Mostra el registre parcial de l'element
dc.contributor.author | Forment Aliaga, Alicia | |
dc.contributor.author | Coronado Miralles, Eugenio | |
dc.date.accessioned | 2020-05-11T10:33:18Z | |
dc.date.available | 2020-05-11T10:33:18Z | |
dc.date.issued | 2018 | |
dc.identifier.citation | Forment Aliaga, Alicia Coronado Miralles, Eugenio 2018 Hybrid Interfaces in Molecular Spintronics Chemical Record 18 737 748 | |
dc.identifier.uri | https://hdl.handle.net/10550/74557 | |
dc.description.abstract | Molecular/inorganic multilayer heterostructures are gaining attention in molecular electronics and more recently in new generation spintronic devices. The intrinsic properties of molecular materials as low cost, tuneability, or long spin lifetimes were the original reasons behind their implementation. However, the non-innocent role played by these hybrid interfaces is a determinant factor in the device performance. In this account we will give an overview about different types of hybrid molecular system/ferromagnet interfaces, which can be of direct application in molecular spintronics. This includes the insertion of a 2D material in between the molecular system and the ferromagnet. As perspective, new hybrid interfaces able to tune the spin properties under an external stimulus, are proposed. These smart interfaces, based on switchable magnetic molecules or flexible MOFs, can open the way to new multifunctional spintronic devices able to couple the spin with a second property. | |
dc.language.iso | eng | |
dc.relation.ispartof | Chemical Record, 2018, vol. 18, p. 737-748 | |
dc.subject | Materials | |
dc.subject | Electrònica molecular | |
dc.title | Hybrid Interfaces in Molecular Spintronics | |
dc.type | journal article | es_ES |
dc.date.updated | 2020-05-11T10:33:18Z | |
dc.identifier.doi | 10.1002/tcr.201700109 | |
dc.identifier.idgrec | 126184 | |
dc.rights.accessRights | open access | es_ES |