NAGIOS: RODERIC FUNCIONANDO

The Magnus expansion and some of its applications

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

The Magnus expansion and some of its applications

Mostra el registre parcial de l'element

dc.contributor.author Blanes Zamora, Sergio
dc.contributor.author Casas Pérez, Fernando
dc.contributor.author Oteo Araco, José Ángel
dc.contributor.author Ros Pallarés, José
dc.date.accessioned 2015-05-07T09:26:46Z
dc.date.available 2015-05-07T09:26:46Z
dc.date.issued 2009
dc.identifier.citation Blanes Zamora, Sergio Casas Pérez, Fernando Oteo Araco, José Ángel Ros Pallarés, José 2009 The Magnus expansion and some of its applications Physics Reports 470 5-6 151 238
dc.identifier.uri http://hdl.handle.net/10550/43591
dc.description.abstract Approximate resolution of linear systems of differential equations with varying coefficients is a recurrent problem shared by a number of scientific and engineering areas, ranging from Quantum Mechanics to Control Theory. When formulated in operator or matrix form, the Magnus expansion furnishes an elegant setting to built up approximate exponential representations of the solution of the system. It provides a power series expansion for the corresponding exponent and is sometimes referred to as Time-Dependent Exponential Perturbation Theory. Every Magnus approximant corresponds in Perturbation Theory to a partial re-summation of infinite terms with the important additional property of preserving at any order certain symmetries of the exact solution. The goal of this review is threefold. First, to collect a number of developments scattered through half a century of scientific literature on Magnus expansion. They concern the methods for the generation of terms in the expansion, estimates of the radius of convergence of the series, generalizations and related non-perturbative expansions. Second, to provide a bridge with its implementation as generator of especial purpose numerical integration methods, a field of intense activity during the last decade. Third, to illustrate with examples the kind of results one can expect from Magnus expansion in comparison with those from both perturbative schemes and standard numerical integrators. We buttress this issue with a revision of the wide range of physical applications found by Magnus expansion in the literature.
dc.language.iso eng
dc.relation.ispartof Physics Reports, 2009, vol. 470, num. 5-6, p. 151-238
dc.subject Física
dc.title The Magnus expansion and some of its applications
dc.type journal article es_ES
dc.date.updated 2015-05-07T09:26:46Z
dc.identifier.doi 10.1016/j.physrep.2008.11.001
dc.identifier.idgrec 056370
dc.rights.accessRights open access es_ES

Visualització       (1.345Mb)

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques