NAGIOS: RODERIC FUNCIONANDO

Fabricación, caracterización estructural y óptica de capas plasmónicas y puntos cuánticos: aplicaciones

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

Fabricación, caracterización estructural y óptica de capas plasmónicas y puntos cuánticos: aplicaciones

Mostra el registre parcial de l'element

dc.contributor.advisor Martínez Pastor, Juan Pascual
dc.contributor.author Pedrueza Villalmanzo, Esteban
dc.contributor.other Departament de Física Aplicada i Electromagnetisme es_ES
dc.date.accessioned 2013-11-26T13:56:24Z
dc.date.available 2013-12-27T07:10:03Z
dc.date.issued 2013
dc.date.submitted 28-11-2013 es_ES
dc.identifier.uri http://hdl.handle.net/10550/31436
dc.description.abstract This Thesis introduces a new chemistry methodology to synthesize in situ metallic nanocomposites thin films, made of Au and Ag nanoparticles embedded in solid dielectric matrices of TiO2 and SiO2. By this methodology, it is possible to control the size, shape and filling factor of the nanoparticles, being corroborated by different electronic microscopy techniques (SEM, TEM, HAADF-STEM) and surface characterization (AFM). Moreover, the optical properties of these layers were measured using different techniques, like extinction, transmittance and reflectance, as well as the indices of refraction were determined by means of ellipsometry, confirming the typical localized surface plasmon resonance of these metallic nanoparticles. These properties were explained using the Maxwell-Garnett effective medium approximation within the picture of Fresnel equations in order to explain the origin of reflectance and extinction spectra. Using these layers in combination with a controlled wet chemical etching, we obtain antireflectance layers by means of the formation of a porous inside the layer that allows the formation of a gradient-index multilayer, which traduces in a dramatic diminution of the reflectance in samples deposited over Si, showing a minimum in the spectral region dominated by the plasmon resonance. This gradual diminution of the reflectance with the etching time is explained with calculations in a multilayer structure. When the layers are doped with Ag nanoparticles, we observe the interaction with the organic molecule 2-mercaptoethanol in aqueous medium. This interaction provokes the diminution in the intensity of the optical extinction, as well as a shift in the wavelength of the plasmon resonance to larger energies. This opens the path to the development of potential applications in the field of chemical sensors. Colloidal quantum dots with diameters between 3-8 nm were synthesized and their optical properties were characterized by means of absorption and photoluminescence in the regimes of low temperature and high hydrostatic pressures. Taking into account the linear dependence of the effective masses with the temperature and the successfully applied finite potential wall model to explain the confinement energy alongside the non-parabolicity of the bands, a similar model has been employed in order to explain the ecotonic dynamics at high pressure regime and compared with the measurements in the spectral region of the infrared for the bulk material. We have obtained a good agreement with the experimental data, comparing with the differences obtained using a simplified model with the mechanical diminution of quantum dot’s size. Three different kind of bilayer nanocomposites have been fabricated containing metallic nanoparticles and quantum dots based on CdSe, observing in all these samples an photon-plasmon coupling, resulting in a enhancement or quenching in the emission of the quantum dots, that could be controlled by adding a dielectric spacer layer. en_US
dc.description.abstract En esta tesis se ha desarrollado una nueva metodología de síntesis química (sol-gel) para la fabricación in situ de nanocomposites metálicos en forma de capa delgada, compuestos por nanopartículas de Au y Ag embebidas en matrices dieléctricas sólidas de TiO2 y SiO2. Con dicha metodología se puede controlar el tamaño y el factor de llenado de las nanopartículas, que se han caracterizado mediante el uso de técnicas de microscopía electrónica (SEM, TEM, HAADF-STEM) y de caracterización de superficie (AFM). Además, se han empleado diversas técnicas para medir las propiedades ópticas de estas capas, como son la extinción, transmitancia y reflectancia, así como el índice de refracción por medio de elipsometría, verificando la existencia de la resonancia plasmónica superficial localizada típica de las nanopartículas hechas de estos metales. Estas propiedades se han modelizado haciendo uso de la aproximación de medio efectivo de Maxwell-Garnett y dentro del marco de las ecuaciones de Fresnel para explicar el origen de la reflectancia y la extinción. Utilizando estas capas, y mediante un ataque químico controlado, se han obtenido capas antireflejantes al conseguir una estructura porosa que permite la formación de un gradiente de índice de refracción, provocando un mínimo de reflectancia en la región espectral dominada por la resonancia plasmónica con muestras en substrato de Si. El gradual descenso de la reflectancia con el incremento del tiempo de ataque ha sido explicado satisfactoriamente mediante cálculos con estructuras multicapa. Con esta misma estructura porosa generada en las capas de TiO2 dopadas con nanopartículas de Ag, además del mismo comportamiento antireflejante, se ha observado la interacción con la molécula orgánica 2-mercaptoetanol en medio acuoso, registrándose un descenso en la intensidad de la extinción óptica en muestras depositadas sobre vidrio, así como un corrimiento hacia energías mayores de la longitud de onda de la resonancia plasmónica, lo que plantea la potencial aplicación de estas capas como sensores químicos. Se han sintetizado puntos cuánticos de PbSe, con diámetros entre 3-8 nm, y caracterizado sus propiedades ópticas mediante medidas de absorción y fotoluminiscencia en los regímenes de baja temperatura y altas presiones. Basándonos en la dependencia lineal de la masa efectiva con la temperatura y el buen acuerdo que presenta la energía de confinamiento experimental con un modelo de paredes de potencial finitas teniendo en cuenta la no parabolicidad de las bandas, se ha planteado un modelo similar para explicar la dinámica excitónica en el regímen de altas presiones, comparándose con las medidas en el infrarojo del material masivo. Se ha obtenido un buen acuerdo con los experimentos, haciendo hincapié en las diferencias obtenidas usando un modelo que solo tiene en cuenta la disminución mecánica del tamaño del punto cuántico con la presión. Se han fabricado tres tipos distintos de nanocomposites en forma de bicapa conteniendo nanopartículas metálicas y puntos cuanticos basados en CdSe, observándose en todos los casos una interacción foton-plasmón, que se traduce en un incremento o un descenso en la emisión de los puntos cuánticos, que se intenta controlar mediante la adición de una capa separadora. es_ES
dc.format.extent 182 p. es_ES
dc.language.iso es es_ES
dc.subject puntos cuánticos es_ES
dc.subject nanocomposites es_ES
dc.subject nanopartículas es_ES
dc.title Fabricación, caracterización estructural y óptica de capas plasmónicas y puntos cuánticos: aplicaciones es_ES
dc.type doctoral thesis es_ES
dc.subject.unesco UNESCO::FÍSICA::Física del estado sólido::Física del estado sólido. Espectroscopía de sólidos es_ES
dc.subject.unesco UNESCO::FÍSICA::Física del estado sólido::Semiconductores es_ES
dc.embargo.terms 1 month es_ES

Visualització       (8.053Mb)

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques