NAGIOS: RODERIC FUNCIONANDO

Testing standard and nonstandard neutrino physics with cosmological data

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

Testing standard and nonstandard neutrino physics with cosmological data

Mostra el registre parcial de l'element

dc.contributor.author Giusarma, Elena
dc.contributor.author de Putter, Roland
dc.contributor.author Mena Requejo, Olga
dc.date.accessioned 2013-11-26T10:00:09Z
dc.date.available 2013-11-26T10:00:09Z
dc.date.issued 2013
dc.identifier.citation Giusarma, Elena de Putter, Roland Mena Requejo, Olga 2013 Testing standard and nonstandard neutrino physics with cosmological data Physical Review D 87 4 043515
dc.identifier.uri http://hdl.handle.net/10550/31425
dc.description.abstract Cosmological constraints on the sum of neutrino masses and on the effective number of neutrino species in standard and nonstandard scenarios are computed using the most recent available cosmological data. Our cosmological data sets include the measurement of the baryonic acoustic oscillation (BAO) feature in the data release 9 CMASS sample of the baryon oscillation spectroscopic survey. We study in detail the different degeneracies among the parameters, as well as the impact of the different data sets used in the analyses. When considering bounds on the sum of the three active neutrino masses, the information in the BAO signal from galaxy clustering measurements is approximately equally powerful as the shape information from the matter power spectrum. The most stringent bound we find is Sigma m(nu) < 0.32 eV at 95% C.L. When nonstandard neutrino scenarios with N-eff massless or massive neutrino species are examined, power spectrum shape measurements provide slightly better bounds than the BAO signal only, due to the breaking of parameter degeneracies. Cosmic microwave background data from high multipoles from the South Pole Telescope turns out to be crucial for extracting the number of effective neutrino species. Recent baryon oscillation spectroscopic survey data combined with cosmic microwave background and Hubble Space Telescope measurements give N-eff = 3.66(-0.21-0.69)(+0.20+0.73) in the massless neutrino scenario, and similar results are obtained in the massive case. The evidence for extra radiation N-eff > 3 often claimed in the literature therefore remains at the 2 sigma level when considering up-to-date cosmological data sets. Measurements from the Wilkinson Microwave Anisotropy Probe combined with a prior on the Hubble parameter from the Hubble Space Telescope are very powerful in constraining either the sum of the three active neutrino masses or the number of massless neutrino species. If the former two parameters are allowed to freely vary, however, the bounds from the combination of these two cosmological probes get worse by an order of magnitude.
dc.relation.ispartof Physical Review D, 2013, vol. 87, num. 4, p. 043515
dc.subject Cosmologia
dc.subject Astrofísica
dc.title Testing standard and nonstandard neutrino physics with cosmological data
dc.type journal article es_ES
dc.date.updated 2013-11-26T10:00:09Z
dc.identifier.doi 10.1103/PhysRevD.87.043515
dc.identifier.idgrec 084368
dc.rights.accessRights open access es_ES
dc.identifier.url 10.1103/PhysRevD.87.043515

Visualització       (197.4Kb)

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques