Mostra el registre complet de l'element
Miralles Montolío, Alejandro
Galindo Pastor, Pablo (dir.) Universitat de València - ANÀLISI MATEMÀTICA |
|
Aquest document és un/a tesi, creat/da en: 2008 | |
The lines studied in this thesis are the following:
² Interpolating Sequences for Uniform Algebras
² Composition Operators
² Topological Properties in Algebras of Analytic Functions
After the preliminaries, the second chapter is devoted to the study of
interpolating sequences on uniform algebras A. We ¯rst deal with the con-
nection between interpolating sequences and linear interpolating sequences.
Next, we deal with dual uniform algebras A = X¤. In this context, we
prove ¯rst that c0¡linear interpolating sequences are linear interpolating
and then, we show that c0¡interpolating sequences are, indeed, c0¡linear
interpolating, obtaining that c0¡interpolating sequences (xn) ½ MA X
become linear interpolating. Finally, we provide a di®erent approach to
prove that c0¡interpolating sequences are not c0¡linear interpolating via
composition operators.
We continue with the study ...
[Llegir més ...]
[-]
The lines studied in this thesis are the following:
² Interpolating Sequences for Uniform Algebras
² Composition Operators
² Topological Properties in Algebras of Analytic Functions
After the preliminaries, the second chapter is devoted to the study of
interpolating sequences on uniform algebras A. We ¯rst deal with the con-
nection between interpolating sequences and linear interpolating sequences.
Next, we deal with dual uniform algebras A = X¤. In this context, we
prove ¯rst that c0¡linear interpolating sequences are linear interpolating
and then, we show that c0¡interpolating sequences are, indeed, c0¡linear
interpolating, obtaining that c0¡interpolating sequences (xn) ½ MA X
become linear interpolating. Finally, we provide a di®erent approach to
prove that c0¡interpolating sequences are not c0¡linear interpolating via
composition operators.
We continue with the study of interpolating sequences for the algebras
of analytic functions H1(BE) and A1(BE) in the third chapter. The study
of interpolating sequences for H1 arises from the results of L. Carleson, W.
K. Hayman and D. J. Newman. When we deal with general Banach spaces,
we prove that the Hayman-Newman condition for the sequence of norms is
su±cient for a sequence (xn) ½ BE¤¤ to be interpolating for H1(BE) if E
is any ¯nite or in¯nite dimensional Banach space. This is a consequence of
a stronger result :
The Carleson condition for the sequence (kxnk) ½ D is su±cient for
(xn) to be interpolating for H1(BE).
Actually, the result holds for sequences in BE¤¤ thanks to the Davie-
Gamelin extension.
When we deal with A = A1(BE), the existence of interpolating se-
quences for A was proved by J. Globevnik for a wide class of in¯nite-
dimensional Banach spaces. We complete this study by proving the ex-
istence of interpolating sequences for A1(BE) for any in¯nite-dimensional
Banach space E, characterizing the separability of A1(BE) in terms of the
¯nite dimension of E.
Finally, we study the metrizability of bounded subsets of MA when we
deal with A = Au(BE).
In chapter 4 we deal with composition operators on H1(BE). First we
study the spectra of these operators. L. Zheng described the spectrum
of some composition operators on H1. Her results where extended to
H1(BE), E any complex Banach space, by P. Galindo, T. Gamelin and
M. LindstrÄom for the power compact case. In this work, the authors also
deal with the non power compact case for Hilbert spaces. Inspired by them
and using some interpolating results, we provide a general theorem which
describes the spectrum of H1(BE) for general Banach spaces. In partic-
ular, we prove that conditions on this theorem are satis¯ed by the n¡fold
product space Cn, completing the description of ¾(CÁ) in this case, which
was an open question.
Next, we study the class of Radon-Nikod¶ym composition operators from
H1(BE) to H1(BF ). We characterize these operators in terms of the As-
plund property.
Chapter 5 deals with properties related to Hankel-type operators. The
concept of tight algebra is related to these operators and was introduced
by B. Cole and T. Gamelin. They proved that A(Dn) is not tight on its
spectrum for n ¸ 2. We present a new approach to this result extending
it to algebras Au(BE) for Banach spaces E = C £ F endowed with the
supremum norm.
In addition, we show that H1(BE) is never tight on its spectrum re-
gardless the Banach space E.
Hankel-type operators are also closely related to the Dunford-Pettis prop-
erty through the so-called Bourgain algebras introduced by J. A. Cima and
R. M. Timoney. We prove that the Bourgain algebras of A(Dn) as a sub-
space of C( ¹D n) are themselves.RESUMEN
Este trabajo resume, de forma parcial, la investigación realizada durante
mi periodo predoctoral. Esta investigación pertenece, de forma general,
a la teoría de álgebras de Banach conmutativas y álgebras uniformes y,
en particular, se desarrolla principalmente en el ámbito de las álgebras de
funciones analíticas acotadas en dominios de espacios de Banach ¯nito e
in¯nito dimensionales.
Las líneas centrales de este trabajo son las siguientes:
² Sucesiones de Interpolación para Álgebras Uniformes
² Operadores de Composición
² Propiedades Topológicas de Álgebras de Funciones Analíticas
La investigación realizada sobre sucesiones de interpolación para álgebras
uniformes se puede dividir en dos partes: una genérica en la que se propor-
cionan algunos resultados de carácter general sobre sucesiones de interpo-
lación para álgebras uniformes, y una parte más específica, en que se tratan
sucesiones de interpolación para algunas álgebras de funciones analíticas
acotadas. Estos puntos se tratan en los Capítulos 2 y 3. El estudio de oper-
adores de composición, principalmente sobre H1(BE), centra el contenido
del Capítulo 4. En este cap¶³tulo estudiaremos una descripci¶on del espectro
de estos operadores y los llamados operadores de composición de Radon-
Nikod¶ym. Para ello, se harí uso de algunos resultados de interpolación del
capítulo anterior. Con respecto a la tercera línea que hemos citado, estu-
diaremos los llamados operadores de tipo Hankel en el capítulo 5. ¶Estos
nos permitirán tratar el concepto de álgebra tight y las álgebras de Bour-
gain de un subespacio de C(K), que están estrechamente relacionadas con
la propiedad de Dunford-Pettis.
__________________________________________________________________________________________________
|
|
Veure al catàleg Trobes |