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Inflation is the leading theory to describe elegantly the initial conditions that led to structure
formation in our universe. In this paper, we present a novel phenomenological fit to the Planck,
WMAP polarisation (WP) and the BICEP2 datasets using an alternative parameterisation. In-
stead of starting from inflationary potentials and computing the inflationary observables, we use a
phenomenological parameterisation due to Mukhanov, describing inflation by an effective equation-
of-state, in terms of the number of e-folds and two phenomenological parameters a and . Within
such a parametrisation, which captures the different inflationary models in a model-independent
way, the values of the scalar spectral index ns, its running and the tensor-to-scalar ratio r are pre-
dicted, given a set of parameters (a, 3). We perform a Markov Chain Monte Carlo analysis of these
parameters, and we show that the combined analysis of Planck and WP data favours the Starobinsky
and Higgs inflation scenarios. Assuming that the BICEP2 signal is not entirely due to foregrounds,
the addition of this last data set prefers instead the ¢* chaotic models. The constraint we get from
Planck and WP data alone on the derived tensor-to-scalar ratio is r < 0.18 at 95% CL, value which
is consistent with the one quoted from the BICEP2 collaboration analysis, 7 = 0.1673,9%, after
foreground subtraction. This is not necessarily at odds with the 20 tension found between Planck
and BICEP2 measurements when analysing data in terms of the usual ns and r parameters, given
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that the parameterisation used here includes, implicitly, a running spectral index.

PACS numbers: 98.70.Vc, 98.80.Cq, 98.80.Bp

I. I.INTRODUCTION

The recent claimed discovery of primordial B-modes
by the BICEP2 collaboration [1, 2] has spurred a lot
of interest in the cosmology community. One of the
main topics of discussion is the tension between the BI-
CEP2 results and the previous ones. In particular, this
measurement corresponds to a tensor-to-scalar ratio of*
r = 0.2%507 while the Planck TT data (combined with
WP data, high-¢ CMB measurements and without run-
ning of the scalar spectral index) [3, 4] gives r < 0.11 at
95% CL. As argued in [1], allowing for a running of the
scalar spectral index makes the two datasets compatible
at the one-sigma level. On the other hand, the large-
field slow-roll models are able to explain successfully the
BICEP2 data, however they predict negligible running,
which, indeed, has not been seen in any previous observa-
tion like e.g. Planck. This by itself suggests a non-trivial
departure from the simple single-field slow-roll inflation
paradigm. Plenty of effort has been devoted in the litera-
ture to reconcile BICEP2 and Planck observations, either
by modifications of the inflationary sector [5-8] and/or
of the standard cosmological scenario, as, for instance,
extensions to the neutrino sector [9-14]. Implications of
the BICEP2 results in terms of the usual inflationary

* This figure is obtained without subtracting polarised dust fore-
grounds, though the signal seen by BICEP2 outweigh any known
foreground. Using the best available foreground template shifts
the measured value to r = 0.167:8:82.

parameters have also been extensively explored [15-17].
In this work, we will look at this issue with a different
perspective; we shall use an alternative parameterisation
to fit both Planck and BICEP2 observations. There are
two aspects of this discrepancy that are worth pursuing.
The first one is purely experimental/observational and
implies a re-assessing of all the systematic errors and
possible unaccounted-for foregrounds (see [18] for a re-
cent analysis in this direction). Despite the tremendous
and impressive work done by the BICEP2 collaboration,
this step is mandatory before drawing any definitive con-
clusion about the cosmological origin of this signal. For a
roadmap of this program, see e.g. [19]. In the following,
we will be assuming that the BICEP2 signal is primor-
dial, although the novel phenomenological approach pre-
sented here can be applied to fit any cosmological data.
The second aspect is theoretical, and it addresses the
crucial question: did our universe suffer a quasi de Sit-
ter expansion phase driven by the potential energy of a
scalar field (the inflaton)? if yes, then, among the variety
of available inflationary scenarios, which one describes
better the observations? and, what are the physical im-
plications of such a scenario? In treating this last ques-
tion, it is customary to use single-field slow-roll models
as benchmark scenarios against which the temperature
anisotropies observational data are tested. This is jus-
tified by the simplicity of these models when it comes
to compute their predictions. Given a simple poten-
tial V(¢), where ¢ is the canonically-normalized inflaton
field, one can compute easily the observational predic-
tions in terms of the slow-roll parameters € and 7 defined
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e=-M2% (V'/V)” and n= MEV")V; (1)
where the primes denote derivatives with respect to ¢,
i.e. V! = dV/d¢ and so on. During slow-roll, these pa-
rameters are small i.e. €, |n| < 1, and the energy density
of the universe is given approximately by the potential
V ~ 3M}H?, where H is the Hubble expansion rate
during inflation. At leading order in slow-roll, the basic
observables: the tensor-to-scalar ratio » and the spectral
index ng, are given by

r = 16¢, and ng = 1 4 21, — 6Ge, , (2)

where the subscript * is to remind that quantities are
evaluated at horizon exit. These quantities are usually
the basic ones used when testing models against observa-
tions. Each potential V(¢) corresponds to a certain set
of observables (r, ng), but in general, these parameters
are expected to be O(1/N,) where N, is the number of
e-folds, starting from horizon exit, necessary to solve the
standard cosmological problems. In general, this num-
ber has a mild dependence on the cosmological history,
however under rather reasonable assumptions, N, takes
values in the range N, ~ 50 - 60, that we adopt from
now on in our analysis.

Instead of the usual slow-roll parametrisation, one can
use a more phenomenological and intuitive way of de-
scribing the inflationary phase through its equation of
state [20]. During inflation, the equation of state is
p=~ —p=~ —3H2M%, up to slow-roll corrections, while at

the end of inflation ¢?/2 ~ V(¢) ~ p/2 and the equation
of state is instead p ~ 0. One can thus write that

P 14 P

p (1+ N’ ®)

where o and 8 are phenomenological parameters and are
both positive and of O(1), and N, is the number of re-
maining e-folds to end inflation N, (t) = j;t“’ dt H and it
runs from N,, at horizon exit, to 0, when inflation ends.
Using energy conservation p+3H (p+p) = 0 one gets the
following expressions for the tilt and tensor fraction [20]
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r= 7(]\[* 17 (4b)

The general prediction of the ansatz Eq. (3) is that
the tilt is always negative, irrespective of the inflationary

t For a nice review of slow-roll inflation see e.g. [21] . Throughout
the paper, we will adopt natural units 2 = ¢ = 1. As usual, the
reduced Planck scale is given by Mp = (87Gn)"1/2 ~ 2.43 x
1018 GeV.
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FIG. 1. Confidence regions in the (ns,r) parameterisation
plane. The blue (dashed boundary) areas represent the 68%
and 95% CL regions of Planck (including a non-zero running),
while the red (solid boundary) areas are the 68% and 95%
CL regions for BICEP2 only. The grey band represents the
predictions of the models captured by the parameterisation
Eq. (3) for 50 < N, < 60. The solid magenta lines correspond
to the natural inflation scenario. For large decay constant
f > Mp, they reduce to the V o< ¢? scenario (short-dashed
magenta line).

scenario. In contrast, the value of the tensor-to-scalar
ratio can take any value depending on both a and £. In
addition, one can compute the running of the tilt

3ap B «
(1+ Nt (N, +1)27

which is, like the tilt, always negative.

The parameterisation Eq. (3) encodes a variety of mod-
els with completely different predictions [20]. Notice
however that this phenomenological description of the in-
flationary phase is not completely equivalent to the slow-
roll picture, as there is no more freedom in the signs of
both the tilt and the running.

From Fig. 1, it is clear that the observationally pre-
ferred value of the scalar spectral index ng ~ 0.96 corre-
sponds to two different branches. The first one lies close
to the horizontal line » ~ 0, in Fig. 1, and contains for
instance Starobinsky models of inflation [22], which are
based on the Lagrangian  /—g (R + aRQ). In terms of the
phenomenological parameterisation Eq. (3), this branch
corresponds to a = 2, and r ~ 10~24. In particular [20],
Starobinsky inflation corresponds to § = 1/2.

In contrast, the second branch, with significantly
higher tensor fraction (appearing as a thick diagonal
grey area in Fig. 1) is where chaotic inflation models,
V(p) o< ¢™ [23], live. In terms of the parameterisation
Eq. (3), chaotic scenarios live on the line corresponding
to a = 1. From Egs. (4), the line in the (ng,r) plane is

given by ny ~ 1 — £, up to a O(1/N.,) correction. On

as =dng/dlogk = — (5)
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FIG. 2. Confidence regions in the («, 8) parameters in Eq. (3).
The red areas (solid boundary) represent the 68% and 95%
CL allowed regions arising from a combined analysis of the
Planck, WP and BICEP2 data, while the blue areas (dashed
boundary) are the 68% and 95% CL allowed regions from
the analysis of Planck and WP data. The green region with
dotted contours represent the joint 1o preferred region for
Planck and BICEP2.

the other hand, the parameter § fixes the power of the
potential V « ¢", as n = 60.

The natural inflation scenario [24, 25], in which the
inflaton is a pseudo Nambu-Goldstone boson (pNGB), is
represented by the purple line in Fig. 1. This scenario,
described by the potential V(¢) o [1 — cos(¢/ f)], is cap-
tured by the paramterisation Eq. (3) but only for large
enough decay constants f 2> 10Mp. We recall that in
the limit of very large decay constant, f > Mp, Natural
inflation reduces to the ¢? scenario represented by the
thick purple dots (N, = 50 and N, = 60) in Fig. 1.

Before describing our cosmological data fits, let us de-
termine the interval spanned by the phenomenological
parameters o and . First, as explained in Ref. [20],
given that inflation ends, i.e. N. — 0, when p/p =~ 0,
it follows that 8 cannot be much larger that 1. Second,
given that in the most optimistic situation, the tensor-
to-scalar ratio will be measured at an accuracy of [19]
Ar/r =1072, it is clear from Eq. (4b) that! o < 2.5. We

¥ A meaningful measurement of the tensor-to-scalar ratio implies
that Ar < r. Using Eq. (4b), one gets

a < log(248/Ar) /log(Ny + 1),

which for 8 < 1 and the optimistic percent-level observational
error on r ~ 0.001 targeted e.g. by COrE [26] and PIXIE [27]
gives a < 2.5. Notice that the above estimate does not change
appreciably as it depends only logarithmically on both N, and
Ar.

Parameter Prior
Qph? 0.005 — 0.1
Qh? 0.001 — 0.99

[CH 0.5 — 10
T 0.01 - 0.8

log (10" A,)| 2.7 —4
a 0—25
B 0—1

TABLE 1. Uniform priors for the cosmological parameters
considered here.

shall adopt these priors in our numerical analyses.

The structure of the paper is as follows. In section II,
we describe the method followed when performing the fits
to the different datasets. Next, in Section III, we present
our results in terms of the parameters a and [ governing
the parameterisation Eq. (3), and in terms of the derived,
most commonly used inflationary parameters ng and r.
We also discuss their implications. Finally, we draw our
conclusions in Sec. IV.

II. DATA ANALYSIS

A. Method

The phenomenological scenario we explore is described
by the following parameter set:

{wbawca ®S7T7 log[]‘oloASLa?/B} ? (6)

where wy, = Qph? and w,. = Q.h? are the physical baryon
and cold dark matter energy densities, ©; is the ratio
between the sound horizon and the angular diameter dis-
tance at decoupling, 7 is the reionization optical depth,
A, the amplitude of the primordial spectrum and « and
[ are the phenomenological parameters governing the pa-
rameterisation given in Eq. (3). In the following, we
fix the number of e-folds to N, = 60. Furthermore,
we assume that dark energy is described by a cosmo-
logical constant. Table I specifies the priors considered
on the cosmological parameters listed above. The com-
monly used (ng,r) parameters can be easily obtained us-
ing Egs. (4), however unlike the usual case where the
running of the spectral index is a free parameter, the
running here is completely fixed through Eq. (5), given
(o, 8) and N,. In our analysis, we also consider the so-
called inflation consistency relation, relating the tensor
spectral index to r through nr = —r/8, which is also
valid in this parametrisation®. For our numerical calcu-
lations, we use the CAMB Boltzmann code [29], deriv-

§ See Eq. (8.125) of [28].
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FIG. 3. The derived likelihood distribution for the phe-

nomenological parameter 3 of Eq. (3) using different datasets.
The red thick (solid and dashed) vertical lines represent the
best-fit (1o intervals) of 8, while the red thin-dashed line
stands for the derived mean value of 3, see Table II for details.
The quadratic chaotic scenario, corresponding to 8 = 1/3, is
represented by a green long-dashed line.

ing posterior distributions for the cosmological parame-
ters from the datasets described in the next section by
means of Monte Carlo Markov Chain (MCMC) analyses.
Our MCMC results rely on the publicly available MCMC
package cosmomc [30] that implements the Metropolis-
Hastings algorithm.

B. Cosmological data

In our analyses we will consider, as a basic dataset: the
Planck CMB temperature anisotropies data [31, 32] to-
gether with the 9-year polarization data from the WMAP
satellite [33]. The total likelihood for the former data is
obtained by means of the Planck collaboration publicly
available likelihood code, see Ref. [32] for details. The
Planck temperature power spectra extend up to a maxi-
mum multipole number £, = 2500, while the WMAP
9-year polarization data (WP) is analysed up to a maxi-
mum multipole ¢ = 23 [33].

As stated before, very recently, the BICEP2 collabora-
tion has found evidence for the detection of B-modes in
the multipole range 30 < ¢ < 150 spanned by their three-
year dataset [1, 2], with 60 significance. The detected
B-mode signal exceeds any known systematics and/or
expected foregrounds and is well fitted with a tensor-to-
scalar ratio r = 0.21'8‘_8;. The BICEP2 likelihood has
been properly accounted for in our MCMC numerical
analyses, by using the latest version of cosmomc.
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FIG. 4. Confidence regions of the derived parameters (ns, )
using the parameterisation given by Eq. (3). The colour cod-
ing is the same than in Fig. 1. The grey band represents
the predictions of the models covered by the parameterisa-
tion given by Eq. (3) for 50 < N, < 60.

III. RESULTS

We represent the results of our MCMC analyses both
in the (a, ) plane and in the usual (ng,r) plane. Fig-
ure 2 shows the 68% and 95% CL contours in (o, ). The
red solid contours depict the 68% and 95% CL allowed
regions from the combined analysis of Planck, WP and
BICEP2 data, while the blue dashed contours refer to
the 68% and 95% CL allowed regions from the analysis
of Planck and WP data. The green dotted region rep-
resents the limits in the (a, §) plane inferred from the
lo preferred values for ns; and r from Planck and BI-
CEP2 data, respectively. Notice that the results from
our MCMC analyses after the combination of Planck,
WP and BICEP2 datasets lie precisely within this region.
The combination of Planck and WP data is completely
insensitive to the § parameter, as § sets the amount of
gravitational waves. The addition of BICEP2 data, how-
ever, strongly constrains the value of 3, as illustrated in
Fig. 3, which shows the one-dimensional probability den-
sity for the 8 parameter before and after the inclusion
of BICEP2 measurements. Figure 3 shows as well the
best-fit and the 1o allowed regions for the 8 parameter
after considering all the measurements exploited in this
study. We also depict in Fig. 3 the value of 3 for the
most favoured inflationary scenario, as we shall see in
what follows.

Figure 4 depicts the 68% and 95% CL allowed con-
tours in the plane of the derived parameters n, and r,
together with the region covered by the parameterisa-
tion given by Eq. (3) for 50 < N, < 60. Table II shows
the constraints at 68% confidence level on the cosmolog-
ical parameters considered in our MCMC analyses for
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FIG. 5. The derived posterior likelihood distribution for the
tensor-to-scalar ratio using different datasets.

the different data combinations explored here. Notice
that, when BICEP2 measurements are not considered,
o = 2.244+0.43 while 8 = 0.50 £ 0.28, which corresponds
to ng ~ 0.96 and r» < 0.18 at 95% CL, values that can
clearly be inferred from the results depicted in Fig. 4.
The constraint we get for Planck and WP data alone is
r < 0.18 at 95% CL, value to be compared with the value
quoted for BICEP2 collaboration for r = 0.1670-0% [1] af-
ter subtracting the various foregrounds. Therefore, the
upper limits we get on the tensor-to-scalar ratio r from
Planck and WP data using the parameterisation given
in Eq. (3) are very close to the figure of r = 0.16700°
reported by the BICEP2 collaboration. This is consis-
tent with the tension found between BICEP2 and Planck
using the standard parameters ny and r, as the param-
eterisation used here includes implicitly a non-vanishing
running spectral index, see Eq. (5).

The resulting favoured values of ng ~ 0.96 and r =~ 0
from the Planck and WP data analysis may be asso-
ciated to the Starobinsky model of inflation [22]. In-
deed, in terms of the phenomenological parameterisation
Eq. (3), Starobinsky inflation corresponds to o« = 2 and
B =1/2[20]. Another inflationary scenario that can also
be identified with these values of o and £ is Higgs infla-
tion, in which the Standard Model Higgs boson itself is
responsible for inflation [34, 35]. Higgs inflation predicts
a scalar spectral index ns, ~ 0.97 and a tensor-to-scalar
ratio r ~ 0.0033 for N, = 60 [34] and is indistinguishable
observationally from the Starobinsky model.

We can learn from the red contours in Figs. 2 and 4
that, when adding to Planck and WP data the BICEP2
mesurements, models with such large values of a ~ 2 are
no longer favoured. The resulting mean values of the two
parameters are o = 0.88+0.17 and 8 = 0.344+0.20, which
correspond to ng = 0.961 £ 0.003 and r = 0.195 4+ 0.037
(see Table II). This value of r belongs to the second of
the branches associated to ngs ~ 0.96, which are depicted
by the thick diagonal grey area in Figs. 1 and 4. The one-

dimensional posterior probability densities for the derived
scalar-to-tensor ratio r are depicted in Fig. 5. Notice that
for the two possible data combinations the probability
distribution is bimodal, showing two maxima: one is lo-
cated at r ~ 0 and the other one is located at r ~ 0.2.
These two peaks stand for the two possible values of r
corresponding to ng ~ 0.96. Each of them is located in
one of the two branches shown in Figs. 1 and 4. While
the probability distribution function for Planck + WP
data has a global maximum at the » ~ 0 branch, the
addition of BICEP2 measurements displaces the global
maximum towards the r ~ 0.2 region in the other possi-
ble branch. As explained before, it is precisely in this sec-
ond branch where chaotic inflation models, V(¢) o ¢™,
live [20]. Chaotic models with quadratic (quartic) po-
tentials predict ng ~ 0.96 and r ~ 0.16 (n, ~ 0.94 and
r ~ 0.32) [20]. Therefore, the mean values of o and
B resulting from the combined analyses of Planck, WP
and BICEP2 data seem to favour ¢? models of chaotic
inflation and highly disfavour Starobinsky and Higgs in-
flation scenarios. The quartic chaotic model also is dis-
favoured with respect to the quadratic one. The status
of the former two inflationary models has also been ex-
plored recently in the literature (see e.g. Refs. [36-38])
where it has been found that these two models require
either extreme fine-tuning or non-trivial extensions to be
compatible with BICEP2 results. Chaotic inflationary
models have also been recently revisited in a number of
analyses [39-43]. On the other hand, Natural inflation is
the only case which can not be analysed in terms of o and
[ except in the large decay constant regime i.e. f > Mp,
where Mp is the Planck mass. In this case, the con-
straints are similar to the case of the quadratic chaotic
scenario (see Fig. 1). Our derived bound on the tensor-to-
scalar ratio (r < 0.18 at 95% CL) does not put significant
constraints on f. If on the other hand, we include the
BICEP2 datasets, we can translate the 1o interval into
a lower bound on the decay constant f = 44.72Mp for
N, = 50. This makes Natural inflation practically indis-
tinguishable from the quadratic chaotic scenario, given
the present precision. The next generation of observa-
tions will improve the situation considerably, allowing
for instance to distinguish between the two scenarios if
f < 30Mp. See e.g. Refs. [39, 44, 45] for recent appraisals
of the Natural inflation scenario. The results previously
discussed have been obtained fixing the number of e-folds
to N, = 60. Assuming N, = 50 instead does not change
the main conclusions outlined above.

We conclude this section commenting on the results
obtained when using a slightly different upper prior on
the o parameter. In general, smaller values of a will
give rise to a higher tensor-to-scalar ratio and therefore
the tension between Planck and BICEP2 measurements
may be alleviated. If we assume an upper prior on «
of 2, the 95% CL upper bound on the derived tensor-
to-scalar ratio parameter is slightly larger (r < 0.23 at
95% CL). On the contrary, when higher values for «
are considered, the significance of the tension between



Parameter | Planck+WP |Planck+ WP+BICEP2
Qh* | 0.0209 + 0.0002 0.0209 =+ 0.0002
Qch* | 0.116540.0018 | 0.1167 4 0.0020

0 1.0409 £ 0.00055|  1.0408 + 0.00055
T 0.086 + 0.015 0.078 +0.013
log[10'°A,]| 3.063 4+ 0.031 3.047 4 0.026
@ 2.24 +0.43 0.88 +£0.17
B 0.50 &+ 0.28 0.3440.20
ns (derived)| 0.961 + 0.002 0.961 + 0.003
r (derived) < 0.18 0.195 £ 0.037

TABLE II. Constraints at 68% confidence level on cosmological parameters from our analyses for Planck+WP and

Planck+WP+BICEP2 data.
index and the tensor to scalar ratio are derived parameters.

Planck and BICEP2 measurements slightly increases, as
higher values of « correspond to lower values of r. A
fit to Planck and WP data gives an upper limit on
r < 0.17 at 95% CL when using an upper prior on « of 3.
When BICEP2 measurements are included in the analy-
sis, we obtain ns = 0.961 + 0.004 and r = 0.184 + 0.040
(ns = 0.961 £ 0.004 and r = 0.192 £ 0.037) for an upper
prior on « of 2 (3). These results are almost identical to
the ones quoted in Table II. We have also checked that
the posterior probability density profiles for both the pa-
rameter 3 and the tensor-to-scalar ratio r» do not exhibit
a significant prior dependence. Summarising, the effect
of the upper prior choice on « barely changes our main
results.

IV. CONCLUSIONS

The recent claimed discovery of primordial gravita-
tional waves by the BICEP2 collaboration has opened
a new window into the inflationary paradigm. Chaotic
inflation scenarios, highly disfavoured by Planck temper-
ature data, are, after BICEP2 results, among the most
plausible ones. Model-independent data analyses are
usually presented in terms of the scalar spectral index
ns and the tensor-to-scalar ratio r, which can then be
related to a particular model via the inflationary slow-
roll parameters. Here we employ an alternative param-
eterisation due to Mukhanov, describing inflation by an
effective equation of state, which captures most of the
relevant inflationary scenarios (at least in their basic for-
mulation). Using this parameterisation, one can easily
identify the different models as well as derive the usual
ns and r parameters. The effective equation of state used
here is described by only two parameters, o and 3, since
the running of the spectral index a; is no longer a free pa-
rameter, as is unambiguously determined once the values
of o and (8 are fixed.

Using Markov Chain Monte Carlo methods, we show
that the combined analyses of Planck temperature and

When quoting upper bounds, we show the 95% CL limits.

Notice that the scalar spectral

WMAP polarisation (WP) data are unable to determine
[, as this last parameter sets the amount of gravitational
waves through Eq. (4b). However, these two datasets are
able to constrain the other parameter involved, «, result-
ing in a mean value a = 2.24 + 0.43, which corresponds
to ngy ~ 0.96. Such value of «, favoured by the Planck
and WP data analyses is associated to both Starobinsky
and Higgs inflationary models. The constraint we get on
the derived tensor-to-scalar ratio, r < 0.18 at 95% CL, is
perfectly consistent with the value quoted from the BI-
CEP2 collaboration (r = 0.1670:0% [1]) after subtracting
the various foregrounds. However, this is not necessarily
in conflict with the 20 tension found between Planck and
BICEP2 measurements when analysing data in terms of
the usual ns and r parameters, since the parameterisation
used here includes a running which depends exclusively
on the o and 8 parameters, as well as on the number of
e-folds.

The addition of BICEP2 data to Planck and WP
measurements strongly constrains the values of the phe-
nomenological parameters to the values 8 ~ 1/3, and
a =~ 1. Such values of a correspond to chaotic infla-
tionary models, characterised by a potential ¢", where
n = 68. Therefore, the results from the combined analy-
sis of Planck, WP and BICEP2 data strongly favour ¢?
models of chaotic inflation and rule-out Starobinsky and
Higgs inflation scenarios. Upcoming polarisation data
from Planck may confirm or falsify the ¢ scenario as
the most plausible one for the inflationary period. Fu-
ture CMB missions, such as COrE [26] and PIXIE [27],
combined with galaxy clustering and weak lensing data
from the Euclid survey [46] hold the key to establish the
amount of primordial B-modes and the ensuing theoreti-
cal implications, especially if the tensor-to-scalar ratio is
as large as suggested by BICEP2.



ACKNOWLEDGMENTS

We are grateful to Paolo Creminelli, Scott Dodelson,
Carlos Pena Garay and Aaron C. Vincent for their un-

valuable comments and suggestions on this work. O.M.
is supported by the Consolider Ingenio project CSD2007-
00060, by PROMETEQO/2009/116, by the Spanish Min-
istry Science project FPA2011-29678 and by the ITN In-
visibles PITN-GA-2011-289442.

1] P. A. R. Ade et al [BICEP2 Collaboration],
arXiv:1403.3985 [astro-ph.CO].

2] P. A. R. Ade et al [BICEP2 Collaboration],
arXiv:1403.4302 [astro-ph.CO].

8] P. A. R. Ade et al [Planck Collaboration],
arXiv:1303.5076 [astro-ph.CO].

[4 P. A. R. Ade et al [Planck Collaboration],

arXiv:1303.5082 [astro-ph.CO].

[5] C.R. Contaldi, M. Peloso and L. Sorbo, arXiv:1403.4596
[astro-ph.CO].

[6] V. Miranda, W. Hu and P. Adshead, arXiv:1403.5231
[astro-ph.CO].

[7] M. Kawasaki and S. Yokoyama, arXiv:1403.5823 [astro-
ph.COJ.

[8] K. N. Abazajian, G. Aslanyan, R. Easther and
L. C. Price, arXiv:1403.5922 [astro-ph.CO].

[9] E. Giusarma, E. Di Valentino, M. Lattanzi, A. Melchiorri
and O. Mena, arXiv:1403.4852 [astro-ph.CO].

[10] J. -F. Zhang, Y. -H. Li and X. Zhang, arXiv:1403.7028
[astro-ph.CO].

[11] C. Dvorkin, M. Wyman, D. H. Rudd and W. Hu,
arXiv:1403.8049 [astro-ph.CO].

[12] M. Archidiacono, N. Fornengo, S. Gariazzo, C. Giunti,
S. Hannestad and M. Laveder, arXiv:1404.1794 [astro-
ph.CO]J.

[13] J. -F. Zhang, Y. -H. Li and X. Zhang, arXiv:1404.3598
[astro-ph.CO].

[14] E. Di Valentino, E. Giusarma, M. Lattanzi, A. Melchiorri
and O. Mena, arXiv:1405.1860 [astro-ph.CO].

[15] M. Gerbino, A. Marchini, L. Pagano, L. Salvati, E. Di
Valentino and A. Melchiorri, arXiv:1403.5732 [astro-
ph.CO]J.

[16] C. Cheng and Q. -G. Huang, arXiv:1403.5463 [astro-
ph.CO].

[17] C. Cheng and Q. -G. Huang, arXiv:1405.0349 [astro-
ph.COJ.

[18] M. J. Mortonson and U. Seljak, arXiv:1405.5857 [astro-
ph.CO].

[19] S. Dodelson, Phys. Rev. Lett. 112 (2014) 191301
[arXiv:1403.6310 [astro-ph.CO]].

[20] V. Mukhanov, Eur. Phys. J. C 73 2486 (2013).
[arXiv:1303.3925 [astro-ph.CO]].

[21] D. H. Lyth and A. R. Liddle, Cambridge, UK: Cambridge
Univ. Press (2009), 497 pp.

[22] A. A. Starobinsky, Phys. Lett. B 91 99 (1980).

(23] A. D. Linde, Phys. Lett. B 129, 177 (1983).

[24] K. Freese, J. A. Frieman and A. V. Olinto, Phys. Rev.
Lett. 65 3233 (1990).

[25] F. C. Adams, J. R. Bond, K. Freese, J. A. Frieman
and A. V. Olinto, Phys. Rev. D 47 426 (1993). [hep-
ph/9207245].

[26] F. R. Bouchet et al.
arXiv:1102.2181 [astro-ph.CO].

[27] A. Kogut, D. J. Fixsen, D. T. Chuss, J. Dotson, E. Dwek,
M. Halpern, G. F. Hinshaw and S. M. Meyer et al., JCAP
1107 025 (2011). [arXiv:1105.2044 [astro-ph.CO]].

[28] V. Mukhanov, “Physical foundations of cosmology,”
Cambridge, UK: Univ. Pr. (2005) 421 p.

[29] A. Lewis, A. Challinor and A. Lasenby, Astrophys. J.
538, 473 (2000) [arXiv:astro-ph/9911177].

[30] A. Lewis and S. Bridle, Phys. Rev. D 66, 103511 (2002)
[arXiv:astro-ph/0205436].

[31] P. A. R. Ade et al
arXiv:1303.5062 [astro-ph.CO].

[32] P. A. R. Ade et al
arXiv:1303.5075 [astro-ph.CO].

[33] C. L. Bennett, D. Larson, J. L. Weiland, N. Jarosik,
G. Hinshaw, N. Odegard, K. M. Smith and R. S. Hill
et al., arXiv:1212.5225 [astro-ph.CO].

[34] F. L. Bezrukov and M. Shaposhnikov, Phys. Lett. B 659,
703 (2008) [arXiv:0710.3755 [hep-th]].

[35] F. Bezrukov, Class. Quant. Grav. 30, 214001 (2013)
[arXiv:1307.0708 [hep-ph]].

[36] S. Ferrara, A. Kehagias and A. Riotto, arXiv:1403.5531
[hep-th].

[37] J. L. Cook, L. M. Krauss, A. J. Long and S. Sabharwal,
arXiv:1403.4971 [astro-ph.CO].

[38] K. Nakayama and F. Takahashi, arXiv:1403.4132 [hep-
ph].

[39] P. Creminelli, D. Lépez Nacir, M. Simonovié¢, G. Trevisan
and M. Zaldarriaga, arXiv:1404.1065 [astro-ph.CO].

[40] N. Okada, V. N. Senoguz and Q. Shafi, arXiv:1403.6403
[hep-ph].

[41] P. DiBari, S. F. King, C. Luhn, A. Merle and A. Schmidt-
May, arXiv:1404.0009 [hep-ph].

[42] N. Kaloper and A. Lawrence, arXiv:1404.2912 [hep-th].
[43] P. Creminelli, D. Lépez Nacir, M. Simonovié¢, G. Trevisan
and M. Zaldarriaga, arXiv:1405.6264 [astro-ph.CO].

[44] K. Freese and W. H. Kinney, arXiv:1403.5277 [astro-
ph.CO]J.

[45] K. Kohri, C. S. Lim and C. -M. Lin, arXiv:1405.0772
[hep-ph].

[46] L. Amendola et al. [Euclid Theory Working Group
Collaboration], Living Rev. Rel. 16, 6 (2013)
[arXiv:1206.1225 [astro-ph.CO]].

[COrE  Collaboration],

[Planck Collaboration],

[Planck Collaboration],



	A model-independent fit to Planck and BICEP2 data
	Abstract
	I I. Introduction
	II Data analysis
	A Method
	B Cosmological data

	III Results
	IV Conclusions
	 Acknowledgments
	 References


