NAGIOS: RODERIC FUNCIONANDO

Perturbation of spermine synthase Gene Expression and Transcript Profiling Provide New Insights on the Role of the Tetraamine Spermine in Arabidopsis Defense against Pseudomonas viridiflava1[C][W]

Repositori DSpace/Manakin

IMPORTANT: Aquest repositori està en una versió antiga des del 3/12/2023. La nova instal.lació está en https://roderic.uv.es/

Perturbation of spermine synthase Gene Expression and Transcript Profiling Provide New Insights on the Role of the Tetraamine Spermine in Arabidopsis Defense against Pseudomonas viridiflava1[C][W]

Mostra el registre parcial de l'element

dc.contributor.author Gonzalez, María Elisa es_ES
dc.contributor.author Marco, Francisco es_ES
dc.contributor.author Gómez Minguet, Eugenio es_ES
dc.contributor.author Carrasco Sorli, Pedro M. es_ES
dc.contributor.author Blázquez, Miguel Angel es_ES
dc.contributor.author Carbonell, Juan es_ES
dc.contributor.author Ruiz, Oscar Adolfo es_ES
dc.contributor.author Pieckenstain, Fernando Luis es_ES
dc.date.accessioned 2015-06-22T09:50:05Z
dc.date.available 2015-06-22T09:50:05Z
dc.date.issued 2011 es_ES
dc.identifier.citation Plant Physiology Vol. 156 Issue 4: pp. 2266-2277 es_ES
dc.identifier.uri http://hdl.handle.net/10550/44659
dc.description.abstract The role of the tetraamine spermine in plant defense against pathogens was investigated by using the Arabidopsis (Arabidopsis thaliana)-Pseudomonas viridiflava pathosystem. The effects of perturbations of plant spermine levels on susceptibility to bacterial infection were evaluated in transgenic plants (35S::spermine synthase [SPMS]) that overexpressed the SPMS gene and accumulated spermine, as well as in spms mutants with low spermine levels. The former exhibited higher resistance to P. viridiflava than wild-type plants, while the latter were more susceptible. Exogenous supply of spermine to wild-type plants also increased disease resistance. Increased resistance provided by spermine was partly counteracted by the polyamine oxidase inhibitor SL-11061, demonstrating that the protective effect of spermine partly depends on its oxidation. In addition, global changes in gene expression resulting from perturbations of spermine levels were analyzed by transcript profiling 35S::SPMS-9 and spms-2 plants. Overexpression of 602 genes was detected in 35S::SPMS-9 plants, while 312 genes were down-regulated, as compared to the wild type. In the spms-2 line, 211 and 158 genes were up- and down-regulated, respectively. Analysis of gene ontology term enrichment demonstrated that many genes overexpressed only in 35S::SPMS-9 participate in pathogen perception and defense responses. Notably, several families of disease resistance genes, transcription factors, kinases, and nucleotide- and DNA/RNA-binding proteins were overexpressed in this line. Thus, a number of spermine-responsive genes potentially involved in resistance to P. viridiflava were identified. The obtained results support the idea that spermine contributes to plant resistance to P. viridiflava. es_ES
dc.title Perturbation of spermine synthase Gene Expression and Transcript Profiling Provide New Insights on the Role of the Tetraamine Spermine in Arabidopsis Defense against Pseudomonas viridiflava1[C][W] es_ES
dc.type journal article es_ES
dc.identifier.doi 10.1104/pp.110.171413 es_ES
dc.identifier.idgrec 069511 es_ES

Visualització       (525.6Kb)

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Cerca a RODERIC

Cerca avançada

Visualitza

Estadístiques