Mostra el registre parcial de l'element
dc.contributor.author | Ballester-Bolinches, Adolfo | |
dc.contributor.author | Esteban Romero, Ramón | |
dc.contributor.author | Qiao, ShouHong | |
dc.date.accessioned | 2019-01-25T15:10:18Z | |
dc.date.available | 2019-01-25T15:10:18Z | |
dc.date.issued | 2016 | |
dc.identifier.citation | Ballester-Bolinches, Adolfo Esteban Romero, Ramón Qiao, ShouHong 2016 A note on a result of Guo and Isaacs about p-supersolubility of finite groups Archiv der Mathematik 106 6 501 506 | |
dc.identifier.uri | http://hdl.handle.net/10550/68727 | |
dc.description.abstract | In this note, global information about a finite group is obtained by assuming that certain subgroups of some given order are S-semipermutable. Recall that a subgroup H of a finite group G is said to be S-semipermutable if H permutes with all Sylow subgroups of G of order coprime to |H|. We prove that for a fixed prime p, a given Sylow p-subgroup P of a finite group G, and a power d of p dividing |G| such that 1≤d<|P| , if H∩Op(G) is S-semipermutable in Op(G) for all normal subgroups H of P with |H|=d , then either G is p-supersoluble or else |P∩Op(G)|>d . This extends the main result of Guo and Isaacs in (Arch. Math. 105:215-222 2015). We derive some theorems that extend some known results concerning S-semipermutable subgroups. | |
dc.language.iso | eng | |
dc.relation.ispartof | Archiv der Mathematik, 2016, vol. 106, num. 6, p. 501-506 | |
dc.subject | Grups, Teoria de | |
dc.subject | Matemàtica | |
dc.title | A note on a result of Guo and Isaacs about p-supersolubility of finite groups | |
dc.type | journal article | es_ES |
dc.date.updated | 2019-01-25T15:10:19Z | |
dc.identifier.doi | 10.1007/s00013-016-0901-7 | |
dc.identifier.idgrec | 110073 | |
dc.rights.accessRights | open access | es_ES |