NAGIOS: RODERIC FUNCIONANDO

Discriminating neutrino see-saw models

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

Discriminating neutrino see-saw models

Mostra el registre parcial de l'element

dc.contributor.author Hirsch, Martin
dc.contributor.author King, Steve F.
dc.date.accessioned 2014-08-27T11:02:18Z
dc.date.available 2014-08-27T11:02:18Z
dc.date.issued 2001
dc.identifier.citation Hirsch, Martin King, Steve F. 2001 Discriminating neutrino see-saw models Physics Letters B 516 1-2 103 110
dc.identifier.uri http://hdl.handle.net/10550/37432
dc.description.abstract We consider how well current theories can predict neutrino mass and mixing parameters, and construct a statistical discriminator which allows us to compare different models to each other. As an example we consider see-saw models based on family symmetry, and single right-handed neutrino dominance, and compare them to each other and to the case of neutrino anarchy with random entries in the neutrino Yukawa and Majorana mass matt-ices. The predictions depend crucially on the range of the undetermined coefficients over which we scan, and we speculate on how future theories might lead to more precise predictions for the coefficients and hence for neutrino observables. Our results indicate how accurately neutrino masses and mixing angles need to be measured by future experiments in order to discriminate between current models.
dc.language.iso eng
dc.relation.ispartof Physics Letters B, 2001, vol. 516, num. 1-2, p. 103-110
dc.subject Física
dc.title Discriminating neutrino see-saw models
dc.type journal article es_ES
dc.date.updated 2014-08-27T11:02:18Z
dc.identifier.doi 10.1016/S0370-2693(01)00912-1
dc.identifier.idgrec 098976
dc.rights.accessRights open access es_ES

Visualització       (199.8Kb)

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques