The Magnus expansion and some of its applications
Mostra el registre complet de l'element
Visualització
(1.345Mb)
|
|
|
|
|
|
Blanes Zamora, Sergio; Casas Pérez, Fernando; Oteo Araco, José Ángel; Ros Pallarés, José
|
|
Aquest document és un/a article, creat/da en: 2009
|
|
|
|
Approximate resolution of linear systems of differential equations with varying coefficients is a recurrent problem shared by a number of scientific and engineering areas, ranging from Quantum Mechanics to Control Theory. When formulated in operator or matrix form, the Magnus expansion furnishes an elegant setting to built up approximate exponential representations of the solution of the system. It provides a power series expansion for the corresponding exponent and is sometimes referred to as Time-Dependent Exponential Perturbation Theory. Every Magnus approximant corresponds in Perturbation Theory to a partial re-summation of infinite terms with the important additional property of preserving at any order certain symmetries of the exact solution. The goal of this review is threefold. First, to collect a number of developments scattered through half a century of scientific literature on Magnus expansion. They concern the methods for the generation of terms in the expansion, estimates of the radius of convergence of the series, generalizations and related non-perturbative expansions. Second, to provide a bridge with its implementation as generator of especial purpose numerical integration methods, a field of intense activity during the last decade. Third, to illustrate with examples the kind of results one can expect from Magnus expansion in comparison with those from both perturbative schemes and standard numerical integrators. We buttress this issue with a revision of the wide range of physical applications found by Magnus expansion in the literature.
|
|
Veure al catàleg Trobes
|
|
|
Aquest element apareix en la col·lecció o col·leccions següent(s)
Mostra el registre complet de l'element