NAGIOS: RODERIC FUNCIONANDO

Theoretical Approach to the Radiance-to-Flux Conversion in the EarthCARE Mission Framework.

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

Theoretical Approach to the Radiance-to-Flux Conversion in the EarthCARE Mission Framework.

Mostra el registre parcial de l'element

dc.contributor.advisor Donovan, David P. es_ES
dc.contributor.advisor López Baeza, Ernesto es_ES
dc.contributor.author Doménech García, Carlos es_ES
dc.contributor.other Universitat de València - TERMODINÀMICA es_ES
dc.date.accessioned 2010-07-07T08:01:24Z
dc.date.available 2010-07-07T08:01:24Z
dc.date.issued 2008 es_ES
dc.date.submitted 2008-06-02 es_ES
dc.identifier.uri http://hdl.handle.net/10550/14925
dc.description.abstract The research of the Thesis, Theoretical Approach to the Radiance-to-Flux Conversion in the EarthCARE Framework, is aimed at studying the instantaneous TOA radiance-to-flux conversion for the prospective Broad-Band Radiometer (BBR) on-board the EarthCARE (Earth Clouds Aerosols and Radiation Explorer) platform, through the development of theoretical angular distribution models based on the specific designing features of the instrument. The inversion procedure has been undertaken to obtain the apparent TOA fluxes according to the flux retrieval accuracy required for the mission. The ADMs employed in previous missions make use of a single radiance in the inversion process. With the specific BBR along-track configuration, three simultaneous radiances point the same target, thus providing more information on the anisotropy of the observed scene. This additional information is employed to construct more accurate inversion schemes than those using a single radiance, thus the objective has been to construct theoretical ADMs based on the specific characteristics designed for this pioneering instrument. However, the resulting angular models are not a finished product to be directly applied over EarthCARE data. This is an attempt to study one potential solution and assess its drawbacks and advantages. Considering that the use of existing ADMs have important shortcomings, the Thesis opens an unexplored study line by which detailed numerical calculations are used to assess and construct ADMs. A specific module of the EarthCARE Simulator has been employed to carry out the broad-band radiative transfer computations, namely the semi-analytical Monte-Carlo radiative transfer code. In spite of the difficulty associated with addressing the unlimited atmospheric conditions needed in order to determine ADMs based on model calculations, a theoretical database has been constructed considering different surface, atmospheric and cloud conditions. The variations on these parameters are conditioned to the EarthCARE satellite orbit and physical ligatures. At the end, more than 8x104 detailed scenes has been produced, building up significant ensembles with a robust statistical analysis, and including realistic 3-D cloud effects. A high number of calculations has been performed on the Computing Centre from the University of Valencia while the European Space Agency (ESA) facilitated a significant computing resource by allowing us to implement the EarthCARE Simulator on the ESA Earth Observation Grid Processing-on-Demand (EO G-POD). Three different inversion methodologies have been specifically developed to take advantage of the along-track scanner configuration of the EarthCARE BBR. Flux can be estimated, as a result of the study, by using an optimized classical inversion procedure with different effective radiance definitions, namely along-track and average methods, or defining the flux as the linear combination of the three-view radiances. These conversion methodologies has been applied to a BBR-like CERES representative dataset, and the results has been compared to the flux estimates obtained by the single-view based CERES ADMs. It has been shown that the application of theoretical ADMs on satellite-measured radiances is far from straightforward. The current approach is presently far from complete and requires significant further research. Empirical ADMs must farther studied before they are rule out. A number of multi-layer bins have been generated for a prototype BBR ADM scene definition, still experimental though. Twenty five multi-layered realistic cloud scenes have been built for this study employing a 3-D stochastic cloud model generator. Since the cloud-imager retrievals are insufficient for the BBR scene identification (ID) in multi-layer cloud, the radiance-to-flux conversion provides large errors. The use of the active instruments helps to determine the type of clouds involved in the scene in most multi-layer situations. The Thesis demonstrates the potential improvement of the radiance-to-flux conversion, by adequately selecting the ADM scene definition and including information from active instruments on-board EarthCARE platform in the scene ID. __________________________________________________________________________________________________ RESUMEN La Tesis, Theoretical Approach to the Radiance-to-Flux Conversion in the EarthCARE Mission Framework, responde a uno de los principales intereses de la misión espacial EarthCARE (Earth Clouds Aerosols and Radiation Explorer), el estudio de procedimientos para la estimación flujos a partir de las radiancias del radiómetro de banda ancha Broad-Band Radiometer (BBR) a bordo de la misión. Los objetivos se centran, por tanto, en establecer la metodología para la conversión instantánea de radiancias en techo de la atmósfera a densidades de flujo radiante. Ésta, basada en el desarrollo teórico de modelos de dependencia angular (ADM), se define teniendo en cuenta las características específicas del instrumento. Se optimiza aprovechando que las tres visiones del BBR aportan información angular adicional, lo que posibilita una mejora en la precisión obtenida por los algoritmos de conversión respecto a la que se obtiene con modelos angulares que emplean una única radiancia. El proceso ha sido desarrollado considerando el error máximo atribuible a la obtención de flujos estipulado en los requisitos de precisión de la misión. De tal modo que los flujos aparentes determinados a partir de la conversión de radiancias satisfacen, en su gran mayoría, este requisito. La aspiración de este trabajo no es dar una respuesta definitiva a la estimación de flujos para EarthCARE, si no estudiar una de las posibles soluciones y valorar las potenciales ventajas e inconvenientes. Tres metodologías has sido específicamente desarrolladas para sacar el mayor rendimiento a la configuración en along-track del instrumento BBR. Se comprueba que la aplicación de ADMs teóricos sobre radiancias medidas desde satélite está todavía en un proceso inicial. Es, por tanto, prematuro utilizar ADMs teóricos, y se constata la necesidad de profundizar en el análisis de ADMs empíricos. La Tesis pone de manifiesto los problemas que surgen en la conversión al considerar escenas con varias capas de nubes si la identificación de escena no es precisa. Se demuestra la mejora en la conversión de radiancias a flujos cuando se realiza una adecuada definición de escena del ADM y se incluyen los productos de los sensores activos del EarthCARE en la identificación de escena del BBR. en_US
dc.description.abstract es_ES
dc.format.mimetype application/pdf es_ES
dc.language cat-en-es es_ES
dc.rights eng es_ES
dc.rights Copyright information available at source archive es_ES
dc.subject none es_ES
dc.title Theoretical Approach to the Radiance-to-Flux Conversion in the EarthCARE Mission Framework. es_ES
dc.type doctoral thesis es_ES

Visualització       (12.22Mb)

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques