NAGIOS: RODERIC FUNCIONANDO

A level set method with Sobolev Gradient and Haralick Edge Detection

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

A level set method with Sobolev Gradient and Haralick Edge Detection

Mostra el registre parcial de l'element

dc.contributor.author Evgin, Goceri
dc.contributor.author Durá Martínez, Esther
dc.date.accessioned 2015-10-28T09:41:30Z
dc.date.available 2015-10-28T09:41:30Z
dc.date.issued 2014
dc.identifier.citation Evgin, Goceri Durá Martínez, Esther 2015 A level set method with Sobolev Gradient and Haralick Edge Detection Global journal of technology 5 131 140
dc.identifier.uri http://hdl.handle.net/10550/47931
dc.description.abstract Variational level set methods, which have been proposed with various energy functionals, mostly use the ordinary L type gradient in gradient descent algorithm to minimize the energy functional. The gradient flow is influenced by both the energy to be minimized and the norms, which are induced from inner products, used to measure the cost of perturbation of the curve. However, there are many undesired properties related to the gradient flows due to the 2 L type inner products. For example, there is not any regularity term in the definition of this inner product that causes non-smooth flows and inaccurate results. Therefore, in this work, Sobolev gradient has been used that is more efficient than the 2 L type gradient for image segmentation and has powerful properties such as regular gradient flows, independency to parameterization of curves, less sensitive to local features and noise in the image and also faster convergence rate than the standard gradient. In addition, Haralick edge detector has been used instead of the edge indicator function in this study. Because, the traditional edge indicator function, which is the absolute of the gradient of the convolved image with the aussian function, is sensitive to noise in level set methods. Experimental results on real images , which are abdominal magnetic resonance images, have been obtained for spleen and kidney segmentation. Quantitative analyses have been performed by using different measurements to evaluate the performance of the proposed approach, which can ignore topological noises and detect boundaries successfully.
dc.language.iso eng
dc.relation.ispartof Global journal of technology, 2015, vol. 5, p. 131-140
dc.subject Matemàtica aplicada
dc.subject Informàtica
dc.title A level set method with Sobolev Gradient and Haralick Edge Detection
dc.type journal article es_ES
dc.date.updated 2015-10-28T09:41:30Z
dc.identifier.idgrec 103219
dc.rights.accessRights open access es_ES

Visualització       (588.8Kb)

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques