NAGIOS: RODERIC FUNCIONANDO

Molecular dynamics simulations of elementary chemical processes in liquid water using combined density functional and molecular mechanics potentials. I. Proton transfer in strongly H-bonded complexes

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

Molecular dynamics simulations of elementary chemical processes in liquid water using combined density functional and molecular mechanics potentials. I. Proton transfer in strongly H-bonded complexes

Mostra el registre parcial de l'element

dc.contributor.author Tuñón, Iñaki
dc.contributor.author Martins Costa, M. T. C.
dc.contributor.author Millot, C.
dc.contributor.author Ruiz López, M. F.
dc.date.accessioned 2010-06-21T10:32:33Z
dc.date.available 2010-06-21T10:32:33Z
dc.date.issued 1997
dc.identifier.citation Tuñón García de Vicuña, Ignacio ; MARTINS COSTA, M.T.C. ; MILLOT, C. ; RUIZ LÓPEZ, M.F. Molecular dynamics simulations of elementary chemical processes in liquid water using combined density functional and molecular mechanics potentials. I. Proton transfer in strongly H-bonded complexes. En: Journal of Chemical Physics, 1997, vol. 106, no. 9 en
dc.identifier.uri http://hdl.handle.net/10550/13035
dc.description.abstract The first molecular dynamics (MD) simulation of a chemical process in solution with an ab initio description of the reactant species and a classical representation of the solvent is presented. We study the dynamics of proton (deuterium) transfer in strongly hydrogen-bonded systems characterized by an energy surface presenting a double well separated by a low activation barrier. We have chosen the hydroxyl-water complex in liquid water to analyze the coupling between the reactive system and the environment. The proton is transferred from one well to the other with a frequency close to 1 ps−1 which is comparable to the low-frequency band associated to hindered translations, diffusional translation and reorientation of water molecules in water. The proton transfer takes place in 20–30 fs whereas the solvent response is delayed by about 50 fs. Therefore, the reaction occurs in an essentially frozen-solvent configuration. In principle, this would produce a barrier increase with respect to the equilibrium reaction path. However, solvent fluctuations play a substantial role by catalyzing the proton transfer. The solvent relaxation time after proton transfer has been evaluated. Since it falls in the same time scale than the reactive events (0.6 ps) it substantially influences the proton dynamics. The present study is intended to model charge transfer processes in polar media having a low activation barrier for which many reactive events may be predicted in a MD simulation. The case of reactions with large activation barriers would require the use of special techniques to simulate rare events. But still in that case, hybrid QM/MM simulations represent a suitable tool to analyze reaction dynamics and non-equilibrium solvent effects in solution chemistry. en_US
dc.language.iso en en
dc.subject Hydrogen bonds ; Molecular dynamics method ; Ab initio calculations , Ion exchange ; Solvent effects ; Reaction kinetics theory ; Density functional theory ; Intermolecular mechanics en
dc.title Molecular dynamics simulations of elementary chemical processes in liquid water using combined density functional and molecular mechanics potentials. I. Proton transfer in strongly H-bonded complexes en
dc.type journal article es_ES
dc.subject.unesco UNESCO::FÍSICA::Química física en
dc.identifier.doi 10.1063/1.473457 en
dc.type.hasVersion VoR es_ES
dc.identifier.url http://scitation.aip.org/getpdf/servlet/GetPDFServlet?filetype=pdf&id=JCPSA6000106000009003633000001&idtype=cvips&prog=normal&doi=10.1063/1.473457 en

Visualització       (216.7Kb)

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques