NAGIOS: RODERIC FUNCIONANDO

AI-IoT Platform for Blind Estimation of Room Acoustic Parameters Based on Deep Neural Networks

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

AI-IoT Platform for Blind Estimation of Room Acoustic Parameters Based on Deep Neural Networks

Mostra el registre parcial de l'element

dc.contributor.author López Ballester, Jesús
dc.contributor.author Felici Castell, Santiago
dc.contributor.author Segura García, Jaume
dc.contributor.author Cobos Serrano, Máximo
dc.date.accessioned 2022-11-23T16:18:12Z
dc.date.available 2024-09-01T04:45:08Z
dc.date.issued 2022
dc.identifier.citation López Ballester, Jesús Felici Castell, Santiago Segura García, Jaume Cobos Serrano, Máximo 2022 AI-IoT Platform for Blind Estimation of Room Acoustic Parameters Based on Deep Neural Networks Ieee Internet Of Things Journal
dc.identifier.uri https://hdl.handle.net/10550/84569
dc.description.abstract Room acoustical parameters have been widely used to describe sound perception in indoor environments, such as concert halls, conference rooms, etc. Many of them have been standardized and often have a high computational demand. With the increasing presence of deep learning approaches in automatic monitoring systems, wireless acoustic sensor networks (WASNs) offer great potential to facilitate the estimation of such parameters. In this scenario, Convolutional Neural Networks (CNNs) offer significant reductions in the computational requirements for in-node parameter predictions, enabling the so-called Artificial Intelligence-Internet of Things (AI-IoT). In this paper, we describe the design and analysis of a CNN trained to predict simultaneously a set of common room acoustical parameters directly from speech signals, without the need for specific impulse response measurements. The results show that the proposed CNN-based prediction of room acoustical parameters and speech intelligibility achieves a relative error rate of less than a 5.5%, accompanied by a computational speedup factor close to 250 with respect to the conventional signal processing approach.
dc.language.iso eng
dc.relation.ispartof Ieee Internet Of Things Journal, 2022
dc.subject Internet
dc.subject Informàtica
dc.title AI-IoT Platform for Blind Estimation of Room Acoustic Parameters Based on Deep Neural Networks
dc.type journal article es_ES
dc.date.updated 2022-11-23T16:18:13Z
dc.identifier.doi 10.1109/JIOT.2022.3203570
dc.identifier.idgrec 155079
dc.embargo.terms 2 years
dc.rights.accessRights open access es_ES

Visualització       (4.416Mb)

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques