Mostra el registre parcial de l'element
dc.contributor.author | Coronado Miralles, Eugenio | |
dc.contributor.author | Gaita Ariño, Alejandro | |
dc.contributor.author | Duan, Yan | |
dc.date.accessioned | 2023-11-23T14:25:36Z | |
dc.date.available | 2023-11-23T14:25:36Z | |
dc.date.issued | 2023 | |
dc.identifier.uri | https://hdl.handle.net/10550/91382 | |
dc.description.abstract | A central goal in quantum technologies is to maximize GT2, where G stands for the coupling of a qubit to control and readout signals and T2 is the qubit's coherence time. This is challenging, as increasing G (e.g., by coupling the qubit more strongly to external stimuli) often leads to deleterious effects on T2. Here, we study the coupling of pure and magnetically diluted crystals of HoW10 magnetic clusters to microwave superconducting coplanar waveguides. Absorption lines give a broadband picture of the magnetic energy level scheme and, in particular, confirm the existence of level anticrossings at equidistant magnetic fields determined by the combination of crystal field and hyperfine interactions. Such 'spin clock transitions' are known to shield the electronic spins against magnetic field fluctuations. The analysis of the microwave transmission shows that the spin-photon coupling also becomes maximum at these transitions. The results show that engineering spin-clock states of molecular systems offers a promising strategy to combine sizable spin-photon interactions with a sufficient isolation from unwanted magnetic noise sources. | |
dc.language.iso | eng | |
dc.relation.ispartof | Physical Review Applied, 2023, vol. 20, num. 4 | |
dc.source | Coronado Miralles, Eugenio, Gaita Ariño, Alejandro, Duan, Yan (2023). Optimal coupling of HoW10 molecular magnets to superconducting circuits near spin clock transitions. Physical Review Applied, 20 4. https://doi.org/10.1103/PhysRevApplied.20.044070 | |
dc.subject | química | |
dc.title | Optimal coupling of HoW10 molecular magnets to superconducting circuits near spin clock transitions | |
dc.type | journal article | |
dc.date.updated | 2023-11-23T14:25:37Z | |
dc.identifier.doi | 10.1103/PhysRevApplied.20.044070 | |
dc.identifier.idgrec | 161839 | |
dc.rights.accessRights | open access | |
dc.identifier.url | https://link.aps.org/doi/10.1103/PhysRevApplied.20.044070 |