NAGIOS: RODERIC FUNCIONANDO

A Novel Semi-Supervised Methodology for Extracting Tumor Type-Specific MRS Sources in Human Brain Data

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

A Novel Semi-Supervised Methodology for Extracting Tumor Type-Specific MRS Sources in Human Brain Data

Mostra el registre parcial de l'element

dc.contributor.author Ortega-Martorell, Sandra es_ES
dc.contributor.author Ruiz, Héctor es_ES
dc.contributor.author Vellido, Alfredo es_ES
dc.contributor.author Olier, Iván es_ES
dc.contributor.author Romero, Enrique es_ES
dc.contributor.author Julià-Sapé, Margarida es_ES
dc.contributor.author Martín, José D. es_ES
dc.contributor.author Jarman, Ian H. es_ES
dc.contributor.author Arús, Carles es_ES
dc.contributor.author Lisboa, Paulo J. G. es_ES
dc.date.accessioned 2015-06-19T07:47:43Z
dc.date.available 2015-06-19T07:47:43Z
dc.date.issued 2013 es_ES
dc.identifier.citation PLoS ONE Vol. 8 Issue 12: es_ES
dc.identifier.uri http://hdl.handle.net/10550/44492
dc.description.abstract BackgroundThe clinical investigation of human brain tumors often starts with a non-invasive imaging study, providing information about the tumor extent and location, but little insight into the biochemistry of the analyzed tissue. Magnetic Resonance Spectroscopy can complement imaging by supplying a metabolic fingerprint of the tissue. This study analyzes single-voxel magnetic resonance spectra, which represent signal information in the frequency domain. Given that a single voxel may contain a heterogeneous mix of tissues, signal source identification is a relevant challenge for the problem of tumor type classification from the spectroscopic signal.Methodology/Principal FindingsNon-negative matrix factorization techniques have recently shown their potential for the identification of meaningful sources from brain tissue spectroscopy data. In this study, we use a convex variant of these methods that is capable of handling negatively-valued data and generating sources that can be interpreted as tumor class prototypes. A novel approach to convex non-negative matrix factorization is proposed, in which prior knowledge about class information is utilized in model optimization. Class-specific information is integrated into this semi-supervised process by setting the metric of a latent variable space where the matrix factorization is carried out. The reported experimental study comprises 196 cases from different tumor types drawn from two international, multi-center databases. The results indicate that the proposed approach outperforms a purely unsupervised process by achieving near perfect correlation of the extracted sources with the mean spectra of the tumor types. It also improves tissue type classification.Conclusions/SignificanceWe show that source extraction by unsupervised matrix factorization benefits from the integration of the available class information, so operating in a semi-supervised learning manner, for discriminative source identification and brain tumor labeling from single-voxel spectroscopy data. We are confident that the proposed methodology has wider applicability for biomedical signal processing. es_ES
dc.title A Novel Semi-Supervised Methodology for Extracting Tumor Type-Specific MRS Sources in Human Brain Data es_ES
dc.type journal article es_ES
dc.identifier.doi 10.1371/journal.pone.0083773 es_ES
dc.identifier.idgrec 092933 es_ES

Visualització       (1.185Mb)

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques