NAGIOS: RODERIC FUNCIONANDO

Algorithms for {K, s+1}-potent matrix constructions

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

Algorithms for {K, s+1}-potent matrix constructions

Mostra el registre parcial de l'element

dc.contributor.author Lebtahi, Leila
dc.contributor.author Romero, Óscar
dc.contributor.author Thome, Néstor
dc.date.accessioned 2017-03-21T18:31:59Z
dc.date.available 2017-03-21T18:31:59Z
dc.date.issued 2013
dc.identifier.citation Lebtahi, Leila Romero, Óscar Thome, Néstor 2013 Algorithms for {K, s+1}-potent matrix constructions Journal of Computational and Applied Mathematics 249 157 162
dc.identifier.uri http://hdl.handle.net/10550/57746
dc.description.abstract In this paper, we deal with {K,s+1}-potent matrices. These matrices generalize all the following classes of matrices: k-potent matrices, periodic matrices, idempotent matrices, involutory matrices, centrosymmetric matrices, mirrorsymmetric matrices, circulant matrices, among others. Several applications of these classes of matrices can be found in the literature. We develop algorithms in order to compute {K,s+1}-potent matrices and {K,s+1}-potent linear combinations of {K,s+1}-potent matrices. In addition, some examples are presented in order to show the numerical performance of the method.
dc.language.iso eng
dc.relation.ispartof Journal of Computational and Applied Mathematics, 2013, vol. 249, p. 157-162
dc.subject Matrius (Matemàtica)
dc.subject Matemàtica aplicada
dc.title Algorithms for {K, s+1}-potent matrix constructions
dc.type journal article es_ES
dc.date.updated 2017-03-21T18:31:59Z
dc.identifier.doi 10.1016/j.cam.2012.01.019
dc.identifier.idgrec 114148
dc.rights.accessRights open access es_ES

Visualització       (407.0Kb)

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques