Mostra el registre complet de l'element
Hinarejos Doménech, Margarida
Pérez Cañellas, Armando (dir.); Bañuls Polo, María Carmen (dir.) Facultat de Física |
|
Aquest document és un/a tesi, creat/da en: 2014 | |
La informació quàntica és un camp relativament jove de la Física, que té com
a objectiu explorar les lleis de la mecànica quàntica per a la transmissió i el
processament de la informació. Com a exemple d’aplicacions es poden esmentar
les comunicacions segures, basades en la distribució de clau quàntica, i algoritmes
quàntics que superen als seus homàlegs clàssics per a un determinat nombre
de problemes. A més, les eines desenvolupades en el context de la informació
quàntica han demostrat ser de gran utilitat per aprofundir en la comprensió dels
sistemes quàntics, per exemple, en el context dels problemes de molts cossos
quàntics.
Una de les principals aplicacions de la potència de la mecànica quàntica en
tasques computacionals ́és la manipulació de sistemes quàntics al laboratori per
tal de realitzar simulacions quàntiques, i els diferents estudis experimentals s’estan
reali...
[Llegir més ...]
[-]
La informació quàntica és un camp relativament jove de la Física, que té com
a objectiu explorar les lleis de la mecànica quàntica per a la transmissió i el
processament de la informació. Com a exemple d’aplicacions es poden esmentar
les comunicacions segures, basades en la distribució de clau quàntica, i algoritmes
quàntics que superen als seus homàlegs clàssics per a un determinat nombre
de problemes. A més, les eines desenvolupades en el context de la informació
quàntica han demostrat ser de gran utilitat per aprofundir en la comprensió dels
sistemes quàntics, per exemple, en el context dels problemes de molts cossos
quàntics.
Una de les principals aplicacions de la potència de la mecànica quàntica en
tasques computacionals ́és la manipulació de sistemes quàntics al laboratori per
tal de realitzar simulacions quàntiques, i els diferents estudis experimentals s’estan
realitzant en l’actualitat cap aquest objectiu. Especialment prometedores són les
primeres simulacions quàntiques de sistemes atòmics ultrafreds atrapats en xarxes
optiques, on els resultats superen els càlculs clàssics.
Aquesta tesi aplica eines d’informació quàntica a la descripció i l’estudi de
diversos sistemes quàntics i a processos que succeeixen en un espai discret, és a
dir, en una xarxa. Fins i tot una sola partícula quàntica amb spin 1/2 pot donar
lloc a fenomens que difereixen de forma radical de qualsevol analogia clàssica. En
alguns casos, la nostra comprensió dels processos físics és més intuïtiva per al cas
continu, i per tant, el nostre estudi es connecta fins al límit continu adequat.
La tesi s’estructura en dues parts. La primera d’elles s’emmarca en l’estudi
i comprensió d’un algoritme quàntic en particular, el passeig quàntic. Per tal
d’explotar el passeig quàntic i aplicar-lo a la construcció d’algoritmes quàntics,
és important entendre i controlar el seu comportament tant com siga possible.
Una de les característiques analitzades en aquesta tesi és el passeig quàntic
discret en N dimensions des de la perspectiva de les relacions de dispersió. Fent ús de condicions inicials esteses en l’espai de posicions, s’obté una equació d’ona en el límit continu. Aquesta equació ens permet d’entendre algunes propietats
conegudes i dissenyar interessants comportaments. Apliquem l’estudi al passeig
quàntic en dos i tres dimensions per a la moneda de Grover, on la relació dedispersió presenta punts i interseccions particulars on la dinàmica és especialment
diferent.
D’altra banda, s’analitza el comportament del passeig quàntic com un procés
Markovià. Amb aquest objectiu, s’investiga l’evolució temporal de la matiu densitat reduïda per un passeig quàntic de temps discret en una xarxa unidimensional.
S’analitza la dinàmica de la matriu densitat reduïda en el cas estàndard, sense decoherència, i quan el sistema està exposat als efectes de decoherència. Analitzem
el comportament Markovià de l’evolució en el sentit definit en [1] examinant la
distància de traça per a possibles parells de estats inicials com una funció del
temps. Arribem a la conclusió que l’evolució de la matriu densitat reduïda en
el cas lliure és no Markoviana i, quan el nivell de soroll augmenta, la dinàmica
s’aproxima a un procés Markovià.
La segona part d’aquesta tesi proposa una generalització de la coneguda funció
de Wigner per a una partícula que es mou en una xarxa infinita en una dimensió.
L’estudi de la mecànica quàntica en l’espai de fases a través de les distribucions
de quasi-probabilitat s’aplica en molts camps de la física i la funció de Wigner és
probablement la més utilitzada.
S’estudia la funció de Wigner per a un sistema quàntic en un espai d’Hilbert
discret, de dimensió infinita, tal com una partícula sense spin en moviment en una
xarxa infinita unidimensional. Es discuteixen les peculiaritats d’aquest escenari i la construcció de l’espai fàsic associat, i es proposa una definició significativa de la funció de Wigner en aquest cas, a més es caracteritza el conjunt d’estats purs per als quals la funció de Wigner és no negativa. També ampliem la definició proposada per incloure un grau intern de llibertat, com ara l’spin.
La dinàmica d’una partícula en una xarxa amb, i sense spin, en diferents casos, també s’analitza en termes de la funció de Wigner corresponent. Mostrem solucions explícites en el cas d’evolució hamiltoniana sota un potencial depenent de la posició que pot incloure un acoblament d’spin, i per a l’evolució governada per una equació mestra sota alguns simples models de decoherència.
Proposem una mesura de la no-classicitat dels estats en un sistema amb un
espai d’Hilbert discret i infinit que és consistent amb el límit continu. I, en
darrer lloc, discutim la possibilitat d’ampliar el concepte de negativitat de la
funció de Wigner al cas en el qual s’inclou el grau de llibertad d’spin.Quantum information is a relatively young field of Physics, that aims to exploit
the laws of quantum mechanics for the transmission and processing of information. As illustrative applications one can mention secure communications, based
on quantum key distribution, and quantum algorithms that outperform their classical counterparts for a number of problems. Furthermore, the tools developed
in the context of Quantum Information have proven extremely useful to deepen
the understanding of quantum systems, for instance in the context of quantum
many-body problems.
One of the main applications of the power of quantum mechanics to computational tasks is the manipulation of quantum systems in the lab in order to perform
quantum simulations, and different experimental approaches are currently being
pursued towards this goal. Especially promising are ultracold atomic systems
trapped in optical lattices, where the first quantum simulations that outperform
the feasible classical calculations have already been realized.
This thesis applies quantum information tools to the description and the study
of several quantum systems and processes that happen on a discrete space, i.e.
on a lattice. Even a single quantum particle with spin 1/2 hopping on a lattice
can give rise to phenomena that dramatically differ from any classical analogy.
In some cases, our understanding of the physical processes is more intuitive for
the continuous case, and hence we connect our study to the proper continuum
limit.
The thesis is structured in two parts. The first one is framed within the study
and understanding of a particular quantum algorithm, namely the quantum walk.
In order to exploit the quantum walk and apply it to the construction of quantum
algorithms, it is important to understand and control its behavior as much as
possible.
One of the features analyzed in this thesis is the discrete time quantum walk
in N dimensions from the perspective of its dispersion relations. Making use of
the spatially extended initial conditions, a wave equation in the continuum limit
is obtained. This equation allows us to understand some known properties, and
to design interesting behaviors. We apply the study to the two and three dimensional Grover quantum walk, where the dispersion relation presents particular
points and intersections where the dynamics is specially distinct.
On the other hand, we analyze the behavior of the quantum walk as a Markovian process. With this aim, we investigate the time evolution of the chirality
reduced density matrix for a discrete time quantum walk on a one-dimensional
lattice. We analyze the dynamics of the reduced density matrix in the standard
case, without decoherence, and when the system is exposed to the effects of decoherence. We analyze the Markovian behavior in the sense defined in [1] examining
the trace distance for possible pairs of initial states as a function of time which
gives us the distinguishability of two states and it is related with the Markovian
behavior of the system. We conclude that the evolution of the reduced density
matrix in the free case is non-Markovian and, as the level of noise increases, the
dynamics approaches a Markovian process.
The second part of this thesis proposes a generalization of the known Wigner
function for a particle moving on an infinite lattice in one dimension. The study
of the quantum mechanics in phase space through quasi-probability distributions
is applied in many fields of physics and the Wigner function is probably the most
commonly used one.
We study the Wigner function for a quantum system with a discrete, infinite
dimensional Hilbert space, such as a spinless particle moving on a one dimensional
infinite lattice. We discuss the peculiarities of this scenario and of the associated
phase space construction, propose a meaningful definition of the Wigner function
in this case, and characterize the set of pure states for which it is non-negative.
We also extended the proposed definition to include an internal degree of freedom,
such as the spin.
The dynamics of a particle on a lattice with and without spin in different cases
are also analyzed in terms of the corresponding Wigner function. We show explicit solutions for the case of Hamiltonian evolution under a position dependent
potential that may include a spin coupling, and for the evolution governed by a
master equation under some simple models of decoherence.
We propose a measure of non-classicality for states in the system with a discrete
infinite dimensional Hilbert space which is consistent with the continuum limit.
And we discuss the possibility of extending a negativity concept for the Wigner
function in the case in which the spin degree of freedom is included.
|
|
Veure al catàleg Trobes |