial role in accounting for the effects of gravity
on the transport of vectors along curves. In General Relativity, the connection
is defined as the Levi-Civita connection, which is compatible with the metric,
preserving it (∇λgµν = 0), and torsion-free (Γλµν = Γλνµ).

One approach to extending Einstein’s gravity is by considering non-trivial
connections, relaxing the assumption of metric preservation and allowing for
torsion. This is known as the metric-affine formalism [74,75]. By introducing
this extension, the geometric structure of spacetime changes, and the manifold
becomes post-Riemannian. This formulation introduces the non-metricity
tensor Qλµν ≡ ∇λgµν and the torsion tensor T λνµ ≡ Γλµν − Γλνµ. As a result, the
general connection Γ̊λνµ is no longer the Levi-Civita connection but includes
additional terms related to non-metricity and torsion, given by Lλνµ and Kλ

νµ,
respectively [76]:

Γ̊λνµ ≡ Γλνµ + Lλνµ +Kλ
νµ . (2.2)

The presence of non-metricity and torsion leads to the definition of a general
Riemann tensor. Furthermore, symmetric teleparallel gravity and teleparallel
gravity [76–78] are extensions of General Relativity in which the traditional
curvature tensor, associated with the Levi-Civita connection, is set to be null.
Instead, the curvature effects are accounted for by an invariant associated
with non-metricity in the case of symmetric teleparallel gravity, or by the the
invariant associated with torsion in the case of teleparallel gravity.
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Another avenue for extending General Relativity involves modifications to
the gravity Lagrangian. Scalar-tensor theories, for example, introduce a scalar
field φ alongside the Ricci curvature scalar and the metric tensor to mediate
gravitational interactions [79]

S =

∫
d4x
√−g

(
φR

16π
+ Lφ + LM

)
. (2.3)

When field equations involve higher-order derivatives, they can result in a
Hamiltonian that is unbounded from below, implying that the system has
infinitely many degrees of freedom with negative kinetic energy. This may lead
to instabilities in the system which are commonly referred to as Ostrogradski
ghost instabilities [80]. In order to avoid them, it is necessary to impose
conditions on the Lagrangian Lφ, such as the absence of higher than second-
order derivatives of the field as seen in Brans-Dicke theories [81]. One can
further generalize the interaction between the scalar field φ and the metric tensor
by replacing φ with f(φ). This leads to the most general theory involving the
metric tensor and a scalar field, free of ghost instabilities, known as Horndeski
theory [82]. It is also possible to substitute the scalar field φ with a vector or
tensor field, leading to so-called tensor-vector-scalar gravity [79].

We should be briefly mention the ongoing efforts to unify the gravitational
interaction with the other known interactions in physics. Various approaches
have been explored in this regard, aiming to extend the existing understanding
of the field. We can mention some examples, such as Loop Quantum Gravity,
string theories and brane theories [83,84].

Among the various approaches to explore gravity beyond General Relativity,
we will focus on f(R) gravity [85]. These models offer significant simplicity and
flexibility, providing valuable insights into the behavior of the universe beyond
the scales governed by General Relativity. In this theory the Ricci scalar R
from the Einstein-Hilbert action is substituted by a more general f(R) function

S =

∫
d4x
√−g

(
f(R)

2κ
+ LM

)
. (2.4)
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By examining f(R) models, we can potentially explain both the cosmological
expansion of the early universe and its present-day expansion, obviating the
need to introduce concepts such as dark energy [86]. This is because the
cosmological expansion is an intrinsic effect arising from the gravitational
description itself. As a result, f(R) theories have received extensive research
attention as the simplest modification to Einstein’s gravity. However, it is of
significance that these theories are not without their challenges. In the metric
formalism, which assumes the connection is determined by the metric, the
nonlinearities associated with the f(R) Lagrangian introduce a dynamic degree
of freedom in the gravitational sector [87].

On the other hand, if we take an approach to the theory through the Palatini
formalism [88], where the metric and connection are treated as two independent
and equally fundamental entities, we observe that the additional degree of
freedom in the theory is non-dynamic. Thus, the nonlinearities of the Palatini
f(R) Lagrangian induce nonlinearities in the matter sector, as we will explore
in the upcoming sections. Consequently, the field equations of Palatini f(R)

in vacuum are equivalent to those of General Relativity with a cosmological
constant, and only in the presence of matter will disparities arise. This stands
in stark contrast to metric f(R) theories, where even in vacuum, the space is
curved, potentially giving rise to long-range effects within the Newtonian regime.
As the reader may have noticed, when referring to the Palatini formalism, the
Ricci scalar is denoted as R since it is the curvature scalar that follows from
the independent connection, i.e., R ≡ gµνRµν(Γ), and should not be confused
with R ≡ gµνRµν(g), which follows from the Levi-Civita connection.

The Palatini formalism is a metric-affine approach employed in theories
where the Lagrangian exclusively incorporates the Riemann curvature tensor
and its associated invariants, such as the Ricci tensor and the Ricci scalar.
Henceforth, we will interchangeably utilize the terms metric-affine or Palatini
formalism to denote the independence of the connection from the metric. The
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action for Palatini f(R) can be expressed as follows

S =

∫
d4x
√−g

(
f(R)

2κ
+ LM

)
. (2.5)

Palatini f(R) belongs to a broader class of theories known as Ricci-Based
Gravity. These theories, as the name implies, are formulated based on the Ricci
tensor of the connection and its contractions. From a computational perspective,
these theories are particularly interesting. In the Palatini framework, it is
possible to transform the problem of a modified gravity theory minimally
coupled to a scalar field or other matter source into a standard problem in
General Relativity minimally coupled to a modified scalar Lagrangian or other
matter Lagrangian [89–93]. This property has recently been utilized to generate
new analytical solutions for static, spherically symmetric scalar compact objects
in Palatini f(R) and other theories [94].

Remarkably, by starting with a known solution of General Relativity involv-
ing a spherically symmetric, static, massless real scalar field, which represents
a naked singularity, it has been possible to obtain new exotic compact objects
such as wormholes and other configurations with peculiar causal properties
within the high-density region. These solutions exhibit nearly identical behavior
to the standard General Relativity solution in their exterior regions, where
the energy density rapidly drops to zero, and the dynamics approach that of
General Relativity. Moreover, this approach has facilitated the construction of
new exact rotating solutions [95,96] and even multicenter solutions [97] (without
defined symmetry). Such advancements have expanded our understanding of
the possibilities offered by Palatini f(R) and related theories.

In this chapter of the present work, we delve into the realm of modified
gravity, focusing on the essential aspects of General Relativity as a starting point.
We aim to provide a comprehensive review that not only familiarizes the reader
with the fundamentals of General Relativity but also explores the motivations
behind the quest to extend its mathematical framework. In addition, our
objective is to highlight the significance of Palatini f(R) gravity. We emphasize
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its correspondence with the space of solutions of General Relativity, which
presents a valuable advantage in terms of computational tools for numerical
simulations.

2.2. General Relativity essentials

After formulating the theory of special relativity, Einstein aimed to generalize
his results to scenarios involving the presence of matter. Einstein based his
approach on two fundamental principles. The first was the Principle of Relativity
(or covariance), which stated that the laws of physics should be the same for all
reference frames. The second principle was the Principle of Equivalence, which
asserted that no local experiment could distinguish between an observer in free
fall and an inertial observer. In Einstein’s own words [98]:

“For an observer falling freely from the roof of a house, there exists
—at least in his immediate surroundings— no gravitational field.”

This insight paved the way for the development of General Relativity.
However, in order to reconcile these fundamental principles, Einstein recognized
the need for a new mathematical framework. It was through the guidance of
mathematician Marcel Grossmann that Einstein was introduced to the powerful
tools of differential geometry. As Einstein himself remarked [99]:

“If all systems are equivalent, then Euclidean geometry cannot hold
in all of them. To throw out geometry and keep laws is equivalent
to describing thoughts without words. We must search for words
before we can express thoughts. What must we search for at this
point? This problem remained insoluble to me until 1912, when I
suddenly realized that Gauss’s theory of surfaces holds the key for
unlocking this mystery. I realized that Gauss’s surface coordinates
had a profound significance. However, I did not know at that time
that Riemann had studied the foundations of geometry in an even
more profound way. I suddenly remembered that Gauss’s theory
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was contained in the geometry course given by Geiser when I was a
student... I realized that the foundations of geometry have physical
significance. My dear friend the mathematician Grossmann was
there when I returned from Prague to Zurich. From him I learned
for the first time about Ricci and later about Riemann. So I asked
my friend whether my problem could be solved by Riemann’s theory,
namely, whether the invariants of the line element could completely
determine the quantities I had been looking for.”

Let us introduce the main objects used in differential geometry [25,65]:

Manifold: A manifoldM is a topological n-dimensional space where each
point has a neighbourhood that is homeomorphic to the Euclidean space of
dimension n. If it has a globally defined differential structure (each point has a
neighbourhood that is diffeomorphic to the Euclidean space) it is a differential
manifold.

Tangent space: The vectorial sum of two points in an Euclidean space
yields a third point in the same space. This is not the case for a curved
space, in which the vector space structure is lost. Nevertheless vector space
structure can be recovered in the limit of infinitesimal displacements (tangent
vectors) over a point. Furthermore, these tangent vectors must only rely on
the intrinsic structure of the manifold and not to its possible embedding in a
higher-dimensional space.

The tangent space TpM, of M at the point p is defined as the set of all
tangent vectors at p. It has the same dimension as the manifold. The disjoint
union of all the tangent spaces ofM is called tangent bundle, TM.

Tensors: In the realm of differential geometry, every vector space has an
associated dual space. In the context of the tangent space at a point p on a
manifold, denoted as TpM, its dual space is represented as TpM∗ and consists
of elements called 1-forms. If we consider the basis of the tangent space as
{∂µ}, then the corresponding coordinate basis of the dual space, TpM∗, is
given by {dxµ}. Vector fields can be expressed as v = vµ∂xµ , where vµ are the
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components of the vector field with respect to the chosen coordinate basis. On
the other hand, 1-forms are written as w = wµdx

µ, where wµ represents the
components of the 1-form in the coordinate basis.

By combining the tangent space TpM and its dual space TpM∗, we can
define tensors, which are multilinear relationships between vectors and covectors.
In this context, a covector can be understood as the dual counterpart of a
vector, analogous to how a vector field corresponds to a vector. In other
words, a covector is in relation to a 1-form what a vector is to a vector field.
The defining characteristic of tensors is their transformation properties under
coordinate transformations. A tensor of rank (or order) n possesses n indices,
and its components exhibit specific transformation laws when changing between
different coordinate systems.

T
i′1...i

′
p

j′1...j
′
q
(x̄1, ..., x̄n) =

∂x̄i
′
1

∂xi1
...
∂x̄i

′
p

∂xip
∂xj1

∂x̄j
′
1
...
∂xjq

∂x̄j
′
q
T
i1...ip
j1...jq

(x1, ..., xn) (2.6)

These transformation laws ensure that the tensor remains invariant under coor-
dinate transformations, allowing it to describe physical quantities independent
of the chosen coordinate system.

Metric tensor: In differential geometry, the metric tensor is a fundamental
concept that characterizes the geometry of a manifold. It is defined as an inner
product on the tangent space TpM at each point p of a smooth, differentiable
manifoldM. The metric tensor gµν assigns a scalar to pairs of tangent vectors
and varies smoothly from point to point. It measures distances, angles, and
defines the notion of length and inner product in the manifold. The line
element, which represents the infinitesimal distance between two points, is given
by ds2 = gµνdx

µdxν . The metric tensor is required to be symmetric to ensure
that the distance between point A and point B is the same as the distance
between point B and point A. In an Euclidean 4-dimensional space, the metric
tensor has a signature of (+ + ++), while in a pseudo-Riemannian space, the
signature is (−+ ++) or (+−−−) depending on the convention used.
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Affine connection: The affine connection Γ on a smooth manifold M
is defined as a rule that associates, for each point p ∈ M, a linear map
called the connection map or covariant derivative, denoted by ∇, which takes
pairs consisting of a vector field X and a differential function Y defined in a
neighborhood of p, and produces another vector field ∇XY defined in the same
neighborhood.

The covariant derivative allows us to compare vectors in different tangent
spaces from the same manifold using what is called parallel transport. If we
have a vector v in a point p ∈M we can parallelly transport it along the curve
c(t) passing through p if ∇ċ(t)v = 0. Parallelly transporting the vector v to a
point q ∈M where is defined another vector w allows us to compare them.

Curvature. In flat space, the parallel transport of a vector along a smooth
curve results in the vector remaining unchanged. However, in curved space,
parallel transport leads to changes in the vector, providing us with information
about the curvature of the space. To quantify this curvature, we define the
Riemann curvature tensor Rα

βµν , and the torsion tensor Sαµν .

Rα
βµν ≡ ∂µΓανβ − ∂νΓαµβ + ΓαµλΓ

λ
νβ − ΓανλΓ

λ
µβ , (2.7)

Sαµν ≡ Γαµν − Γανµ . (2.8)

The Riemman curvature tensor is defined at every point on the manifold,
providing a measure of how different neighboring points are from those in
Euclidean space. The Riemann curvature tensor exhibits antisymmetry with
respect to its last two indices Rα

βµν = −Rα
βνµ.

The torsion tensor, on the other hand, reveals the twisting of space around
a curve. In the absence of torsion, the affine connection is symmetric.

Additionally, by contracting the Riemann curvature tensor, we obtain the
Ricci curvature tensor, Rµν ≡ Rα

µαν .
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Metric-connection relation: Although the metric tensor and the affine
connection are independent objects in differential geometry, there is a way to
relate them by imposing that the scalar product of any two vectors, parallel
transported along any curve, remains covariantly constant

0 = ∇µgαβ = ∂gαβ − Γλµαgλβ − Γλµβgαλ , (2.9)

In cases where the torsion tensor vanishes, the connection becomes symmetric
and is known as the Levi-Civita connection, represented by the Christoffel
symbols

Γλµν =
1

2
gλρ[∂µgρν + ∂νgρµ − ∂ρgµν ] . (2.10)

In those cases we say that the associated geometry is Riemannian. The
Ricci curvature scalar can be defined by contracting the Ricci curvature tensor
with the metric

R ≡ gµνRµν . (2.11)

Then, when metric compatibility is imposed the spacetime geometry is
fully described by the metric tensor, which not only characterizes distances
and angles but also defines parallel transport through the construction of the
Levi-Civita connection.

In this geometric context, Einstein’s axioms were reformulated as follows.
At each point in spacetime, which is described by a manifold, it is possible
to establish a tangent space characterized by a Minkowskian metric as shown
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artistically in Figure 2.1. It was also reasoned that the laws of nature should
be expressed in tensorial form to adhere to the principle of relativity.

Figure 2.1.: Diagram of the tangent bundle

2.2.1. Einstein’s field equations

There are two distinct paths to derive the Einstein field equations, which serve
as the fundamental cornerstone of General Relativity. These equations assume
the principle of equivalence, the principle of relativity, and must reduce to
Newton’s laws in the appropriate limit.

Einstein’s quest was to establish a connection between the curvature of
spacetime and the presence of matter. Since matter can be described by a
rank-2 tensor denoted as Tµν , the corresponding equations describing curvature
should also involve a rank-2 tensor. This leads us to the relationship:

Gµν = Tµν . (2.12)
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However, determining the exact form of the Einstein tensor Gµν in relation
to curvature tensors was not initially clear. The conservation of the energy-
momentum tensor ∇λTµν = 0 implies the same for the Einstein tensor, but its
explicit expression remained elusive. Equating the Einstein tensor with the
Ricci tensor seemed like a straightforward approach, but it would result in
∇λRµν = 0, indicating a constant curvature throughout spacetime, a physically
unacceptable scenario leading to a trivial geometry.

Consequently, the search was on for a curvature tensor Gµν of rank 2, char-
acterized by a vanishing divergence. The Riemann tensor was considered, and
specific symmetries were imposed to aid in finding a suitable expression for Gµν .
By imposing the condition ∇λgµν = 0, the Bianchi identities emerged, providing
valuable insights. Using these identities, Einstein discovered a curvature tensor
that meet the requirements

Gµν ≡ Rµν −
1

2
gµνR = κTµν , (2.13)

where κ is a constant determined through the Newtonian limit of these equations.

On the other hand, we have the formulation by Hilbert, which he developed
almost concurrently with Einstein, leading to the same set of equations. This
formulation originates from the variational principle, which states that if we can
construct an action for a theory, we can derive the equations of motion for that
theory by requiring the action’s functional to be stationary. Consequently, the
crucial task lies in identifying the appropriate functional to represent the action.
We seek a scalar quantity that can be integrated over the entire spacetime
and incorporates terms related to both matter and curvature. The simplest
scalar associated with curvature is the Ricci scalar R. Thus, we propose the
Einstein-Hilbert action as follows

S =

∫
d4x
√−g

[
1

2κ
R + LM

]
. (2.14)

Here, we assume ∇λgµν = 0, and the connection does not include any torsion
terms, Γγαβ ≡ Γγβα. Recall that the Ricci scalar R, is also computed with
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those assumptions. Therefore, the connection is uniquely determined as the
Levi-Civita connection for this particular spacetime. Accordingly, the metric
becomes the fundamental object in this theory, and it is with respect to the
metric that we variate the action

δS =

∫
d4x

[
δ (
√−gR)

2κ
+ δ

(√−gLM)] = 0 . (2.15)

By employing the identities

δ
√−g = −1

2

√−ggµνδgµν , (2.16)

δR = Rµνδg
µν +∇α

(
gµνδΓαµν − gµαδΓνµν

)
, (2.17)

and the definition of the energy-momentum tensor

Tµν = − 2√−g
δ (
√−gLM)

δgµν
, (2.18)

we can derive the Einstein field equations in the same way as they are represented
in Eq. (2.13). Notice that the second term in Eq. (2.17) represents a boundary
term, and according to the Stokes theorem, it does not contribute to the
resulting Einstein field equations.

2.2.2. General Relativity à la Palatini

As observed, the compatibility of the metric has been postulated based solely
on a criterion of simplicity. However, what implications would arise if we were
to deviate from this criterion? In 1925, Einstein proposed an approach [100]
aimed at extending and generalizing the principles of General Relativity. This
alternative formulation sought to explore the consequences of relaxing the
assumption of metric compatibility. By considering such a departure, Einstein
aimed to investigate potential modifications and broaden our understanding
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of the gravitational interaction. This approach is known as the metric-affine
formalism, also referred to as the Palatini formalism when the theory only
involves the Riemann curvature tensor and its invariants. It is necessary to
clarify that the formalism, despite its misattribution to Attilio Palatini, was
actually introduced by Einstein himself, as previously mentioned.

To gain physical insight into the concepts of torsion and non-metricity, let
us analyze the behavior of an infinitesimal parallelogram formed by parallel
transporting two vectors along each other. It is not guaranteed a priori that this
process will result in a closed parallelogram. The presence of torsion precisely
characterizes the failure of the infinitesimal parallelogram to close properly.

Furthermore, to comprehend the impact of non-metricity on the manifold,
let us consider a null vector denoted as uµ, satisfying the condition gµνuµuν = 0.
If the covariant derivative of the metric tensor does not vanish, the parallel
transport of this vector may alter its null character. Consequently, the invariant
nature of the light cone structure under parallel transport would no longer be
preserved. The non-metricity measures the change of lengths and angles along
a curve.

Starting from the Einstein-Hilbert action, we consider the Ricci scalar
derived from the contraction of the metric with the Ricci tensor, which depends
solely on the connection

S =

∫
d4x
√−g

[
1

2κ
R+ LM(ψ, gµν)

]
, (2.19)

where R ≡ gµνRµν(Γ) denotes the Ricci scalar derived from the connection,
distinguishing it from the metric Ricci scalar R ≡ gµνRµν(g), which is derived
from the Levi-Civita connection. The matter lagrangian is determined by the
matter field ψ and its coupling to the metric.

Applying the variational principle to the action, considering both the metric
and the connection as independent and equally fundamental objects, we calculate
the variation with respect to each of them. Varying with respect to the metric,
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we have

δgS =

∫
d4x

[
δg

(√−gR
2κ

)
+ δg

(√−gLM)] = 0 . (2.20)

The second term yields the energy-momentum tensor, while the first term can
be expressed as

δg
(√−gR) =Rδ(√−g) +

√−gRµνδg
µν

=− 1

2

√−ggµνRδgµν +
√−gRµνδg

µν .
(2.21)

Consequently

δgS =

∫
d4x
√−g

[
1

2κ

(
−1

2
gµνRδgµν +Rµνδg

µν

)
− 1

2
Tµνδg

µν

]
= 0 .

(2.22)

Next, considering the variation with respect to the connection

δΓS =

∫
d4x
√−g δΓR

2κ

=

∫
d4x
√−ggµν δΓRµν

2κ

=

∫
d4x
√−ggµν 1

2κ

(
∇αδΓ

α
µν −∇νδΓ

α
µα

)
=

∫
d4x

2κ

[
δνα∇β

(√−ggµβ)−∇α

(√−ggµν)] δΓαµν = 0 .

(2.23)

Here, δνα represents the Kronecker delta used to manipulate the indices of δΓαµν .
This equation implies that

1

2
δνα∇β

(√−ggµβ)+
1

2
δµα∇β

(√−ggνβ)−∇α

(√−ggµν) = 0 . (2.24)
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After some algebraic manipulation [74, 88, 101], it can be shown that if this
equation holds for any arbitrary connection, then

∇αg
µν = 0 . (2.25)

Consequently, the equations of motion indicate that the connection must be
the Levi-Civita connection. By inserting this result into Eq. (2.22), we recover
the usual Einstein field equations.

Thus, it can be concluded that both the metric formalism and the metric-
affine formalism result in identical equations of motion, the equations of General
Relativity, thereby establishing their equivalence.

2.3. Metric f(R) gravity

Practically from the very moment the General Theory of Relativity was for-
mulated and established, models emerged that aimed to extend and refine its
framework. As we have seen, Hilbert chose the Ricci scalar as the gravitational
Lagrangian term, as it is the simplest scalar quantity that captures the curva-
ture of spacetime. However, it soon became apparent that the gravitational
Lagrangian in General Relativity is incomplete and may not fully account for
certain phenomena.

To overcome these limitations and explore possible modifications to the
theory, alternative approaches have been proposed. One such approach is
the f(R) gravity models [85, 102], where the gravitational Lagrangian term
is replaced with a more general function of the Ricci scalar, denoted as f(R).
This modification allows for a broader description of gravity, accommodating
additional terms and dynamics beyond what is captured by the Einstein-Hilbert
action.

Furthermore, f(R) gravity models also have implications for the cosmic
acceleration and the nature of dark energy [103]. In particular, certain choices
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of the f(R) function can lead to modified gravitational equations that produce
accelerated expansion of the universe without the need for an exotic energy
component such as dark energy.

We will now derive the equations of motion for the aforementioned f(R)

gravity theory. The action of f(R) gravity is given by

S =

∫
d4x
√−g

[
1

2κ
f(R) + LM

]
, (2.26)

where κ is a constant, f(R) is a function of the Ricci scalar R, and LM represents
the Lagrangian of matter fields.

In this metric approach, we consider the metric as the sole independent object
of the theory, and the connection is determined by the metric and assumed to
be the Levi-Civita connection. Let us now vary the action with respect to the
metric. It is important to note that unlike the derivation performed in Section
2.2.1, the term proportional to δRµν now contains an additional scalar factor
f(R). As a result, we cannot employ the same steps outlined in Section 2.2.1
that relied on the application of Stoke’s theorem.

The equation of motion derived from this theory is given by [104,105]

fRRµν −
1

2
f(R)gµν − (∇µ∇ν − gµν�) fR = κTµν , (2.27)

where fR ≡ df(R)/dR represents the derivative of the function f(R) with
respect to the Ricci scalar R. In addition, we have introduced the D’Alembert
operator � ≡ ∇α∇α. As can be seen, the present equation of motion contains
second order derivatives of fR. This is a potential source of instabilities.
However, recent works have shown that this specific theory is safe under some
restrictions [106].

Up to this point, we have not specified the exact form that the function
f(R) should take in the context of f(R) theories of gravity. In order for such
theories to be viable, they must satisfy several criteria. Firstly, they should
be capable of adequately explaining cosmic expansion and the inflationary
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process [85]. Additionally, they should seamlessly recover the predictions of
General Relativity in the low-energy regime [87,104,105]. Another important
criterion is the absence of instabilities or pathologies within the theory.

Regarding the condition of stability, f(R) theories introduce an additional
dynamical degree of freedom associated with a scalar field. This can be more
clearly observed when employing the scalar-tensor representation of the theory.

2.3.1. Scalar-Tensor gravity

There are various models that fall under the category of scalar-tensor theories,
including f(R) theories. These theories introduce an additional scalar field
coupled to the metric, thereby adding a new degree of freedom. This modification
can be understood as the scalar field acting as a source of gravity coupling with
κ, causing the gravitational constant to be no longer constant but dependent
on the presence of matter through an auxiliary scalar field [107]. The action for
these theories takes the form

S =

∫
d4x
√−g

[
1

2κ

(
φR− ω(φ)

φ
∇µφ∇µφ− V (φ)

)
+ LM(ψ, gµν)

]
, (2.28)

where ω(φ) is an arbitrary function and V (φ) is a generalization of the cosmo-
logical constant.

By varying the action Eq. (2.28) with respect to the metric, we obtain the
equations of motion

φGµν +

[
�φ+

ω(φ)

2φ
(∇φ)2 +

V (φ)

2

]
gµν −∇µ∇νφ−

ω(φ)

φ
∇µφ∇νφ = κTµν ,

(2.29)

and with respect to the scalar field φ

(2ω + 3)�φ+
dω(φ)

dφ
(∇φ)2 + 2V (φ)− φdV (φ)

φ
= κT . (2.30)
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Scalar-tensor theories can be related to General Relativity via a conformal
transformation. Through the transformation φgµν → qµν , it is possible to
arrive at a representation that leads to the Einstein field equations, but with a
modified energy-momentum tensor that includes effects from the scalar field φ.
This scalar field generates curvature even in the absence of matter.

To illustrate this, let us consider the Brans-Dicke model with a vanishing
potential, where ω is a constant

S =

∫
d4x
√−g

[
1

2κ

(
φR− ω

φ
∇µφ∇µφ

)
+ LM(ψ, gµν)

]
. (2.31)

By applying the conformal transformation along with the following redefinition
of the scalar field

φ̃ =

∫
(2ω + 3)1/2

φ
dφ = (2ω + 3)1/2 lnφ , (2.32)

we obtain

S =

∫
d4x
√−q

[
1

2κ

(
R̃−∇µφ̃∇µφ̃

)
+ L̃M(ψ, qµν)

]
, (2.33)

where R̃ = φR.

These two actions are dynamically equivalent. However, the representa-
tion in accordance with Eq. (2.31), is referred to as the Jordan frame, while
representation with Eq. (2.33) is known as the Einstein frame.
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2.3.2. Scalar-Tensor representation of metric f(R)

gravity

To extract the scalar-tensor representation of metric f(R) gravity, the introduc-
tion of an auxiliary field α is required in the action

S =

∫
d4x
√−g

[
1

2κ
(f(α) + fα (R− α)) + LM

]
. (2.34)

Here, the subscript denotes the derivative with respect to the variable, fα ≡
df(α)/dα.

Consequently, the action presented in Eq. (2.26) becomes dependent on two
variables, the metric gµν and the auxiliary field α. By applying the principle of
least action to each of these variables, we find

fαα(R− α) = 0 . (2.35)

Therefore, if the second derivative fαα is non-zero, it implies α = R, thus
recovering Eq. (2.26).

Introducing the scalar field φ ≡ fR and the associated potential V (φ) ≡
αφ− f(α) allows us to rewrite the action as follows

S =

∫
d4x
√−g

[
1

2κ
(φR− V (φ)) + LM

]
. (2.36)

This formulation establishes a scalar-tensor representation of metric f(R)

gravity. It should be noted that this representation is valid only if fαα 6= 0.
Therefore, the theory can be considered equivalent to Brans-Dicke theory with
ω = 0, φ ≡ fR, and V ≡ fRR− f(R).

Consequently, we derive the following equations of motion

φRµν −
1

2
gµν (φR− V )− (∇µ∇ν − gµν�)φ = κTµν , (2.37)



Modified gravity 65

�φ+
1

3

[
2V − φdV

dφ

]
=

1

3
κT . (2.38)

Thus, two equations of motion arise, one representing a modification of the
Einstein equations, and the other describing the dynamics of the scalar field φ.
The latter equation reveals that permutations of the field φ can be viewed as
possessing an effective mass

m2
φ =

1

3

[
φ
d2V

dφ2
− dV

dφ

]
. (2.39)

Consequently, to avoid the presence of tachyons in the theory, this mass must
remain positive. Such a condition imposes further constraints on the permissible
forms of the function f(R).

Therefore, due to the induced dynamical scalar degree of freedom, metric
f(R) gravity is not generally a viable theory. Instead, the specific form of the
function f(R) needs to be appropriately specified in order for it to be viable,
satisfying all the conditions mentioned earlier and being in agreement with
observational data.

2.4. Palatini f(R) gravity

In analogy to the approach taken in General Relativity with the Einstein-Hilbert
action, we now turn our attention to the metric-affine formalism, which allows
for the consideration of an arbitrary connection rather than being limited to
the Levi-Civita connection. While the metric and Palatini formalisms yield
identical field equations for the Einstein-Hilbert action, the same cannot be
said for more general Lagrangians, as we will see in this section.

For the Palatini f(R) gravity theories, the action is given by [88,108]

S =

∫
d4x
√−g

[
1

2κ
f(R) + LM(ψ, gµν ,Γ)

]
, (2.40)
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where R represents the contraction of the Ricci tensor, determined using the
connection, with the metric given by R ≡ gµνRµν(Γ).

To provide clarity, let us first derive the field equations in the case when
the matter Lagrangian LM vanishes. By varying the action with respect to the
metric, we obtain

δgS =

∫
d4x
√−g 1

2κ

(
1

2
gµνf(R)− fRRµν

)
δgµν = 0 . (2.41)

Taking the trace of this expression, we arrive at the algebraic relation

fRR− 2f(R) = 0 . (2.42)

This equation allows us to determine the value of R when a specific form of
f(R) is chosen. We can face three different scenarios that are: it has some
solutions, it has no real solution or it is satisfied for every R. We will not
consider the last two situations because it leads to some inconsistencies in the
field equations. Hence, we find that

f(R) =
ci
2
fR , (2.43)

where ci is a constant. Substituting this expression into the field equations
Eq. (2.41), we obtain

Rµν −
ci
4
gµν = 0 . (2.44)

This will lead us to the Einstein field equations with a cosmological constant.
Needless to say that here we do not have just one value for the cosmological
constant, like in General Relativity, but a set of values corresponding to different
solutions. Actions like the one we have used here bring us to consistent field
equations in the vacuum.
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On the other hand, the variation of the action with respect to the connection
leads us to the following expression

δΓS =

∫
d4x
√−g δΓf(R)

2κ

=

∫
d4x
√−ggµνfR

δΓRµν

2κ

=

∫
d4x
√−ggµν fR

2κ

(
∇αδΓ

α
µν −∇νδΓ

α
µα

)
=

∫
d4x

2κ

[
δνα∇β

(
fR
√−ggµβ

)
−∇α

(
fR
√−ggµν

)]
δΓαµν = 0 .

(2.45)

Similarly to our earlier calculation in Eq. (2.23), we find that [88]

∇λ

(
fR
√−ggµν

)
= 0 . (2.46)

Unlike in metric f(R) gravity, there are no high order derivative terms in
the field equations derived for Palatini f(R) gravity.

Now that we have established that these theories can reproduce the results of
General Relativity in vacuum, let us proceed to include the matter Lagrangian
in the most general form possible. The matter Lagrangian depends on both
the matter fields and the metric and connection, denoted as LM(ψ, gµν,Γ). By
calculating the variation of the matter action with respect to the metric and
the connection, we obtain the definitions of the energy-momentum tensor and
the hypermomentum tensor, respectively

Tµν ≡ −
2√−g

δ(
√−gLM)

δgµν
, (2.47)

∆µν
λ ≡ −

2√−g
δ(
√−gLM)

δΓλµν
. (2.48)
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Consequently, the field equations in the presence of matter can be expressed
as

fRR(µν) −
1

2
f(R)gµν = κTµν , (2.49)

∇σ

(√−gfRgµσ) δνλ −∇λ

(√−gfRgµν)
+ 2
√−gfR

(
gµνSσλσ − gµρSσρσδνλ + gµσSνσλ

)
= κ∆µν

λ .
(2.50)

Where, Sλµν ≡ Γλµν − Γλνµ is the torsion tensor.

It is obvious that if we impose a torsionless condition for the connection it
will result in ∇λ (fR

√−ggµν) = 0, as it was for the vacuum case. However, this
condition can be met without imposing the torsion-less condition. By taking
the trace over indices ν and λ in Eq. (2.50), we obtain the equation

3∇ρ(
√−gfRgµρ) = 4

√−gfRgµρSσσρ . (2.51)

Substituting this relation into Eq. (2.50), we derive the following expression

−∇λ(
√−gfRgµν) + 2

√−gfR
(
gµνSσσλ −

δνλ
3
gµρSσσρ + gµσSνλσ

)
= 0 . (2.52)

The connection can be expressed in terms of its symmetric and antisymmetric
parts as Γλµν ≡ Cλ

µν + Sλµν . Similarly, the covariant derivative can be split into
these two components

∇λvµ = ∂λvµ − Cσ
λµvσ − Sσλµvσ = ∇C

λ vµ − Sσλµvσ . (2.53)

Here, ∇C
λ denotes the covariant derivative with respect to the symmetric part of

the connection. Using this notation, we can express the derivative of
√−gfRgµν
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as follows

∇λ(
√−gfRgµν) =∇C

λ (
√−gfRgµν)

+
√−gfR (gµσSνλσ − gνσSµλσ + gµνSσσλ) .

(2.54)

By substituting this expression into Eq. (2.52), we obtain

∇C
λ (
√−gfRgµν) =

√−gfR
(
gµσSνλσ − gνσSµλσ + gµνSσσλ −

2

3
δνµg

µρSσσρ

)
.

(2.55)

Considering that the metric tensor is symmetric in its two indices, i.e.,
∇C
λ (
√−gfRgµν) = ∇C

λ (
√−gfRg(µν)) i 0 = ∇C

λ (
√−gfRg[µν]), we can express

the previous relation as

∇C
λ (
√−gfRgµν) =

√−gfR
[
gµνSσσλ −

1

3
(δνλg

µρ + δµλg
νρ)Sσσρ

]
, (2.56)

and

gµσSνλσ − gνσSµλσ =
1

3
(δνλg

µρ − δµλgνρ)Sσσρ . (2.57)

Let us now make use of the projective invariance of the curvature scalar R,
which means that under projective transformations, that may include transla-
tions, rotations, scaling and shearing, the curvature scalar remains unchanged.
This invariance extends the concept of affine transformations. Consequently,
the Ricci curvature scalar remains invariant under transformations of the form
Γλµν → Γλµν + δλµξν transformations, where ξν represents an arbitrary vector.
Based on the preceding equations Eq. (2.56) and Eq. (2.57), it becomes apparent
that the symmetric part of the connection is linked to the antisymmetric part
through the contraction Sσσρ. In consideration of this, we introduce the following
new variables

Γ̃λµν = Γλµν +
2

3
δλνS

σ
σµ , (2.58)
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C̃λ
µν = Cλ

µν +
1

3
δλνS

σ
σµ , (2.59)

S̃λµν = Sλµν +
1

3
δλνS

σ
σµ . (2.60)

By employing this transformation, the equations derived from Eq. (2.56)
and Eq. (2.57) can be expressed as follows

∇C̃
λ (
√−gfRgµν) = 0 , (2.61)

and

gµσS̃νλσ − gνσS̃µλσ = 0 . (2.62)

The second equation, Eq. (2.62), combined with the antisymmetry property
of torsion with respect to the last two indices, implies S̃λµν = 0. Consequently, the
relation ∇λ (fR

√−ggµν) = 0 can be recovered without imposing the torsionless
condition.

Furthermore, Eq. (2.62) reveals that torsion arises solely from a vector
Aµ ≡ Sσσµ. As a result, we can express the connection as

Γλµν = C̃λ
µν −

2

3
Aµδ

λ
ν . (2.63)

The invariance of the Ricci scalar under projective transformations implies
that torsion does not have any influence on R. As observed, the connection Γλµν
consists of a symmetric component C̃λ

µν along with a vector-like contribution
−2/3δλνAµ. This vector accounts for the existence of torsion; however, it does
not impact the metric field equations. To achieve the complete elimination of
torsion, it is only necessary to impose four conditions: Aµ = 0.
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2.4.1. Scalar-Tensor representation of Palatini f(R)

gravity

Palatini f(R) gravity also possesses a scalar-tensor representation. Considering
the action Eq. (2.28) and assuming that ω(φ) is a constant, as found in Brans-
Dicke theories, we use the following relationships to adapt the Palatini f(R)

action to the scalar-tensor representation

φ ≡ fR , V (φ) ≡ RfR − f(R) . (2.64)

The equations of motion derived from this action are described in Eq. (2.29).
By comparing them with Eq. (2.49), we can determine the value of the parameter
ω = −3/2. Consequently, the equation of motion governing the dynamics of
the scalar field φ takes the form

2V (φ)− φdV (φ)

dφ
= κT . (2.65)

A notable distinction arises between the metric and Palatini approaches in
f(R) theories. Not only are their equations of motion inequivalent, but unlike
metric f(R) gravity, Palatini f(R) gravity does not propagate any additional
degree of freedom [104,105]. This is evident from the absence of terms involving
�φ. It is important to emphasize that this behavior is not a consequence of
special circumstances or fine-tuning to evade instabilities. Rather, the theory
inherently lacks such issues. Hence, we can deduce from Eq. (2.49) (equivalent
to Eq. (2.64)) that, unlike in General Relativity where matter fields exhibit a
linear relationship with curvature, in Palatini f(R) gravity, this relationship is
not necessarily linear, and higher-order terms may be present. The effect of the
Palatini f(R) Lagrangian is to induce non-linearities in the matter sector. As
a result, the vacuum field equations of Palatini f(R) theories exactly recover
those of General Relativity with an effective cosmological constant regardless of
the f(R) function chosen. This sharply contrasts with the metric formulation,
in which the space-time is generically curved even in the absence of sources,
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which can lead to long-range effects in the Newtonian/post-Newtonian regimes
(depending on model parameters) and induces an extra polarization mode
in the spectrum of gravitational waves. The Palatini formulation, instead,
predicts only two polarizations which propagate at the speed of light in vacuum,
making them consistent with current constraints coming from neutron stars
mergers [109–115].

2.5. Mapping modified gravity into General
Relativity

Palatini f(R) gravity is a member of the broader family of theories known as
Ricci-based gravity [91]. This family is composed of theories whose Lagrangians
are constructed from the trace of powers of the object Mµ

ν ≡ gµαR(αν)(Γ).
These models are treated within the Palatini approach, where the metric
and connection are independent and equally fundamental. Notable examples
within the class of Ricci-based theories include the previously mentioned f(R),
f(R(µν)R(µν)), as well as the Eddington-Inspired Born-Infeld models [116–119].

It can be shown that there is a correspondence between the solution space
of Ricci-based gravity and that of General Relativity [92, 120]. This implies
that Ricci-based gravity theories can be represented in the Einstein frame. In
other words, it is possible to perform a transformation on the original action in
such a way that ends up in the Einstein-Hilbert action, but with a modified
matter Lagrangian.

The action of these theories can be expressed as follows

S =

∫
d4x
√−g

[
LG(gµν ,R(µν)) + LM(φ, gµν)

]
, (2.66)

where LG represents the gravitational Lagrangian specific to the theory under
consideration, depending on the metric and the connection through the object
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R(µν). The matter Lagrangian LM, on the other hand, solely depends on the
matter fields φ and their coupling to the metric gµν .

Applying the principle of least action with respect to the connection, akin
to the procedure leading to Eq. (2.45), yields

∇λ

[√−g ∂LG
∂R(µν)

]
= 0 . (2.67)

By introducing an auxiliary metric defined as

qµν
√−q ≡ 2κ

√−g ∂LG
∂R(µν)

, (2.68)

we establish a Levi-Civita connection since

∇λ

[√−qqµν] = 0 , (2.69)

Γλµν =
1

2
qλρ[∂µqρν + ∂νqρµ − ∂ρqµν ] . (2.70)

Consequently, it is possible to represent the action of Ricci-based gravity in
terms of an Einstein frame, by means of which the equations of motion can be
reformulated in a manner reminiscent of Einstein’s theory. To demonstrate this,
a Legendre transformation of the action is performed, so it can be equivalently
written as

S =

∫
d4x
√−g

[
LG (gµν ,Σµν) +

∂LG

∂Σµν

(R(µν) − Σµν) + LM(ψ, gµν)

]
,

(2.71)

where Σαβ is an auxiliary field. This Lagrangian exhibits linearity in R(αν).
Subsequently, we derive the equations of motion with respect to the connection
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Γ:

∇λ

[√−g ∂LG

∂Σµν

]
= 0 , (2.72)

with respect to the metric gµν

∂LG

∂gµν
+

∂2LG

∂gµν∂Σαβ

(
R(αβ) − Σαβ

)
− 1

2
gµν

[
LG +

∂LG

∂Σαβ

(
R(αβ) − Σαβ

)]
=

1

2
Tµν ,

(2.73)

and with respect to the auxiliary field Σαβ

∂2LG

∂Σµν∂Σαβ

(R(µν) − Σµν) = 0 . (2.74)

The last condition reveals that whenever the Lagrangian is nonlinear with
respect to the auxiliary field, we have Σµν = R(µν), thereby recovering Eq. (2.66).
By introducing the auxiliary metric in a manner similar to the previous deriva-
tion

qαβ
√−q ≡ 2κ

√−g ∂LG
∂Σ(αβ)

, (2.75)

we can rewrite the action as follows

S =

∫
d4x

[√−qqµνR(µν)

2κ
−√−gV (gµν , qµν) + LM(ψ, gµν)

]
, (2.76)

where

V (gµν , qµν) =
∂LG
∂Σµν

Σµν − LG . (2.77)

Eq. (2.73) provides an algebraic relationship, enabling us to express gµν in
terms of qµν . Consequently, we can express Eq. (2.66) as the Einstein-Hilbert
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action (with Σµν = R(µν) due to the Lagrangian’s nonlinearity, as previously
mentioned)

S =

∫
d4x
√−q

[
R

2κ
+ L̃M

]
. (2.78)

where R is determined by the Levi-Civita connection compatible with qµν .

However, the right-hand side of the Einstein equations will now contain a
modified energy-momentum tensor

Rµν −
1

2
gµνR = κT̃µν . (2.79)

Since the Lagrangian of the theory is constructed from Mµ
ν ≡ gµαΣ(αν), we

have

gµα
∂LG
∂gαν

=
∂LG
∂Σ(µα)

Σ(αν) . (2.80)

Applying this relation to Eq. (2.73), along with Eq. (2.74) and utilizing the
definition of the auxiliary metric qµν , we can calculate the Ricci tensor and the
Ricci scalar, leading to

T̃ µν =
1

|Ω̂|1/2

[
T µν − δµν

(
T

2
+ LG

)]
. (2.81)

Here, we have employed the square root of the deformation matrix determinant.
The deformation matrix is a nonlinear function of the matter distribution and
defines the relationship established between the metrics

qµν = gµαΩα
ν . (2.82)

As demonstrated, it is possible to represent Ricci-based gravity theories in
the Einstein frame, where the gravitational Lagrangian takes the form of the
Einstein-Hilbert action coupled with a modified matter Lagrangian. Thus, the



76 Modified gravity

nonlinearities in the gravitational sector can be translated into nonlinearities in
the matter sector.

2.5.1. Mapping a scalar field matter Lagrangian

Our objective is to derive the modified matter Lagrangian that arises from the
mapping between a Ricci-based gravity theory coupled to a scalar field matter
Lagrangian and General Relativity. Starting with the action [89]

S =

∫
d4x
√−g

[
LG(gµν ,R(µν))−

1

2
P (X,φ)

]
. (2.83)

where Xµ
ν ≡ gµα∂αφ∂νφ, its trace is represented by X, and P (X,φ) is an

arbitrary function of its arguments.

We construct the energy-momentum tensor for this action using its definition
Eq. (2.47)

T µν = PXX
µ
ν −

P

2
δµν , (2.84)

where PX ≡ dP/dX.

Since the deformation matrix Ωµ
ν depends on the matter distribution, one

could use a representation as an infinite power series expansion, though the
Cayley-Hamilton theorem reduces the expansion to just four terms

Ωµ
ν = a0(X,φ)δµν + a1(X,φ)T µν + a2(X,φ)T µαT

α
ν + a3(X,φ)T µαT

α
βT

β
ν .

(2.85)

Further simplifications are possible for a scalar field. By considering
Eq. (2.84) and the property (Xµ

ν)
n = Xn−1Xµ

ν , we can express the above
relation as

Ωµ
ν = C(X,φ)δµν +D(X,φ)Xµ

ν . (2.86)
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where C(X,φ) and D(X,φ) are model-dependent functions.

Similar to the procedure used for X, we define Zµ
ν ≡ qµα∂αφ∂νφ. . Using

this definition and the relation between the metrics Eq. (2.82) and Eq. (2.85),
we obtain

Xµ
ν = (C +DX)Zµ

ν , Z =
X

C +DX
. (2.87)

Finally, we have established a relation of the form Z = Z(X,φ), allowing us
to express the action in the Einstein frame as

S =

∫
d4x
√−q

[
R

2κ
− 1

2
K(Z, φ)

]
. (2.88)

The corresponding energy-momentum tensor is then derived as

T̃ µν = KZZ
µ
ν −

K(Z, φ)

2
δµν . (2.89)

Comparing this with the previously derived energy-momentum tensor Eq. (2.81),

T̃ µν =
1

|Ω̂|1/2

[
PXX

µ
ν − δµν

(
XPX − P

2
+ LG

)]
, (2.90)

we obtain the expression for K(Z, φ)

K(Z, φ) =
1

|Ω̂|1/2
[2LG +XPX − P ] . (2.91)

Hence, we have obtained the expression for the matter Lagrangian in terms
of the variables in the Einstein frame.
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Another relationship can be derived by comparing the equations of motion
in both frames

Kφ =
Pφ

|Ω̂|1/2
. (2.92)

Therefore, if it is possible to write X(Z, φ), we will be able to expressK(Z, φ)

through Eq. (2.91). As we have demonstrated, once we determine the matter
Lagrangian and the gravitational Lagrangian, it is possible to transform a
problem in the context of modified gravity into a problem within the framework
of General Relativity. Thus, we have a bi-frame representation of the system
where both representations of the action are dynamically equivalent.

This approach offers numerous advantages, particularly from a computational
point of view, as the vast majority of techniques and software are developed for
working in the context of General Relativity. It is noteworthy that the reverse
mapping is also possible, and this mapping works in both directions. Thus, a
system initially described in General Relativity can be described in terms of a
modified gravity theory. Similarly, we can utilize Numerical Relativity to solve
problems within the context of modified gravity. The system initially described
in terms of modified gravity can be expressed in the Einstein frame for solving,
and once we have the solution, we can return to the original frame.

Even though we have shown in the present chapter the correspondence be-
tween Ricci-based gravity coupled to a single scalar field and General Relativity,
it has also been demonstrated in Ref. [89] that this correspondence holds when
considering multiple scalar fields.



Chapter 3.

Static boson stars in Palatini f(R)

gravity

As we have seen in the previous chapters, the tension between theory and
observations does not allow us to rule out the possible existence of other
compact objects beyond those known so far, namely, white dwarfs, neutron
stars, and black holes. Thus, theorizing about the possible existence of boson
stars also leads us to be able to observe the behavior of gravity in its strong-field
regime. In fact, the absence of a horizon could make the innermost regions of
those objects accessible to observation, potentially offering new insights on how
to extend Einstein’s gravity in the ultraviolet. In this sense, it is of interest
to explore how structural properties such as mass and radius of boson stars
could be affected by a modification of the gravitational Lagrangian [121,122].
Given that f(R) theories offer a large amount of freedom while keeping the
field equations within reasonable limits of simplicity, we will explore the impact
that high-energy modifications of the gravitational interaction of the f(R) type
could have on the astrophysical properties of boson stars. Similar studies have
already been carried out in other theories of gravity, such as in scalar-tensor
theories [123], Horndeski theories [124,125], and theories with Gauss-Bonnet
couplings [126–128], among others.

The approach we will take is as follows. Starting from the action of the
problem at hand, namely a boson star in the context of Palatini f(R) gravity

79
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(f(R) frame), we will make use of the correspondence between this theory and
General Relativity to translate our system into a nonlinear matter Lagrangian
coupled to General Relativity (Einstein frame). This will enable us to solve
the equations formulated in this context and then undo the transformation to
observe the resulting outcome from the perspective of Palatini f(R) gravity.
The present chapter is based on the publication [1].

3.1. Field equations and correspondence with
General Relativity

For simplicity, and to make contact with the existing literature, we will specify
the gravitational Lagrangian by the quadratic function

f(R) = R+ ξR2 . (3.1)

This is the Palatini version of the so-called Starobinsky model [103], and
represents theR−dependent part of the quantum-corrected extension of General
Relativity when quantum matter fields are considered in a curved space-time.
Within the metric formalism, this model has been exhaustively explored in
inflationary cosmological scenarios [79, 85,129–131], while the Palatini version
is known to yield interesting phenomenology involving nonsingular bouncing
cosmologies [117,132], nonsingular black holes [133], wormholes [134], and other
exotic compact objects [94].

We will be dealing with a theory of the form

Sf(R) =

∫
d4x
√−gR+ ξR2

2κ
− 1

2

∫
d4x
√−gP (X,Φ) . (3.2)

where gravity is described in terms of a Palatini Starobinsky function and
the matter sector is represented by a complex scalar field Φ with Lagrangian
P (X,Φ) = X − 2V (Φ), where X = gαβ∂αΦ∗∂βΦ, V (Φ) = −µ2Φ∗Φ/2, and µ
is the scalar field mass. Here we are defining R = gµνRµν(Γ), with Rµν(Γ)
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representing the Ricci tensor of a connection Γλαβ a priori independent of the
metric gµν .

Manipulating the field equations that follow from independent variations of
the metric and the connection, one finds that the explicit relation between Γλαβ
and gµν is given by

Γλµν =
qλρ

2
[∂µqρν + ∂νqρµ − ∂ρqµν ] , (3.3)

where qµν is introduced as a conformal transformation of the metric tensor gµν
using Eq. (2.68) and Eq. (2.82)

qµν ≡ fRgµν , (3.4)

with fR ≡ ∂f/∂R. Thus, the deformation matrix takes the form Ωα
ν ≡ fRδ

α
ν .

We note that the conformal factor fR must be regarded as a function of the
metric gαβ and the matter fields which is specified by the algebraic Eq. (2.42)
that yields

R = −κT , (3.5)

where T represents the trace of the matter stress-energy tensor, which is defined
as in Eq. (2.18)

Tµν ≡ −
2√−q

δ(
√−qP (X,Φ))

δgµν
. (3.6)

We will refer to the representation (3.2) of the theory as the f(R) frame.
Note that in this frame the scalar field Φ is minimally coupled to the metric
gµν .

As we have shown in Section 2.5, there exists a correspondence between
the theory (3.2) and the Einstein-Hilbert action of the metric qµν minimally
coupled to a matter Lagrangian K(Z,Φ) (from now on the Einstein frame),
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namely,

SEH =

∫
d4x
√−q R

2κ
− 1

2

∫
d4x
√−qK(Z,Φ) , (3.7)

where the kinetic term Z = qαβ∂αΦ∗∂βΦ is now contracted with the (inverse)
metric qαβ and R is the Ricci scalar of the metric qαβ, i.e., R = qαβRαβ(q).

Using Eq. (2.91) with the specified f(R) and P (X,Φ) functions it can be
shown that [89]

K(Z,Φ) =
Z − ξκZ2

1− 8ξκV
− 2V

1− 8ξκV
. (3.8)

As we can see, non-linearities in the gravitational sector of the f(R) frame have
been transferred into non-linearities in the matter sector of the Einstein frame.
Because of this relation between frames, in order to solve the field equations of
f(R) gravity coupled to a scalar field we will solve instead the corresponding
problem in General Relativity coupled to the non-linear scalar field matter
Lagrangian (3.8). Once the metric qµν and the scalar field Φ have been found,
we automatically have the metric gµν via the conformal relation (3.4).

To proceed, we will now consider the Einstein-Klein-Gordon system in the
Einstein frame. The corresponding stress-energy tensor is given by

T̃µν ≡ − 2√−q
δ(
√−qK(Z,Φ))

δqµν

=
1

2(1 + 4ξκµ2|Φ|2)
[(∂µΦ∗∂νΦ + ∂νΦ

∗∂µΦ) (1− 2ξκZ)

− qµν
(
∂αΦ∗∂αΦ (1− ξκZ) + µ2|Φ|2

)]
, (3.9)

which should not be confused with the Tµν defined in (3.6). Following the
approach presented in Section 1.2, we will consider spherical stars described by
a scalar-field profile of the form Φ(x, t) = φ(x)eiωt, where ω is the oscillation
frequency of the field. Since we are describing spherically symmetric config-
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urations we will use polar-areal coordinates. Our ansatz for the metric gµν
is

ds2
f(R) = −A(r)2dt2 +B(r)2dr2 + r2dθ2 + r2 sin2 θdϕ2 . (3.10)

Analogously, for the metric qµν we take

ds2
GR = −A(x)2dt2 + B(x)2dx2 + x2dθ2 + x2 sin2 θdϕ2 . (3.11)

Where A(r)2 and B(r)2 are respectively the temporal and radial components of
the metric g. They only have dependence on the radial coordinate r. Similarly
A(x)2 and B(x)2 are respectively the temporal and radial components of the
metric q and they depend on the radial coordinate x. These functions are
unknown and will be found by solving the Einstein equations for A(x) and B(x).
Then A(r) and B(r) can be found by using the conformal relation between
metrics qµν = fRg

µν . From the Einstein equations associated with the line
element (3.11), the components Gtt and Gxx lead to

∂xB
B =

1− B2

2x
+

1

1 + 4ξκµ2φ2

κx

4

{
µ2B2φ2

+

(
ω2φ2 B2

A2
+ ψ2

)(
1− 2κξ

(
−ω

2φ2

A2
+
ψ2

B2

))
+ 2κξB2

(
ω2φ2

A2
− ψ2

B2

)2
}
, (3.12)

∂xA
A =

B2 − 1

x
+
∂xB
B +

1

1 + 4ξκµ2φ2

κx

4

{
−2µ2B2φ2

− 2κξB2

(
ω2φ2

A2
− ψ2

B2

)2
}
, (3.13)

where the quantity

ψ ≡ ∂xΦ , (3.14)
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satisfies

∂xψ =
1

(1 + 4ξκµ2φ2)
[
1− 2ξκ

(
−ω2φ2

A2 + 3ψ2

B2

)] {
− ψ

(
2

x
+
∂xA
A − ∂xB

B

)(
1 + 4κξµ2φ2

) [
1− 2ξκ

(
−ω

2φ2

A2
+
ψ2

B2

)]
− ω2φ

B2

A2

[
1 + 2ξκ

(
ω2φ2

A2
+
ψ2

B2

)]
+ B2φµ2

(
1 + 4κξ

ψ2

B2

)
+ κξ

[
4ω2φ2ψ

A2

∂xA
A
(
1 + 4κξµ2φ2

)
− 4ψ3

B2

∂xB
B
(
1 + 4κξµ2φ2

)]
− 4κ2ξ2µ2φB2

(
ω4φ4

A4
+

3ψ4

B4

)}
. (3.15)

The above four equations Eq. (3.12)-Eq. (3.15) form the Einstein-Klein-Gordon
system that we need to solve to build spherically symmetric boson star models
in a quadratic f(R) theory. For future reference, it is convenient to write
explicitly the form of the conformal factor fR as follows:

fR = 1 + 2ξR = 1 + 2ξκ(X − 4V )

= 1 + 2ξκ

[
−ω

2φ2

A2
+
ψ2

B2
+ 2µ2φ2

]
. (3.16)

Note that using the relation X = fRZ we can also write the conformal factor
in terms of the Einstein frame variables

fR = 1 + 2ξκ

[
(1− 8ξκV )Z

1− 2ξκZ
− 4V

]
=

1 + 4ξκµ2φ2

1− 2ξκ
(
−ω2φ2

A2 + ψ2

B2

) . (3.17)
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3.2. Numerical analysis

3.2.1. Boundary conditions

In order to solve this system of differential equations suitable boundary condi-
tions have to be provided. We will regard the f(R) frame as the frame in which
the physical boundary conditions must be specified. Accordingly, we impose
asymptotic flatness at infinity and regularity at the origin for the line element
(3.10), which translates into

φ(∞) = 0 , ψ(∞) = 0 , B2(∞) = 1 , A2(∞) = 1 (3.18)

φ(0) = φ0 , ψ(0) = 0 , ∂rB
2(0) = 0 , ∂rA

2(0) = 0 .

The asymptotic flatness condition leads us to fR → 1 when r →∞. Recalling
the conformal relation Eq. (3.4), we can re-express the above conditions in the
Einstein frame variables. First, we take a look at the area of the 2-spheres, which
are related according to x2 = fRr

2. If one assumes that fR 6= 0 everywhere
then it follows that x→ 0 when r→ 0, so the boundary conditions read as

φ(∞) ≡ φ(x(r))|r=∞ = 0 , (3.19)

ψ(∞) ≡ ψ(x(r))|r=∞ = 0 , (3.20)

B(∞)2 ≡ B(x(r))2|r=∞ = fR(∞)B(∞)2 = 1 , (3.21)

A(∞)2 ≡ A(x(r))2|r=∞ = fR(∞)A(∞)2 = 1 , (3.22)

φ(0) ≡ φ(x(r))|r=0 = φ0 , (3.23)

ψ(0) ≡ ψ(x(r))|r=0 = 0 , (3.24)

(3.25)
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[
∂xB2

]
(0) ≡

[
∂xB2

]
(x(r))|r=0 = 2

√
fRB∂r(

√
fRB)∂xr|r=0

=
B2

√
fR
∂rfR|r=0 = 0 , (3.26)[

∂xA2
]

(0) ≡
[
∂xA2

]
(x(r))|r=0 = 2

√
fRA∂r(

√
fRA)∂xr|r=0

=
A2

√
fR
∂rfR|r=0 = 0 . (3.27)

Substituting Eq. (3.25) and Eq. (3.27) into Eq. (3.12) and Eq. (3.13) respec-
tively leads to B(0)2 = 1, A(0)2 = A2

0. This puts forward that the assumption
of asymptotic flatness and regularity at the origin in the f(R) frame implies
the same conditions in the Einstein frame.

3.2.2. Scaling and dimensionless quantities

In order to absorb some parameters to deal with dimensionless expressions, let
us perform a re-scaling of the system as r → µr, t→ ωt. The factor κ from the
Einstein field equations can be absorbed by a redefinition of the matter fields

φ→
√

2

κ
φ , ψ →

√
2

κ
ψ , (3.28)

which leaves the scaled matter fields dimensionless. Using the symmetry of the
equations of motion we can set

A → ω

µ
A . (3.29)

When performing the numerics, we will set the field mass to µ = 1. We now
introduce an expression for the Misner-Sharp mass Eq. (1.25) in the bi-frame
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way

M =
rmax

2

(
1− 1

B2(rmax)

)
=

xmax

2
√
fR(xmax)

(
1− fR(xmax)

B(xmax)2

)
(3.30)

≈ xmax

2

(
1− 1

B(xmax)2

)
, (3.31)

which gives us a numerical value for the mass related to the physical one, Mphys,
by

M =
µMphys

MPl
, (3.32)

where MPl is the Planck mass. Note that the Misner-Sharp mass is the same in
both frames. We introduce also an expression for the Noether charge, which
arises from the global U(1) symmetry Φ→ eiδΦ, and can be identified as the
particle number

N =

∫
Σ

dV
√−qqtν i

2
(Φ∗∂νΦ− Φ∂νΦ

∗)

= 4π

∫ ∞
0

dxx2ω
φ2B
A ,

(3.33)

and its relation with the physical value

Nphys =
2N

κµ2
. (3.34)

The notion of binding energy arises naturally from the above definitions as we
have seen in Section 1.2

Eb = M −Nµ , (3.35)

and its sign will determine the fate of the boson star. We have defined the
binding energy in the Einstein frame since in this frame is where this expression
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has been proven in other scenarios [42,49]. We will verify that this is also the
right choice for our case.

3.2.3. Numerical method

In order to solve numerically the re-scaled analogous Einstein-Klein-Gordon
system with the provided boundary conditions we use a fourth-order Runge-
Kutta scheme with adaptive stepsize. The conditions at the origin are evaluated
at x = 10−6 in order to avoid indeterminations. Then an equidistant grid with
spatial resolution ∆x = 0.0025 is used and a global tolerance of 1.5× 10−14.
Furthermore, for a given central value of the scalar field φ0 we have to adjust
which frequency ω (integrated in A after the scaling) matches the desired
asymptotic behavior. This is done by using a shooting method that integrates
from the origin towards the outer boundary. There exists a set of ω(n) values
that satisfies this condition, and as n increases also does the number of radial
nodes of φ. Here, we will focus on the nodeless n = 0 case, known as the ground
state or fundamental family.

From the scalings and redefinitions of parameters that we did in the previous
section, the gravitational coupling ξ, with dimensions of length square, is
now being measured in units of the inverse length defined by µ2 = 1/l2µ, such
that ξµ2 is dimensionless. On physical grounds one expects ξµ2∼ l2ξ/l2µ � 1

but since we are mainly interested in a qualitative study of theories with
positive and negative ξ, the coupling magnitude has been chosen large enough
to easily notice the relevant features of each case. Hence, we choose ξµ2 =

−0.1,−0.05,−0.02,−0.01, 0.01, 0.1 to explore f(R) theories, and we note that
ξ = 0 is equivalent to General Relativity. Absolute bounds on ξ in the Palatini
approach can be derived from the analysis of the weak-field limit presented
in [105], leading to |ξ| � 2× 1012 cm2. Another bound can be set by considering
scenarios in which electric and gravitational (Newtonian) forces become of the
same order of magnitude [119,135], leading to |ξ| < 6× 109 cm2. By contrast,
bounds on ξ in the metric formalism range from |ξ| < 5× 1015 cm2 using Gravity



Static boson stars in Palatini f(R) gravity 89

Probe B data to |ξ| < 1.7× 1018 cm2 by analysing the precession of binary
pulsars, while the Eöt-Wash experiment yields |ξ| < 10−6 cm2 [136].

3.3. Free massive scalar field
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Figure 3.1.: Existence curves of spherically symmetric boson stars in Palatini f(R)
gravity, obtained by solving equations Eq. (3.12)-Eq. (3.15). Solutions
with ξ < 0 are plotted and compared to General Relativity (GR). The
left panels display the Misner-Sharp mass and the particle number N
against the central value of the scalar field φ0. The same quantities are
plotted in the right panels against the frequency of the scalar field ω in
units of µ. Circles signal the last solution we could build in f(R). No
circle is shown in the General Relativity solutions as further solutions
can be built.
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Figure 3.2.: Existence curves of spherically symmetric boson stars in Palatini f(R)
gravity, obtained by solving equations Eq. (3.12)-Eq. (3.15). Solutions
with ξ > 0 are plotted. The left panels display the Misner-Sharp mass
and the particle number N against the central value of the scalar field
φ0. The same quantities are plotted in the right panels against the
frequency of the scalar field ω in units of µ. Circles signal the last
solution we could build in f(R). No circle is shown in the General
Relativity solutions as further solutions can be built.

Figures 3.1 and 3.2 show existence plots of various boson star solutions in
the theories considered i.e. with a potential of the form

V (Φ) = −1

2
µ2Φ∗Φ . (3.36)

In 3.1 negative values of the coupling constant ξ have been considered while
positive values of ξ have been considered in 3.2. Each solution is characterized
by a given central scalar field amplitude φ0 and a frequency ω, for which a mass
M and a particle number N is computed. These solutions are consistent with
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the imposed boundary conditions, being regular at the origin and asymptotically
flat.

As one can see from Figure 3.1 and Figure 3.2, for small values of φ0 the
solutions of f(R) theories are almost coincident with those of General Relativity.
However, for higher values of φ0 clear differences can be seen. This is due to
the fact that the quadratic corrections in the gravitational sector become more
relevant for high energy concentrations. The most notorious difference between
the boson stars of General Relativity and those of f(R) is in their domain of
existence. For General Relativity, the interval shown does not exhibit any upper
limit on the φ0 axis while this is not the case in f(R). Similarly to General
Relativity, boson stars in f(R) theories exist in a bounded range of frequencies
and masses, always with ω < µ. The case ω = µ represents the limit where
M = 0. We also observe that, as the gravitational coupling grows the maximum
mass slightly decreases and the point signalling a vanishing value of the binding
energy moves to lower values of the central scalar field amplitude and to larger
values of the oscillation frequency.

Let us now focus on the ξ < 0 case (Figure 3.1). As the coupling parameter
becomes more negative, the solutions depart more clearly from those of General
Relativity. The effect of the negative coupling is to generate a repulsive
gravitational component when the scalar field density is high enough. This
explains why slightly higher values of Mmax are allowed in these configurations,
because a larger number of particles can be sustained due to the repulsive force.

It is remarkable that at some point below ξ < −0.01, the dependence of M
with frequency departs from the well-known spiral behavior of General Relativity
and becomes a one-valued function. Deviations from the spiral pattern are
also observed in other theories of gravity [124,128,137], though in those cases
solutions can be found over a larger range of frequencies, as well as for different
potentials [138]. This behavior is not observed for positive values of ξ, which
still produce the same spiral pattern as General Relativity. In addition, between
ξ = −0.02 and ξ = −0.05 the solutions start showing a local minimum for M ,
which is not observed for positive values of ξ. Table 3.1 provides the values
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of φ0 and ω for a sample of our solutions, including those with the largest φ0

achievable, φlast0 , represented by a solid circle in the plots of Figure 3.1. We
note that we cannot compute numerically solutions beyond φlast0 , which tends
to φ2

0ω
2/A2

0 = −1/(2ξκ). Given the boundary condition (3.24), this value of φ0

would make the conformal factor diverge at the origin (see Eq. (3.17)), which
precludes finding solutions in this region of the parameter space.
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ξ Mmax φ0(Mmax) ω(Mmax) φ0(Eb = 0) ω(Eb = 0)

-0.10 0.6393 0.0749 0.855 0.1573 0.772
-0.05 0.6361 0.0756 0.854 0.1639 0.772
-0.02 0.6342 0.0758 0.854 0.1555 0.777
-0.01 0.6336 0.0761 0.854 0.1537 0.780
0.0 0.6330 0.0769 0.853 0.1523 0.779
0.01 0.6323 0.0784 0.853 0.1509 0.781
0.10 0.6270 0.0784 0.851 0.1438 0.786

hola
ξ ωmin φlast0 Alast

0 (µ/ω) ωlast

-0.10 0.697 0.2071 0.4662 0.697
-0.05 0.702 0.2380 0.3876 0.702
-0.02 0.713 0.2795 0.2838 0.713
-0.01 0.772 0.3066 0.2227 0.753
0.0 0.768 - - -
0.01 0.769 0.3251 0.0844 0.831
0.10 0.777 0.2567 0.0357 0.835

Table 3.1.: Values of the main physical quantities of our boson star models in
Palatini f(R) gravity. The upper Table reports: 1st column: value of
the gravitational coupling parameter; 2nd to 4th columns: parameters
for maximal-mass solutions; 5th and 6th column: parameters of solutions
with null binding energy. The bottom Table reports: 1st column: value
of the gravitational coupling parameter; 2nd column: value of minimal
frequency in the mass-frequency plot, 3th to 5th column: parameter
values for the last solution we are able to compute (circles in Figure 3.1
and Figure 3.2).
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Figure 3.3.: Radial profiles of the metric functions and of the scalar field functions
in both frames for ξ = −0.1. Five models of boson stars are plotted,
as indicated by the value of φ0 shown in the legend. Results for other
negative values of ξ are qualitatively similar and, thus, they are not
shown.
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In Figure 3.3 we show radial plots of the metric components and of the
scalar field for different values of φ0 in both frames to facilitate their comparison.
From those plots one can see that all the relevant functions are smooth and show
no divergences, not even for values close to the critical condition φ2

0ω
2/A2

0 =

−1/(2ξκ) (see the purple curve in the plots). A close look at the figures in
the f(R) frame reveals that the two metric functions A2(r) and B2(r) tend to
zero at the origin as the critical condition is approached. This is reasonable
due to the appearance of the conformal factor fR in the denominator of those
quantities, which has a rapid growth as one approaches the last point in the
existence curve, φ0→φlast0 , as shown in Figure 3.4. Similarly, in Figure 3.5
we see that the relation between the area of the spherical sectors in the two
frames significantly deviates from linearity near the origin as one approaches
this critical condition. The observed flattening of r2(x) is similar to what
happens in other Palatini models (coupled to electric fields) in which wormhole
solutions arise [133,134,139,140]. Unfortunately, our numerical exploration of
the parameter space has not led to any satisfactory wormhole solution, with a
minimum in r(x) followed by a bounce, like those found in [94], in which the
mapping method was used in combination with the static, massless scalar field
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Figure 3.4.: Radial profile of the conformal factor fR(x), for ξ = −0.1 for different
boson star configurations. Note that blue, orange, and green curves are
overlapped.
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solution of General Relativity as seed to generate new exotic compact objects
in the same f(R) theory as studied here. We suspect that the impossibility of
finding that type of solutions in our analysis is due to the incompatibility of
our boundary conditions at the center with those required to produce a bounce
in the radial function r(x). This interesting possibility will be further explored
elsewhere.
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Figure 3.5.: Relation between the area of the 2-spheres in both frames, for ξ = −0.1.
Notice the linearity between the areas in the two frames for most of
the domain. The right panel shows a zoom close to the origin where
the linear relation is not satisfied. Note that blue and orange curves
overlap.

Let us now focus on the ξ > 0 case (Figure 3.2). In this case, as the
gravitational coupling increases we see that features such as the local minimum
or the spiraling occur earlier than in General Relativity. This can be intuitively
justified by the fact that the positive contribution of the quadratic curvature
terms in the Lagrangian increase the gravitational attraction as compared to
General Relativity. For this reason, for a given central field amplitude φ0, the
corresponding solution supports less mass than in General Relativity, which
justifies why Mmax is slightly lower than in General Relativity. Correspondingly,
for the same scalar field density, a higher deformation of spacetime is achieved
as compared to General Relativity.
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Figure 3.6.: Metric parameter A0 evaluated at the origin vs φ0 for three different
values of ξ.

The characteristic values of the last solutions we can build for the ξ > 0

case are also reported on Table 3.1. In this case, we are unable to find further
solutions because Eqs. (3.12) and (3.15) diverge at the origin. The reason for
the divergence is that A0 tends to zero, as shown in Figure 3.6. We note that
while in General Relativity A0 tends to zero asymptotically, in f(R) with ξ > 0

it tends to zero abruptly. In analogy with the ξ < 0 case, in Figure 3.7 we
provide plots of the radial profiles of the metric components and of the scalar
field for ξ > 0. The corresponding figures show how the divergences at the
origin in Eqs. (3.12) and (3.15) as φ0→φlast0 translate into a diverging B2(r)

function. It is worth noting that even though A2
0 tends to zero for φlast0 , its

conformally related function A2
0 tends to the finite value 0.204. This confirms

that the conformal factor fR also tends to zero at the origin when φ0→φlast0 at
the same rate as A0 (see Figure 3.8). Finally, Figure 3.9 reveals that also in
the ξ > 0 case the linearity between the area of the 2-spheres in the two frames
breaks near the center. However, contrary to the ξ < 0 case (cf. Figure 3.5)
it is now the curve x = x(r) which flattens. A similar behavior has already
been observed in other exotic compact objects and might be related with the
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Figure 3.7.: Radial profiles of the metric functions and of the scalar field functions
in both frames for ξ = 0.1. Five models of boson stars are plotted, as
indicated by the value of φ0 shown in the legend.
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Figure 3.8.: Radial profile of the conformal factor fR(x), for ξ = 0.1 for different
boson star configurations.

0 2 4 6 8 10
x2

0

2

4

6

8

10

r2

φ0 =0.05

φ0 =0.15

φ0 =0.2

φ0 =0.25

φ0 =0.261

0.000 0.025 0.050 0.075 0.100
x2

0.000

0.025

0.050

0.075

0.100

r2

Figure 3.9.: Relation between the area of the 2-spheres in both frames, for ξ = 0.1.
As in Figure 3.5 the linearity between the areas in the two frames is
broken only close to the origin, as shown on the right panel, which is a
closer view of the inner region.

existence of wormhole structures in the Einstein frame geometry [94], although
in those cases r2(x) vanishes at a non-zero value of x.
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Further useful information regarding the observational features of these
solutions can be extracted by looking at their mass-radius relation and com-
pactness. The mass-radius relation is constructed by determining the radius
which contains 99% of the mass of the boson star and then plotting that mass
versus its corresponding radius. As one can see from Figure 3.10, only for
configurations near the maximum of the mass function and small radii do the
f(R) models deviate noticeably from the General Relativity result, yielding a
larger maximum if ξ < 0 and a smaller one if ξ > 0. For configurations with
radii below the maximum, the ξ > 0 branch follows the same trend as General
Relativity, presenting a local minimum in the mass which is accompanied by
an increase of the radius, whereas in the ξ < 0 case the mass function reaches a
local minimum (which is much larger than the General Relativity minimum)
and then grows again with a continuous reduction of its radius. As a result,
see Figure3.11, the compactness of the stars (measured by the ratio M99/R99)
becomes a monotonically growing function of the central field amplitude when
ξ < 0 but reaches a global maximum followed by a minimum in the General
Relativity and ξ > 0 cases. Thus, ξ < 0 allows for more compact objects in its
spectrum of solutions, offering a way to observationally discriminate between
General Relativity and this branch of the f(R) family.

As has been shown, we have taken advantage of the correspondence that ex-
ists between General Relativity and Palatini f(R) gravity to compute solutions
for boson stars, such that the original modified gravity theory can be turned
into a modified matter theory coupled to standard General Relativity.

From the above discussion, we can assert that the amplitude of the gravita-
tional coupling parameter ξ magnifies the disparity of the boson star solutions
in f(R) with respect to General Relativity, keeping the qualitative features of
the solutions essentially unchanged for low central densities but showing a trend
towards more compact objects and new structures already seen in scenarios
with wormholes at higher densities. Furthermore, an important difference with
respect to General Relativity is the limited range of scalar field amplitudes al-
lowed at the center of the star, which is much shorter than in General Relativity
(see Figure 3.1 and Figure 3.2). For relatively small central field amplitudes φ0,
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Figure 3.10.: Mass-Radius relation for three different values of ξ.
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Figure 3.11.: Compactness of boson stars as a function of the central scalar field
amplitude φ0 for the same values of ξ shown in Figure3.10.

we found that the solutions do not differ significantly from those of General
Relativity, though larger/smaller masses and compactness can be achieved for
a given φ0 depending on whether ξ < 0 or ξ > 0, respectively. It is interesting
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to note that the deviations become more important after the maximum mass
model, in the unstable branch of solutions. New features arise in the ξ < 0 case
regarding the dependence of the total mass and particle number of a solution
with its oscillation frequency. In General Relativity coupled to canonical matter,
these curves exhibit a characteristic spiral pattern which is lost in this case (at
least) in the range of parameters explored (see Figure 3.1). Although other theo-
ries of gravity may also depart from this spiral pattern [124,128,137], the model
considered here is peculiar because the range over which solutions are possible
is relatively small, which could facilitate its observational discrimination.

Though our focus was on analyzing canonical boson stars coupled to f(R)

gravity, the fact is that our computational method forced us to construct boson
star solutions in General Relativity coupled to unconventional matter (see
Eq. (3.8)). In this regard, we note that the total mass, field amplitudes, and
frequencies that we obtained are valid in both theories, namely, in f(R) coupled
to the scalar Lagrangian P (X,Φ) = X − 2V (Φ) and in General Relativity
coupled to the non-canonical scalar Lagrangian K(Z,Φ). It is also easy to see
from Figs. 3.5 and 3.9 that the radius of these stars will also be practically
indistinguishable because the conformal factor that relates the radial coordinates
r and x is essentially equal to unity at the surface. All this puts forward an
interesting degeneracy between the boson stars that arise from coupling General
Relativity to a non-lineal matter Lagrangian and the boson stars that arise
from coupling f(R) gravity to standard (or canonical) matter Lagrangian.

Moreover, we note that as one approaches the limiting value of the central
field amplitude, the conformal factor strongly deviates from unity (either
towards infinity if ξ < 0 or towards zero if ξ > 0) and leads to a deformation
of the relation between areas of the f(R) and General Relativity frames (see
Figs. 3.5 and 3.9) that reminds of the r(x) relation that appears in scenarios
with wormholes such as those described in [94].
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3.4. Self-interacting scalar field

The results obtained in the previous section for a free massive scalar field can
be extended to the case in which self-interactions are present, as we discuss
next. By considering a potential of the form

VSI(Φ) = −1

2
µ2|Φ|2 − 1

4
λ|Φ|4 , (3.37)

in which the second term is a quartic self-interaction term, the system of
differential equations to build the stellar models is modified as follows:

∂xB
B =

1− B2
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+
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1 + 4ξκ
(
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) κx
4
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(3.38)
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(3.39)
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(3.40)

For the numerical analysis it is convenient to re-scale the self-interaction
parameter as

Λ =
2

κ
λ . (3.41)

The corresponding boson star solutions are plotted in Figure 3.12. This figure
shows the existence curves for different values of the self-interaction parameter
Λ in General Relativity and in Palatini f(R) gravity. We only consider Λ ≥ 0

because a negative value would violate energy conditions. Figure 3.12 exhibits
that increasing the self-interaction coupling results in more massive boson stars
and in a larger maximum mass (see also [49]). Moreover, this figure reveals
that the existence curves shorten as the self-interaction parameter Λ increases.
For ξ < 0, A0 decreases faster as Λ increases producing the observed shortening
(compare the location of the green circles in the figure with those of the red and
blue circles). Paying attention to the green curves in Figure 3.12, corresponding
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Figure 3.12.: Equilibrium configurations of boson stars in Palatini f(R) gravity
for three different values of the coupling parameter ξ and of the
self-interaction parameter Λ. Top panel: total mass as a function of
the central value of the scalar field. Bottom panel: total mass as a
function of the frequency.
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to ξ = −0.1, one can see that for Λ = 10 the disparity with General Relativity
is hardly noticeable and for Λ = 100 the existence curve lays over the General
Relativity curve making its length the only remarkable difference. Meanwhile
for ξ = 0.1 (red curves) the curves are shorter by the fact that the conformal
factor now goes as

fR =
1 + 4ξκµ2φ2 + 2ξκλφ4

1− 2ξκ
(
−ω2φ2

A2 + ψ2

B2

) , (3.42)

making the condition fR = 0 easier to achieve.

As can be seen in Figure 3.12, the incorporation of self-interactions in the
scalar field potential does not contribute to change qualitatively the behavior
of the solutions found in Section 3.3. Furthermore, it contributes to aggravate
the degeneracy that exists between the boson stars that arise from coupling
General Relativity to a non-lineal matter Lagrangian and the boson stars that
arise from coupling f(R) gravity to standard (or canonical) matter Lagrangian.



Chapter 4.

Dynamical boson stars in Palatini
f(R) gravity

In the previous chapter, we successfully obtained solutions for boson stars
in Palatini f(R) gravity. Achieving these solutions motivate us to compute
numerical temporal evolutions, as described in Section 1.4. Specifically, we will
use the static configurations as initial data and employ Numerical Relativity
methodology to ascertain the system’s future endstate.

In the present chapter, written following Ref. [4], we aim to investigate the
time evolution of boson stars in Palatini f(R) gravity using state-of-the-art
numerical techniques. We will utilize recent improvements in numerical codes
to compute various aspects of boson stars. By studying these objects in Palatini
f(R) gravity, we seek to understand the effects of modified gravity on the
properties and dynamics of these compact objects. Our findings may shed light
on the fundamental nature of gravity in the strong gravitational regime and
contribute to our understanding of the astrophysical implications of modified
gravity theories.

107
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4.1. Framework

We have established the correspondence between a boson star in the Starobinski
model à la Palatini and General Relativity coupled to a non-linear matter
Lagrangian. In particular, there is an equivalence between the space of solutions
of Eq. (3.2) and Eq. (3.7). Where the matter Lagrangians keep the relation
described in Eq. (3.8).

Based on this equivalence, our approach is as follows: we formulate the
system in the context of f(R) gravity and then translate it into a problem of
General Relativity. In the Einstein frame, we employ numerical techniques
from Numerical Relativity to compute the temporal evolution of the system.
Once this computation is completed, we return to the f(R) frame to validate
the obtained results within that specific context.

In order to study the time evolution of boson stars we will use the 3+1
Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formalism of Einstein’s equa-
tions in the Einstein frame [39, 40], as introduced in Section 1.3.2 . In this
formalism the space-time is foliated by a family of spatial hypersufaces Σt

labeled by its time coordinate t. We denote the (future-oriented) unit normal
timelike vector of each hypersurface by nα = (1/α,−βi/α), and its dual by
nα = (−α, 0, 0, 0). Since the system we study has spherical symmetry, the
metric in the Einstein frame reads

ds2
EF =− (α2 − βxβx)dt2 + 2βxdxdt

+ e4χ
(
a(t, x)dx2 + x2b(t, x)dΩ2

)
,

(4.1)

where dΩ2 = dθ2 + sin2θdϕ2, α is the lapse vector, βx the shift vector, a(t, x)

and b(x, t) are the metric functions and χ is the conformal factor defined by

χ =
1

12
ln(γ/γ̂) . (4.2)
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Here, γ is the determinant of the spacelike induced metric on every hypersuface
Σt,

γαβ = qαβ + nαnβ , (4.3)

and γ̂ is the determinant of the conformal metric. The latter relates to the full
3-metric by

γ̂ij = e−4χγij . (4.4)

Initially, the determinant of the conformal metric fulfills the condition that
it equals the determinant of the flat metric in spherical coordinates γ̂(t = 0) =

x4 sin2 θ. Moreover, we follow the so called Lagrangian condition ∂tγ̂ = 0.

As shown in equations (1.52) - (1.56), the evolved fields are the conformally
related 3-dimensional metric functions a and b, the conformal exponent χ, the
trace of the extrinsic curvature K, the independent component of the traceless
part of the conformal extrinsic curvature, Aa ≡ Axx, Ab ≡ Aθθ = Aϕϕ and
the radial component of the conformal connection functions ∆̂x ≡ γ̂mn(Γ̂xmn −
Γ̂xmn(t = 0)) [45,49]. For the specific case under investigation and considering the
symmetries specified, the aforementioned evolution equations can be expressed
as:

∂ta = βx∂xa+ 2a∂xβ
x − 2

3
a∇̂xβ

x − 2αaAa , (4.5)

∂tb = βx∂xb+ 2b
βx

x
− 2

3
b∇̂xβ

x − 2αbAb , (4.6)

∂tχ = βx∂xχ+
1

6

(
αK − ∇̂xβ

x
)

, (4.7)



110 Dynamical boson stars in Palatini f(R) gravity

∂tK =βx∂xK −∇2α + α(A2
a + 2A2

b +
1

3
K2)

+ 4πα (ρ+ Sa + 2Sb) ,
(4.8)

∂tAa =βx∂xAa −
(
∇x∇xα−

1

3
∇2α

)
+ α

(
Rx
x −

1

3
R

)
+ aKAa − 16πα(Sa − Sb) ,

(4.9)

∂t∆̂
x =βx∂x∆̂

x − ∆̂x∂xβ
x +

1

a
∂2
xβ

x +
2

b
∂x

(
βx

x

)
+

1

3

(
1

a
∂x(∇̂xβ

x) + 2∆̂x∇̂xβ
x

)
− 2

a
(Aa∂xα + α∂xAz)

+ 2α

(
Aa∆̂

x − 2

xb
(Aa − Ab)

)
+
ξα

a

[
∂xAa −

2

3
∂xK + 6Aa∂xχ

+(Aa − Ab)
(

2

x
+
∂xb

b

)
− 8πjx

]
.

(4.10)

Where we denote with ∇̂ the covariant derivative with respect to the conformal
metric γ̂ while using ∇ to denote the covariant derivative with respect to the
physical metric.

When performing the time evolution of the above functions we have to specify
a stress-energy tensor and its 3+1 projection. The case we are concerned with is
a boson star in Palatini f(R) = R+ ξR2 gravity. Its expression in the Einstein
frame has been written in Eq. (3.9).

The projections are performed using the unit normal vector nα and the
induced metric γαβ. The matter source terms appearing in the BSSN evolution



Dynamical boson stars in Palatini f(R) gravity 111

equations are:

ρ =nµnνT̃µν

=
1

2(1 + 4κξµ2Φ2)

[
Π2 +

Ψ2

ae4χ
+ µ2Φ2

−κξ
(

Ψ2

ae4χ

)2

+ 3κξΠ4 − 2κξ
Ψ2

ae4χ
Π2

]
,

(4.11)

Sa =γxµT̃xµ

=
1

2(1 + 4κξµ2Φ2)

[
Π2 +

Ψ2

ae4χ
− µ2Φ2

−3κξ

(
Ψ2

ae4χ

)2

+ κξΠ4 + 2κξ
Ψ2

ae4χ
Π2

]
,

(4.12)

Sb =γθµT̃θµ

=
1

2(1 + 4κξµ2Φ2)

[
Π2 − Ψ2

ae4χ
− µ2Φ2

+κξ

(
Ψ2

ae4χ

)2

+ κξΠ4 − 2κξ
Ψ2

ae4χ
Π2

]
,

(4.13)

jx =− γµxnνT̃µν

=
1

2(1 + 4κξµ2Φ2)

[
1

ae4χ
(ΠΨ∗ + Π∗Ψ)

+
2κξΨ2

a2e8χ
(ΠΨ∗ + Π∗Ψ)− 2κξΠ2

ae4χ
(ΠΨ∗ + Π∗Ψ)

]
.

(4.14)

Correspondingly, the equations of motion for the scalar field are obtained
by reformulating the Klein-Gordon equation in terms of the following two
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first-order variables

Ψ := ∂rΦ ,

Π := nα∂αΦ =
1

α
(∂tΦ− βrΨ) .

(4.15)

In this way the equations of motion for the scalar field read

∂tΦ = βx∂xΦ + αΠ , (4.16)

∂tΨ = βx∂xΨ + Ψ∂xβ
x + ∂x (αΠ) , (4.17)

∂tΠ =
1− 2κξZ + κξ|Π|2
1− 2κξZ + 2κξ|Π|2

{
Ξ− κξΠ2

1− 2κξZ + κξ|Π|2 Ξ̄

}
, (4.18)
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where we have introduced the new variable Ξ in order to simplify the
notation, defined as

Ξ :=βx∂xΠ +
Ψ

ae4χ
∂xα +

α

ae4χ

[
∂xΨ + Ψ

(
2

x
− ∂xa

2a
+
∂rb

b
+ 2∂xχ

)]
+αKΠ− αµ2Φ

1− 2κξZ
+
α (Z − κξZ2 + µ2|Φ|2) 4ξκΦµ2

(1 + 4κξµ2|Φ|2) (1− 2κξZ)

− 4κξµ2α

1 + 4κξµ2|Φ|2
[
−Π

α
(∂tΦ

∗Φ + Φ∗∂tΦ)

+

(
Ψ

e4χa
+

Πβx

α

)
(∂xΦ

∗Φ + Φ∗∂xΦ)

]
+

ακξ

1− 2κξZ

[
(∂tΨ

∗Ψ + Ψ∗∂tΨ) e4χa− |Ψ|2 (4e4χa∂tχ+ e4χ∂ta)

e8χa2

Π

α

+

(
Ψ

e4χa
+

Πβx

α

)(
∂xΠ

∗Π + Π∗∂xΠ+

+
(∂xΨ

∗Ψ + Ψ∗∂xΨ) e4χa− |Ψ|2 (4e4χa∂xχ+ e4χ∂xa)

e8χa2

)]
,

(4.19)

and

Z ≡ qµν∂µΦ∗∂νΦ =
|Ψ|2
e4χa

− |Π|2 . (4.20)

Within the BSSN formalism we have gauge freedom to choose the kinematical
variables, i.e. the lapse function and the shift vector (see Section 1.3.3). As
customary in Numerical Relativity, we choose the so-called non-advective 1+log
condition for the lapse function [141], and a variation of the Gamma-driver
condition for the shift vector [142,143],

∂tα = βx∂xα− 2αK ,

∂tB
x = βx∂xB

x +
3

4
∂t∆̂

x − 3

4
βx∂x∆̂

x ,

∂tβ
x = βx∂xβ

x +Bx .

(4.21)
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We also provide the explicit form of the conformal factor fR. From the Einstein
field equations of the Palatini quadratic f(R) model it can be shown that
R = −κT . Therefore,

fR = 1 + 2ξκR =
1− 8κξV

1− 2κξZ
. (4.22)

In addition to the evolution equations, the Einstein-Klein-Gordon system
also contains the Hamiltonian and momentum constraint equations. These
equations read

H ≡ R− (A2
a + 2A2

b) +
2

3
K2 − 2κρ = 0 , (4.23)

Mx ≡∂xAa −
2

3
∂xK + 6Aa∂xχ

+ (Aa − Ab)
(

2

x
+
∂xb

b

)
− κjx = 0 .

(4.24)

The problem in question is set in the f(R) frame, the time evolution of
boson stars in Palatini f(R) gravity. We used the conformal relation Eq. (3.4)
to translate it to the Einstein frame, as can be seen in the energy-momentum
tensor modifications Eq. (3.9). In the Einstein frame we are able to use the
BSSN formalism to solve the evolution equations and then translate it to the
f(R) frame again. The metric of this frame is

ds2
f(R) = −gttdt2 + 2grtdrdt+ grrdr

2 + R̃2(t, r)dΩ2 , (4.25)

where the radial coordinate is expressed with an r in order to distinguish it
from the radial coordinate of the Einstein frame and it has been use R̃ with
a tilde for the spherical sector in order to distinguish it from the metric Ricci
curvature scalar.

It is important to note that selecting ξ = 0 corresponds to the case where
f(R) = R, which corresponds to the theory of General Relativity. Consequently,
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all the equations presented earlier transform into those discussed in Chapter 1
for a boson star within the framework of General Relativity.

4.2. Initial data

The initial data obtained in Chapter 3 is expressed in polar-areal coordinates,
where the line element is given by the expression Eq. (3.11), rewriting it here

ds2
pa = −A2(x)dt2 + B2(x)dx2 + x2dΩ2 , (4.26)

To solve for the static configurations of boson stars, it is assumed that the
scalar field can be expressed as Φ(x, t) = φ(x)eiωt, where φ(x) is the radial
distribution of the scalar field and ω is the frequency. The Einstein-Klein-Gordon
system is then derived. The integration is done providing proper boundary
conditions and using a fourth-order Runge-Kutta scheme with adaptive stepsize
and a shooting method, which leaves Φ0 ≡ φ(x = 0) as a free parameter. By
solving this system, the metric functions A2 and B2, as well as the frequency ω
and the radial distribution of scalar field φ(x), can be obtained. This results in
a collection of static configurations of boson stars, each described by a different
value of Φ0. They are plotted in Figure 3.1 and Figure 3.2. We show mass
profiles as function of the central scalar field, Φ0, for five different values of the
gravitational coupling ξ, two of them are positive, two negative and the zero
value which is equivalent to General Relativity.

The grid used to compute the initial data is a equidistant grid with spatial
resolution ∆xpa = 0.0025. The mass of the distributions is computed using
the Misner-Sharp expression Eq. (3.30). Notably, we find that the computed
mass remains consistent in both frames. This is because the Misner-Sharp
expression captures the mass that a distant observer would perceive, and
when observations are made far away from the matter sources, the frames are
effectively indistinguishable in terms of the computed mass.
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The binding energy EB, which is a crucial parameter in determining the
fate of the boson star, can be calculated using the mass and number of particles
in the Einstein frame, as this is the frame where the evolution of the system
will be performed. Specifically, the binding energy is given by EB = M − µN ,
where M is the Misner-Sharp mass.

Another crucial factor in determining its ultimate fate is its mass. Boson star
configurations with a central field value Φ0 lower than Φ0(Mmax) are expected
to be stable over time, where Mmax represents the maximum mass of the family
of boson stars configurations with the same gravitational coupling ξ, that is
each curve displayed in Figures 3.1 and 3.2. On the other hand, configurations
with a central field value Φ0 higher than Φ0(Mmax) are expected to be unstable.
For the latter case, the fate of unstable boson stars depends on its binding
energy. Specifically, the binding energy will determine whether the unstable
configuration migrates to a stable one (EB < 0) or if it disperses (EB > 0).
The interplay between the maximum mass and binding energy is critical in
understanding the long-term stability and dynamical behavior of boson stars.

Nine different configurations have been studied, and their initial parameters
are presented in Table 4.1. Each model’s name is composed of two letters,
where the capital letter indicates the boson star parameters used. Models
with names starting with ‘A’ are expected to be stable, while those start-
ing with ‘B’ and ‘C’ are considered unstable. The lowercase letter in each
model’s name represents one of the three different gravitational scenarios,
ξ = {−0.1, 0 ≡ General Relativity, 0.1}, denoted by ‘n’, ‘z’, and ‘p’, respec-
tively. We could have chosen other magnitude for ξ however qualitatively its
dynamic evolution will not experience any difference. We have chosen as mag-
nitude for the gravitational coupling parameter |ξ| = 0.1 since it is high enough
to make visible any difference with respect to General Relativity while being
one order of magnitude suppressed. Configurations with any other value for |ξ|
would have experienced different behavior quantitatively but not qualitatively.
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Model ξ Φ(x = 0) ω M EB = M − µN
An -0.1 0.02 0.95392 0.47925 -0.00692
Az 0.0 (GR) 0.02 0.95419 0.47514 -0.00679
Ap 0.1 0.02 0.95445 0.47108 -0.00665
Bn -0.1 0.1 0.82241 0.62571 -0.01758
Bz 0.0 (GR) 0.1 0.82296 0.62180 -0.01775
Bp 0.1 0.1 0.82350 0.61787 -0.01790
Cn -0.1 0.18 0.75311 0.53922 0.00576
Cz 0.0 (GR) 0.18 0.76904 0.50671 0.01353
Cp 0.1 0.18 0.77840 0.48574 0.01780

Table 4.1.: Parameters for nine initial boson star configurations. In each column
respectively we show the model name, its gravitational coupling factor,
the value of the scalar field at x = t = 0, its frequency, the Misner-Sharp
mass associated to this configuration and the binding energy in both
frames. Mind that if ξ = 0 the gravitational framework is General
Relativity.

4.3. Numerical method

Since the initial boson star configurations are obtained in polar-areal coordinates
while the time evolution is carried out using the numerical code NADA1D which
employs isotropic coordinates [144], a change of coordinates is necessary. By
comparing equations Eq. (4.1) and Eq. (4.26), we can deduce that

B2(xpa)dx
2
pa = e4χ(t,x)a(t, x)dx2 , (4.27)

x2
pa = e4χ(t,x)b(t, xpa)x

2
pa . (4.28)

Here, xpa and x represent the radial coordinates in polar-areal coordinates and
isotropic coordinates, respectively. Since the change of coordinates is performed
before the time evolution begins, i.e., at t = 0, the metric functions can be set
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as a(0, x) = b(0, x) = 1. Combining the two previous equations, we obtain

dx

dxpa
= B(xpa)

x

xpa
. (4.29)

From the fact that the spacetime resembles the Schwarzschild spacetime far
away from the object, we can deduce that

xmax =


1 +

√
B(xmax

pa )

2

2

xmax
pa

B(xmax
pa )

 , (4.30)

which will be used as the initial value to solve Eq. (4.29). For further details
about this calculation, we refer the reader to Appendix D of [54]. Upon
establishing the change of coordinates, we can then proceed to calculate the
initial conformal factor e4χ in isotropic coordinates, which is given by the
expression

e4χ(0,x) =
(xpa
x

)2

. (4.31)

This allows us to establish the relationship between the conformal factor and
the radial coordinates in the initial state of the system.

Once the coordinate transform has been carried out, we can determine the
initial values of the scalar field quantities in isotropic coordinates. Specifically,
we obtain the values of Φ(t = 0, x), Ψ(t = 0, x), and Π(t = 0, x).

After transforming the polar-areal grid into an isotropic grid we interpolate
with a cubic-spline over the radial coordinate in order to have the initial
configuration on a two patch composed grid. A geometrical progression in the
interior part up to a given radius and a hyperbolic cosine outside. Details about
the computational grid can be found in [145]. For the logarithmic grid the
minimum resolution used is ∆x = 0.025. With this choice the inner boundary
is then set to xmin = 0.0125 and the outer boundary is placed at xmax = 8000.
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The time step is given by ∆t = 0.3∆x in order to obtain long-term stable
simulations.

The BSSN equations are solved numerically using a second-order Partially
Implicit Runge-Kutta (PIRK) scheme [43, 44]. This scheme can handle in a
satisfactory way the singular terms that appear in the evolution equations due
to our choice of curvilinear coordinates. It is implemented in the NADA1D code
described in [144]. Further details about the numerical method can be found
in [49].

In Appendix A a convergence analysis of the simulations performed here is
reported.

4.4. Stable models

0 1000 2000 3000 4000 5000
0.0185

0.0190

0.0195

0.0200

0.0205

0.0210

Figure 4.1.: Time evolution of the central value of the scalar field for An, Az and
Ap models.

The fate of a boson star is determined by the maximum mass of its static
configurations, as previously discussed. Specifically, initial configurations with
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a central value of the scalar field lower than Φ0(Mmax) are expected to exhibit
stable evolution.

The time evolution results for models An, Az, and Ap are depicted in Figure
4.1. The plot illustrates the temporal behavior of the central value of the scalar
field, denoted as Φ0(t) ≡

√
Re[Φ(x = 0, t)]2 + Im[Φ(x = 0, t)]2. Remarkably,

considering that fR(x = 0) 6= 0 and based on the conformal relation between
metrics given by Eq. (3.4), it follows that Φ0 ≡ Φ(x = 0) = Φ(r = 0). Despite
all three configurations having the same initial value for the scalar field at the
center, Φ0(t = 0) = 0.02, the frequencies of the scalar field differ due to the
distinct gravitational theories in which they are described, as shown in Table
4.1.

In the context of General Relativity, i.e. in the evolution of the model Az,
it is expected that a stable boson star would be observed, with the central
value of the scalar field remaining constant. However, due to discretization
errors associated with the numerical grid used in the time evolution, physical
quantities, including the central value of the scalar field Φ0, instead exhibit
oscillations around an equilibrium value. In our particular simulation with the
used resolution, the amplitude of these oscillations is found to be ∆Φ = 5× 10−5.

Qualitatively, the same kind of oscillatory behaviour is found in f(R) gravity.
However, interestingly, the amplitudes of the oscillations are significantly larger
in f(R) gravity (see green and red curves in Fig. 4.1). For the models An
and Ap, the amplitudes are measured to be ∆Φ = 6.2× 10−4 and ∆Φ =

4.7× 10−4, respectively. Notably, the amplitude of the oscillations is found
to be proportional to the gravitational coupling parameter ξ, indicating a
dependence on the specific gravity model being considered. Furthermore, there
is a phase shift observed in the Ap model compared to the other two models,
causing the oscillations to shift downwards.

To study the impact of the polar-areal grid resolution on the amplitude
of the oscillations, we also performed numerical simulations by systematically
varying the resolution of the grid used for computing the initial data. The
results are displayed in Figure 4.2, which is similar to Figure 4.1, but shows data
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Figure 4.2.: Comparison of the time evolution of the scalar field central value for
An (green lines), Az (blue lines) and Ap (red lines) models with three
different grid resolutions for the initial data. Solid line ∆xpa = 0.0025,
dotted line ∆xpa = 0.005 and dashed line ∆xpa = 0.01.

for three different grid resolutions and in a shorter time span. We observe that
the amplitude of the oscillations strongly depends on the resolution. From our
convergence analysis, for models An and Ap the oscillation seems to tend to a
finite value as the resolution becomes finer rather than disappearing. This is in
contrast to General Relativity models, for which the oscillation decreases with
resolution as expected. The reason behind this effect is that, when non-linear
terms in the matter Lagrangian are present the change of coordinates and
subsequent interpolation introduce a larger source of numerical error that we
cannot get rid of at these resolutions, which contributes to the amplitude of
the mentioned oscillations. However, the qualitative output of the simulation
remains unaffected, as the amplitude of the oscillations is only up to 3% of the
total scalar field amplitude for a polar-areal grid resolution ∆xpa = 0.0025.

By performing several evolution with different resolutions, we are able to
infer the convergence order of the code with respect to the polar areal grid, which
is of first order. This loss of convergence is due to the change of coordinates from
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Figure 4.3.: Radial profiles of the conformal factor for models An (upper panel) and
Ap (bottom panel) at selected evolution times.

polar-areal to isotropic, also observed in [49] (see also the related discussion
in [2]). Moreover, since we do not further change ∆xpa in the simulations,
increasing the isotropic grid resolution for the computation of the initial data
does not lead to an improved convergence. We refer the reader to Appendix A
for details on the convergence analysis of the evolution code.

Regarding the behavior of the space-time variables in different theories, we
depict in Figure 4.3 radial profiles of the conformal factor fR for models An
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Figure 4.4.: Radial profile of the gtt and grr metric functions for the models An and
Ap at t = 1575.

and Ap at selected evolution times. To express the radial position in terms
of variables within the f(R) frame, we employ the area of the two-spheres R̃2

as a pseudo-coordinate due to the absence of an explicit expression for r. As
one can observe deviations from unity are only noticeable for points close to
the boson star center, where the maximum of the energy density is located,
and even in this case it is a minute difference. This suggests that the disparity
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between the metrics of both frames will be minimal. It can also be noticed that
the conformal factor exhibits oscillations of a similar nature as those previously
discussed for the maximum of the scalar field Φ0. The amplitude of these
oscillations is about 10−5. Furthermore, the opposite signs of the coupling
parameter ξ affect the radial profile of fR in opposite ways for both models.
Specifically, the negative sign of ξ (top panel in the figure) tends to enlarge the
conformal factor close to the boson star’s center, while the opposite effect is
observed for ξ = 0.1.

Next, in Figure 4.4 we show the radial profiles of the metric functions at
t = 1575 for models An and Ap. Those exhibit a behavior reminiscent to the
boson star profiles in the case of General Relativity. For both models, the metric
function gtt starts from a finite positive value below 1, gradually increasing
with radial distance and asymptotically approaching 1. As for the function grr,
a similar behavior is observed, but with an initial value at the center of the
star that is finite and greater than 1 and tending asymptotically toward 1. The
discrepancy between the two models becomes visible only close to the center of
the boson star. Though not shown here, these two functions are subject to the
aforementioned oscillations as well.

4.5. Unstable models

Let us now discuss the temporal evolution of the Bn, Bz, and Bp models, which
are located in the unstable branch and exhibit a negative binding energy. When
the only perturbation to the initial data is the discretization error, we observe
a migration of these unstable configurations towards the corresponding boson
star with the same mass but located in the stable branch, as depicted in Figure
4.5. The initial data for all three models is set to have Φ0 = 0.1, and it evolves
over time until reaching a configuration with Φ0 ≈ 0.055, which corresponds to
stars with approximately the same mass but situated in the stable branch.
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Figure 4.5.: Time evolution of the scalar field central value Bn, Bz and Bp models
displayed at the top, middle and bottom panel respectively.

In Figure 4.6 we plot radial profiles of the conformal factor fR at both the
initial time and selected times during the evolution. This figure shows that
the initial configuration of the conformal factor exhibits a significant deviation
from unity, which gradually diminishes over time. Specifically, for model Bn
(top panel), the value of the conformal factor at the center of the boson star
initially exceeds unity but decreases below 1 as the system approaches a stable
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Figure 4.6.: Evolution of the radial profiles of the conformal factor for models Bn
(upper panel) and Bp (bottom panel).

configuration. Conversely, in the case of model Bp (bottom panel) the conformal
factor follows the opposite trend. However, it is important to note that the
conformal factor consistently approaches one asymptotically, either increasing
for the Bn model or decreasing for the Bp model. Additionally, we show in
Figure 4.7 the radial profiles of metric functions gtt and grr. The central values
of both metric functions transition towards one during the evolution. We also
note that both the conformal factor and the metric functions exhibit oscillations,
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Figure 4.7.: Radial profile of the gtt and grr metric functions for the models Bn and
Bp.

which become more apparent when observing the central values over time, as
shown in Figure 4.5.

Turning our attention towards the time evolution of C models, characterized
by initial data Φ0 > Φ0(Mmax) and a positive binding energy EB > 0. These
models, denoted as Cn, Cz, and Cp, respectively, are representative of different
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gravitational theories and are also summarized in Table 4.1. The evolution of
the central value of the scalar field, Φ0, is depicted in Figure 4.8. It is observed
that Φ0 rapidly decreases with time, leading to a drastic radial expansion of the
boson star, which ultimately disperses away. Similar behavior is observed for
all three models, although slight quantitative differences exist in the evolution
of the central value of the scalar field.
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Figure 4.8.: Time evolution of the scalar field central value Cn, Cz and Cp models.

Let us now come back on the B models. However, if we do not rely on
discretization error but truly perturb the initial data for the Bn, Bz, and Bp
models, the resulting dynamics can be markedly different. In particular, we can
trigger the gravitational collapse of the boson stars, as first shown in [2]. To do
so, once we have solved the Einstein-Klein-Gordon system, which provides the
initial data for the evolution, we multiply the radial profile of the scalar field by
1.02, i.e., we add a 2% perturbation to this profile (3% for the Bp model). This
results in a slight violation of the constraints in polar-areal coordinates. After
adding the perturbation we do not recompute the spacetime variables A and B.
This decision is based on the observation that it only leads to a 3% increase
in the magnitude of the Hamiltonian constraint violation in regions near the
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center, when compared to the unperturbed case. We note that the introduced
perturbation is larger than the one associated with the discretization error,
but small enough not to substantially alter our original solution. Once the
perturbed scalar field has been obtained, we re-compute the remaining scalar
field quantities for the BSSN evolution.
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Figure 4.9.: Time evolution of the scalar field central value Bn, Bz and Bp models
with a perturbation. In dashed lines we point out the moment in which
an apparent horizon is formed for each model.

Figure 4.9 shows the evolution of the central value of the scalar field for
all three perturbed B models. When evolving these configurations with a
perturbation in General Relativity (blue curve), the outcome is the gravitational
collapse of the boson star and the formation of a black hole [49]. The central
scalar field is seen to grow up to a maximum value to then decay when an
apparent horizon appears, which is signaled with a vertical blue dashed line in
Fig. 4.9. It is computed using the apparent horizon finder described in [146].
The mass of the resulting black hole is slightly smaller than the mass of the
initial boson star, since some amount of the scalar field is not swallowed by the
black hole. This results in a long-lived cloud of scalar field around the black
hole (see [49] for further details).
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Upon analyzing the gravitational collapse of the Bn model, we observe that
after a few time steps, the code stops. If we examine the conformal factor
during this evolution, we can observe that it grows rapidly and eventually leads
to a divergence. This is due to the fact that the condition 1−2κξZ = 0 is being
met. Similarly, we find that the equations governing the scalar field evolution
also diverge. If we examine Eq. (4.18), we can see that 1 − 2κξZ appears as
a denominator. The divergence of Π would also induce divergences in Φ and
Ψ. Thus, we are unable to accurately predict the outcome of the gravitational
collapse for ξ = −0.1 using the formalism presented here.

For the Bp model, the gravitational collapse results in the formation of a
black hole surrounded by a cloud of scalar field, similar to the Bz case. However,
the innermost region of the collapsing object exhibits the formation of a finite-
size, exponentially-expanding baby universe connected with the outer universe
via a throat. This cosmic bounce scenario is always hidden under a horizon.
Given the implications and significant importance of this case, we will delve
into a more detailed analysis of the gravitational collapse of the Bp model in
the following chapter.

As we have seen, studying the time evolution of boson stars in Palatini
f(R) gravity reveals notable differences compared to General Relativity models.
These differences emphasize the profound influence of the gravitational theory
on the behavior and ultimate fate of boson stars both for stable and unstable
boson stars. Further, additional research is needed to obtain the initial data
in an isotropic grid in order to get rid of the coordinates transformation and
consequently minimizing the sources of numerical error.



Chapter 5.

Birth of baby universes

The formation of singularities under reasonable initial conditions in General
Relativity [147–149] has been the driving force of multiple efforts to understand
the nature and implications of these pathologies and also of possible mechanisms
that could avoid them. Quantum approaches and phenomenological descriptions
[150–154] suggest that our expanding universe could come from a previously
contracting phase and that geodesic completeness in black hole geometries
could be restored, among other possibilities [155], via a bounce in the radial
sector, leading generically to the existence of minimal nonzero bounds to the
area/volume in which matter fields can be concentrated. In this sense, the
classical collapse model of Oppenheimer and Snyder [156] offers a glimpse on
how a nonsingular collapse process could proceed. The innermost region of the
collapsing object could be modeled as a contracting cosmology which would
bounce at a certain critical density, preventing total collapse. The evolution
of the bouncing material should depend crucially on the formation or not of
a horizon, because the causal structures in both cases are radically different.
Without a horizon, the collapsing material should be ejected back to where
it came from, though the energy scales expected in such a quantum gravity
process have never been observed. If a horizon forms, the bounce should proceed
much more quietly for an external observer, as the interior would be causally
disconnected from it. What may happen inside is still a matter of speculation.
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In this chapter, based on the publication [2], we consider the gravitational
collapse of boson stars in Palatini quadratic f(R) gravity, that is known to
provide bouncing cosmological solutions [132]. This theory is also intimately
related to effective descriptions of nonsingular models of quantum gravity
[157,158].

5.1. Initial data and methodology

To perform the numerical simulation, we employed the methodology outlined
in Chapter 4. The stellar model studied is the Bp model, as outlined in Table
4.1. This particular model is characterized by its instability, with a positive
gravitational coupling parameter ξ = 0.1.

While the General Relativity case (Bz model) and the ξ = −0.1 case (Bn
model) required a perturbation of only 2% to initiate gravitational collapse, our
investigation revealed that the Bp model discussed in this study exhibited a
greater threshold for perturbation. In order to trigger collapse in the Bp model,
a 3% perturbation was needed. The Bp model displays enhanced robustness
against perturbations, capable of withstanding and accommodating higher levels
of disturbance.

The mentioned perturbation leads to a slight violation of the Hamiltonian
constraint, only 3% higher than the unperturbed case. The resolution of
the polar-areal grid has been increased with respect to the other scenarios
considered in the previous Chapter in order to improve the output (∆xpa =

0.0025). In the same sense, to properly capture the highly non-linear, strong-
field dynamics of the system close to the center of the star (see below) a
fairly small minimum resolution is required for the isotropic logarithmic grid,
namely ∆x = 1.25× 10−3. With this choice, the inner boundary is placed at
xmin = 6.25× 10−4 and the outer boundary at xmax = 1500, using a grid with
2× 104 zones. A time step that satisfies the Courant-Friedrichs-Lewy condition
is chosen to obtain long-term stable simulations, ∆t = 0.3∆x.
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We have reported in Appendix A a convergence analysis of the numerical
simulations performed here.

5.2. Outcome
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Figure 5.1.: Time evolution of the central value of the scalar field. The black solid
line indicates the instant at which the event horizon forms (t ≈ 80)
while the black dashed line is the time at which the apparent horizon
is found (t ≈ 87).

We start analyzing the dynamics of the collapse in the Einstein frame (i.e.
the General Relativity problem Eq. (3.7)). Figure 5.1 shows the evolution of
the central value of the scalar field Φ0. This quantity grows up to a maximum
to then decay when an apparent horizon appears. The figure also depicts the
instant at which the event horizon forms. The apparent horizon, defined as the
outermost closed surface on which all outgoing photons normal to it have zero
expansion, is a local notion and can be monitored on each time step. On the
contrary, the event horizon is computed a posteriori tracing backwards the last
trapped null geodesic [159]. The apparent horizon is first found at time t ≈ 87
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Figure 5.2.: Time evolution of the central values of the lapse function (upper panel)
and of the shift vector (bottom panel). The black solid line indicates
the instant at which the event horizon forms (t ≈ 80) while the black
dashed line is the time at which the apparent horizon is found (t ≈ 87).

and its mass, in units of M Pl/µ, is MAH = 0.61831, slightly lower than the
Misner-Sharp mass of the initial boson star, M = 0.61918. Figure 5.2 displays
the time evolution of the central value of the lapse function, α0, showing the
distinctive collapse-of-the-lapse once the horizon forms. In addition, the shift
vector at the origin β0 attains non-zero values. The behavior of both α0 and
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β0 reflect the singularity-avoiding slicing employed in the simulation and the
presence of a singularity at the origin. The small-amplitude oscillations of Φ0,
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Figure 5.3.: Five snapshots at different times of the metric functions qθθ, qxx and
qtt.
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α0 and β0 during the collapse are induced by the non-linearities of the f(R)

matter Lagrangian.

In 5.3 we show that the slicing condition chosen also affect the qθθ function,
which finds a limit value after the apparent horizon has been formed. The
metric function qxx grows rapidly near the center when the collapse starts,
reaching values that are several orders of magnitude higher than the initial
one. On the other hand, qtt, that initially is everywhere positive, decreases
changing sign and approaching zero from below at the center. Therefore, all
metric functions mark the presence of a black hole. In the matter sector, almost
all of the scalar field is swallowed by the black hole by the end of the simulation.
However, a remnant of scalar field is left outside the apparent horizon in the
form of a quasi-stationary long-lived cloud [49,160], as it is shown in Figure 5.4.
This explains the small mass disparity between MAH and M . We note that this
evolution is qualitatively identical to that of a collapsing boson star in General
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Figure 5.4.: Time evolution of the real part of the central value of the scalar field
for the perturbed boson star model Bp. The insets show a magnified
view of t ∈ [3000, 3050] in the evolution to highlight the oscillatory
behavior of the scalar field that lingers outside of the black hole.
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Figure 5.5.: Relationship between the area of the two-spheres in both frames at
five selected times. The background indicates the regions referred to as
baby universe and parent universe.

Relativity (without the ξR2 term in the f(R) functional). The outcome is also
a black hole whose parameters are determined by the progenitor boson star
model.

To analyze the evolution in the f(R) frame, we need to pay special attention
to the conformal factor fR that relates the metrics in both frames via Eq. (3.4).
As shown in Figure 5.5, at the onset and until t ≈ 80, the area of the two-spheres
of the f(R) frame, A∼ R̃2, decreases monotonically as the center1 of the boson
star is approached (blue curve). As the collapse proceeds and the energy density
grows at the center, fR evolves towards zero at a certain distance close to the
center of the boson star. As a result, a local minimum arises in R̃2 which
is soon followed by a local maximum, whose height grows exponentially fast
in time. The presence of a minimal two-sphere in R̃2 can be interpreted as
a cosmic bounce, i.e. as the hypersurface that connects the contracting two-
spheres (from the apparent horizon inwards) with the expanding two-spheres

1In the Einstein frame, the center is where qθθ = 0.
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of the newborn universe. This baby universe is thus growing out of the patch
comprised between the minimal two-sphere and the boson star center. We will
refer to the outer universe as parent universe while the term baby universe will
be used for the inner expanding patch. Their corresponding areas are displayed
in Figure 5.5. Following [161] the late-time phase of the collapse can thus be
interpreted as generating a quasi-permanent inter-universe wormhole, with the
bounce representing a kind of umbilical cord connecting the parent universe
and the baby universe.

One can verify that radial null geodesics between the minimal and maximal
spheres follow divergent trajectories, which refocus as they go from the maximal
sphere towards the center. Due to numerical limitations associated with the
singularity-avoiding slicing conditions used in the Einstein frame, we can not
confirm if they converge at the center. In particular, the region between the
center and the maximal sphere becomes unreachable beyond t = 91.8. In the
time interval t ∈ [84.6, 91.8] the expansion of the baby universe is exponential
and superluminal, always preserving the original R4 topology.

Figure 5.6 displays embedding diagrams illustrating the late-time spacetime
geometry through three representative snapshots. These diagrams were gen-
erated using the methodology outlined in [162, 163]. The procedure involves
taking the line element Eq. (4.25) and setting t to a constant value and θ to
π/2. The resulting metric induced on this specific hypersurface is

ds2
Σ =grr(r)dr

2 + R̃2(r)dϕ2

=dl2 + R̃2(l)dϕ2 .
(5.1)

Through a coordinate transformation, given by dl2 = grr(r)dr
2, the integration

of which yields

l(r) =

∫ r

0

√
grr(r′)dr

′ . (5.2)
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Figure 5.6.: Embedding diagrams of the late-time spacetime geometry at (a) t =
83.7, (b) t = 84.6 and (c) t = 85.5.

The metric in the embedding space takes the form

ds2
emb = dz2 + dρ2 + ρ2dϕ2 . (5.3)
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By comparing both metrics, it becomes evident that they share the same radial
and angular coordinates, denoted as ρ = R̃ and ϕ respectively. Consequently,
we are left with the relationship

dl2 = dz2 + dρ2 . (5.4)

Rearranging the above equation leads to

z(l) =

∫ l

0

√√√√1−
(
dR̃(l′)

dl′

)2

dl′ . (5.5)

Finally, the function R̃(z) is obtained, as depicted in Figure 5.6.

The diagrams display an infinite parent universe connected to a finite baby
universe through a throat. The bubble observed at the bottom part of the
diagrams corresponds to the baby universe and its size grows exponentially with
time. The time evolution of the position of the throat, apparent horizon, and
event horizon in the f(R) frame is displayed in Figure 5.7. The event horizon
appears at t ≈ 80, the throat at t ≈ 84.6, with a nonzero finite area, and
the apparent horizon at t ≈ 87. Note that the position of the throat initially
grows and then decreases towards an asymptotic value of R̃2 ≈ 0.89. This
is a consequence of the slicing employed in the simulation since R̃2, which is
equivalent to gθθ, is calculated in terms of qθθ and, as mentioned before, the area
of the two-sphere does not cover the whole domain. In practice, R̃2 approaches
the smallest value of qθθ available in the simulation. Since the area of the
minimal two-sphere depends directly on the energy density of the scalar field,
the slow absorption of the external scalar cloud indicates that it will eventually
shrink to zero, closing the umbilical chord connecting the two universes. The
evolution reveals that the throat is always hidden inside the event horizon,
preventing light rays emitted at the baby universe from escaping to the exterior
of the parent universe. Accordingly, distant external observers will not be able
to tell if the outcome of the collapse is an ordinary black hole or a black hole
with an inner expanding universe through electromagnetic observations.
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Figure 5.7.: Time evolution of the location of the throat, apparent horizon, and
event horizon in the f(R) frame using R̃2 as pseudocoordinate.

Let us now proceed to discuss the temporal evolution of the metric functions,
grr and gtt of the f(R) frame, as depicted in Figure 5.8. To express the radial
position in terms of variables within the f(R) frame, we employ the area of
the two-spheres R̃2 as a pseudocoordinate due to the absence of an explicit
expression for r.

Before the formation of the throat and the subsequent wormhole structure,
the metric functions approach the Schwarzschild solution at infinity and finite
values at the center. It is observed that gtt remains positive across its entire
domain, as it is expected (blue line). Within the parent universe, the opening
of the throat is coincides with a rapid increase in the value of grr near the
throat, while gtt experiences a decrease and even undergoes a sign change in
close proximity to the same region.

Within the baby universe, grr initially has a finite value at the throat and
exhibits nearly linear growth until reaching the point of maximum R̃2 (middle
panels). Subsequently, it remains relatively constant within the inner portion
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of the baby universe (left panels). The exponential growth of grr in conjunction
with the exponential expansion of spacetime establishes a linear relationship
between grr and R̃2. Similarly, a corresponding behavior is observed for gtt
with negative values. However, at the inner part of the baby universe gtt tends
toward zero.

Finally, it is worth noting that the line corresponding to t = 100.8 exhibits
non-smooth behavior, primarily due to the finite resolution of the computational
grid, resulting in numerical flaws. Additionally, due to the chosen slicing
technique, the line corresponding to t = 100.8 is not visible within the inner
part of the baby universe, and the others do not appear complete. It should also
be mentioned that the blue line does not appear depicted in the baby universe
because it is still not formed at that time.

Summing up, our analysis of the gravitational collapse of boson stars in
a metric-affine modified gravity scenario indicates that new dynamics able
to trigger dramatic deformations of the space-time structure may be excited
at very high energy densities. We have seen that a small patch of space can
inflate giving rise to an exponentially growing baby universe. This universe
expands at superluminal speed and the minimal surface is sustained by the
energy density of the scalar field, which leaks in from a quasistationary cloud
that remains bounded around the black hole. This exterior solution is consistent
with previous results in the literature of General Relativity [50, 164] and the
numerical evolution suggests that the minimal area will decay to zero when
the scalar cloud is completely absorbed by the black hole. In our model, this
occurs in parallel with the development of an apparent horizon, making the
internal process analogous to a cosmic bounce and preventing its observation by
external observers. During the stationary phase, the spacetime is qualitatively in
agreement with results from the loop quantization of black holes [165], heuristic
black bounce models [166, 167], and other static solutions [168, 169], though
always preserving an Euclidean topology.

These new features persist for all values of the gravitational coupling param-
eter ξ and for other scalar field central amplitudes Φ0 as long as they are in the
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Figure 5.8.: Five snapshots at different times of the metric functions gtt and grr. The
left panel illustrates the inner section of the baby universe, spanning
from the central point to the local maximum of the 2-sphere area. The
central panel showcases the outer part of the baby universe, extending
from the local maximum of the 2-sphere area to the throat. Finally, the
right panel pertains to the parent universe, encompassing the region
from the wormhole throat to asymptotic infinity.

unstable branch and the perturbation is high enough to excite the gravitational
collapse. The fact that metric-affine theories lead to cosmic bounces quite
generically suggests that other forms of matter, such as unstable neutron stars,
and other gravity theories could lead to outcomes similar to those presented in
the current chapter2. In this sense, we note that the density-dependent modified
dynamics of Palatini theories is also present in some instances of scalar-tensor

2Cosmic bounces may also occur in theories in which the relation between the metrics gµν
and qµν is not conformal [117, 119], which lie beyond the f(R) family. Moreover, the
torsion in Einstein-Cartan theories can also induce cosmic bounces [170].
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theories of the Horndeski type (compare [171] and [172]). This suggests that the
phenomenology that we find here in the Palatini f(R) framework could also be
present in other relevant gravity theories, which deserves further independent
analysis.

We have seen that the throat area shrinks as the external quasi-stationary
scalar cloud is absorbed, suggesting that it will eventually close. However,
numerical limitations do not allow to establish a direct correlation between the
throat area and the density of the scalar field across it at late times.
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Wormholes
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Chapter 6.

Historical approach to wormholes

The emergence of wormhole-like structures in the context of gravitational
collapse in Palatini f(R) gravity, shown in Chapter 5 has captured our interest
in these intriguing phenomena. Our aim is to expand our understanding of
wormhole structures and their features in various astrophysical scenarios.

Wormholes [161,173,174], extensively portrayed in science fiction, are topo-
logical structures that allow the connection of distant points in space and time.
Acting as shortcuts through the fabric of spacetime, they enable effectively
superluminal travel between remote locations, although the speed of light is
not surpassed locally.

The study of wormholes lies at the interface between General Relativity
and Quantum Physics, where speculation finds fertile ground and the interplay
of quantum and astrophysical effects takes center stage. As we are pointing
out, due to their elusive nature, the existence of these structures remains a
topic of speculation. Numerous completely valid arguments can be held against
their existence, leading to legitimate skepticism. Nevertheless, investigating
wormholes offers an avenue to explore the foundational aspects of the currently
accepted theories and expand our understanding of the underlying reality while
pushing the boundaries of our current models. Despite their speculative nature,
they are grounded in the firmly established frameworks of Quantum Physics and
General Relativity. Though the final implications might seem unconventional,
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speculative, controversial, or purely theoretical, researching wormholes deserves
attention due to the valuable insights they can offer into the boundaries and
limitations of the underlying theoretical frameworks.

Moreover, the enormous implications of the existence of wormholes requires
a rigorous analysis of their consistency as theoretical solutions and a careful
consideration of their empirical implications. One of our tasks as theoretical
physicists is thus to understand the conditions under which objects of this type
could be experimentally accessible. Engaging in speculations of scenarios that
lie beyond experimental reach is in clear contradiction with the principles of
the scientific method, and this is clearly not our purpose. In fact, the study
of wormholes and their observational features is as rigorous a study as the
properties of black holes and of other compact objects, such as neutron stars
or white dwarfs. This is so because in all such scenarios, one is facing strong
gravity effects, with peculiar signatures that characterize each specific object.

Lastly, it is pertinent to mention that in the conventional approach to
solving the equations of a given gravitational system, one typically begins with
a reasonable description of the matter sources and then employs the Einstein
field equations to derive the corresponding spacetime geometry. However,
when dealing with wormhole configurations, the process has been traditionally
implemented the other way around, namely, a geometry with some desired
properties is proposed and then the Einstein field equations are used to derive
the corresponding matter distribution. A popular argument in favor of this
approach is that an absurdly advanced civilization should be able to find the
energy sources needed to produce that geometry, transferring the problem to
the engineering side.

In this chapter, our main goal is to thoroughly explore the concept of
wormholes and how it has evolved over time, starting from its introduction by
Einstein and Rosen to its current interpretation in modern physics. We’ll delve
into the fundamental theories and important milestones that have contributed
to our understanding of these fascinating topological structures.
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6.1. Einstein-Rosen bridge

After Schwarzschild’s publication of his solution to Einstein’s equations in
1916 [175,176], Flamm initiated the study of these solutions in the same year
and presented an analysis [177]. In this work, he provided the initial insights
into what is now recognized as a wormhole, although he did not actively consider
this possibility and did not extend his study in this direction [178]. The pivotal
breakthrough occurred in 1935 when Einstein and Rosen began to work with
the concept now known as wormhole, which they introduced as a bridge [179].
Their primary objective was to develop a framework capable of describing the
nature of particles while avoiding the presence of singularities, since classical
particles conventionally involve an abstraction where their mass is confined to a
single point, leading to geodesic singularities. In their manuscript, Einstein and
Rosen considered charged and also neutral particles. The former is built using
the Reissner-Nordström solution while the latter follows from the Schwarzschild
one.

In order to construct the (neutral) Einstein-Rosen bridge, we start from the
Schwarzschild solution in vacuum

ds2 = −
(

1− 2M

r

)
dt2 +

1

1− 2M/r
dr2 + r2dΩ2 . (6.1)

By introducing the coordinate transformation u2 = r − 2M , the line element
transforms as

ds2 = − u2

u2 + 2M
dt2 + 4

(
u2 + 2M

)
du2 + (u2 + 2M)2dΩ2 . (6.2)

This choice of coordinates excludes the interior of the Schwarzschild domain
r ∈ [0, 2M) while covering the asymptotic region twice r ∈ [2M,∞). Then,
the new coordinates span from u ∈ (−∞,∞) and encompass the exterior of
the Schwarzschild region twice. For a sphere at a fixed and unchanging time
t =constant, the area of the sphere is governed by the spherical sector of the
metric A(u) = 4π(u2 + 2M)2. Consequently, we note that the area of the two-
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spheres defined in the Einstein-Rosen metric, as opposed to the Schwarzschild
scenario, does not approach zero as u→ 0. Instead, as illustrated in Figure 6.1,
at u = 0, the area possesses a non-zero minimum value. The location of this
minimal area defines what is now called the throat of the wormhole.
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Figure 6.1.: Representation of the area of spheres within the Einstein-Rosen space-
time at a fixed time. A notable feature is the existence of a non-zero
minimum area at u = 0, which is now commonly referred to as the
throat of the wormhole.

In order to model charged particles, Einstein and Rosen implemented a
similar change of coordinates using the Reissner-Nordström solution, which
describes a black hole with electric charge.Though the motivation behind this
construction was to establish a model for singularity-free particles, this Einstein-
Rosen bridge can be rescaled using the mass M to any magnitude, allowing to
reach astrophysical sizes if desired.

The neutral and charged bridges can be extended to encompass more general
scenarios, as we will show next. Given that the construction of an Einstein-Rosen
bridge fundamentally relies on a geometry with horizons, one can generically
investigate spacetimes that include an event horizon at rh. The corresponding
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line element can be formulated as

ds2 = −e−ϕ(r)

(
1− b(r)

r

)
dt2 +

1

1− b(r)/rdr
2 + r2dΩ . (6.3)

The function b(r), referred to as the wormhole shape parameter, satisfies
b(rh) = rh, and the function ϕ(r) is named the redshift function for obvious
reasons. Now, we introduce a coordinate transformation in a manner similar to
what we did for Schwarzschild, u2 = r − rh

ds2 = −e−ϕ(x)

(
1− b(x)

x

)
dt2 +

1

1− b(x)/x
dx2 + x2dΩ . (6.4)

For clarity in notation we have defined x = u2 + rh. Here, the radial coordinate
x behaves non-monotonically, decreasing from infinity to a minimum at rh,
which corresponds to the throat of the wormhole.

The Einstein-Rosen bridge can be understood as an artifact of the coordinate
choice. The chosen coordinates naturally cover the Schwarzschild exterior twice.
This corresponds with a specific space-like hypersurface of the maximally
extended Schwarzschild spacetime. Through the utilization of Kruskal-Szekeres
coordinates [180, 181], we can effectively depict both the outer and inner
regions of the Schwarzschild solution, as illustrated in Figure 6.2. By means of
the Kruskal-Szekeres coordinates, we achieve a comprehensive description of
both the exterior and interior sectors of Schwarzschild, delivering a maximal
extension of this spacetime. This extension shows us that the singularity
at the horizon manifests itself as a coordinate singularity, while the central
singularity stands as a physical one. Moreover we can split the maximal
extended Schwarzschild spacetime in four distinct regions: regions I and III
correspond to two identical Schwarzschild exteriors (r > 2GM), whereas regions
II and IV represent the Schwarzschild interior (r < 2GM), incorporating the
physical singularity—analogous to black and white holes, respectively. The
central point, where the regions converge, is the location of the Einstein-Rosen
bridge. In this visualization, light rays follow null paths at 45º. The blue
hyperbolic lines denote surfaces of constant radius which increase outwards in
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Figure 6.2.: Diagram depicting the maximally extended Schwarzschild spacetime
using Kruskal-Szekeres coordinates. Regions I and III denote two
distinct yet identical Schwarzschild exteriors where r > 2GM . While,
regions II and IV are also identical, but time-reversed, housing the
physical singularities (shaded area). Constant r coordinates are depicted
with blue hyperbolic lines, while constant t coordinates are indicated
by straight orange lines.

regions I and III, while the radius diminishes outwards in regions II and IV.
The orange radial lines represent surfaces of constant time.

Usually, when one thinks of Schwarzschild spacetime, it is perceived as
static. However, this geometry is only invariant under translations t→ t+ ∆t

in regions I and III, corresponding to the exterior regions of the maximally
extended Schwarzschild spacetime. Yet, this same translation in regions II
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and IV represents a spacelike motion. Thus, a spatial surface such as the
one defined by the Einstein-Rosen bridge, spanning from (U, V ) = (−∞, 0)

to (U, V ) = (∞, 0) passing through (U, V ) = (0, 0), will exhibit this spacelike
evolution, pushing it into region II. Consequently, the wormhole throat only
forms briefly. It will subsequently close at a velocity high enough to prevent
anything from traversing it. The outcome is the division of spacetime into two
disconnected entities, both of them containing singularities. It is also easy to
deduce from the diagram, considering that light rays travel along lines drawn
at 45º angles, that there is no way for an object initially located in region I to
reach region III without exceeding the speed of light. Therefore, any observer
attempting to cross the Einstein-Rosen bridge will inevitably fall into a black
hole, as that is essentially what it is.

6.2. Wheeler wormhole

After the work of Einstein and Rosen, the field remained quiet for twenty years
until 1955 when Wheeler revived it introducing a new concept, namely, the
notion of Geon [6]. We briefly introduced these objects as precursors to boson
stars in Section 1.1, but now we will delve into them in greater detail.

Wheeler, like Einstein and Rosen, aimed to create a self-gravitating entity free
from divergences, capable of fulfilling the role that particles traditionally play.
To recap what we discussed in the first chapter, these objects are characterized
by a smooth, classical electromagnetic field coupled to gravity, which adopts
a closed circular toroidal form with a high concentration of energy. The
gravitational attraction associated with the field energy sustains this system,
resulting in what Wheeler termed "mass without mass." Wheeler’s exploration
also led to the introduction of the tunnel concept, known as wormhole today.
This notion was developed based on Gauss’s theorem and the concept of charge
as a flux integral. Gauss’s theorem explains that the measurement of electric
charge on an object corresponds to the number of field lines traversing a closed
surface enclosing the object, a geon for the case we are interested in. Wheeler



154 Historical approach to wormholes

noticed that setting up a Riemannian manifold does not necessarily require
spacetime to be topologically simple. Rather, he suggested considering a metric
where two far-apart regions are linked by a tunnel, as illustrated schematically
in Figure 6.3. Consequently, the count of field lines penetrating the surface of
the closed sphere encircling one end of the tunnel equals the number passing
through the sphere enclosing the other end. As a result, we measure the same
charge but with opposite signs on both sides of the tunnel. This approach
effectively quantified a charge without an actual enclosed charge. Thus, adding
Wheeler’s concept of "mass without mass" the concept of "charge without
charge."

Figure 6.3.: Schematic depiction of the wormhole concept introduced by Wheeler.
Closed blue lines represent electric field lines.

From this point, Wheeler expanded his research in two different directions.
On one hand, he delved into studying quantum gravity processes that could
explain the nature of geons. This path led him to conceptualize what we now
refer to as spacetime foam [182]. In his analysis, he emphasized the crucial
role of the Planck length, near which spacetime ceases to have the smooth
and continuous nature depicted in classical physics. Instead, it becomes a
turbulent and fluctuating medium due to quantum mechanical effects. This
foam-like structure of spacetime introduces fluctuations and uncertainty into
the fabric of the universe’s geometry. Wheeler suggested that at the spacetime
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foam level (the Planck scale), wormholes (or geons) might sporadically emerge
and disappear, giving rise to a dynamic interplay of interconnected spacetime
regions.

On the other hand, Wheeler’s research pursued the analysis of classical
dynamics associated with these configurations. Together with Misner, this path
led to the establishment of the concept "Physics is Geometry" [183]. It is in
this article [183] that the term "wormhole" first appears. Their objective was
to utilize an appropriate non-trivial topology alongside sourceless Maxwell’s
equations coupled to Einstein’s gravity to construct models of electric charges
and particles from classical physics.

It is now known that these geon solutions display instability, driving the
energy distributions to form black holes via gravitational collapse. This outcome
inevitably hides any associated topological effects behind event horizons. In
previous chapters of this thesis we have already seen effects of this type in the
case of scalar matter.

6.3. Traversable wormholes

After the contributions of Wheeler and Misner, the field remained relatively
quiet again for about 30 years. During this time, research was conducted on the
spacetime foam and the geons, seeking to deepen the understanding of these
objects. There were also isolated contributions that presented new geometries,
such as the Ellis wormhole, a special case of the Ellis drainhole [184, 185].
Interestingly, Morris and Thorne later rediscovered this concept, without being
aware of Ellis’ prior work.

The field was reinvigorated in 1988 when Morris and Thorne published their
work [186]. In their study, they presented a new approach to constructing
wormholes that avoid the issues encountered in the Einstein-Rosen bridge or the
geon. As we have seen, the Einstein-Rosen bridge was a coordinate artifact, so
any attempt to traverse it would result in the subject being absorbed by a black
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hole. Even if the geometry described by Einstein and Rosen could remain static,
the tidal forces would be extremely high, tearing apart anyone attempting to
cross it into countless pieces. Furthermore, an observer located far from the
bridge would never see their adventurous companion cross the bridge, nor could
they receive any news from the other side. On the other hand, geons turn out
to be unstable, and the range of sizes in which they could exist, on the order of
the Planck length, eliminates any possibility of a human traversing them.

Morris and Thorne introduced wormhole configurations that were traversable,
in the sense that a human being could hypothetically cross them within an
acceptable lapse of time and without perishing during the journey. To meet
these criteria, the wormholes they proposed had to be free from horizons and
naked singularities.

The procedure for constructing these wormholes goes in the opposite direc-
tion from the conventional way in which solutions to Einstein’s equations have
typically been found. Instead of starting with a plausible matter distribution
and subsequently solving Einstein’s equations to determine the spacetime ge-
ometry, their method involved imposing an interesting geometry and solving
Einstein’s equations in order to find the matter distribution responsible for
producing such a geometry.

Let us start by writing the metric that characterizes this particular class of
wormholes

ds2 = −e2Φ(l)dt2 + dl2 + r(l)2dΩ2 . (6.5)

Here, the coordinate l spans from negative infinity to positive infinity. The
function r takes is non-monotonic, starting from infinity at the asymptotically
region, decreasing to a minimum value of r(0) = r0 at the throat of the wormhole,
and then growing back to infinity as it tends to the other asymptotically region.
This value r0 serves as a measure for the size of the wormhole’s throat. To
illustrate the behavior of the function r(l), refer to Figure 6.4. This value r0

also indicates the size of the wormhole throat.
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Figure 6.4.: Representation of the behavior of the radius r(l) of the spheres sur-
rounding the throat of the Morris-Thorne wormhole with respect to
proper distance. The throat of the wormhole is located at l = 0.

To simplify our analysis, let’s transform the previous line element into
Schwarzschild-like coordinates

ds2 = −e2Φ(r)dt2 +
1

1− b(r)/rdr
2 + r2dΩ2 . (6.6)

Where Φ(r) is referred to as the redshift function. To satisfy our condition of
avoiding horizons, Φ(r) must remain finite across its entire range. Additionally,
we label b(r) as the shape function, which satisfies b(r0) = r0 at the throat. It’s
worth noting that the metric exhibits asymptotic flatness.As it is evident, grr is
a function that exhibits divergence at the wormhole throat. Nevertheless, the
radial proper distance is well-defined

l(r) = ±
∫ r

r0

(
1− b(r)

r

)1/2

dr , (6.7)

with a null value at the throat, l(r0) = 0.
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As previously mentioned, once we have selected the metric, we can proceed
to calculate the curvature tensors. Utilizing Einstein’s field equations, we can
then deduce the components of the energy-momentum tensor. The spherical
symmetry imposed on the system leads to a diagonal energy-momentum tensor,
represented as

Tµν =


−ρ(r) 0 0 0

0 pr(r) 0 0

0 0 pt(r) 0

0 0 0 pt(r)

 . (6.8)

The energy-momentum tensor components and the metric functions relate as
follows

ρ(r) =
1

κ

b′

r2
, (6.9)

pr(r) =
1

κ

[
2

(
1− b

r

)
Φ′

r
− b

r3

]
, (6.10)

pt(r) =
1

κ

(
1− b

r

)[
Φ′′ +

(
Φ′ − b′r − b

2r2 (1− b/r)

)(
Φ′ +

1

r

)]
. (6.11)

Here, κ = 8πG. Rearranging these equations, we obtain

b′ = κρr2 , (6.12)

Φ′ =
b− κτr3

2r2 (1− b/r) , (6.13)

pr(r)
′ = 2

pt − pr
r
− (ρ+ pr) Φ′ . (6.14)
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The last equation Eq. (6.14) results from differentiating equation Eq. (6.10)
with respect to r, while substituting the expressions for b′ and Φ′′. Alternatively,
this equation can be derived from the conservation of the energy-momentum
tensor, ∇νT

µν = 0.

The system we are dealing with is composed of three equations and five
unknowns—b, Φ, pr, pt, and ρ. Different approaches can be used to solve it,
either by imposing equations of state, defining the expression for the shape in
advance, or defining the redshift function in advance, too.

By integrating equation Eq. (6.12), we obtain

b(r) = b(r0) + κ

∫ r

r0

ρ(r)r2dr , (6.15)

and considering the mass definition

m(r) =
4πr0

κ
+ 4π

∫ r

r0

ρ(r)r2dr , (6.16)

we find that b(r) = m(r)κ/4π. Thus, the mass distribution depends on the
shape function.

6.3.1. Traveling time, acceleration and tidal forces

As mentioned earlier, for a wormhole to be traversable by a human (or an
extraterrestrial being), it should allow the traveler to cross within a reasonable
lapse of time without perishing to the effects of accelerations or tidal forces
during the journey.

Let us consider a scenario where a traveler initiates the journey from a
station situated at l = −l1 and aims to conclude the trip at a station on the
opposite side of the wormhole throat at l = l2 [186]. The traveler’s velocity as
measured by a stationary observer at distance r is denoted as v(r), and it can
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be expressed as

v = e−Φ dl

dt
= ∓ e−Φ

(1− b/r)1/2

dr

dt
. (6.17)

While the proper velocity of the traveler is given by

vγ ≡ v

(1− v2/c2)1/2
=
dl

dτ
= ∓ 1

(1− b/r)1/2

dr

dτ
. (6.18)

The stations must be positioned far enough from the wormhole throat to
ensure that spacetime in that region remains nearly flat (b/r � 1). Moreover,
the gravitational redshift experienced by signals transmitted from the stations
to infinity, denoted as ∆λ/λ = e−Φ − 1 u −Φ, must be sufficiently small
(|Φ| � 1). The gravitational acceleration measured at the stations should be
comparable to or less than Earth’s gravitational acceleration (|Φ′| ≤ g⊕).

Hence, the amount of time measured by both observers at the stations and
the traveler will be, respectively,

∆t =

∫ l2

−l1

dl

veΦ
, (6.19)

∆τ =

∫ l2

−l1

dl

vγ
. (6.20)

As an example, Morris and Thorne require that these quantities do not exceed
a year, ∆t ≤ 1 year, ∆τ ≤ 1 year.

To determine the acceleration, we establish an orthonormal basis for the
traveler’s proper frame denoted as {e0̂′ , e1̂′ , e2̂′ , e3̂′}, and express it in terms of
the orthonormal basis of static observers, represented by {et̂, er̂, eθ̂, eϕ̂}

e0̂′ = γet̂∓ γver̂ , e1̂′ = ∓ γer̂ + γvet̂ , e2̂′ = eθ̂ , e3̂′ = eϕ̂. (6.21)
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Consequently, the acceleration experienced by the traveler, as expressed in
their proper reference frame, is determined by

|R| =
∣∣∣∣∣
(

1− b

r

)1/2

e−Φ
(
γeΦ
)′∣∣∣∣∣ ≤ g⊕ , (6.22)

which we have required to be weaker than Earth’s surface acceleration.

Finally, we must ensure that tidal forces remain within a sufficiently tolerable
range, preventing the traveler from being ripped apart during their passage
through the wormhole’s throat. These tidal forces, experienced by the traveler,
are determined by the equation

∆aµ̂
′
= −Rµ̂′

ν̂′α̂′β̂′
U ν̂′ηα̂

′
U β̂′ , (6.23)

where U µ̂′ = δµ̂
′

0̂′
represents the traveler’s four-velocity in their reference frame,

and ηα̂′ signifies the separation between two arbitrary parts of their body. In
the traveler’s reference frame, this separation is purely spatial, U µ̂′ηµ̂′ = 0, with
η0̂′ = 0. Consequently, the acceleration also has a purely spatial nature, as
denoted by the components

∆a1̂′ = −R1̂′0̂′1̂′0̂′η
1̂′ , ∆a2̂′ = −R2̂′0̂′2̂′0̂′η

2̂′ , ∆a3̂′ = −R3̂′0̂′3̂′0̂′η
3̂′ . (6.24)

We need to restrict tidal forces to values experienced on Earth. Expressing
explicitly the Riemann tensor, we have∣∣∣∣(1− b

r

)[
Φ′′ + (Φ′)2 − b′r − b

2r(r − b)Φ′
]∣∣∣∣ ∣∣∣η1̂′

∣∣∣ ≤ g⊕ , (6.25)

∣∣∣∣ γ2

2r2

[
v2

(
b′ − b

r

)
+ 2 (r − b) Φ′

]∣∣∣∣ ∣∣∣η|η2̂′ |
∣∣∣ ≤ g⊕ . (6.26)
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Hence, when constructing a wormhole using the method proposed by Morris
and Thorne, the three constraints of time, acceleration, and tidal forces presented
here must all be taken into account.

6.3.2. Energy conditions

The Null Energy Condition (NEC) emerges from the Raychaudhuri equation,
which describes the evolution of geodesic congruences. The NEC asserts that the
sum of energy density and radial pressure associated with any form of matter or
energy within a spacetime should remain non-negative for any observer following
a null trajectory. In other words, for any future-directed null vector kµ, the
principle states that the inequality Tµνkµkν ≥ 0 must be satisfied [187,188]. In
our present analysis, this condition translates into the requirement that

ρ+ pr ≥ 0 and ρ+ pt ≥ 0 . (6.27)

By combining the aforementioned equations, namely Eq. (6.9) and Eq. (6.10),
we arrive at

ρ+ pr =
1

κ

[
b′

r2
+ 2

(
1− b

r

)
Φ′

r
− b

r3

]
. (6.28)

Evaluating this expression at the throat and considering the finite value of the
redshift function, we have

ρ+ pr|r0 =
1

κ

[
b′

r2
0

− b

r3
0

]
. (6.29)

Moving forward, we invoke the flaring-out condition, a concept which asserts
that r(l) reaches its minimum at the throat and progressively increases as it
moves away. Consequently,

d2r

dl2
> 0 . (6.30)
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Equating the line elements provided earlier, Eq. (6.5) and Eq. (6.6), yields

dr

dl
=

√
1− b(r)

r
, (6.31)

and differentiating this with respect to l,

d2r

dl2
=

1

2

(
b

r2
− b′

r

)
. (6.32)

Hence, the flaring-out condition implies that(
b

r2
− b′

r

)
> 0 . (6.33)

Revisiting Eq. (6.29), we reach the conclusion that at the throat,

ρ+ pr

∣∣∣
r0
< 0 . (6.34)

Then, we observe that the flaring-out condition triggers the violation of the NEC
near the throat. Furthermore, it signals the violation of all pointwise energy
conditions [161], including the weak, dominant, and strong energy conditions.
Thus, it can be seen that the throat of the wormhole will be supported by what
is termed exotic matter, a label used for matter that violates the NEC.

It’s important to clarify that violating the energy conditions does not
automatically eliminate the potential existence of Morris-Thorne wormholes.
Firstly, such violations do not directly imply a negative energy density. The
sign of the energy density ρ depends directly on the radial derivative of the
shape function b′, which is not necessarily negative. In that case, it is the radial
pressure that would exhibit a negative sign to sustain the wormhole. Secondly,
the energy conditions are grounded in the realm of classical physics. However,
there are examples, both theoretical and experimental, where quantum fields
exhibit violations of the energy conditions, such as the Casimir effect—although
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it’s important to note that the Casimir effect’s violation of the energy conditions
are typically on the order of ~.

The violation of the pointwise energy conditions prompted the formulation
of the averaged energy conditions along timelike or null geodesics. These allow
for occasional energy condition violations, as long as the integral sum along the
curve respects them. Unfortunately, traversable Morris-Thorne wormholes also
breach these averaged energy conditions, particularly when possessing spherical
symmetry. However, it remains an open question whether quantum field theory
permits violations of the averaged energy conditions. Therefore, if experimental
confirmation of the averaged energy conditions were possible, the wormholes
described in this section would struggle to survive. Nevertheless, designs for
wormholes that might bypass these challenges still remain viable.

Moreover, if we consider theories of modified gravity, the Raychaudhuri
equation— from which the NEC is derived—provides us with a generalized NEC
of the form T eff

µνk
µkν ≥ 0. Here, T eff

µν is an effective energy-momentum tensor
that includes the usual energy-momentum tensor, as shown in, for instance,
Eq. (3.9). Consequently, there can be matter distributions that violate the
generalized NEC, in order to support the wormhole, while satisfying the usual
NEC, resulting in wormholes supported by non-exotic matter [189–193].

6.4. Thin-Shell Wormholes

Morris and Thorne considered non-localized matter distributions, spherical
symmetry, and temporal independence when establishing their formalism. Nev-
ertheless, these assumptions can be relaxed to yield remarkably valuable insights.
An interesting strategy to mitigate the violation of the NEC involves confining
exotic matter solely within an infinitesimally thin layer situated at the worm-
hole’s throat. This approach is facilitated by the thin-shell formalism and the
cut-and-paste procedure [161,174,194–196]. By considering two smooth mani-
folds one may cut them so that each one becomes bounded by a time-like surface.
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After that, one may paste them together at their boundary time-like surfaces,
producing a single manifold with a thin hypersurface that connects two regions.
In fact, across the thin hypersurface several discontinuities on geometric and
matter quantities may exist [197], then one needs to use a suitable framework to
describe these structures (one may use tensorial distributions instead of tensorial
functions). In essence, the geometric and matter quantities must satisfy at the
junction thin hypersurface the so-called junction conditions [198,199].

Now, let us provide a generalized overview of this procedure to describe
spherically symmetric wormholes. We start with two distinct manifolds, denoted
as M+ and M−, each associated with its own metric—namely, g+

µν and g−µν ,
respectively. By joining these two manifolds along their respective boundaries
Σ+ and Σ−— making the identification Σ = Σ+ = Σ− =M+∩M−—we obtain
the unified manifold denoted asM =M+∪M−. An illustrative representation
is depicted in Figure 6.5.

Figure 6.5.: Schematic representation of the embedding diagram for a thin-shell
wormhole. In orange we have depicted theM− universe while using
blue for theM+ universe. The green line represents the location of the
thin-shell.
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Considering that both manifolds are spherically symmetric their associated
line elements are

ds2 = −e2Φ± (r± )

[
1− b± (r± )

r±

]
dt2± +

[
1− b± (r± )

r±

]−1

dr2
± + r2

± dΩ2
± .

(6.35)

Where the plus sign corresponds to the M+ manifold and the minus sign
corresponds to the M− manifold. In order to analyse the glued spacetimes,
we move to a consistent mathematical framework to study geometric and
matter fields, i.e, we start to consider tensorial distributions instead of tensorial
functions. In this approach, the metric distribution can be written as

g
µν

= g+
µνΘ + g−µν(1−Θ) , (6.36)

where underlined quantities denote distributions and Θ is the Heaviside step
function, which takes the value 1 inM+, 0 inM− and any reference value on
the junction hypersurface. We also ask the metric to be continuous across the
shell, that is [gµν ] = 0, where we have defined the notation [X] = X+|Σ−X−|Σ.

Having established the metric, we can now follow a similar approach as
employed for the Morris-Thorne wormhole. By solving the Einstein field
equations, we establish a connection between the components of the stress-
energy tensor and the metric functions. Given the spherical symmetry of the
system, the stress-energy tensor adopts a diagonal form like in Eq. (6.8), and
its components are related with the metric functions in the following way

ρ± (r± ) =
1

κ

b′±
r2
±

, (6.37)

pr ± (r± ) =
1

κ

[
2

(
1− b±

r±

)
Φ′±
r±
− b′±
r2
±

]
, (6.38)
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pt± (r± ) =− 1

2κr2
±

[(
−b± + 3r± b

′
± − 2r±

)
Φ′±

+2r± (b± − r± )
(
(Φ′± )2 + Φ′′±

)
+ b′′± r±

]
.

(6.39)

The energy-momentum distribution is

T µν = T+
µνΘ + T−µν(1−Θ) + Sµνδ

Σ . (6.40)

Here, T ±µν are the energy-momentum tensors on each side of the hypersurface,
respectivelyM± ; δΣ is a Dirac’s delta-type distribution with support on the
hypersurface, defined by < δΣ, X >≡

∫
Σ
X, for any function X and Sµν is the

singular part of the energy-momentum tensor on the hypersurface. Similarly
the distributional form of the trace of the stress-energy tensor reads

T = T+Θ + T− (1−Θ) + SδΣ . (6.41)

We have joined together two manifolds,M+ andM−, along their respective
boundaries Σ+ and Σ−, effectively identifying the hypersurface where these two
spacetimes meet as Σ = Σ+ = Σ− =M+ ∩M−. On this common hypersurface,
we have induced the metrics g+

ij(ξ) and g−ij(ξ), and these metrics are in fact
isometric, meaning that g+ij(ξ) = g−ij(ξ) = gij(ξ). Now, consider three
tangent vectors of the holonomic basis, denoted as e(i) = ∂/∂ξi, defined on Σ.
The components of these vectors are given by eµ(i)|± = ∂xµ± /∂ξ

i. By utilizing
these tangent vectors, we can compute the induced metric on the junction
hypersurface, which takes the form gij = e(i) · e(j). This calculation leads us
to the expression

ds2
Σ = −dτ 2 +R2(τ)

(
dθ2 + sin2 θdϕ2

)
. (6.42)

Here, τ corresponds to the proper time of an observer moving along with the
junction surface. The specific location of the junction surface is parameterized as
xµ(τ, θ, ϕ) = (t(τ), R(τ), θ, ϕ) and it defines the constraint f(r, τ ) = r−R(τ) =

0. Consequently, the unit 4-vector nµ, which is perpendicular to the surface Σ,
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is defined as

nµ = ±
∣∣∣∣gαβ ∂f∂xα ∂f

∂xβ

∣∣∣∣−1/2
∂f

∂xµ
. (6.43)

Thus,

nµ± = ±
(

e−Φ

1− b± (R)/R
Ṙ,

√
1− b± (R)

R
+ Ṙ, 0, 0

)
. (6.44)

Where the overdot denotes a derivative with respect to τ . We have chosen both
normals to point from M− to M+. It’s important to note that nµnµ = +1,
indicating that the unit vector is spacelike, as the junction surface Σ is a timelike
hypersurface.

By definition, the extrinsic curvature, also referred to as the second funda-
mental form, is expressed as Kij = ∇νnµe

µ
(i)e

ν
(j). This formulation will lead us

to derive expressions for the non-trivial terms.

Kθ
θ

±
= ± 1

R

√
1− b± (R)

R
+ Ṙ , (6.45)

Kτ
τ
± = ±

 R̈ +
b± (R)−b′± (R)R

2R2√
1− b± (R)/R + Ṙ2

+ Φ′± (R)

√
1− b± (R)

R
+ Ṙ2

 . (6.46)

The distributional form of the Einstein tensor is

Gµν = G+
µνΘ +G−µν(1−Θ) + GµνδΣ , (6.47)

where Gµν represents the singular part of the Einstein tensor on Σ. Considering
the projector tensor on Σ

hµν ≡ gµν − nµnν , (6.48)
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we can express the Einstein tensor as

Gµν = −[Kµν ] + hµν [K
ρ
ρ] . (6.49)

Therefore, the Einstein field equations associated with the junction thin hyper-
surface can be expressed as follows

Sµν =
1

κ

(
−[Kµν ] + hµν [K

ρ
ρ]
)

. (6.50)

Because of the inherent spherical symmetry within the system, it follows that

[Ki
j] =


[Kτ

τ ] 0 0

0 [Kθ
θ] 0

0 0 [Kθ
θ] ,

 (6.51)

and

Sij =


−σ 0 0

0 P 0

0 0 P

 . (6.52)

Consequently, the Einstein equations on the junction surface yield

σ = −2

κ
[Kθ

θ] , (6.53)

P =
1

κ

(
[Kτ

τ ] + [Kθ
θ]
)

. (6.54)
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Finally, we can use the previously obtained equations Eq. (6.45) and
Eq. (6.46) to reach the following expressions

σ = − 2

κR

[√
1− b+(R)

R
+ Ṙ2 +

√
1− b−(R)

R
+ Ṙ2

]
, (6.55)

P =
1

κR

1 + Ṙ2 +RR̈−
(
b+(R) +Rb′+(R)

)
/2R√

1− b+(R)/R + Ṙ2

+RΦ′+(R)

√
1− b+(R)

R
+ Ṙ2

1 + Ṙ2 +RR̈−
(
b−(R) +Rb′−(R)

)
/2R√

1− b−(R)/R + Ṙ2

+RΦ′−(R)

√
1− b−(R)

R
+ Ṙ2

]
.

(6.56)

As the reader may notice, the energy density σ will always be negative, conse-
quently violating the energy conditions.

Next, we will examine the constraints arising from the conservation of the
energy-momentum tensor

∇νT
µν = nν [T µν ] δΣ +∇νS

µνδΣ + Sµνnνδ
′Σ = 0 . (6.57)

On one hand, we find that

Sµνnν = 0 , (6.58)

since the surface on which Sµν is defined is perpendicular to nν . On the other
hand, we have the following conservation equation

∇νS
µν = −nν [T µν ] . (6.59)
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Interestingly, we could have derived the same equation through the second
Gauss-Codazzi equation in conjunction with equation Eq. (6.50). Moreover,
the contracted first Gauss-Codazzi equation, when combined with the Einstein
equations, also leads to a conservation equation that culminates in a system
constraint [174] (

K+
ρσ +K−ρσ

)
Sρσ = 2nρnσ [Tρσ] . (6.60)

Finally we can rewrite these conservation equations as constraints for the
components of the stress-energy tensor in terms of the metric functions

dσ

dR
=− 2

R
(σ + P)

+
2

κR

[
Φ′+(R)

√
1− b+(R)

R
+ Ṙ2 + Φ′−(R)

√
1− b−(R)

R
+ Ṙ2

]
,

(6.61)

obtaining then an equation for the evolution of the density for the thin-shell.

In the preceding discussion, we have presented the expression for the energy
density of the thin shell in terms of the metric functions, as shown in equation
Eq. (6.55). By rearranging this expression, we can formulate it in the following
manner

1

2
Ṙ + V (R) = 0 , (6.62)

where the potential takes on the specific form

V (R) =
1

2

[
1− b+ + b−

2R
−
(
κRσ

4

)2

−
(
b+ − b−
R2κσ

)]
. (6.63)
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Therefore, we can proceed to conduct a stability analysis using a Taylor expan-
sion centered around an equilibrium point R0 of the potential

V (R) ≈ 1

2
V ′′(R0)(R−R0)2 +O[(R−R0)3] . (6.64)

Consequently, the thin-shell stability is assured if V ′′(R0) > 0.

To summarize, we have introduced the cut-and-paste formalism, a method
that enables the construction of traversable thin-shell wormholes. The primary
aim of these structures is to minimize the violation of the energy conditions,
limiting such violations exclusively to the thin-shell junction surface. This
thin-shell is subject to the junction conditions outlined in equations Eq. (6.50),
Eq. (6.59), and Eq. (6.60). These conditions govern the discontinuities that
manifest across the shell and lead us to derive an equation of state for the matter
within the thin-shell. Additionally, ensuring the stability of this wormhole
requires the stability analysis we’ve presented, which imposes further conditions
on the parameters.

Due to the robustness and versatility displayed by the construction of thin-
shell wormholes, this procedure has been widely employed in the literature,
with numerous studies focusing on different types of thin-shell wormholes and
their stability [196,200–203].

It is worth noting that the gravitational framework we have employed for
this cut-and-paste procedure is rooted in General Relativity. However, there
is room for alternative gravitational models that can yield stable thin-shell
wormholes without necessitating exotic matter, negative densities, or violation
of the energy conditions [191].

6.4.1. Junction conditions in Palatini f(R) gravity

We can replicate the aforementioned procedure within the gravitational context
of Palatini f(R) gravity to derive the constraints that the shell must satisfy for
a stable wormhole solution [90].
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As previously discussed in Section 2.4, in order to extract the field equations
of Palatini f(R) gravity, we must vary the action Eq. (2.40) with respect to
both the metric gµν and the connection Γ, as they are two equally fundamental
and independent entities. By solving the connection equation, the resulting
equations for the metric can be formulated as [88, 204]

fRGµν(g) +
RfR − f

2
gµν − [∇µ∇νfR − gµν�fR]

+
3

2fR

[
∇µfR∇νfR −

1

2
gµν (∂fR)2

]
= κTµν .

(6.65)

Tracing the metric field equation Eq. (2.49) leads to

fRR− 2f = κT , (6.66)

which gives rise to

RT ≡ dR/dT = κ/(RfRR − fR) . (6.67)

Expressing the field equations Eq. (6.65) in their distributional form may arise
some challenges. Consider the term

∇µfR∇νfR = f 2
RRR2

T∇µT∇νT , (6.68)

where we have employed the aforementioned expression for RT . However, the
distributional form of the covariant derivative of the stress-energy tensor trace
reads

∇µT = ∇µT
+Θ +∇µT

− (1−Θ) + nµ [T ] δΣ +∇µ

(
SδΣ

)
. (6.69)

As the term ∇µT∇νT in Eq. (6.68) involves products like Θ, δ and δ, δ, which
lack clear definitions in distributional theory, we must require both the continuity
of the stress-energy tensor trace across the shell and the absence of a singular
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part in the stress-energy tensor

[T ] = 0 and S = 0 . (6.70)

Furthermore, an expression for terms involving ∇µ∇νT is required to com-
pute the distributional form of the field equations

∇µ∇νT = ∇µ∇νT
+Θ +∇µ∇νT

− (1−Θ) + nµnνn
α [∇αT ] δΣ . (6.71)

Then, the singular part of the field equations yields the following constraint
equation

Sµν
fR|Σ

=
1

κ

(
− [Kµν ] +

1

3
hµν

[
Kρ

ρ

])
, (6.72)

which differs from the corresponding equation in General Relativity Eq. (6.50).

Within the context of Palatini f(R) gravity, the two Bianchi identities lead
to two constraint equations that also deviate from those of General Relativity:

hρα∇αSρν = −nρhσν [Tρσ] , (6.73)

and

(
K+
ρσ +K−ρσ

)
Sρσ = 2nρnσ[Tρσ]− 3R2

Tf
2
RR

fR
[b2] . (6.74)

For a detailed derivation of these equations we refer the interested reader to
Ref. [90].



Chapter 7.

Asymmetric wormholes in Palatini
f(R) gravity

We have followed the chronological evolution of various descriptions of worm-
holes, leading us to the concept of thin-shell wormholes. Nowadays, the explo-
ration of wormholes is still ongoing, with dedicated efforts focused on under-
standing and simulating their distinctive features [161, 205–207], and also to
characterise their observational signatures [208–211]. This field of research has
become more prominent due to the launch of gravitational wave observatories
and the detection of gravitational waves originated from the merger of compact
objects.

This has led the scientific community to question whether some detections,
traditionally attributed to black holes, might actually arise from other entities
known as black hole mimickers, due to their black hole-like behavior. The wide
spectrum of black hole mimickers includes various types of wormholes and other
ultra-compact objects [94, 139, 212–220], as they can share similarities with
Schwarzschild/Kerr-like objects [221,222]. However, despite these resemblances,
the crucial factor lies in the potential signatures that these mimickers can
leave on certain observables, revealing their true nature. These signatures may
manifest as shadows [223–226], gravitational wave ringdown echoes [227–231],
and the propagation of waves and quantum fields in these regions.

175
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In connection with this, extensive study has been conducted on particle
and field absorption and scattering, both concerning black holes [232–244]
and ultra-compact objects [245] in an effort to improve our understanding
of the spectroscopy of compact objects [246]. In particular, fields existing
in the vicinity of compact objects can give rise to phenomena such as the
emergence of quasi-bound states [245,247,248]. Wormholes, too, fall within this
category, possibly hosting quasi-bound states and thus creating resonances in
their absorption spectra. As a consequence, this may create resonances in their
absorption spectra [249,250], and also change their ringdown profile [229,251].

As observed in the previous chapter, stable thin-shell wormholes in four-
dimensional General Relativity typically demand exotic matter. It is always
desirable to find stable solutions that do not necessarily require negative energies.
It has been recently shown that this is indeed the case in f(R) extensions in
the Palatini formulation [90,189]. In this framework, stable wormhole solutions
can be found with both positive and negative energy densities. The choice of
the Palatini f(R) formulation is advantageous, as it avoids the strong model
dependence inherent in the metric f(R) case, where thin-shell dynamics depend
on the selected f(R) function [252]. Nevertheless, it is important to acknowledge
that the cut-and-paste procedure can also yield thin-shell wormholes supported
by positive energy matter in other modified gravity theories [190–192], and in
General Relativity in higher dimensions [193].

In this chapter, based on Ref. [3], we will focus on analyzing the propagation
of a massless scalar field in a background constructed by gluing together two
Reissner-Nordström (RN) solutions—a charged black hole configuration. The
junction conditions for these configurations correspond to those of Palatini
f(R) theories. We can deal with symmetric and asymmetric wormholes that
represent electrovacuum spacetimes, which can have the same or different charge
and mass on each side. The asymmetric configurations will be referred to as
RN-AWH, which stands for Reissner-Nordström asymmetric wormhole.
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7.1. Spacetime surgery

Here we will consider the family of f(R) gravity theories constructed à la Pala-
tini, i.e, with the spacetime metric and the affine connection being independent
gravity fields (Section 2.4). Similarly to Eq. (2.40), the action of the f(R)

model is

S =
1

2κ

∫
d4x
√−gf(R) +

∫
d4x
√−gLm(gµν , ψm) , (7.1)

where κ is the gravitational constant in suitable units, g is the metric determinant
and Lm is the matter Lagrangian, which depends on the metric and matter
fields.

In the same way as Section 6.4, where we introduced the cut-and-paste
procedure, by considering two smooth manifolds, say M± (with associated
metrics g±µν), one may cut them so that each one becomes bounded by a time-
like surface Σ± . After that, one may paste them together at their boundary
time-like surfaces, producing a single manifoldM = M− ∪M+ with a thin
hypersurface Σ = Σ± =M− ∩M+ that connects two regions with geometries
governed by g−µν and g+

µν .

As mentioned in the previous chapter, although the metric is required to be
continuous (but not necessarily differentiable) across the hypersurface, other
curvature and matter distributions are not. In order to identify the allowed
discontinuities of these quantities across the hypersurface, one has to make use
of the junction conditions, which introduces constrains in the discontinuities of
curvature and matter quantities in both sides of the hypersurface. These junction
conditions are highly influenced by the considered gravitational framework, and
in alternative theories of gravity these conditions may change significantly from
General Relativity. Considering the Palatini f(R) framework, the junction
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conditions derived in Section 6.4.1 following Ref. [90] are

[gµν ] = 0 and [hµν ] = 0 , (7.2)

[T ] = 0 and S = 0 , (7.3)
1

3
hµν [K

ρ
ρ ]− [Kµν ] = κ2 Sµν

fR|Σ
, (7.4)

DρSρν = −nρhσν [Tρσ] , (7.5)(
K+
ρσ +K−ρσ

)
Sρσ = 2nρnσ[Tρσ]− 3R2

Tf
2
RR

fR
[b2] . (7.6)

where we introduced the notation Dρ ≡ hρα∇α.

As already mentioned (and demonstrated) in Section2.2.2, in General Rel-
ativity, both the metric and Palatini formalisms result in the same set of
field equations. However, by considering a f(R) Lagrangian, the metric and
Palatini approaches lead to completely different sets of equations of motion.
Consequently, the junction conditions of Palatini f(R) largely depart from the
corresponding expressions in General Relativity (showed in Eqs. (6.50), (6.59)
and (6.60)) and in the metric version of f(R). A remarkable aspect of the
Palatini f(R) junction conditions is the vanishing of brane tension, S. In the
framework of General Relativity, one has hµν [Kρ

ρ ]− [Kµν ] = κ2Sµν instead of
Eq. (7.4), and the brane tension in general is non-vanishing, κ2S = 2[Kρ

ρ ]. In
the framework of Palatini f(R) it does happen regardless of the behavior of
[Kρ

ρ ].

7.2. Asymmetric RN-RN wormholes

Since the matter content of the thin shell (the singular part of the energy-
momentum tensor) can be modelled as a perfect fluid distribution (Eq. (6.52)),
one finds that due to Eq. (7.3) the pressure density P = σ/2 is fully determined
by the energy density σ (particularly inheriting its sign), hence in Palatini f(R)

no equation of state P = P(σ) is required to close the system, which contrasts
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with General Relativity and metric f(R) [189], and the number of effective
degrees of freedom is reduced to just one.

With the junction condition Eq. (7.4), one moves the problem to deter-
mine the energy density of the system to compute the difference between the
discontinuities of the extrinsic curvature components, i.e,

[Kτ
τ ]− [Kθ

θ] =
3κ2

2fR|Σ
σ . (7.7)

Finally, we look for the energy conservation relation Eq. (7.5), which in the
spherically symmetric case reduces to

−DρSρν =

[
σ̇ +

2Ṙ

R
(σ + P)

]
δτ ν = nρhσν [Tρσ] , (7.8)

where δτ ν = (1, 0, 0). Using the relation between the pressure and energy
densities, one finds that

1

R3

d (σR3)

dτ
δτ ν = nρhσν [Tρσ] , (7.9)

which leads to simple solutions for σ in the case where its right-hand side
vanishes, namely σ = C/R3, where C is an integration constant. Fortu-
nately, in the electrovacuum scenario this is true. To see it, we recall that
for any electrostatic, spherically symmetric field described by a nonlinear elec-
trodynamics, the energy-momentum tensor associated to it can be written as
Tρ

σ = diag(−φ1(r),−φ1(r), φ2(r), φ2(r)), where the functions φi characterize
each particular configuration. (In Maxwell electrodynamics, φi(r) = −q2/r4,
with q being the charge per unit mass of the system. In vacuum, φi = 0.) By
contracting the normal vector to the hypersurface with the energy-momentum
tensor, one finds that nρTρν = −φ1(r)nν , hence the right-hand side of Eq. (7.9)
becomes

nρhσν [Tρσ] = nρhσν [Tρ
σ] = −(φ+

1 (r)− φ−1 (r))nσhσν , (7.10)
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which is identically zero, since

nσhσν = nσ (gσν − nσnν) = nν − nν ≡ 0 . (7.11)

Therefore, any two electrovacuum spacetimes supported by electrostatic and
spherically symmetric fields can be glued together at a hypersurface Σ with
surface energy density σ = C/R3. Here, in particular, we are interested
in cutting and pasting two Reissner-Nordström (RN) spacetimes, that have
different charges and masses, being described by the following line elements

ds2
± = −f± (r± )dt2 +

dr2
±

f± (r± )
+ r2

± dΩ2 , (7.12)

with f± (r± ) = 1− 2M± /r± +Q2
± /r

2
± , where M± and Q± are the mass and

charge on each RN spacetime, respectively. We point out that we do not impose
the restriction Q < M . For Q > M , the line element Eq. (7.12) describes an
overcharged RN space-time, which is a naked singularity. We emphasize that all
wormholes studied here are geodesically complete, since the matching surface is
located beyond where the singularity would be.

One can use the field equation on the shell Eq. (7.7) to write [226]

R̈ =
γ − 3M+R−2Q2

+−R2(Ṙ2+1)√
f+(R)+Ṙ2

− 3M−R−2Q2
−−R2(Ṙ2+1)√

f−(R)+Ṙ2

R3

(
1√

f+(R)+Ṙ2
+ 1√

f−(R)+Ṙ2

) , (7.13)

where γ = 3κ̃2C/2 is the energy parameter, with κ̃2 = κ2/fR|Σ being a con-
stant, once R = R(T ) in any Palatini f(R) theory is determined, and we are
considering a trace-free energy-momentum tensor. In order to study the linear
stability of these asymmetric wormhole solutions, one assumes that there is an
equilibrium configuration, such that Ṙ = 0, and expands Eq. (7.13) in Taylor
series around the throat radius of the equilibrium configuration R0 [226], which
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at first order gives

R̈ ≈ C1(R0) + C2(R0)(R−R0) +O(R−R0)2 , (7.14)

where C1 and C2 are cumbersome functions of R0, γ, and of the masses and
charges of each side. As discussed in Ref. [226], to have an equilibrium configu-
ration, the first term of the expansion must vanish, and the second one must
be negative for a stable equilibrium.

Before we discuss the stability condition, it will be convenient to introduce
a set of dimensionless variables, in order to simplify the expressions, namely

r± = x±M−, R = xM−, R0 = x0M−,

τ = τ̃M−, t = t̃M−, Q2
− = yM2

−,

Q2
+ = η Q2

−, M+ = ξM−, γ = γ̃M2
−,

where x± are the dimensionless radial coordinates on each side of the throat, x
is the dimensionless radius of the throat, x0 is the dimensionless radius of the
throat of an equilibrium configuration, y is the charge-to-mass ratio inM−, η
gives the relation between the charge content inM+ and inM− (for simplicity,
we shall later on refer to η as charge-to-charge ratio), τ̃ and t̃ are dimensionless
time variables, and ξ is the mass-to-mass ratio between the two sides, which
due to the continuity of the metric across Σ, must satisfy

ξ = 1− y

2x
(1− η) . (7.15)

Now we can continue our discussion about the stability of equilibrium
solutions. The equilibrium condition (C1 = 0) leads us to

γ̃ = −x0
4(x0 − 3)x0 + (η + 7)y

2
√

(x0 − 2)x0 + y
, (7.16)
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and substituting this expression in Eq. (7.14), one finds an equation of the form

d2δ(τ̃)

dτ̃ 2
+$2δ(τ̃) = 0 , (7.17)

where δ(τ̃) ≡ x(τ̃)− x0 and $2 is given by

$2 = −4x0y(η − (η − 7)x0 − 17) + ((η − 1)2 + 16)y2

8x4
0((x0 − 2)x0 + y)

− 8(2x2
0 − 8x0 + 9)x2

0

8x4
0((x0 − 2)x0 + y)

.

(7.18)

Therefore, the stability condition (C2 < 0) is obtained by requiring that $2 > 0.

7.3. Parameter space

Equations (7.16) and (7.18) can be used to track the set of parameters {x0, η, y}
that describes stable ($2 > 0) thin shells wormhole solutions supported by
positive (γ̃ > 0) or negative (γ̃ < 0) surface energy densities. Let us investigate
these two scenarios.

Positive energy stable configurations

By requiring $2 > 0 and γ̃ > 0, one finds that the dimensionless parameters
{x0, η, y} are constrained by

2

15
(10−

√
10) < x0 <

2

15
(10 +

√
10) , (7.19)

η−1 < η < η+
1 , (7.20)

y−1 < y < y+
1 , (7.21)
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where

η±1 =
−15 + 34x0 − 12x2

0

33− 28x0 + 6x2
0

(7.22)

± 2

√
−(216− 504x0 + 399x2

0 − 130x3
0 + 15x4

0)

33− 28x0 + 6x2
0

, (7.23)

y−1 =
a− 2

√
b

η2 − 2η + 17
, (7.24)

y+
1 =

4x0(3− x0)

η + 7
, (7.25)

with a = 2x0(17− η + (η − 7)x0) and b = −x2
0(17− 2η + 17η2 − 2x0(17 + 8η +

7η2)+x2
0(19+3η(η+2))). Equations (7.19)-(7.21) determine the possible stable,

positive energy (SPE) configurations allowed by gluing two RN spacetimes
in Palatini f(R) framework. The banana-shaped blue region in Figure 7.1
represents the parameter space of SPE wormholes.

Negative energy stable configurations

Now, looking for $2 > 0 and γ < 0, one finds stable, negative energy (SNE)
wormhole configurations—that are associated with two different parameter
spaces. The first group of solutions lies in the region identified by the constraints:

If
2

3
< x0 ≤

2

15
(10−

√
10), η−2 < η < η+

2 , (7.26)

if
2

15
(10−

√
10) < x0 < 1, η−2 < η ≤ η−1 or η+

1 < η < η+
2 , (7.27)

if 1 ≤ x0 <
2

15
(10 +

√
10), η−2 < η < η−1 or η+

1 < η < η+
2 , (7.28)

if x0 =
2

15
(10 +

√
10), η−2 < η < η−1 or η−1 < η < η+

2 , (7.29)

if
2

15
(10 +

√
10) < x0 < 2, η−2 < η < η+

2 , (7.30)
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Figure 7.1.: Parameter spaces for positive (blue region) and negative (red region)
energy stable asymmetric wormholes.

with dimensionless charge (inM−) bounded by

y−1 < y < y+
2 , (7.31)

where

η±2 =
1 + 8x0 − 3x2

0

x0(3x0 − 14) + 17

± 2
√

2
√
−(6x4

0 − 40x3
0 + 99x2

0 − 104x0 + 36)

x0(3x0 − 14) + 17
,

y+
2 =

a+ 2
√
b

η2 − 2η + 17
.
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The second group of solutions lies in the region identified by the constraints:

If
2

15
(10−

√
10) < x0 < 1, η−1 < η < η+

1 , (7.32)

if 1 < x0 <
2

15
(10 +

√
10), η−1 ≤ η ≤ η+

1 , (7.33)

if x0 =
2

15
(10 +

√
10), η = η−1 , (7.34)

with dimensionless charge constrained by

y+
1 < y < y+

2 . (7.35)

The union of the two parameter spaces that identify SNE asymmetric wormholes
is plotted in red in Figure 7.1.

As we can see in Figure 7.1 SPE space of parameters is embedded onto the
SNE space of parameters. However it has to be pointed out that there is not
any intersection between both regions. Then, as one can expect, there is not
any configuration for which we can have positive and negative energy at the
same time. In Appendix B an orthographic projection of Figure 7.1 is depicted
for the sake of showing in a more clear way the features explained above.

Henceforth, we will consider only stable configurations, i.e, for now on we
will always locate the throat of the wormhole at x0.

Event horizon location

Since (two-way) traversable wormholes must have their two sides causally
connected, an important point to set up is whether a RN-AWH has an event
horizon, and if it does, whether the throat covers it. Using the dimensionless
variables, one finds that the event horizon location, on each side, is given by

xh− = 1 +
√

1− y, (7.36)

xh+ = ξ +
√
ξ2 − ηy. (7.37)
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Then, in order to prevent the two universes to be causally disconnected, x0

must be put above xh± on each side of the wormhole. This requirement leads
to the following constraints:

0 < y ≤ 1 and x0 > 1 +
√

1− y,
y > 1 and 0 < x0 <

y

2
or x0 >

y

2
,

0 < η ≤ 1 +
2x0(x0 − 1−

√
x0(x0 − 2) + y)

y
.

In the subsequent sections, we investigate only stable two-way traversable
wormholes, that is either a RN black hole glued with a RN naked singularity or
two naked singularities glued together. The possibility of having two RN black
holes glued together is excluded because it leads to unstable configurations.
Nnote that when we mention either the RN black hole or the RN naked
singularity, we are specifically referring to their respective spacetimes beyond
the event horizon and the singularity itself. Consequently, the asymmetric
wormhole spacetime does not possess a horizon or a singularity.

7.4. Absorption and spectral lines

7.4.1. Wave equation

Let us consider a massless scalar field, Φ, lying in a RN-AWH background.
The dynamics of this field, on each side of the wormhole, is described by the
Klein-Gordon equation

�±Φ± = 0, (7.38)

where �± and Φ± denote the d’Alembertian operator and the scalar field,
respectively, on each side of the throat. Due to spherical symmetry, the solution
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of Eq. (7.38) can be written as

Φ± =
ψ± (x± )

x±
Y`m(θ, φ)e−iω̃t̃, (7.39)

where ω̃ is a dimensionless frequency (defined by ω̃ ≡ ωM−), and the radial
functions ψ± satisfy

f± (x± )
d

dx±

(
f± (x± )

dψ±
dx±

)
+
(
ω̃2 − Ṽ± (x± )

)
ψ± = 0, (7.40)

with Ṽ± being the dimensionless effective potential on each side of the throat,
given by

Ṽ± (x± ) =
f± (x± )

x±

df±
dx±

+
f± (x± )

x2
±

`(`+ 1). (7.41)

The metric functions f± (x± ) explicitly written in terms of the dimensionless
radial coordinates are

f−(x−) = 1− 2

x−
+

y

x2
−
, (7.42)

f+(x+) = 1− 2ξ

x+

+
ηy

x2
+

. (7.43)

One could think that the non-differentiability of the metric would introduce a
delta-type contribution at the throat in the effective potential. However, one can
argue that, since the metric is continuous across the shell and the d’Alembertian
operator contributes only with the first derivative of the metric, ∂µgαβ, and
the first derivative of the metric determinant, ∂µg = ggαβ∂µgαβ; no delta-type
distribution will appear in the effective potential. In the distributional approach,
we have [197]

∂µgαβ = ∂µg
+
αβ Θ + ∂µg

−
αβ (1−Θ) + nµ[gαβ] δΣ, (7.44)
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and analogously

∂µg = ∂µg
+ Θ + ∂µg

− (1−Θ) + nµ[g] δΣ. (7.45)

If the metric is continuous across the shell, both [gαβ] and [g] must vanish,
therefore no delta-type distribution appears in the effective potential. However,
if the metric is discontinuous across the shell, as in the case of dirty black
holes [253], one expects the appearance of a delta-type contribution in the
effective potential.

It will be convenient to introduce a global radial coordinate to describe the
spacetime, which is implicitly defined by

dx? = ± dx±
f± (x± )

. (7.46)

The main advantage of this new coordinate is that it combines the information
of two independent domains, namely x− ∈ [x0,∞) and x+ ∈ [x0,∞), in a
single domain x? ∈ (−∞,∞). Moreover, with a suitable choice of integration
constant, the throat location moves to x?(x0) = 0. By using the global radial
coordinate Eq. (7.46), one may write Eq. (7.40) as a Schrödinger-like equation,
namely

d2ψ

dx2
?

+
(
ω̃2 − Ṽ (x?)

)
ψ = 0, (7.47)

where we dropped the ± in the subscripts, since the global radial coordinate
allows us to express the radial function and the effective potential as functions
of x?, respectively, ψ(x?) and Ṽ (x?).

7.4.2. Effective potential

The effective potential plays a key role in understanding the dynamics of the
scalar field. Since the RN-AWH consists of two RN spacetimes glued, it is
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convenient to analyze the effective potential of the RN spacetime first. The
effective potential of a RN spacetime is [254]

VRN(r) =
f(r)

r

df

dr
+
f(r)

r2
`(`+ 1), (7.48)

where f(r) = 1− 2M/r +Q2/r2, with M and Q being the mass and charge of
the black hole, respectively. Similar to Eq. (7.46), one may define a new radial
coordinate, the so-called tortoise coordinate, that moves the event horizon
location to −∞, namely dr? = dr/f(r), so that the causally connected part
of the manifold is described by r? ∈ (−∞,∞). From Eq. (7.48) we notice
that the effective potential vanishes at the event horizon r = M +

√
M2 −Q2

and at the spacial infinity, i.e, VRN→ 0, r?→ ±∞. In Figure 7.2 we plot the
effective potential, for Q2/M2 = 0.5 and some angular momentum numbers `,
as a function of the tortoise coordinate. As can be seen from Figure 7.2, the
effective potential has a peak that varies with `.
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Figure 7.2.: Effective potential of a RN black hole with Q2/M2 = 0.5.
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In the eikonal limit (`� 1) the dominant term of the effective potential is
proportional to f(r)/r2, i.e, it has the same dependence on r as the classical
scattering potential that appears when studying the motion of null-like particles
in the RN background. Consequently, for large values of `, the location of the
effective potential peak is at the photon sphere, namely

rγ =
3M

2
+

1

2

√
9M2 − 8Q2. (7.49)

In the classical scattering process, the peak of the effective potential has the
value VRN(rγ) = f(rγ)/r

2
γ = 1/b2

c , where bc is the so-called critical impact
parameter.

Now we can discuss the effective potential of RN-AWHs. Just like in the
black hole case, the effective potential of the RN-AWH vanishes far from the
throat, i.e, Ṽ → 0, x?→ ±∞. As we get closer to the throat, the effective
potential increases and it may have a peak on each side of the throat, depending
on the shell location. Since the metric function is not differentiable at x? = 0,
the effective potential may have a discontinuity (jump) at the throat, that is,
[Ṽ ] 6= 0, when gluing different spacetimes. In Figure 7.3 and Figure 7.4 we
plot some typical behaviors of the effective potential for RN-AWHs. We notice
that the number of peaks varies, depending on the throat location, since it
may be located before or after the peak of the effective potential on each side.
By gluing a RN black hole with a RN naked singularity at least one peak is
present. By gluing two different RN naked singularities a sharp discontinuous
peak appears apart from the possible smooth peaks; however, it is important
to point out that, at this peak, dṼ /dx? = 0 is not satisfied. Actually, Ṽ is not
differentiable at x? = 0 (one can also find discontinuous effective potentials in
Refs. [253,255,256]). In Figure 7.5 and Figure 7.6, we exhibit the embedding
diagrams of the RN-AWHs considered in Figure 7.3 and Figure 7.4, respectively.
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Figure 7.3.: Typical behaviors of the effective potential of RN-AWHs for SPE
configurations.
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Figure 7.4.: Typical behaviors of the effective potential of RN-AWHs for SNE
configurations
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Figure 7.5.: Embedding diagrams of the RN-AWHs considered in Figure 7.3 (the
display order is the same as in Figure 7.3).
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Figure 7.6.: Embedding diagrams of the RN-AWHs considered in Figure 7.4 (the
display order is the same as in Figure 7.4).
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7.4.3. Boundary conditions

In Figure 7.7, using the Carter-Penrose diagram of RN-AWHs, we illustrate
the scattering process. Let us consider a monochromatic plane scalar wave
incoming from the past null infinity ofM+, I −

M+
. This wave will interact with

the effective potential; part of it will be reflected to the future null infinity
ofM+, I +

M+
; and part of it will be transmitted to the future null infinity of

M−, I +
M− . Therefore, the stationary boundary conditions of this phenomenon

consist of a composition of ingoing and outgoing (distorted) plane waves far
from the object in one side of the wormhole, and purely outgoing waves far
from the object on the other side, i.e,

ψ(x?)∼

 e−iω̃x? +Rω̃`e
iω̃x? , x?→ +∞,

Tω̃`e−iω̃x? , x?→ −∞,
(7.50)

where Rω̃` and Tω̃` are complex coefficients related to the reflection and trans-
mission coefficients, respectively. In order to obtain Rω̃` and Tω̃`, one performs
an integration from one asymptotic region to the other.

We have also to specify the behavior of the field at the throat. Just like the
metric, we assume that the field is continuous across the throat, i.e, [Φ] = 0

(hence [ψ] = 0), and since no delta-type distribution appears in the effective
potential, we can assume that the field is also differentiable at the shell, that is,
[dψ/dx?] = 0 (see Refs. [227,229] for some works in the literature considering
the differentiability of the field, despite the non differentiability of the metric
function).

7.4.4. Scalar absorption

By using the partial wave expansion together with the boundary conditions Eq. (7.50),
one can write the (dimensionless) total scalar absorption cross section of RN
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Figure 7.7.: Carter-Penrose diagram of a RN-AWH. Each triangle represents an
asymptotically flat spacetime, connected by a wormhole throat, repre-
sented by the vertical dotted line. The arrows illustrate the scattering
process. Here, I + and I − represent, respectively, the future and past
null infinities, i0 indicates the space-like infinity and i+ and i− are,
respectively, the future and past time-like infinities. (Labels without
subscript represent regions of the two sides of the wormhole that are
superposed in the Carter-Penrose diagram.)

and RN-AWHs as [250,254]

σ̃abs =
∞∑
`=0

σ̃`, (7.51)

where σ̃` ≡ π(2` + 1)Γω̃`/ω̃
2 are the (dimensionless) partial absorption cross

sections, and Γω̃` ≡ 1−|Rω̃`|2 = |Tω̃`|2 is the so-called grey-body factor, i.e., the
transmission probability of a mode with frequency ω̃. In black hole scenarios,
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the total absorption cross section Eq. (7.51) has two well-known limits for
stationary geometries, namely, the low–frequency regime (ω̃→ 0), where the
absorption cross section goes to the area of the black hole [257], and the high-
frequency regime (ω̃→∞), where the absorption cross section oscillates around
the geometrical absorption cross section [258] (the area of a disk with radius
equal to the critical impact parameter). In wormhole scenarios these limits are
not so clear. For instance, some previous results in the literature show that, in
the zero-frequency regime, the total absorption cross section for wormholes can
differ from black hole cases [249,250].

In Figure 7.8 we plot the total absorption cross section of two SPE wormholes,
namely {x0 = 1.7, η = 2.5, y = 0.92} and {x0 = 1.5, η = 2, y = 0.95}, and
compare it with the total absorption cross section of a RN black hole with
the same charge-to-mass ratio as for the case of M−, i.e., y = Q2

−/M
2
− =

Q2/M2. The effective potential of the two wormhole configurations considered
in Figure 7.8 are exhibited in Figure 7.3. We notice that, in the high-frequency
regime, the total absorption cross section of RN-AWHs (constructed with a RN
black hole inM−) goes to the RN black hole profile, i.e., it oscillates around
the classical absorption cross section. However, at low-frequencies the behavior
of the absorption spectra is different from the corresponding black hole case.
In the zero-frequency limit, the total absorption cross section of RN-AWHs is
much smaller than the corresponding black hole one, in accordance to what has
been obtained in other wormhole configurations [249,250].

In order to investigate how the energy density of the shell that supports
the wormhole configuration affects the absorption spectra, let us first analyze
SPE and SNE configurations with the same wormhole throat, x0, and charge-to-
charge ratio, η, but with dimensionless charge, y, constrained in different ways.
By fixing x0 = 1.5 and η = 2, the energy parameter of the shell diminishes as
one increases the charge-to-mass ratio y (see Eq. (7.16)). For these parameters,
one finds that shells with positive-energy density can support stable solutions
with dimensionless charge 0.919184 < y < 1. However, to support stable
wormholes with higher values of dimensionless charge, shells with negative
energy content are required. With this choice of parameters, a negative-energy
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Figure 7.8.: Comparison of the absorption cross section of RN-AWHs and RN black
holes with the same charge-to-mass ratio.

shell can support a stable wormhole with dimensionless charge 1 < y < 1.72787.
A glance at Figure 7.4 shows that these two families of configurations have
solutions with significant differences in their effective potentials. For instance,
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we can have SPE configurations with x0 = 1.5 and η = 2, presenting two local
maxima and a discontinuous valley between them for moderate-to-high values
of `, while we can have SNE configurations, with x0 = 1.5 and η = 2, without
a local maximum (where dṼ /dx? = 0), but with a sharp peak near the shell
for moderate-to-high values of `. One may expect that these differences in the
effective potential lead to different behaviors of the absorption profile. This will
be explored later in this section.

In Figure 7.9, we exhibit the absorption cross section of some SPE (top panel)
and SNE (bottom panel) RN-AWHs configurations. We notice that increasing
the dimensionless charge inM− diminishes the total absorption cross section
for moderate-to-high frequencies for both SPE and SNE wormholes. For SPE
configurations, as we decrease y (consequently increasing the energy parameter
of the shell γ̃) additional peaks arise. These new peaks get higher and are shifted
to the left as the positive-energy density of the shell increases. The new peaks
are related with quasibound states that can exist around the throat [249,250],
that appear due to the presence of valleys in the effective potential (a discussion
about them will follow in Sec. 7.4.5). On the other hand, for SNE configurations,
as y increases (hence requiring “more” negative shells) the behavior of the total
absorption cross section can differ significantly from previous absorption profiles
found in the literature. For this family of parameters, in the zero-frequency
limit, as the energy density of the shell becomes more negative, the absorption
cross section increases, getting bigger than the ones of standard black holes.
This result should be related with the effective potential for ` = 0. Additionally,
the oscillatory pattern of the total absorption cross section slowly diminishes
and approaches a straight line. This high-frequency behavior is related with the
sharp peaks that appear in the effective potential at the throat. In the eikonal
limit, the total absorption cross section of spherically symmetric black holes
oscillates around their shadow area, with the shadow radius being the critical
impact parameter, which is associated with null geodesics trapped in the last
photon orbit —the photon sphere. In wormholes scenarios, it is possible to have
an effective photon sphere at the throat, and it may cast novel shadows and
different gravitational lensing features compared with black holes [225,259,260].



200 Asymmetric wormholes in Palatini f(R) gravity

0.0 0.5 1.0 1.5 2.0

0

5

10

15

20

25

30

35

0.0 0.5 1.0 1.5 2.0

0.5

5

50

500

Figure 7.9.: Absorption spectra of RN-AWHs with x0 = 1.5 and η = 2, supported
by SPE- (top panel) and SNE (bottom panel) thin shells. The dashed
lines are the shadow areas associated with the highest peak of the
effective potential in the eikonal limit (`� 1).
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Here we notice that, the throat, where we have the sharp peak of the effective
potential, acts like an effective photon sphere, which can be associated with
an effective critical impact parameter, bec = x0/

√
f± (x0), that gets smaller

as one increases the dimensionless charge y (i.e. the sharp peak gets higher
as y approaches y ≈ 1.72787). Hence, one expects that in the high-frequency
regime, the absorption cross section goes to the area of this novel shadow,
Ans = πx2

0/f± (x0).

Since 0 < y < 1, the absorption spectra of RN-AHWs goes to the RN one
in the eikonal limit, and the effects of the other parameters, namely x0 and η,
are less relevant in the limit that ω̃ � 1. However, for low-energy waves the
absorption profile has a deep dependence on the shell location, x0, and on the
charge-to-charge ratio between the wormhole sides, η. In order to investigate
how the parameters beyond the charge-to-mass ratio influence the absorption
process, let us first fix the dimensionless charge and the shell location, namely
let us set y = 0.92 and x0 = 1.5. For fixed values of x0 and y, the energy
parameter of the shell decreases as we increase the charge-to-charge ratio η.
Then, one finds that with this choice of parameters, wormholes are supported
by SPE shells if 1.98959 < η < 2.78261 and are supported by SNE shells if
2.78261 < η < 3.27128. In Figure 7.10 we plot SPE (top panel) and SNE
(bottom panel) configurations with x0 = 1.5 and y = 0.92 for different choices
of η. In the high-frequency regime the total absorption cross section oscillates
around the classical absorption cross section, as in the RN case, and the role of
η is less relevant. However, we notice that the charge-to-charge ratio strongly
affects the absorption spectra for ω̃ < 1. From Figure 7.10 we notice that the
narrower peaks that arise in the wormhole absorption spectra are shifted to
the left as we increase the value of η, and the first peak gets higher for greater
values of η, regardless of the sign of the shell’s energy-density. The behavior of
the other narrower peaks is different depending on the energy content of the
shell, namely: (i) if the shell has a positive-energy density, then increasing the
charge-to-charge ratio (which corresponds to decrease the energy parameter γ̃)
diminishes the other narrower peaks; (ii) if the shell has negative-energy density,
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Figure 7.10.: Absorption spectra of RN-AWHs with x0 = 1.5 and y = 0.92, sup-
ported by SPE (top panel) and SNE (bottom panel) thin shells.
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increasing η (consequently going to more negative values of γ̃) also increases
the other narrower peaks.

In order to investigate how the shell location affects the absorption cross
section, let us first consider a configuration with dimensionless charge y < 1.
In Figure 7.11 we plot the total absorption cross section for some RN-AWHs
with y = 0.92, η = 2.5 and different shell locations, x0. We also compare the
absorption spectra of those AWH configurations with the one of a RN black
hole with the same value as dimensionless charge. Again, we notice that in the
high-frequency regime, the total absorption cross section of these configurations
presents the RN profile, oscillating around the classical absorption cross section.
However, in the low-frequency regime, the behavior of the absorption spectra
is significantly modified by the shell location, since the shape of the effective
potential is particularly dependent on the throat location. From Figure 7.11,
we notice that configurations with smaller shell radius have bigger absorption
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Figure 7.11.: Absorption spectra of RN-AWHs with y = 0.92 and η = 2.5 and some
choices of x0 compared with the absorption of a RN black hole with
the same dimensionless charge asM−.
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Figure 7.12.: High-frequency absorption spectra of wormholes with x0 = 1.1 and
y = 1.01 and some choices of η. The dashed lines represent the
classical absorption cross sections for each spacetime.

peaks, slightly shifted to the left, in the low-frequency regime, and may exhibit
additional sharp peaks as x0 diminishes.

When considering y > 1, both η and x0 may remarkably affect the absorption
spectra. IfM− is a naked RN spacetime, then the charge-to-charge ratio may
be η < 1, which leads to an effective potential with a higher peak inM+ instead
of M−, and consequently with a total absorption cross section, in the high-
frequency regime, smaller than for η ≥ 1. We show this behavior in Figure 7.12
where we plot the high-frequency regime of the total absorption cross section
of a symmetric wormhole (η = 1) and two asymmetric wormholes (η = 0.85

and η = 1.15) with x0 = 1.1 and y = 1.01. It is important to point out that
in both asymmetric configurations the presence of sharp peaks is attenuated
in the high-frequency regime when compared with a symmetric configuration.
The role of the symmetry in the presence of the sharp peaks will be discussed
in the next section.
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Figure 7.13.: Absorption spectra of RN-AWHs with y = 1.1 and η = 0.8 and some
choices of x0.

The throat location, x0, may also imply interesting features when y > 1.
In Figure 7.13 we plot the total absorption cross section for some RN-AWH
with y = 1.1, η = 0.8 and different values of the shell radius, x0. We notice
that, differently from the y < 1 case, the shell radius plays a non-negligible
role in the moderate-to-high frequency regime. We see that smaller values
of x0 present bigger absorption peaks in the low-frequency regime. However,
for moderate-to-high frequencies the absorption peaks of those configurations
are smaller if compared with the ones of bigger shell radius. Additionally,
wormholes with smaller shell radius may present new absorption peaks in the
high frequency regime, differently from the y < 1 case, where the new peaks
appear usually in the low-frequency region.
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7.4.5. Quasibound states

A remarkable feature that appears in wormhole scenarios is the existence of
sharp peaks in the absorption spectra. These peaks are associated with the
shape of the effective potential. If the effective potential has a valley, quasibound
states can exist around the wormhole throat, producing resonant amplifications
in the absorption cross section. These modes are similar to the trapped modes
found in ultracompact objects [245], which in the eikonal limit may be associated
with a stable light ring [248].

The quasibound states are characterized by complex frequencies with small
imaginary part. In order to find the trapped modes one considers the boundary
conditions

ψ(x?)∼

 eiω̃x? , x?→ +∞,
e−iω̃x? , x?→ −∞.

(7.52)

These boundary conditions generate an eigenvalue problem to ω̃, and one may
apply standard methods to determine those frequencies. From an approximation
based on the Breit-Wigner expression for nuclear scattering [261,262], one can
relate the grey-body factor with the trapped modes, namely [245]

|Tω̃`|2
∣∣∣
ω̃≈ω̃r

∝ 1

(ω̃ − ω̃r)2 + ω̃2
i

. (7.53)

Hence, one notices that the position of the resonant peaks in the transmission
coefficients is determined by the real part of the mode, ω̃r, while the imaginary
part, ω̃i, determines the sharp shape and height of the peaks.

Due to the freedom that we have to construct wormholes in Palatini f(R)

gravity, the effective potential of those configurations may present different
asymmetries (cf. Figure 7.3 and Figure 7.4), which, as we saw in the previous
section, may lead to more or less additional peaks in the absorption spectra.
In Figure 7.14 we plot the effective potential (top row), the total absorption
cross section (middle row) and the transmission coefficients (bottom row) of



Asymmetric wormholes in Palatini f(R) gravity 207

a symmetric (η = 1) wormhole supported by SNE shells. The same thing
regarding an asymmetric (η = 1.3) wormhole is plotted in Figure 7.15. We
notice that both configurations present sharp peaks for ω̃ < 1. By using the
direct integration method, and a standard root-finder method, one can find
the frequencies that solve the eigenvalue problem and characterize the trapped
modes. In Table 7.1 we present some trapped modes for the asymmetric
wormhole considered in Figure 7.15.

x0 = 1.1, y = 1.01, η = 1.3

` ω̃r ω̃i

0 0.0919 −2.4781× 10−3

0.1707 −8.7901× 10−3

0.2535 −9.2636× 10−3

0.3404 −9.3142× 10−3

0.4401 −9.8017× 10−3

0.5155 −9.9624× 10−3

1 0.1985 −1.5661× 10−5

0.2809 −6.4116× 10−4

0.3500 −6.1025× 10−3

0.4176 −6.3230× 10−3

0.5753 −6.6483× 10−3

0.6614 −6.7927× 10−3

2 0.3024 −4.6635× 10−8

0.3907 −4.6659× 10−6

0.4695 −1.5562× 10−4

0.5383 −2.1412× 10−3

0.6023 −1.7040× 10−2

0.6722 −1.7339× 10−2

Table 7.1.: Trapped modes frequencies for RN-AWHs.
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Figure 7.14.: Effective potential (top row), absorption spectra (middle row) and
transmission coefficients (bottom row) of a RN symmetric wormhole
with η = 1, y = 1.01 and x0 = 1.1.
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Figure 7.15.: Effective potential (top row), absorption spectra (middle row) and
transmission coefficients (bottom row) of a RN-AWH with η = 1.3,
y = 1.01 and x0 = 1.1.
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For the asymmetric configuration, as the frequency increases we can barely
see the additional peaks in the absorption spectra. This can be understood
by analyzing the asymmetry in the effective potential as one increases the
` number. For lower values of the angular momentum mode, the difference
between the heights of the peaks in the effective potential is much smaller
when compared with that difference for large values of `. Hence, low-frequency
trapped modes lie between two potential peaks with almost the same height,
creating the resonances in the absorption spectra for ω̃ < 1. For larger values
of ` the difference between the heights of the effective potential peaks becomes
non-negligible, and since in the high-frequency regime the higher effective
potential peak determines the absorption behavior, we almost do not see
resonant amplifications in the absorption cross section. However, a glance at
the transmission coefficients of the asymmetric configuration shows that we still
have trapped modes around the wormhole in the eikonal limit, notwithstanding
we can not see the resonant peaks in the absorption profile. Therefore, the
presence of spectral lines is more evident as one restores the symmetry of the
thin shell wormholes.

7.4.6. Summing up

Let us now summarize the results obtained from the analysis presented in this
section. In first place, by analyzing the massless scalar field in the vicinity of
stable RN-AWHs (see Figure 7.1), we found basically four effective potential
behaviors, namely: (i) two smooth peaks connected by a discontinuous valley
(for all values of `); (ii) a single smooth peak in the effective potential for
` ≥ 1, and a discontinuous valley for ` = 0; (iii) a discontinuous sharp peak
at the throat for ` ≥ 1, and a discontinuous well for ` = 0; and (iv) a sharp
discontinuous peak at the throat followed by a smooth valley and a smooth
peak on each side for ` ≥ 1 (for ` = 0 the sharp discontinuous peak is replaced
by a discontinuous well). Cases (i) and (ii) occur when one black hole spacetime
is used to build the wormhole, while cases (iii) and (iv) occur when both sides
are composed by naked singularity spacetimes. Since the shape of the effective
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potential varies considerably with the chosen parameters, one expects noticeable
changes in the absorption profile of RN-AWHs. In order to investigate how the
throat location and the charge values influence the absorption, we analyzed
several SPE and SNE configurations.

If the effective potential has a valley (continuous or discontinuous), quasi-
bound states emerge around the throat of the wormhole. These quasitrapped
modes create resonances in the absorption spectra (sharp peaks appear in the
absorption cross section), which make the RN-AWH absorption profiles very
different from the ones of RN black holes. These new peaks are highly influenced
by the symmetry of the potential well. If the effective potential exhibits a
symmetric valley, the resonances are noticeable in the whole range of frequency.
On the other hand, the presence of an asymmetry in the effective potential
results in the attenuation of the resonant peaks associated with quasibound
states for higher `-modes. Thus, the high-frequency regime of the absorption
cross section becomes degenerate with the prediction for the standard RN black
hole, in contrast to symmetric wormhole configurations. Consequently, even
minor deviations from symmetry in wormhole spacetimes can yield significant
differences on the observable characteristics associated to quasibound states.
If the resonances of the symmetric case persist at very high frequencies, one
could expect nontrivial effects even in the geometrical optics approximation.
This could lead to unexpected features in gravitational waves spectra and
electromagnetic shadows.

By considering an asymmetric configuration with dimensionless charge y < 1,
the wormhole can mimic the standard RN black hole absorption. This can be
understood by the fact that the total absorption cross section depends on the
dominant light ring (associated with the highest peak of the effective potential
in the eikonal limit [263]). Therefore, by grafting a RN black hole (before its
photon sphere) with a RN naked singularity spacetime, the dominant light
ring will be the one of the RN black hole and it will dictate the absorption
cross section profile in the eikonal limit. By restoring the symmetry (η→ 1),
although the absorption cross section oscillates around the classical value of
RN black hole, it can be distinguished by the presence of the spectral lines.
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A remarkable absorption behavior appears when we cut and paste two
naked singularities, presenting discontinuous sharp peaks at the throat in the
effective potential. In these scenarios, the throat acts like an effective photon
sphere. Since, at the throat, the effective potential reaches a maximum value,
the effective light ring related to it is the dominant light ring; therefore, the
total absorption cross section will go to the area of the shadow associated with
the effective light ring. Interestingly, the oscillatory pattern of the absorption
profile rapidly attenuates and the absorption cross section slowly goes to the
shadow area associated with null geodesics trapped on the throat.

Finally, the SPE configurations present a low-frequency limit of the total
absorption cross section much smaller than the corresponding black hole ones
. On the other hand, although several SNE configurations also present this
typical almost zero low-frequency regime, we found configurations supported
by negative energy shells such that, as we intensify the charge contents on both
sides of the wormhole, the total absorption cross section noticeably increases
in the low-frequency regime. This indicates that the low-frequency absorption
properties are sensitive to the wormhole model parameters, having no obvious
trend, which might be related with the presence of a discontinuous well in the
effective potential for ` = 0.

As we have seen, asymmetric wormholes exhibit distinct absorption and
quasibound mode spectra in comparison to both black holes and symmetric
wormholes. Therefore, it is reasonable to infer that these spacetime asymmetries
could give rise to detect additional distinctions in other observables. For instance,
they might lead to significant features in the quasi-normal mode spectrum and
the possible presence of echoes.



Chapter 8.

Asymmetric Ellis wormhole with
finite areal radius

Throughout this part of the thesis, we have delved into various types of worm-
holes, ranging from the foundational Einstein-Rosen bridge to the Reissner-
Nordström thin-shell wormhole. A common feature among these diverse worm-
holes is that they are all formed by connecting an infinite universe to another
(or the same) also infinite universe using different methods such as, bridges or
thin shells. Returning to the outcomes detailed in Chapter 5, we see that in
the case of the gravitational collapse of a boson star in Palatini f(R) gravity, a
dynamically evolving wormhole structure emerges. However, in this case, the
wormhole posses a distinctive topology—one side is characterized by an infinite
universe, while the other describes a finite universe undergoing expansion. Thus,
in this chapter, we aim to revisit this idea and analyze observables for potential
signals that could indicate the presence of such structures. Nonetheless, as the
reader will notice, the wormholes we represent in this chapter are not exactly the
same as those described in Chapter 5—neither is the gravitational framework,
which for the present chapter is General Relativity. Rather, they provide an
initial insight into the topic and should be regarded as a toy model.

One of the simplest wormhole configurations of General Relativity is rep-
resented by the already mentioned Ellis wormhole solution [184], a special
case of the Ellis drainhole [184, 185]. Morris and Thorne, unaware of Ellis’

213



214 Asymmetric Ellis wormhole with finite areal radius

prior work, later rediscovered this configuration [186]. The Ellis wormhole also
constitutes a particular solution within the broader category of Morris-Thorne
traversable wormholes. It consists in two asymptotically flat spacetime regions,
i.e. Minkowski spacetime, connected by a throat. In the current chapter we
modify one of the infinite asymptotic region of the Ellis wormhole replacing it
by some inner spatial volume endowed with finiteness in one or more directions.

On the other hand, the emission of gravitational waves by the coalescence
of compact objects can distinguish between black holes (objects with an event
horizon) and wormholes (no event horizon). Wormholes are expected to emit a
sequence of echoes [229] absent in objects with horizons, from which nothing
escapes(though these echoes are not unique to wormholes, see for instance [230]).
Furthermore, the deflection of light trajectories by black holes and wormholes
could differ substantially, not only due to the possibility of light escaping from
the internal region of wormholes, but also because the number and structure of
light rings may manifest distinct behaviors [224,264].

Given that the effective potential experienced by scalar modes might be
influenced by the finiteness of spacetime, we expect that echoes could be
generated, bringing the question of how to distinguish, in a phenomenological
sense, our geometrical setting with respect to analogous results from different
scenarios [230,251,265–268].

We will also discuss the geodesic completeness of the proposed spacetime,
since it is not a priori guarantee (see [94, 269] for examples of geodesically
incomplete wormholes). In order to clarify this delicate issue we analyze to
some extent the geodesic motion for radial and non-radial trajectories.

The present chapter is based on Ref. [5].
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8.1. The model

One of the simplest (symmetric) traversable wormholes within General Relativity
is represented by the Ellis wormhole, whose line element is given by [184]

ds2 = −dt2 + dx2 + r(x)2(dθ2 + sin2 θdϕ2), (8.1)

with radial coordinate x ∈ (−∞,∞) and areal radius r(x) =
√
x2 + a2. The

areal radius has a regular minimum at x = 0, which corresponds to the wormhole
throat with radius a. As |x| increases, the areal radius monotonically grows
and the line element Eq. (8.1) approaches Minkowski spacetime as x→ ±∞.

Here we present a toy model of an asymmetric wormhole-like object, charac-
terized by a bounded 2-sphere radius inner region surrounded by an asymptoti-
cally flat exterior, formally described by the line element Eq. (8.1), but with
the modified radial function

r2(x) =

 x2 + a2, x ≥ 0,

x2 + a2 − (x2 + a2 −R2) tanh2(c x2), x < 0,
(8.2)

where a and R are constants with dimension of length, while c has dimension of
length−2. One can check that Eq. (8.2) is endowed with a throat-like structure
in x = 0, where r(x) exhibits the regular minimum r2(0) = a2, with a taken to
be the throat radius. In the asymptotic internal region, as x→ −∞, the radial
function r2(x)→R2, that is, the 2-sphere radius is asymptotically bounded. In
particular, when R2 = 0, the 2-sphere radius shrinks to zero exponentially. The
role of the parameter c is to control how much the radial function r2(x) departs
from a parabola close to the throat, so that the asymptotic value R is reached
faster as one increases the value of c. If c = 0, the radial function Eq. (8.2)
reduces to the one of the Ellis wormhole, that is, r(x)2 = x2 + a2.

In this model, the outer universe (x ≥ 0) is described by the same line
element as the Ellis wormhole spacetime. The modified areal radius Eq. (8.2),
however, sharply modifies the structure of the inner universe (x < 0). In
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Figure 8.1.: Modified areal radius Eq. (8.2). Top panel: r(x)2 for fixed value of c
and different asymptotic 2-sphere radius R. Bottom panel: r(x)2 for
fixed R and some choices of c. We normalized the plots with the throat
radius a.
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Figure 8.1 we exhibit the behavior of the modified areal radius squared in both
sides of the throat and compare it with the standard parabolic behavior of
Ellis wormhole (r(x)2 = x2 + a2). In the top panel we fixed the value of the
parameter c and consider some values of the asymptotic 2-sphere radius R. In
the bottom panel we fixed the asymptotic radius and consider different values
of c. From Figure 8.1 one notices that the areal radius may present a local
maximum in the inner region. One can check that maximum location, xm, must
satisfy M(xm) = 0 and rxx(xm) < 0, where

M(x) ≡ 1− 2c(x2 + a2 −R2) tanh(c x2) (8.3)

and rxx stands for the second derivative of r(x) (similarly rx denotes the first
derivative of r(x)). Since M(x) is continuous in the interval (−∞, 0), and
M(x)→ −∞ as x→ −∞ and M(x)→ 1 as x→ 0−, there is at least one point
xm ∈ (−∞, 0) such that M(xm) = 0, and this point is a maximum whether
rxx(xm) < 0.

In Figure 8.2 we show the embedding diagrams of four modified Ellis
wormholes with bounded 2-sphere radius in the inner region described by
Eq. (8.2). In particular, in the top-left panel, we exhibit the embedding
diagram of a wormhole-like object whose 2-sphere radius shrinks to zero in the
asymptotic region, creating a sort of bubble below the throat in the embedding
diagram. Additionally, we also show three configurations of finite R, with
R < a, R = a and R > a.
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Figure 8.2.: Embedding diagrams of finite 2-sphere radius Ellis wormholes (Eq. (8.2))
with fixed value of c. In the top-left panel we exhibit a wormhole-like
object in which the 2-sphere radius shrinks to zero, creating a sort of
bubble in the internal region. The other panels correspond to asymptotic
2-sphere radius R smaller (top-right), equal (bottom-left) and bigger
(bottom-right) than the wormhole throat a (represented by the blue
circle).



Asymmetric Ellis wormhole with finite areal radius 219

8.1.1. Curvature, energy density and pressures

To have a better physical view of the solutions modeled by the line ele-
ment Eq. (8.1) with areal radius Eq. (8.2), one can compute the curvature
invariants related with it, which read

gµνR
µν =

2 (1− r2
x − 2rrxx)

r2
, (8.4)

RµνR
µν =

2
(

(r2
x − 1)

2
+ 2r (r2

x − 1) rxx + 3r2r2
xx

)
r4

(8.5)

RαβγλR
αβγλ =

4 (1− 2r2
x + r4

x + 2r2r2
xx)

r4
. (8.6)

Since the spacetime is asymptotically flat in the exterior region all the
curvature scalars vanish very far from the throat. In the internal region, instead,
curvature invariants may be bounded or unbounded depending on the asymptotic
2-sphere radius R. As the radial coordinate approaches x→ −∞, one finds
that gµνRµν→ 2/R2, RµνR

µν→ 2/R4 and RαβγλR
αβγλ→ 4/R4, corresponding

to the curvature invariants of a 2-sphere of radius R. If R = 0 the curvature
scalars are unbounded in the internal region, as they diverge as x→ − ∞.
However, such a behaviour does not represent actually any pathology in the
spacetime, since all the geodesics can be extended forever in this geometry, and
no spacetime singularity is present (see discussion in Sec. 8.2).

It is a well established fact that standard Ellis wormholes can be sustained
in General Relativity only in the presence of exotic matter fields, resulting
in the explicit violation of the different energy conditions [186,270]. Here,we
demonstrate that our modified Ellis wormhole model, considered in the context
of General Relativity, does not evade such a restriction, and exotic matter
sources are still required. As we have mentioned in the previous chapters, when
considering modified theories of gravity wormhole configurations can emerge in
the absence of exotic matter sources [3, 139,217,271–276]. For the purpose of
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analyzing the energy conditions, it is convenient to introduce the orthonormal
frame

et̂ = ∂t, ex̂ = ∂x, eθ̂ =
∂θ
r(x)

, eφ̂ =
∂φ

r(x) sin θ
, (8.7)

that satisfy gµνeµâe
ν
b̂

= ηâb̂, where ηâb̂ ≡ diag(−1, 1, 1, 1) is the Minkowski metric.
In such a frame the Einstein tensor takes the form Gâb̂ = Gµνe

µ
âe
ν
b̂
, whose

components are:

Gt̂t̂ =
1− r2

x − 2rxx
r2

, (8.8)

Gx̂x̂ =
r2
x − 1

r2
, (8.9)

Gθ̂θ̂ = Gφ̂φ̂ =
rxx
r
. (8.10)

Similarly to the procedure detailed in Section 6.3, by assuming for the source
of the wormhole a fluid description, in the orthonormal basis we can write
the energy momentum tensor in the form Tâb̂ = diag(−ρ(x), pr(x), pt(x), pt(x)),
where its components have a well-known physical interpretation in terms of
the energy density ρ(x), the radial pressure pr(x) and the lateral pressure
pt(x). Now, requiring that our model is a solution of General Relativity, i.e.
Gâb̂ = κTâb̂, we obtain the expressions

ρ =
1− r2

x − 2rrxx
κr2

, pr = −1− r2
x

κr2
, pt =

rxx
κr
, (8.11)

with ρ = −2pt − pr. Henceforth we will omit the dependence on x in the
compontens of the energy momentum tensor.

Let us now write the four General Relativity energy conditions in terms of
the energy-momentum tensor components. They are the null energy condition
(NEC)

ρ+ pr ≥ 0 and ρ+ pt ≥ 0, (8.12)
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the weak energy condition (WEC)

ρ ≥ 0, ρ+ pr ≥ 0 and ρ+ pt ≥ 0, (8.13)

the strong energy condition (SEC)

ρ+ pr + 2pt ≥ 0, ρ+ pr ≥ 0 and ρ+ pt ≥ 0, (8.14)

and the dominant energy condition (DEC)

ρ ≥ 0, pr ∈ [−ρ, ρ] and pt ∈ [−ρ, ρ]. (8.15)

As one expects, at the throat all four energy conditions are automatically
violated since rx(0) = 0 and rxx(0) > 0, i.e.

ρ| x=0 = −2arxx(0) + 1

κa2
< 0, (8.16)

(ρ+ pr)| x=0 = −2pt| x=0 = −2arxx(0)

κa2
< 0. (8.17)

Since in the inner region the areal radius goes smoothly to a finite value, its first
and second derivatives vanishes asymptotically. Therefore, inside the throat,
when r→R > 0, the lateral pressure vanishes in the very inner region of the
object, whereas the density and radial pressure are finite and positive in this
limit. The finiteness of these quantities were expected since the curvature
scalars are bounded in those models. On the other hand, when the areal radius
shrinks until it vanishes, all the components of Tâb̂ blow up in the very inner
region of the object. This is due to the fact that r goes to zero more rapidly
than its derivatives, therefore even the lateral pressure diverges in this limit.

8.2. Geodesic analysis

In this section we examine into some details the geodesic trajectories of free point-
like particles in their motion over the two regions of the modified Ellis wormhole.
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The geodesic equation is obtained from the Lagrangian L = ṡ2/2 = k/2, where
the overdot denotes a derivate with respect to an affine parameter λ and k is the
normalization of the four-velocity (k = −1, 0 for massive particles and light-rays,
respectively). Due to the symmetries of the Lagrangian, two quantities are
conserved along the geodesics, namely E and L, respectively related with the
time translation symmetry (the Lagrangian is independent of t) and with the
rotational symmetry (the Lagrangian is independent of ϕ). Therefore, in the
equatorial plane the geodesic equation reads

ẋ2 = E2 −
(

L2

r(x)2
− k
)
, (8.18)

and by conducting a thorough analysis of Eq. (8.18) together with the radial
function Eq. (8.2), we can unveil the underlying geodesic structure of the models
we propose.

Let us first consider radial geodesics (L = 0) moving toward the asymptotic
internal region, which, regardless of the asymptotic internal 2-sphere radius R,
are given in this case by

ẋ2 = E2 + k, (8.19)

ṙ2 = r2
x(E

2 + k). (8.20)

Upon integration of Eq. (8.19), one obtains the trajectory for outgoing particles
that cross the throat into the inner region x(λ) = −

√
(E2 + k)λ+ x0, where

x0 is an integration constant. Therefore, one notices that radial geodesics
can extend indefinitely, regardless of the asymptotic 2-sphere radius. This
is particularly relevant when then inner 2-sphere radius shrinks to zero, and
the curvature scalars, energy density and pressures diverge in the asymptotic
limit x→ −∞. Since it takes an infinite affine time λ to reach the asymptotic
infinity, the region with ill-defined quantities is actually inaccessible for massive
or massless particles in radial motion. From Eq. (8.20), one notices that the
areal velocity ṙ of particles in radial motion goes to zero when λ→∞ (particles
going to x→ −∞).
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The analysis for non-radial geodesics is more involved, since we cannot obtain
an analytical expression for the geodesics. However, some approximations and
numerical analysis lead to some interesting conclusions. First, let us consider
that the asymptotic radius R is finite and non-vanishing. When it does happen,
as one approaches the asymptotic internal region, ẋ2 is approximately

ẋ2 ≈ E2 −
(
L2

R2
− k
)
, (8.21)

which can also be integrated leading to the conclusion that even non-radial
geodesic are complete for both massive and massless particles moving in the
internal region of the modified Ellis wormhole with R 6= 0.

When R = 0 an interesting feature happens. The effective potential Veff =

1/r2(x) grows without bound in the internal region, therefore any particle
with non-zero angular momentum must suffer a bounce in the internal region
being reflected to the outer universe. The only particle capable of propagating
indefinitely within this object is one with zero angular momentum, whether
it is massive or massless, exhibiting purely radial motion. Hence, even in the
vanishing R case, all geodesics are complete.

8.2.1. Photon orbits and photon spheres

To better understand the geodesic structure of the modified Ellis wormhole,
one may study the orbits in these geometries. For simplicity let us consider null
geodesics (k = 0), and rewrite Eq. (8.18) as

1

r4

(
dx

dϕ

)2

=
1

b2
− Veff(x), (8.22)

where b = L/E is the impact parameter that a photon has in the exterior
region. Since x = 0 is a regular minimum of r2(x), it is also a local maximum
of the effective potential. Therefore, the throat radius a plays the role of a
critical impact parameter of light-rays, since photons impinging from infinity
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with impact parameter greater than the throat radius, b > a, do not enter in
the inner universe and are scattered back to infinity; while photons with impact
parameters smaller than the throat radius, b < a, do cross the throat and enter
in the inner universe; whereas, photons with impact parameter equal to the
throat radius, b = a, stay trapped in an unstable orbit. The location of this
unstable orbit is at the local maximum of the effective potential, that is, x = 0

or r = a. This orbit is called photon sphere, and since it is at an unstable
point it is called unstable photon sphere. If r(x) has a local maximum, the
effective potential also exhibits a local minimum in the inner universe. This
local minimum corresponds to a stable photon sphere, whose existence may
support long-lived modes (radiation may be trapped by these compact object).
In Section 8.3 we perform a discussion of trapped scalar modes.

The behavior of the effective potential inside the throat deeply departs from
the standard profile of the Ellis wormhole. For a non-vanishing asymptotic
2-sphere radius, the potential goes to a barrier of magnitude 1/R2 as x→ −∞,
while for R = 0, the effective potential exponentially grows inside the throat.
Any photon able to enter in the inner universe (b < a), propagates in a bounded
2-sphere universe, and the behavior of these curves depends on the asymptotic
radius R. For R ≥ a, any photon crossing the throat must propagate toward
the asymptotic infinity, since the asymptotic value of the effective potential
1/R2 ≤ 1/a2. However for R < a, after crossing the throat, depending on the
photons’ impact parameter, photons may suffer a bounce in the inner universe
at xb and be scattered back to the outer universe, since 1/R2 > 1/a2. For
non-radial geodesics (L 6= 0), the bounce happens if given an impact parameter
b, there is an x = xb such that Veff(xb) = 1/b2 and Veff > 1/b2 for x < xb. At xb
therefore a bounce happens and the particle is scattered to the outer universe.
In Figure 8.3 we show the effective potential of the configurations depicted
in Figure 8.2, together with the inverse of the impact parameter squared of
some photons able to cross the throat (1/b2 > 1/a2). The point x = xb where
the vertical lines have the same value of the effective potential is the bounce
location, where a photon is reflected in the inner universe and scattered back
to the outer one.
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Figure 8.3.: Effective potential of four modified Ellis wormholes with fixed c and
four choices of R, namely R/a = 0, 0.5, 1 and 5. We also plot the
inverse of the impact parameter squared of some photons that enter in
the inner region of the modified Ellis wormhole.

In Figure 8.4 we show how the four configurations shown in Figure 8.3 scatter
light rays with the same impact parameter in the outer universe. In the top-left
panel, the geodesics progapate in a modified Ellis wormhole with vanishing
asymptotic 2-sphere radius. As previously discussed, any non-radial geodesic
moving through the inner region must suffer a bounce. This behavior is shown
in the top-left panel of Figure 8.4. When R < a, depending on the impact
parameter the geodesic can be scattered to the outer universe or propagate
to the asymptotic inernal region. We exhibit this behavior in the top-right
panel of Figure 8.4. We can see that, geodesics with impact parameter b ≤ R

are scattered back to the outer universe, and any other geodesic crossing the
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throat must propagate to the asymptotic internal region with bounded 2-sphere.
The bottom-left and bottom-right panels, respectively, exhibit geodesics in
R = a and R > a modified Ellis wormholes. In these configurations any photon
crossing the throat to the inner universe, propagates toward it to the asymptotic
internal region with bounded 2-sphere.
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Figure 8.4.: Null geodesics in the modified Ellis wormhole. Solid lines correspond to
light rays propagating in the outer universe, while dashed lines represent
geodesics in the inner universe. We are considering photons with the
same values of impact parameter in the outer universe, and showing
how these photons are scattered or absorbed depeding on the modified
Ellis wormhole configuration. The circle with radius 1 corresponds to
the throat of the wormhole; the outermost circle corresponds to the
local maximum of the areal radius r(x) in the inner universe. The other
circles are the asymptotic 2-sphere radius of each configuration.
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8.3. Scalar field perturbations

In order to extract valuable information about the geometries investigated in
this study, we turn our attention to the analysis of scalar perturbations on the
background metric gµν . By examining the evolution of these perturbations,
we can discern the distinctive effects that these geometries imprint on the
time-domain profiles, making them distinguishable from other black hole and
wormhole configurations.

For a massless scalar field Ψ localized within the background metric gµν , the
dynamics of the field are governed by the Klein-Gordon equation

�Ψ(t, x, θ, ϕ) = 0. (8.23)

Due to the spherical symmetry of the problem, we can decompose the field in
the following way

Ψ(xµ) =
∞∑
`=0

∑̀
m=−`

Φ(x, t)

r(x)
Y`m(θ, ϕ), (8.24)

where Y`m(θ, ϕ) denotes spherical harmonics of degree ` and order m. By
substituting Eq. (8.24) in Eq. (8.23), one obtains that the radial function(

d2

dt2
− d2

dx2
+ VΦ

)
Φ = 0, (8.25)

where the effective potential VΦ is given by

VΦ =
`(`+ 1)

r(x)2
+

rxx
r(x)

. (8.26)

Now, in order to integrate the wave equation Eq. (8.25) we follow the
procedure described in [277]. This involves introducing light-cone coordinates,
specifically the advanced time coordinate denoted as v ≡ t+x and the retarded
time coordinate denoted as u ≡ t−x. Thus, the wave equation can be expressed
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Figure 8.5.: Representation of the numerical grid used for the integration of
Eq. (8.27). The evaluation points of Eq. (8.28) are represented with S,
W , E and N . The stepsize of the grid can be visualized by the distance
between to consecutive points in the same axis h = uE−uS = vN −vE .

as (
4
d2

dudv
+ VΦ

)
Φ = 0. (8.27)

The integration of this differential equation is done numerically on a null grid
which leads to the following expression for the discretized scalar field evolution

ΦN = ΦE + ΦW − ΦS −
h2

8
VΦ(S)(ΦW + ΦE) +O(h4), (8.28)

where h is the stepsize between two neighboring grid points and subscripts
indicate the point in the grid where the function is evaluated. Explicitly,
S = (u, v), W = (u+ h, v), E = (u, v + h) and N = (u+ h, v + h), as can be
seen more clearly in Fig 8.5.
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The initial distribution for the scalar perturbation is set on the null surfaces
u = 0 and v = 0. Then, the grid is computed line by line using the mechanism
described in Eq. (8.28), with a stepsize h = 0.1 and grid values ranging from
umin = 0 to umax = 1000 and vmin = 0 to vmax = 1000. As initial conditions for
the scalar perturbation we use a gaussian distribution on the u = 0 surface,
together with a constant profile on the v = 0 surface, i.e.:

Φ(0, v) = Ae−(v−vc)2/(2σ2), (8.29)

with height A = 1, width σ2 = 4.5 and centered at vc = 20.

The effective potential is then calculated by applying Eq. (8.26) and using
the radial function r(x) as presented in Eq. (8.2). Radial profiles of the effective
potential with R/a = 0 are depicted in Figure 8.6, where, in order to optimize
the grid we designed, the throat of the wormhole has been conveniently shifted
to x = −20. As one can see, the effective potential exhibits a peak like in
standard Ellis wormholes, which is associated to the throat of the wormhole,
and with their maximum value increasing in proportion to `. Conversely, as
x tends to −∞, the potential does not drop to zero, but it shows a rapid and
smooth growth, remaining finite for all finite radial values. It is remarkable that
the effective potential exhibits a significantly slower growth as x approaches
−∞ for the fundamental `-mode as compared to higher `-modes. Moreover,
with increasing values of `, it approaches infinity at a faster rate, although the
most prominent discrepancy in growth rate is observed between ` = 0 and ` = 1.
Such a behavior, combined with the first peak, gives rise to a well, which is
expected to lead to echoes in the time-domain spectrum. For the fundamental
`-mode, the effective potential assumes negative values within the well near the
peak associated with the throat of the wormhole. The radial extent over which
negative effective potential occurs diminishes as ` increases. Finally, it is worth
mentioning that the parameter c exerts an influence on the effective potential,
causing the well formed between the throat peak and the asymptotic boundary
to narrow as its value increases.
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Figure 8.6.: The radial profiles of the effective potential Eq. (8.26) are presented
for three `-modes and R/a = 0. The top panel displays the case for
` = 0, the central panel shows ` = 1, and the bottom panel shows ` = 2.
The solid line represents the radial profile of the effective potential
for the standard Ellis wormhole, while dashed lines correspond to
three different configurations of modified Ellis wormhole with varying c
parameters.
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For the non-vanishing R case, one can show that the asymptotic behavior
of VΦ reads

lim
x→+∞

VΦ = 0, (8.30)

lim
x→−∞

VΦ =

 0, ` = 0,

`(`+ 1)

R2
, ` 6= 0.

(8.31)

It is worth nothing that in the asymptotic internal region, whenever ` 6= 0 and
R 6= 0, the effective potential goes to a threshold value. The massless scalar
field propagating in this region would behave equivalently to a scalar field with
effective mass in a Minkowski background, namely(

d2

dt2
− d2

dx2
+ µ2

e

)
Φ = 0, (8.32)

where µe =
√
`(`+ 1)/R. This kind of effective mass in scalar field dynamics

typically arises in non-asymptotically flat spacetimes, such as when scalar waves
propagate around a black hole immersed in a magnetic field [278,279]. For the
case ` = 0, the effective potential vanishes asymptotically in both sides of the
modified Ellis wormhole, therefore no effective mass term appears.

In Figure 8.7, we depict the radial profiles of the effective potential for ` = 1

and various values of the R parameter. As observed in the geodesic analysis,
the presence of a non-zero R leads to the asymptotic finiteness of the potential
as x→ −∞. The finite value towards which the potential tends is inversely
proportional to the magnitude of R, with the potential becoming approximately
two orders of magnitude smaller than the throat peak for R/a = 5.

As the 2-sphere approaches its asymptotic value, the effective potential
exhibits a sort of effective centrifugal barrier for R = 0, playing the role of
an effective mirror for the scalar field perturbation. For R 6= 0 in this same
limit, one can see that the effective potential tends to a plateau which height is
proportional to 1/R2.
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Figure 8.7.: The radial profiles of the effective potential Eq. (8.26) are presented
for four configurations with different R parameter and ` = 1.

8.3.1. Time-domain profile

After solving the discretized wave equation, we extract the scalar field values at
the observation point xobs = 0 using the coordinate transformation x = (u−v)/2

and t = (u+ v)/2. The numerical integration results are displayed in Figure 8.8.
In the top panels, the time-domain evolution of the scalar field for an Ellis
wormhole is shown as a reference. Even though our model allows arbitrary large
values of c, here we are focusing on small deviations of Ellis wormholes in the
throat scale, therefore restricting our analysis to a2c ≤ 0.01. This makes with
the potential peak at the throat to be almost the same as Ellis wormhole (see
Figs. 8.6 and 8.7). As the initial wave packet impinges on the modified Ellis
wormhole, it encounters the throat peak first, causing a portion of the wave
to return to the observation point and exhibiting a characteristic ringdown.
Due to the similarities between the throat peaks of modified and standard Ellis
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Figure 8.8.: Time-domain profile of the absolute value of the scalar field perturba-
tion for the ` = 1 mode. The top panels depict identical geometries
associated with the Ellis wormhole. In the left column, three configura-
tions with varying values of the parameter c and R/a = 0 are displayed.
In the right column, three configurations with different values of the
parameter c are shown, but with R/a = 5. The disparity between the
Ellis wormhole and the other cases are the so-called echoes.
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wormholes, the prompt contribution and initial ringdown signal in the time
profile of scalar perturbations are expected to be basically the same in both
scenarios.

The portion of the scalar wave packet that is transmitted by the throat
peak passes through the well and encounters the potential barrier extending
to x→ −∞. It then reflects back towards the observation point. However,
in order to reach xobs, it must interact with the throat peak once again. A
portion of the incident wave is reflected, repeating the same process, while
another portion is transmitted. The transmitted portion, after being detected
at the observation point, evolves towards x→∞ and does not pass through
the observation point again. Each time a wave is reflected and passes through
the observation point, it is recorded as a peak in the time-domain profile of
|Φl|. As expected based on the description of the effective potential of modified
Ellis wormhole, (unstable) photon sphere modes from the scalar perturbation
exist and ring in the same way as in standard Ellis wormhole. However, in this
case, there is a stable photon sphere in the inner universe, causing the bounded
2-sphere region of the wormhole to act as a cavity, trapping photon sphere
modes. This results in a series of echoes in the scalar perturbation time profile,
which are illustrated in Figure 8.8. The characteristics of these echoes vary
depending on the parameters used to construct the spacetime, since the width
and height of the cavity in the effective potential deeply depend on c and R.

Let us now discuss the R = 0 spacetimes, corresponding to the left column
of Figure 8.8. It can be observed that there is a relationship between the value
of the parameter c and the frequency of the echoes. This arises from the fact
that c influences the width of the effective potential well. As the well becomes
narrower with increasing c, it can be observed that the time interval between
two consecutive echoes decreases (or, equivalently the frequency increases), as
the waves have to travel a shorter distance.

Another notable feature that can be observed is the gradual decay of peak
amplitudes. Each time the scalar wave packet interacts with the throat peak, it
is divided into transmitted and reflected parts, resulting in weaker successive
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echoes. This effect contrasts with the case of the Ellis wormhole, where the
signal exhibits a rapid decay compared to the modified Ellis scenario. The
presence of two asymptotic infinities and the absence of a potential well in
the Ellis wormhole prevent the emergence of echoes, thereby contributing to
the faster signal decay. When the potential well is narrower, the superposition
of different echoes becomes more noticeable, leading to deformations in their
waveforms. This behavior is particularly evident in the late-time regime, as
shown by the bottom plot in the left column of Figure 8.8.

Similar features are noticeable also in the right column of Figure 8.8, cor-
responding to the R/a = 5 configuration. However, the echoes’ amplitudes
are notably smaller compared to the previous scenario, making it difficult to
differentiate distinct echoes due to their reduced amplitude.

The absence of an unbounded growing effective potential results in wave
packets interacting with a finite barrier, leading once again to the division
of the package into a reflected part and a transmitted part that propagates
towards x→ −∞ without bouncing back to the outer universe. The height
of the barrier diminishes as R increases, making it evident that the reflected
part of the wave also is smaller as one considers bigger values of R, as shown
in Figure 8.9. Notably, there is a distinct transition regime depending on
the asymptotic value to which the effective potential tends. Specifically, the
asymptotic value aligns with the height of the throat peak for R/a ≈ 0.8 for
the considered configurations. When the barrier exceeds the throat peak height
(R/a < 0.8), the echoes are easily distinguishable. However, when the barrier
is smaller (R/a > 0.8), a higher proportion of the wave is lost, leading to a
reduction in the amplitude of the echoes.

Remarkably, in the asymptotic limit R → ∞, the effective potential VΦ

recovers the usual behaviour of the one of Ellis wormhole in the inner universe,
that is, VΦ→ 0 as x→−∞. Therefore, the time-domain profile of modified Ellis
wormhole with large asymptotic 2-sphere radius, tends towards the expected
profile of a standard Ellis wormhole.
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Finally, it is noteworthy that while the results presented here are for the
` = 1 mode, the qualitative characteristics are present in the other `-modes as
well.

Figure 8.9.: Time-domain profile of the absolute value of the scalar field pertur-
bation for the ` = 1 mode. Seven configurations with the following
values R/a = {0, 0.5, 0.9, 1, 10, 20, 40} are plotted, along with the Ellis
wormhole as a reference.
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The results presented in the current chapter suggests that the global structure
of wormholes may give rise to remarkable observational aspects, even though
they can share a very similar throat-like structure. The study of perturbations
can be used for example to extract information about possible compactness of
the inner universe, and this could be useful in future spectroscopy experiments
trying to identify new compact objects.
It is remarkable that even if the hypothesis of an asymptotic Euclidean geometry
for the spherical sector is quite restrictive, the toy model here discussed is solid in
seizing the main properties modified Ellis wormholes are expected to be endowed
with, when echoes are included in the analysis. Geometry can be then further
complicated either by relaxing the Euclidean assumption, e.g. Schwarzschild-like
scenarios, or by ulteriorly compactifying the spacetime fabric of the bounded
2-sphere patch, i.e. truncating the range of the possible values spanned by the
coordinate x. These configurations are expected to generate a great variety
of phenomenological signatures, due to the appearance of additional potential
barriers or closed universe effects in geodesic motion.
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Appendix A.

Convergence analysis

In order to carry out the convergence analysis of the simulations showed in
Chapter 4 and Chapter 5 we introduce the following notion for the total mass
of the spacetime. It can be calculated by integrating the stress-energy tensor at
each spatial hypersurface Σ [280]

M =

∫
Σ

(
2T tt − T µµ

)
α
√
γ dr dθ dϕ . (A.1)

A.1. Stable models

In this analysis we are only considering the numerical error coming from the
finite-differencing of the differential equations. This dominates the error if we
use resolutions coarser than that used to compute the initial data. However, we
note that the change of coordinates from polar-areal to isotropic (see details on
the specific transformation in [49]) also introduces an additional source of error.

Setting ∆xpa = 0.0025 (the spatial resolution needed in the polar-areal grid
used to compute the initial data) and choosing three resolutions for the isotropic
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Figure A.1.: Time evolution of the total mass of stable boson stars models An.
Top panel: Difference of the instantaneous total mass and its initial
value for three different evolution grid resolutions ∆x (isotropic grid).
Bottom panel: The quantities of the top panel are rescaled to show
third-order convergence.

grid, namely ∆x = 0.25, ∆x = 0.125 and ∆x = 0.0625, we find third-order
convergence.



Convergence analysis 243

0 200 400 600 800
-0.025

-0.020

-0.015

-0.010

-0.005

0.000

0 200 400 600 800
-0.025

-0.020

-0.015

-0.010

-0.005

0.000

Figure A.2.: Time evolution of the total mass of stable boson stars models Ap.
Top panel: Difference of the instantaneous total mass and its initial
value for three different evolution grid resolutions ∆x (isotropic grid).
Bottom panel: The quantities of the top panel are rescaled to show
third-order convergence.

The results are plotted in Figure A.1 and Figure A.2. For the Ap model,
numerical errors from finite-differencing dominate the evolution and the total
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mass decreases with a drift that depends on resolution (see top panel of Fig. A.2).
The rate of convergence of the total mass for this stable model is third order,
as shown in the bottom panel of Fig. A.2. Similar results are showed for model
An (Figure A.2).

A.2. Gravitational Collapse
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Figure A.3.: Time evolution of the total mass of the perturbed Bp model for
different isotropic grid resolutions with fixed polar-areal grid resolution
∆xpa = 0.0025. The finest isotropic grid (purple curve) is the one used
in the simulations discussed in Chapter 5.

Figure A.3 shows the time evolution of the total mass for several isotropic
grid resolutions. In order to check the convergence of the results, masses
calculated from different grid resolutions are compared according to

Mu−v = |M(∆x = u)−M(∆x = v)| . (A.2)
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Setting ∆xpa = 0.0025 (the spatial resolution needed in the polar-areal grid
used to compute the initial data) and choosing several resolutions for the
isotropic grid, namely from ∆x = 0.2 to ∆x = 0.04, we find second-order
convergence during the early contraction phase and third-order convergence
during the collapse and black hole formation phase. This can be inferred by
the multiplicative factors employed in the first three curves in the legend of
the top panel of Figure A.4. However, increasing the resolution of the isotropic
grid from ∆x = 0.04 to ∆x = 0.02, the convergence order drops to ∼ 1.8 in the
early phase. In addition, for even higher resolutions of the isotropic grid, the
accuracy of the evolution does not improve (see bottom panel of Figure A.4).

As previously mentioned, when employing resolutions that are coarser than
those used for computing the initial data, the dominant source of error stems
from the finite-difference method. Nonetheless, it is important to acknowledge
that the transformation of coordinates from polar-areal to isotropic, as described
in [49], introduces an additional source of error. This error is evident in the
observed loss of convergence, as illustrated in the bottom panel of Fig. A.4.
Thus, while the primary focus of our discussion has centered on the numerical
error arising from finite differences, it is crucial to recognize that the coordinate
transformation itself contributes to the overall error in our analysis. In addition,
since we do not further change ∆xpa in this analysis, increasing the isotropic grid
resolution does not lead to an improved convergence for the higher resolution
cases discussed here.

Despite the lack of convergence for an isotropic grid with ∆x = 0.00125,
our simulations needed to use such high resolution in order to populate the
vicinity of the origin with a sufficiently large number of cells (even though the
accuracy of the result does not increase at the expected rate). A remedy to
this shortcoming, which we believe does not affect the validity of the findings
reported in this work, would be to compute the initial data directly in isotropic
coordinates and thus avoid the coordinate transformation for the evolution.
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Figure A.4.: Comparison of the time evolution of the difference between total masses
calculated for different isotropic grid resolutions with fixed polar-areal
grid resolution ∆xpa = 0.0025.
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Further developments in this direction will be reported elsewhere. We also note
that, similarly, first-order convergence is found for the polar-areal grid when
the isotropic grid is fixed.
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Appendix B.

RN-RN asymmetric wormhole
parameter space

The orthographic projection is a common way to represent three dimensional
objects in two dimensions. It is a representation of each side of an object as
would be seen by an observer infinitely far away.
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Figure B.1.: The six orthographic projections of the 3D plot shown in Fig. 7.1.
The blue region represents the SPE space of parameters while the red
region represents the SNE space of parameters. Transparency has been
applied to the regions in order to make more noticeable that the SPE
region (blue) is embedded onto the SNE region (red).



Thesis summary

The need for a well-behaved gravity theory at high energies demands a multidis-
ciplinary approach, incorporating a wide range of viewpoints, from sophisticated
mathematical tools and statistical techniques to ambitious experiments. Achiev-
ing this goal requires a deep understanding of our fundamental theories, their
capabilities and limitations, as well as an improvement of the main roads in
them are essential steps. This PhD thesis is situated within this context, with
particular emphasis on investigating the existence and properties of exotic
compact objects resembling black holes.

We begin this dissertation by introducing the concept of a boson star, which
is a self-gravitating entity. A boson star represents a gravitationally bound
configuration of bosonic particles that are minimally coupled to Einstein’s
theory of gravity. In essence, it can be thought of as a collection of particles
whose dynamics are governed by the Klein–Gordon equation, resulting in
dispersive behavior. To ensure stability, a crucial component is the presence of a
locking mechanism. This mechanism is a consequence of the mass parameter µ
associated with the bosonic field, which creates a potential barrier. Consequently,
we can view boson stars as a macroscopic Bose–Einstein condensate.

Since boson stars can be considered as macroscopic quantum states, we can
apply Heisenberg’s uncertainty principle to estimate their maximum mass. It
can be observed that the mass of a boson star is inversely related to the mass
of the constituent scalar field. From this perspective, the mass and size of a
boson star can vary widely, ranging from atomic scales to astrophysical scales,
depending on the mass of the constituent bosons. Additionally, the inclusion of
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a self-interaction term in the field potential can introduce further variations in
the mass of the boson star.

Next, we will discuss modified gravity, the name given to theories that
aim to extend Einstein’s theory of gravity. Although General Relativity is the
most widely accepted theoretical framework within the scientific community
and has passed numerous experimental tests, including the recent detection
of gravitational waves, Einstein’s theory is unable to fully and satisfactorily
explain certain phenomena, such as the rotation curves of spiral galaxies, the
expansion and origin of the universe, or the singularity within black holes.
Moreover, General Relativity remains incompatible with quantum theory. All
these effects lead us to seek a gravitational framework that can explain, in a
purely geometric way, all the observed phenomena.

Among the various ways to extend General Relativity, we highlight two. First,
there is the consideration of an appropriate gravitational action, as Einstein-
Hilbert action, upon which General Relativity is based, was chosen for its
mathematical elegance and simplicity and has not been directly experimentally
verified. In this context, we mention f(R) theories, which are constructed from
contractions of curvature tensors and offer significant simplicity and flexibility.

On the other hand, we emphasize the metric-affine formulation, in which it
is considered that the connection is not the Levi-Civita connection, meaning
that, it is not defined by the metric but is entirely independent of it. It is
worth noting that when this formalism is applied to the Einstein-Hilbert action,
the resulting equations of motion are exactly the same as if we considered the
purely metric formalism. However, when the metric-affine formalism is applied
to other gravitational actions, we do find substantial differences.

By combining these two modifications, we encounter Palatini f(R) theories,
which have an important feature compared to others. These can be rewritten
in such a way that the nonlinearities of the gravitational sector of the action
are transformed into nonlinearities of the matter sector. This allows us to
transform a f(R) gravity problem coupled to a certain matter sector into a
General Relativity problem coupled to a modified matter sector. The significant
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advantage of this approach is the ability to use techniques and mechanisms
developed in the literature to address problems in General Relativity.

The tension between theory and observations does not allow us to dismiss
the possible existence of compact objects beyond those known so far, namely,
white dwarfs, neutron stars, and black holes. Thus, speculating about the
possible existence of boson stars also leads us to observe the behavior of gravity
in its strong field regime. It is of interest to explore how structural properties
such as mass and radius of boson stars could be affected by a modification
of the gravitational Lagrangian. Since f(R) theories offer a high degree of
freedom while maintaining field equations within reasonable limits of simplicity,
we will explore the impact that high-energy modifications of the gravitational
interaction of the f(R) type can have on the astrophysical properties of boson
stars.

The approach we will take is as follows. Starting from the action of the
problem at hand, i.e., a static boson star in the context of f(R) = R + ξR2

Palatini gravity, we will use the correspondence between this theory and that of
Einstein to translate our system into a Lagrangian of nonlinear matter coupled
to General Relativity. This will allow us to solve the equations formulated
in this context and then reverse the transformation to observe the resulting
outcome from the perspective of Palatini f(R) gravity.

An important difference between boson stars in f(R) and boson stars in
General Relativity is the limited range of scalar field amplitudes allowed at
the center of the star, which is much shorter than in General Relativity. For
relatively small central field amplitudes φ0, we find that the solutions do not
significantly differ from those of General Relativity. Although one can achieve
greater or lesser mass and compactness for a given φ0 depending on whether
ξ < 0 or ξ > 0, respectively. In the case of ξ < 0, new features arise regarding
the dependence of the total mass and the number of particles of a solution on
its oscillation frequency. In General Relativity coupled to a canonical matter
Lagrangian, these curves exhibit a characteristic spiral pattern that is lost in the
case of the aforementioned modified gravity theory. Therefore, an interesting
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degeneracy is observed between boson stars in General Relativity and in f(R),
which is only broken at high values of the scalar field φ0. It is also observed in
this regard that the incorporation of self-interactions in the scalar field potential
contributes to worsening this degeneracy.

Through the use of Numerical Relativity techniques, we can calculate the
temporal evolution of boson stars using the static solutions discussed earlier. We
study three different models for three values of the coupling parameter ξ: three
stable models, An, Az, and Ap; three unstable models with negative binding
energy, Bn, Bz, and Bp; and three unstable models with positive binding energy,
Cn, Cz, and Cp. The lowercase letters, n, z, and p, indicate the value of the
coupling parameter, ξ = −0.1, ξ = 0 (corresponding to General Relativity),
and ξ = 0.1, respectively.

For the stable models An, Az, and Ap, we obtain stable time evolutions
in which the parameters of the stars, such as mass or size, largely remain
unchanged, except for minor oscillations caused by numerical errors from the
discretization scheme. It is worth noting that in the case of model Az, i.e., in
General Relativity, these oscillations are mainly attributed to the resolution
of the initial data grid, and in the continuum limit, these oscillations vanish,
as expected. However, for models An and Ap, in f(R) Palatini gravity, the
coordinate change from polar-areal to isotropic coordinates introduces a small
source of numerical noise that contributes to the mentioned oscillation, which
does not disappear when we increase the resolution of the initial grid. Further
research is needed in this direction to obtain initial data in isotropic coordinates
to carry out temporal evolution without the need for a change of coordinates.

Our simulations have also shown that the unstable models Bn, Bz, and Bp
experience a migration towards stable branch configurations with the same
mass when perturbed only by discretization errors. However, when these three
models are perturbed beyond the discretization error, they undergo gravitational
collapse. In the context of General Relativity, this leads to the formation of a
black hole.
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Regarding the perturbed model Bn, we found that the approach used in
this work is not suitable for fully calculating its gravitational collapse due
to the appearance of divergences, which could also indicate the appearance
of naked singularities. This suggests the need for alternative approaches or
refinements in computational techniques to properly analyze the behavior of
gravitational collapse in this specific model (or models within a theory with a
negative coupling parameter).

In contrast, for model Bp, we observed that a small portion of the spacetime
inflates, leading to a finite universe that grows exponentially. In our model, this
occurs concurrently with the development of an apparent horizon, making the
internal process analogous to a cosmic bounce and preventing its electromagnetic
observation by external observers. Our results are robust and persist for all
values of the gravitational coupling parameter ξ and for other central scalar field
amplitudes Φ0 as long as they are on the unstable branch and the perturbation
is high enough to trigger gravitational collapse. We observed that a portion
of quasi-stationary scalar field remains outside the horizon, and the throat
area decreases as the external scalar cloud is absorbed, suggesting that it will
eventually close. However, numerical limitations challenge the analysis of this
behavior at higher temporal values.

Finally, the unstable models Cn, Cz, and Cp are characterized by a rapid
decrease in Φ0, resulting in a drastic radial expansion of the boson stars and
their complete dispersion.

The study conducted reveals significant differences compared to General
Relativity models. These differences emphasize the profound influence of
gravitational theory on the behavior and ultimate fate of self-gravitating compact
objects such as boson stars.

The emergence of wormhole-like structures in the context of gravitational
collapse in Palatini f(R) gravity has captured our interest in these objects.
Therefore, we will study the diverse descriptions that have been provided in the
literature for wormholes, with particular emphasis on traversable wormholes
and thin-shell wormholes.
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We will then conduct an analysis of the observational signatures of a worm-
hole in f(R) Palatini gravity, formed by two Reissner-Nordström (RN) space-
times glued above their event horizons—in order to avoid them—using the
thin-shell formalism. More specifically, we will examine the absorption spectrum
of scalar wave excitations by these objects.

To investigate how the value of the throat location and the charge affects
absorption, we analyze various configurations with thin-shell structures of
both negative energy (violating the energy conditions) and positive energy
(not violating the energy conditions). Regardless of the sign of the thin-shell
energy, the wormhole can be constructed using a spacetime of two black holes,
a spacetime of a black hole and a naked singularity, or two spacetimes with
naked singularities. It is important to note that we are referring to the exterior
of the black hole or naked singularity, so there are no actual event horizons or
singularities present in the constructed solution.

If the effective potential has a well (either continuous or discontinuous),
quasi-bound states emerge around the wormhole throat. These quasi-trapped
modes create resonances in absorption spectra (sharp peaks in the absorption
cross-section), causing the absorption profiles of asymmetric RN wormholes
to be significantly different from those of RN black holes. These new peaks
are heavily influenced by the symmetry of the potential well. If the effective
potential exhibits symmetric well, resonances are noticeable across the entire
frequency range. On the other hand, the presence of asymmetry in the effective
potential leads to the damping of resonance peaks associated with quasi-bound
states for higher modes `. Thus, the high-frequency regime of the absorption
cross-section is degenerate with that of the standard RN black hole, in contrast
to symmetric wormhole configurations. Consequently, even minor deviations
from symmetry in wormhole spacetimes can produce significant differences in
observable characteristics associated with quasi-bound states.

If we attach a RN black hole (before its photon sphere) to a RN naked
singularity spacetime, the wormhole can mimic the absorption of a standard RN
black hole. This can be understood by the fact that the total absorption cross-
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section depends on the dominant light ring (associated with the highest peak
of the effective potential in the eikonal limit). Therefore, the dominant light
ring will be that of the RN black hole, dictating the profile of the absorption
cross-section in the eikonal limit.

An interesting absorption behavior arises when we cut-and-paste together
two naked singularities. In these scenarios, the throat effectively acts as a
photosphere. As a result, the total absorption cross-section will converge
to the shadow area associated with the effective light ring. Interestingly,
the oscillatory pattern of the absorption profile rapidly diminishes, and the
absorption cross-section gradually approaches the shadow region associated
with the null geodesics trapped at the throat.

Our results indicate that asymmetric wormholes may exhibit diverse ob-
servational signatures when compared to black holes or symmetric wormholes.
These spacetime asymmetries can lead, for example, to significant features in
the quasi-normal mode spectrum and the potential presence of echoes.

Throughout this thesis, we have studied various types of wormholes, ranging
from the Einstein-Rosen bridge to the Reissner-Nordström thin-shell wormhole.
One common feature among them is that they all connect one infinitely extended
universe with another (or the same) infinitely extended universe. In contrast, the
results obtained from the gravitational collapse of a boson star in f(R) Palatini
gravity presents a dynamically evolving wormhole structure that possesses a
distinctive topology. One side of the wormhole is characterized by an infinitely
extended universe, while the other side describes a finite universe in expansion.
Thus, we aim to revisit this idea and analyze observables for possible signals that
may indicate the presence of finite universes on the other side of a wormhole.

One of the simplest wormhole configurations in General Relativity is the Ellis
solution. It consists of two asymptotically flat spacetime regions connected by
a throat. In our study, we make modifications to one of these regions. Instead
of being infinitely extended, we create a region with a bounded radius for the
2-spheres. We achieve this by using a modified radial function that smoothly
transitions from the standard Ellis solution to the inner bounded 2-spheres on
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the other side. Inside the finite universe of the modified Ellis wormhole, the
radius of the 2-surface initially reaches a local maximum and then gradually
decreases toward the asymptotic value R."

When the asymptotic value of the radius of the 2-spheres is less than the
throat radius, R < a, there are light rays that, depending on their impact
parameter, experience a bounce in the inner universe and propagate back
outwards to the outer universe. For the scenario R = 0, all geodesics entering
the inner universe scatter back to the outer universe, and the only null geodesic
that can propagate forever in the inner region is that of the purely radial moving
photon. Finally, for R ≥ a, any photon crossing the throat propagates toward
the asymptotic infinity with a bounded radius of the 2-spheres.

We have conducted an analysis of the evolution of scalar perturbations in the
mentioned geometry. Once the perturbation is transmitted to the inner universe,
it interacts with an unbounded potential barrier in the case of R = 0 or a step
potential if R 6= 0. Consequently, some modes become trapped in a potential
well and manifest as a series of echoes in the temporal profile of the scalar
perturbation, with distinctive characteristics depending on the parameters used.

Our results suggest that the overall structure of wormholes can give rise to
significant observational aspects even when the structure of the throat remains
unchanged. The study of perturbations can, for example, be used to extract
information about the possible compactness of the inner universe, which could
be valuable for future spectroscopic experiments aimed at identifying new
compact objects.



Resum de la tesi

L’absència d’una teoria ben entesa sobre la gravetat i les seues propietats a
altes energies exigix un esforç global per construir una teoria quàntica viable
per al camp gravitatori. La complexitat del problema requerix un enfocament
multidisciplinari, que incorpore un espectre ampli de punts de vista: des de
sofisticades eines matemàtiques i tècniques estadístiques fins a experiments
ambiciosos. Cal una entesa profunda de les nostres teories bàsiques, de les seues
capacitats i limitacions, així com una millora dels enfocaments principals per
assolir, com a objectiu últim, el desenvolupament d’una teoria satisfactòria
que combine gravetat i física quàntica. Aquesta tesi doctoral s’emmarca en
aquest context, prestant especial atenció a l’existència i les propietats d’objectes
compactes similars a forats negres.

Comencem la dissertació introduint el concepte d’estrela de bosons, una
entitat autogravitant la qual és una configuració gravitacionalment lligada de
partícules bosòniques mínimament acoblades a la gravetat d’Einstein. Una
estrela de bosons es pot entendre com una col·lecció de partícules que seguixen
la dinàmica dictada per l’equació de Klein-Gordon i com a resultat presenta
un comportament dispersiu. Per tal de garantir l’estabilitat la presència d’un
mecanisme de confinament esdevé crucial. Aquest mecanisme de confinament
sorgix de la massa µ associada al camp bosònic, que genera una barrera de
potencial. En conseqüència, les estreles de bosons es poden considerar com a
condensats macroscòpics de Bose-Einstein.

Atés que les estreles de bosons es poden considerar com a estats quàntics
macroscòpics, és possible aplicar el principi d’incertesa de Heisenberg per estimar
la seua massa màxima. En conseqüència, la massa d’una estrela de bosons
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presenta una relació inversa amb la massa del camp escalar constituent. Així
des d’aquesta perspectiva, la massa i la mida d’una estrela de bosons poden
variar des de l’escala atòmica fins a l’escala astrofísica, depenent de la massa del
bosó constituent. A més, la inclusió d’un terme d’autointeracció en el potencial
del camp pot introduir variacions en la massa de l’estrela de bosons.

Tot seguit tractarem la gravetat modificada, el nom que reben les teories
que tracten d’estendre la gravetat d’Einstein. Encara que la relativitat general
és el marc teòric més àmpliament acceptat per la comunitat científica i ha
passat gran nombre de testos experimentals, incloent la recent detecció de
les ones gravitacionals, la teoria d’Einstein no és capaç d’explicar de manera
completament satisfactòria certs fenòmens com podrien ser les corbes de rotació
de les galàxies espirals, l’expansió i origen de l’univers o la singularitat de dins
dels forats negres. Tanmateix, la relativitat general roman irreconciliable amb la
teoria quàntica. Tots aquests efectes ens conduïxen a buscar un marc gravitatori
que puga explicar, de manera purament geomètrica, tots els fenòmens observats.

D’entre les diverses maneres que es poden plantejar per estendre la relativitat
general en destaquem dues. Per una banda, la descripció d’una acció de gravetat
adequada, ja que l’acció d’Einstein-Hilbert, sobre la que es definix la relativitat
general, fou escollida per criteris d’elegància i simplicitat matemàtica i no ha
estat comprovada experimentalment de manera directa. En aquest context
mencionem les teories del tipus f(R) les quals estan construïdes a partir de
contraccions dels tensors de curvatura i oferixen una simplicitat i flexibilitat
significant.

Per altra banda, destaquem la formulació mètric-afí, en la qual es considera
que la connexió no és la de Levi-Civita, és a dir, no ve definida per la mètrica sinó
que hi és completament independent. Cal mencionar que aquest formalisme quan
és aplicat sobre l’acció d’Einstein-Hilbert les equacions del moviment resultants
són exactament les mateixes que si considerarem el formalisme purament mètric.
Malgrat això, quan el formalisme mètric-afí s’aplica a altres accions de gravetat
sí que trobem diferències substancials.
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Combinant aquestes dues modificacions trobem les teories f(R) del tipus
Palatini, les quals presenten una característica important respecte d’altres.
Aquestes poden ser reescrites de tal manera que les no-linealitats del sector
gravitatori de l’acció es transformen en no-linealitats del sector de matèria. Això
ens permet transformar un problema de gravetat f(R) acoblada a cert sector
de matèria en un problema de relativitat general acoblada a aquest mateix
sector de matèria però amb modificacions. El gran avantatge que presenta
aquest procediment és la possibilitat d’emprar les tècniques i els mecanismes
desenvolupats a la bibliografia per afrontar problemes de relativitat general.

La tensió entre teoria i observacions no ens permet descartar la possible
existència d’altres objectes compactes més enllà dels coneguts fins ara, a saber,
nanes blanques, estreles de neutrons i forats negres. Així, teoritzar sobre la
possible existència d’estreles de bosons també ens porta a poder observar el
comportament de la gravetat en el seu règim de camp fort. Resulta d’interés
explorar com les propietats estructurals com la massa i el radi de les estreles de
bosons podrien veure’s afectades per una modificació del lagrangià gravitatori.
Degut a que les teories f(R) oferixen un alt grau de llibertat mentre mantenen
les equacions de camp dins de límits raonables de simplicitat, explorarem
l’impacte que les modificacions d’alta energia de la interacció gravitatòria del
tipus f(R) pot tindre sobre les propietats astrofísiques de les estreles de bosons.

El plantejament que farem és el següent. Partint de l’acció del problema
en qüestió, és a dir, una estrela de bosons estàtica en el context de la gravetat
f(R) = R+ ξR2 Palatini, farem ús de la correspondència entre aquesta teoria
i la d’Einstein per traduir el nostre sistema a un lagrangià de matèria no
lineal acoblat a la relativitat general. Això ens permetrà resoldre les equacions
formulades en aquest context i després desfer la transformació per observar el
resultat resultant des de la perspectiva de la gravetat f(R) Palatini.

Una diferència important entre les estreles de bosons d’f(R) i les estreles
del bosó de la relativitat general és el rang limitat d’amplituds de camp escalar
permeses al centre de l’estrela, que és molt més curt que en relativitat general.
Per a amplituds de camp central φ0 relativament menudes trobem que les
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solucions no diferixen significativament de les de relativitat general. Tot i que
es poden aconseguir masses i compacitat més/menys grans per a un φ0 donat
depenent de si ξ < 0 o ξ > 0, respectivament. En el cas ξ < 0 sorgixen noves
característiques pel que fa a la dependència de la massa total i el nombre de
partícules d’una solució amb la seua freqüència d’oscil·lació. En relativitat
general acoblada a un lagrangià matèria canònic, aquestes corbes presenten
un patró espiral característic que es perd en el cas de la mencionada teoria de
gravetat modificada. Per tant, s’observa una degeneració interessant entre les
estreles de bosons en relativitat general i en f(R) que només es trenca en valors
alts del camp escalar φ0. Observem també, en aquest sentit, que la incorporació
d’autointeraccions en el potencial del camp escalar contribuïx a empitjorar
aquesta degeneració.

Mitjançant l’ús de les tècniques de la relativitat numèrica podem calcular
l’evolució temporal d’estreles de bosons emprant les solucions estàtiques que
hem comentat abans. Estudiem tres models diferents per a tres valors del
paràmetre d’acoblament ξ: tres models estables An, Az i Ap; tres models
inestables amb energia d’enllaç negativa Bn, Bz i Bp; i tres models inestables
amb energia d’enllaç positiva Cn, Cz i Cp. Les lletres en minúscula, n, z i
p, indiquen el valor del paràmetre d’acoblament, ξ = −0.1, ξ = 0 (relativitat
general) i ξ = 0.1, respectivament.

Per als models estables An, Az i Ap, obtenim evolucions estables en les
quals els paràmetres de les estreles, com ara la massa o la mida, romanen en
gran mesura sense canvis, excepte per menudes oscil·lacions produïdes pels
errors d’origen numèric provinents de l’esquema de discretització. Observem
que en el cas del model Az, és a dir, en relativitat general, aquestes oscil·lacions
són atribuïdes principalment a la resolució de la malla de les dades inicials
de manera que en el límit al continu aquestes oscil·lacions s’esvairan, tal com
s’espera. No obstant per als models An i Ap, en gravetat f(R) Palatini, el
canvi de coordenades de polar-areal a isòtropes introduïx una xicoteta font de
soroll numèric que contribuïx a la mencionada oscil·lació que no desapareix
quan incrementem la resolució de la malla inicial. Cal seguir investigant en
aquesta direcció per tal d’obtenir les dades inicials en coordenades isòtropes
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per tal de poder dur a terme l’evolució temporal sense necessitat de fer servir
un canvi de coordenades.

Les nostres simulacions també han demostrat que els models inestables
Bn, Bz i Bp experimenten una migració cap a les configuracions de la branca
estable que tenen la mateixa massa, quan només són pertorbats per errors de
discretització. Tanmateix, quan aquests tres models es pertorben més enllà
de l’error de discretització, sofrixen un col·lapse gravitacional. En el context
de relativitat general això conduïx a la formació d’un forat negre. Pel que
fa al model pertorbat Bn, hem trobat que l’enfocament utilitzat en aquest
treball no és adequat per calcular completament el seu col·lapse gravitacional, a
causa de l’aparició de divergències, que al mateix temps podrien estar indicant
l’aparició de singularitats nues. Això suggerix la necessitat d’enfocaments o
perfeccionaments alternatius en les tècniques computacionals per analitzar cor-
rectament el comportament del col·lapse gravitacional d’aquest model específic
(o models dins d’una teoria amb un valor negatiu del paràmetre d’acoblament).
En canvi, per al model Bp hem vist que un petit tros d’espaitemps pot inflar-se
donant lloc a un univers finit que creix exponencialment. En el nostre model,
això passa paral·lelament al desenvolupament d’un horitzó aparent, fent que
el procés intern siga anàleg a un rebot còsmic i, impedint la seua observació
electromagnètica per part d’observadors externs. Els nostres resultats són
robusts i persistixen per a tots els valors del paràmetre d’acoblament gravitatori
ξ i per a altres amplituds centrals de camp escalar Φ0 sempre que estiguin a
la branca inestable i la pertorbació siga prou alta com per excitar el col·lapse
gravitacional. Hem vist que una porció de camp escalar quasi estacionari queda
fora de l’horitzó i que l’àrea de la gola es reduïx a mesura que s’absorbix el
núvol escalar extern, cosa que suggerix que finalment es tancarà. Tanmateix,
les limitacions numèriques desafien l’anàlisi d’aquest comportament a valors
temporals més alts.

Finalment, els models inestables Cn, Cz i Cp, es caracteritzen per una ràpida
disminució de Φ0, mostrant una dràstica expansió radial de les estreles del bosó
i donant lloc a la seua completa dispersió.
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L’estudi dut a terme revelant diferències notables en comparació amb els
models de relativitat general. Aquestes diferències emfatitzen la profunda
influència de la teoria gravitatòria en el comportament i el destí final dels
objectes compactes autogravitants com les estreles de bosons.

L’aparició d’estructures del tipus forats de cuc en el context de col·lapse
gravitacional a gravetat f(R) Palatini ha captat el nostre interés en aquests
objectes. Així estudiarem les diferents descripcions que s’han donat al llarg
de la literatura dels forats de cuc, prestant especial atenció als forats de cuc
transitables i als del tipus thin-shell.

Seguint el nostre estudi plantejarem l’anàlisi de les empremtes observacionals
d’un forat de cuc en gravetat f(R) Palatini format per dos espaitemps del tipus
Reissner-Nordström (RN) apegats mitjançant el formalisme thin-shell per sobre
de l’horitzó d’esdeveniments per tal d’evitar-lo. Més concretament, estudiarem
l’espectre d’absorció d’ones escalars d’aquests objectes.

Per tal d’investigar com la ubicació de la gola i els valors de càrrega influïxen
en l’absorció, analitzem diverses configuracions amb thin-shell d’energia negativa
(violant les condicions d’energia) i positiva (no violant les condicions d’energia).
Independentment del signe de l’energia de la thin-shell, el forat de cuc es pot
construir utilitzant un espaitemps de dos forats negres, un espaitemps de forat
negre i una singularitat nua, o dos espaitemps de singularitat nua. Tingueu en
compte que ens referim a l’exterior del forat negre o a la singularitat nua, de
manera que no hi ha cap horitzó ni singularitat realment present a la solució
construïda.

Si el potencial efectiu té una vall (continua o discontínua), emergixen estats
quasilligats al voltant de la gola del forat de cuc. Aquests modes quasi atrapats
creen ressonàncies en els espectres d’absorció (apareixen pics aguts a la secció
eficaç d’absorció), que fan que els perfils d’absorció del forat de cuc asimètric de
RN asimètrics siguen molt diferents dels corresponents als forats negres de RN.
Aquests nous pics estan molt influenciats per la simetria del pou de potencial.
Si el potencial efectiu presenta una vall simètrica, les ressonàncies es noten en
tot el rang de freqüències. D’altra banda, la presència d’una asimetria en el
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potencial efectiu dona lloc a l’atenuació dels pics de ressonància associats a
estats quasilligats per a modes ` més alts. Així, el règim d’alta freqüència de la
secció eficaç d’absorció és degenerat amb la del forat negre RN estàndard, en
contrast amb les configuracions simètriques del forat de cuc. En conseqüència,
fins i tot desviacions menors de la simetria en espaitemps de forat de cuc poden
produir diferències significatives en les característiques observables associades
als estats quasilligats .

Si apeguem un forat negre RN (abans de la seua fotosfera) amb un espaitemps
de singularitat nua RN, el forat de cuc pot imitar l’absorció del forat negre RN
estàndard. Això es pot entendre pel fet que la secció eficaç d’absorció total
depén de l’anell de llum dominant (associat amb el pic més alt del potencial
efectiu en el límit eikonal). Per tant, l’anell de llum dominant serà el del forat
negre RN i dictarà el perfil de la secció eficaç d’absorció en el límit eikonal.

Apareix un comportament d’absorció interessant quan retallem i enganxem
dues singularitats nues. En aquests escenaris, la gola actua de manera efectiva
com una fotosfera. Com a resultat, la secció eficaç d’absorció total anirà a
l’àrea de l’ombra associada a l’anell de llum efectiu. Curiosament, el patró
oscil·latori del perfil d’absorció s’atenua ràpidament i la secció eficaç d’absorció
va lentament a la zona d’ombra associada a les geodèsiques nul·les atrapades a
la gola.

Els nostres resultats indiquen que els forats de cuc asimètrics poden portar
associades diferents empremtes observacionals quan els comparem amb els forats
negres o els forats de cuc simètrics. Aquestes asimetries en l’espaitemps poden
conduir, per exemple, a característiques significatives en l’espectre del mode
quasi normal i a la possible presència d’ecos.

Al llarg de la present tesi, hem estudiat diversos tipus de forats de cuc,
que van des del pont Einstein-Rosen fins al forat de cuc de tipus thin-shell de
Reissner-Nordström. Una característica que trobem en comú entre tots ells
és que tots estan construïts de manera que connecten un univers infinit amb
un altre (o el mateix) univers també infinit. Recordat el resultat obtingut del
col·lapse gravitatori d’una estrella de bosó en gravetat f(R) Palatini, on sorgeix



266 Resum de la tesi

una estructura de forat de cuc en evolució dinàmica, vegem que en aquest cas
el forat de cuc posseeix una topologia distintiva. Un costat es caracteritza per
un univers infinit, mentre que l’altre descriu un univers finit en expansió. Així,
pretenem revisar aquesta idea i analitzar observables per a possibles senyals que
puguen indicar la presència d’universos finits a l’altre costat d’un forat de cuc.

Una de les configuracions de forat de cuc més simples de la Relativitat
General és la representada per la solució d’Ellis. Consisteix en dues regions
espaitemps asimptòticament planes, és a dir, l’espaitemps de Minkowski, con-
nectades per una gola. Nosaltres prenem aquest model i en modifiquem una de
les regions asimptòtiques infinites del forat de cuc substituint-la per una regió
amb radi de les 2-esferes fitat, mitjançant una funció radial modificada, que
interpola suaument des de la solució d’Ellis estàndard fins al nucli de 2-esferes
fitades a l’altre costat. A la regió interna del forat de cuc d’Ellis modificat,
el radi de les 2-àreea presenta un màxim local i després decau cap al valor
asimptòtic R.

Quan el valor asimptòtic del radi de 2 esferes és inferior al radi de la gola,
R < a, hi ha raigs de llum que, segons el seu paràmetre d’impacte, patixen un
rebot a l’univers interior i es dispersen cap a l’univers exterior. Per a l’escenari
R = 0, totes les geodèsiques que entren a l’univers interior es dispersen de nou
a l’exterior, i l’única geodèsica nul·la que es pot propagar per sempre a la regió
interior és la del fotó en moviment purament radial. Finalment, per a R ≥ a,
qualsevol fotó que travesse la gola es propaga cap a l’infinit asimptòtic amb un
radi acotat de 2 esferes.

Hem dut a terme una anàlisi de l’evolució de pertorbacions escalars en la
geometria mencionada. Després que la pertorbació siga transmesa a l’univers
interior, aquesta interacciona amb una barrera de potencial no fitada en el
cas R = 0 o un potencial esglaó si R 6= 0. Per tant, part dels modes queden
atrapats en un pou de potencial i s’observen com una sèrie d’ecos en el perfil
temporal de la pertorbació escalar, amb característiques distintives depenent
del paràmetres emprats.
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Els nostres resultats suggerixen que l’estructura global dels forats de cuc
pot donar lloc a aspectes observacionals significatius inclús quan l’estructura de
la gola no es varia. L’estudi de les pertorbacions es pot utilitzar per exemple
per extreure informació sobre la possible compacitat de l’univers interior i,
això podria ser útil per als futurs experiments d’espectroscòpia que tracten
d’identificar nous objectes compactes.
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