Mostra el registre complet de l'element
Rivera Caicedo, Juan Pablo
Moreno, Jóse F. (dir.); Verrelst, Jochem (dir.) Departament de Física de la Terra i Termodinàmica |
|
Aquest document és un/a tesi, creat/da en: 2014 | |
The biosphere is one of the main components of the Earth’s system since it regulates exchanges of energy and mass fluxes at the soil, vegetation and atmosphere level. To know the links between vegetation and the terrestrial energy, water and carbon cycles, and how these might change due to eco-physiological responses to elevated CO2 and changes in land use is of vital importance for the study of the biosphere.
To study these exchanges, several kinds of models (scale and target) have been developed. In view of these models, the Global Climate Observing System (GCOS) aims to provide comprehensive information on the total climate system, involving a multidisciplinary range of physical, chemical and biological properties, and atmospheric, oceanic, hydrological, cryospheric and terrestrial processes. Fifty GCOS Essential Climate Variables (ECVs) are required to support the work of the Unite...
[Llegir més ...]
[-]
The biosphere is one of the main components of the Earth’s system since it regulates exchanges of energy and mass fluxes at the soil, vegetation and atmosphere level. To know the links between vegetation and the terrestrial energy, water and carbon cycles, and how these might change due to eco-physiological responses to elevated CO2 and changes in land use is of vital importance for the study of the biosphere.
To study these exchanges, several kinds of models (scale and target) have been developed. In view of these models, the Global Climate Observing System (GCOS) aims to provide comprehensive information on the total climate system, involving a multidisciplinary range of physical, chemical and biological properties, and atmospheric, oceanic, hydrological, cryospheric and terrestrial processes. Fifty GCOS Essential Climate Variables (ECVs) are required to support the work of the United Nations Framework Convention on Climate Change (UNFCCC) and the Intergovernmental Panel on Climate Change.
In support of these terrestrial models, but also in support of monitoring local-to-global vegetation dynamics, this Thesis focuses on improved estimation of vegetation properties from optical RS data, and more specifically leaf area index (LAI) and leaf chlorophyll content (LCC). Although LCC is currently not considered as an ECV due to the lack of a globally applicable retrieval algorithm, it is a key variable in vegetation studies. Monitoring the distribution and changes of LAI and LCC is important for assessing growth and vigour of vegetation on the planet. The quantification of these essential vegetation properties are fundamentally important in land-atmosphere processes and parametrization in climate models. LAI variable represents the amount of leaf material in ecosystems and controls the links between biosphere and atmosphere through various processes such as photosynthesis, respiration, transpiration and rain interception. LCC provides important information about the physiological status of plants and photosynthetic activity, therefore is related to the nitrogen content, water stress and yield forecasting
The European Space Agency (ESA)’s forthcoming Sentinel-2 mission is particularly tailored to the monitoring vegetation properties mapping, with operational monitoring capabilities that goes beyond any existing operational mission. A pair of Sentinel-2 polar-orbiting satellites will provide systematic global acquisitions of high-resolution multispectral imagery (10-60 m) with a high revisit frequency on a free and open data policy basis. With the pair of satellites in operation it has a revisit time of five days at the equator (under cloud-free conditions) and 2–3 days at mid-latitudes. Sentinel-2 images will be used to derive the highly prioritized time series of ECVs such as LAI. Sentinel-2 images will also be used provide various experimental variables, e.g. biochemical variables such as LCC.
This Thesis is dedicated to tackle the stated recommendation and turn it into consolidated guidelines. The undertaken road map was to work on both generating scientific outputs, as well on developing software to automate the retrieval routines. All essential tools to deliver a prototype retrieval approach that could be embedded into an operational Sentinel-2 processing scheme have been prepared into a scientific software package called ARTMO (Automated Radiative Transfer Models Operator). Physically-based approaches but also latest statisticallybased methods have been implemented into the software package and systematically evaluated.
The retrieval methods have been applied to the estimation of LAI and LCC from simulated Sentinel-2 data, but the majority of investigated methods can essentially be applied to derive any detectable vegetation biochemical or biophysical variable. The fundamentals of ARTMO has been laid during J.P. Rivera’s MSc thesis project and has been further developed during the course of my PhD Thesis. The toolbox is built on a suite of radiative transfer models and image processing modules in a modular graphical user interface (GUI) environment. ARTMO has been mainly developed and tested for processing (simulated) Sentinel-2 data in a semiautomatic way, but in principle data from any optical sensor can be processed.La Biosfera es uno de los principales sistemas que conforman la Tierra. Su estudio permite comprender la relación entre la vegetación y el ciclo del carbono y cómo éste puede ser afectado por los cambios en los niveles de CO2 y los usos de suelo. Para el estudio de estas dinámicas a escala global y local, han sido desarrollados diversos modelos que son representaciones de la realidad en una escala y complejidad más simple.
Parte de las variables de entrada de estos modelos son obtenidas mediante medidas de teledetección gracias al Global Climate Observing System (GCOS), que ha determinado un conjunto de 50 variables climáticas esenciales que contribuyen a los estudios de cambio climático que lidera la Convención Marco de las Naciones Unidas y el Panel Intergubernamental del Cambio Climático. En esta lista está incluido el índice de área foliar (LAI).El contenido de clorofila en hoja (LCC) es otro parámetro biofísico clave para los estudios de biosfera.
El estudio de las propiedades de la vegetación desde el espacio requiere: (1) Métodos óptimos para el procesamiento y la estimación de la información y, (2) Disponibilidad de datos espaciales. Los métodos de procesado y estimación de parámetros biofísicos son necesarios ya que el sensor solo mide los flujos de energía reflejados por las cubiertas vegetales distribuidos espacialmente. Por ello, han sido desarrollados diversos modelos, que van desde complejos
modelos con base física hasta modelos estadísticos o la combinación de los anteriores. En el desarrollo de esta tesis se ha reunido una amplia variedad de ellos.
la Agencia Espacial Europea (ESA) ha desarrollado la misión Sentinel-2 que está especialmente diseñada para el monitoreo de las propiedades de la vegetación, con las capacidades operativas que cumplen los requerimientos espectrales, espaciales y temporales. Los datos que proporcionará la misión Sentinel-2 permitirán garantizar la continuidad de las misiones Spot y Landsat, aportando un tiempo de revisita menor, mejora de la amplitud de barrido, mayor resolución espectral y una mejor calibración y calidad de imagen.
Para el procesamiento y la extracción de información de parámetros biofísicos han sido desarrollados diferentes paquetes computacionales por diversos grupos de investigación. Esta tesis pretende suministrar un conjunto de herramientas computacionales, dinámicas y flexibles que permitan automatizar y evaluar el potencial de los diferentes métodos que en la actualidad han sido publicados y están disponibles para su libre uso. Presenta los resultados científicos de la evaluación del impacto de diferentes parámetros de ajuste en los principales métodos de estimación de parámetros biofísicos, centrándonos en datos simulados del satélite Sentinel-2, previsto para ser lanzado en 2015.
Para dicho trabajo se han reunido los principales métodos de estimación que van desde las simples relaciones espectrales hasta los complejos modelos de transferencia radiativa (RTM). Para esto, hemos implementado un conjunto de herramientas informáticas que permiten el diseño y evaluación de diversas estrategias de regularización como son la normalización de los datos, la sinergia entre datos simulados por RTM y datos de campañas de campo o de laboratorio, adición de modelos de ruido a los datos simulados y un amplio conjunto de métodos de regresión tanto paramétricos como no paramétricos.
Este trabajo constituye la continuación de mi trabajo Final del Máster de Teledetección, donde he desarrolló una herramienta informática llamado ARTMO (por sus siglas en inglés Automated Radiative Transfer Models Operator) que reunió los RTM de la familia Prospect, SAIL y FLIGTH. Se implementó el método de estimación por tablas de búsqueda (LUT). Esta tesis presenta la evolución de ARTMO que pasa de ser una herramienta informática rígida que no permitía de manera sencilla la ampliación de sus funciones, a un flexible marco de desarrollo (framework software), donde ARTMO se convierte en una plataforma de soporte de diversos módulos implementados de manera independiente.
Esta nueva versión de ARTMO permite a cualquier grupo de investigación desarrollar y compartir nuevas funciones, algoritmos y métodos de estimación de parámetros biofísicos. Además, hemos establecido las bases para la creación de una red tanto de usuarios como de desarrolladores en torno al estudio de las propiedades de la vegetación, sirviendo de apoyo para el estudio de nuevos algoritmos de estimación, diseño de nuevos sensores ópticos o para su uso en el campo de la educación.
|
|
Veure al catàleg Trobes |