NAGIOS: RODERIC FUNCIONANDO

The isomorphism problem for graph magma algebras

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

The isomorphism problem for graph magma algebras

Mostra el registre parcial de l'element

dc.contributor.author Díaz Boils, Joaquín
dc.contributor.author López Permouth, Sergio
dc.date.accessioned 2023-09-11T17:28:23Z
dc.date.available 2023-09-11T17:28:23Z
dc.date.issued 2022
dc.identifier.citation Díaz Boils, Joaquín López Permouth, Sergio 2022 The isomorphism problem for graph magma algebras Communications in Algebra 50:11 4822 4841
dc.identifier.uri https://hdl.handle.net/10550/89199
dc.description.abstract (One-value) graph magma algebras are algebras having a basis B=V∪{1} such that, for all u,v∈V, uv∈{u,0}. Such bases induce graphs and, conversely, certain types of graphs induce graph magma algebras. The equivalence relation on graphs that induce isomorphic magma algebras is fully characterized for the class of associative graphs having only finitely many non-null connected components. In the process, the ring-theoretic structure of the magma algebras induced by those graphs is given as it is shown that they are precisely those graph magma algebras that are semiperfect as rings. A complete description of the semiperfect rings that arise in this fashion, in ring theoretic and linear algebra terms, is also given. In particular, the precise number of isomorphism classes of one-value magma algebras of dimension n is shown to be ∑j≤np(j) where, for any i∈Z+, p(i) is the number of partitions of i. While it is unknown whether uncountable dimensional algebras always have amenable bases, it is shown here that graph magma algebras do.
dc.language.iso eng
dc.relation.ispartof Communications in Algebra, 2022, vol. 50:11, p. 4822-4841
dc.subject Àlgebra
dc.subject Anells (Algebra)
dc.subject Física
dc.title The isomorphism problem for graph magma algebras
dc.type journal article
dc.date.updated 2023-09-11T17:28:23Z
dc.identifier.doi 10.1080/00927872.2022.2075882
dc.identifier.idgrec 161040
dc.rights.accessRights open access

Visualització       (2.025Mb)

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques