NAGIOS: RODERIC FUNCIONANDO

N-quantum approach to quantum field theory at finite T and mu: the NJL model

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

N-quantum approach to quantum field theory at finite T and mu: the NJL model

Mostra el registre parcial de l'element

dc.contributor.author Umino, Yasuo
dc.contributor.author Vento Torres, Vicente
dc.date.accessioned 2015-05-11T11:02:53Z
dc.date.available 2015-05-11T11:02:53Z
dc.date.issued 2000
dc.identifier.citation Umino, Yasuo Vento Torres, Vicente 2000 N-quantum approach to quantum field theory at finite T and mu: the NJL model Physics Letters B 472 1-2 5 14
dc.identifier.uri http://hdl.handle.net/10550/43656
dc.description.abstract We extend the N-quantum approach to quantum field theory to finite temperature (T) and chemical potential (μ) and apply it to the NJL model. In this approach the Heisenberg fields are expressed using the Haag expansion while temperature and chemical potential are introduced simultaneously through a generalized Bogoliubov transformation. Known mean field results are recovered using only the first term in the Haag expansion. In addition, we find that at finite T and in the broken symmetry phase of the model the mean field approximation can not diagonalize the Hamiltonian. Inclusion of scalar and axial vector diquark channels in the SU(2)rmf otimes SU(3)c version of the model can lead to a lowering of the vacuum energy density. We discuss how to go beyond the mean field approximation by including higher order terms in the Haag expansion.
dc.language.iso eng
dc.relation.ispartof Physics Letters B, 2000, vol. 472, num. 1-2, p. 5-14
dc.subject Física
dc.title N-quantum approach to quantum field theory at finite T and mu: the NJL model
dc.type journal article es_ES
dc.date.updated 2015-05-11T11:02:54Z
dc.identifier.doi 10.1016/S0370-2693(99)01370-2
dc.identifier.idgrec 075383
dc.rights.accessRights open access es_ES

Visualització       (160.7Kb)

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques