From multileg loops to trees (by-passing Feynman's Tree Theorem)
Mostra el registre complet de l'element
Visualització
(141.2Kb)
|
|
|
|
|
|
Rodrigo García, Germán Vicente; Catani, Stefano; Gleisberg, Tanju; Krauss, Frank; Winter, Jan-Christopher
|
|
Aquest document és un/a article, creat/da en: 2008
|
|
|
|
We illustrate a duality relation between one-loop integrals and single-cut phase-space integrals. The duality relation is realised by a modification of the customary +i0 prescription of the Feynman propagators. The new prescription regularizing the propagators, which we write in a Lorentz covariant form, compensates for the absence of multiple-cut contributions that appear in the Feynman Tree Theorem. The duality relation can be extended to generic one-loop quantities, such as Green's functions, in any relativistic, local and unitary field theories. |
|
Veure al catàleg Trobes
|
|
|
Aquest element apareix en la col·lecció o col·leccions següent(s)
Mostra el registre complet de l'element