Mostra el registre parcial de l'element
dc.contributor.author | Becirevic, D. | |
dc.contributor.author | Boucaud, Ph. | |
dc.contributor.author | Giménez Gómez, Vicente | |
dc.contributor.author | David Lin, C.J. | |
dc.contributor.author | Lubicz, V. | |
dc.contributor.author | Martinelli, Guido | |
dc.contributor.author | Papinutto, Mauro | |
dc.contributor.author | Sachrajda, Christopher T. | |
dc.date.accessioned | 2014-09-25T11:57:24Z | |
dc.date.available | 2014-09-25T11:57:24Z | |
dc.date.issued | 2003 | |
dc.identifier.citation | Becirevic, D. Boucaud, Ph. Giménez Gómez, Vicente David Lin, C.J. Lubicz, V. Martinelli, G. Papinutto, Mauro Sachrajda, C.T. 2003 Kaon weak matrix elements with Wilson fermions Nuclear Physics B-Proceedings Supplements 119 359 361 | |
dc.identifier.uri | http://hdl.handle.net/10550/38978 | |
dc.description.abstract | We present results of several numerical studies with Wilson fermions relevant for kaon physics. We compute the (B-K) under bar parameter by using two different methods and extrapolate to the continuum limit. Our preliminary result is B-K((MS) over bar)(2 GeV) = 0.66(7). DeltaI = 3/2 K --> pipi matrix elements (MEs) are obtained by using the next-to-leading order (NLO) expressions derived in chiral perturbation theory (ChPT) in which the low energy constants (LECs) are determined by the lattice results computed at unphysical kinematics. From the simulation at beta=6.0 our (preliminary) results read: <pipi\O-7((MS) over bar)(2 GeV)\K>(1=2)=0.14(1)(1) GeV3 and <pipi\O-8((MS) over bar)(2 GeV)\K>(1=2)=0.69(6)(6) GeV3. | |
dc.language.iso | eng | |
dc.relation.ispartof | Nuclear Physics B-Proceedings Supplements, 2003, vol. 119, p. 359-361 | |
dc.subject | Física | |
dc.title | Kaon weak matrix elements with Wilson fermions | |
dc.type | journal article | es_ES |
dc.date.updated | 2014-09-25T11:57:24Z | |
dc.identifier.doi | 10.1016/S0920-5632(03)01551-2 | |
dc.identifier.idgrec | 041532 | |
dc.rights.accessRights | open access | es_ES |